I nt ernet Engi neering Task Force (I ETF) T. Haynes
Request for Comments: 7862 Primary Data
Cat egory: Standards Track Novenber 2016
| SSN: 2070-1721

Network File System (NFS) Version 4 Mnor Version 2 Protoco

Abstract

Thi s docunent describes NFS version 4 minor version 2; it describes
the protocol extensions nade from NFS version 4 ninor version 1.
Maj or extensions introduced in NFS version 4 minor version 2 include
the follow ng: Server-Side Copy, Application Input/Qutput (1/0

Advi se, Space Reservations, Sparse Files, Application Data Bl ocks,
and Label ed NFS.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc7862

Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided w thout warranty as
described in the Sinplified BSD License.

Haynes St andards Track [Page 1]

RFC 7862 NFSv4. 2 Novenber 2016

Tabl e

1

Haynes

of Contents
INtroduCti ON ... 4
1.1. Requirenents Languaget 4
1. 2. Scope of This DoCcUMBNL e 5
1.3, NRSVA. 2 Goal S ..o 5
1.4. Overview of NFSV4.2 Featuresuiiiiinnnennnn 6
1.4.1. Server-Side done and Copy 6
1.4.2. Application Input/Qutput (1/O Advise 6
1.4.3. Sparse Files 6
1.4.4. Space Reservation 7
1.4.5. Application Data Block (ADB) Support 7
1.4.6. Labeled NFS 7
1.4.7. Layout Enhancements i, 7
1.5. Enhancenents to M nor Versioning Mdel 7
M nor Versi oni NQ e 8
pNFS Considerations for New Qperations 9
3.1. Atomicity for ALLOCATE and DEALLOCATE 9
3.2. Sharing of Stateids with NFSv4.1 9
3.3. NFSv4.2 as a Storage Protocol in pNFS: The File
LayoUt TYPe . 9
3.3.1. Operations Sent to NFSv4.2 Data Servers 9
Server-Side CopY . ..ot 10
4.1. Protocol OVervi W 10
4.1.1. COPY Qperati Onsot e e et e 11
4.1.2. Requirenments for Operations 11
4.2. Requirements for Inter-Server Copy 13
4.3. Inplenmentation Considerations 13
4.3.1. Locking the Files i 13
4.3.2. Cient Caches 14
4.4, Intra-Server COPY ..ot e 14
4.5, Inter-Server COPY 16
4.6. Server-to-Server Copy Protocol 19
4.6.1. Considerations on Selecting a Copy Protocol 19
4.6.2. Using NFSv4.x as the Copy Protocol 19
4.6.3. Using an Alternative Copy Protocol 20
4.7. netlocd - Network Locations 21
4.8. Copy Ofload Stateids 21
4.9. Security Considerations for Server-Side Copy 22
4.9.1. Inter-Server Copy Security, 22
Support for Application I/OHDNts 30
Sparse Fil es e 30
6. 1. Termnol Ogy 31
6.2. New Operati ONS 32
6.2.1. READ PLUS 32
6.2.2. DEALLOCATE e 32
Space Reservati on 32
St andards Track [Page 2]

RFC 78

8.

10.

11.

12.

13.
14.

15.

Haynes

62 NFSv4. 2 Novenmber 2016

Application Data Bl ock SUPpPOrty 34
8.1. Generic Framework 35
8.1.1. Data Block Representation 36
8.2. An Exanple of Detecting Corruption 36
8.3. An Exanple of READ PLUS i, 38
8.4. An Exanple of Zeroing Space 39
Label ed NFS 39
9.1, Definitions 40
9.2. MAC Security Attribute 41
9.2.1. Delegations 41
9.2.2. Permission Checking 42
9.2.3. Ghject Creation, 42
9.2.4. Existing QbjeCts 42
9.2.5. Label Changes 42
9.3. PNFS Considerati ons 43
9.4. Discovery of Server Labeled NFS Support 43
9.5. MAC Security NFS Mbdes of QOperation 43
9.5.1. Full Mde 44
9.5.2. Limted Server Mode 45
9.5.3. @uest Mude 45
9.6. Security Considerations for Labeled NFS 46
Sharing Change Attribute Inplenentation Characteristics
With NFSV4A Clients e e 46
Error Val ues 47
11.1. Error Definitions 47
11.1.1. General Errors e 47
11.1.2. Server-to-Server Copy Errors 47
11.1.3. Labeled NFS Errors 48
11.2. New Operations and Their Valid Errors 49
11.3. New Cal | back Operations and Their Valid Errors 53
New File Attributes e 54
12.1. New RECOMMENDED Attributes - List and Definition
Ref erences 54
12.2. Attribute Definitions i, 54
Qperations: REQU RED, RECOMVENDED, or OPTIONAL 57
Modifications to NFSv4. 1 Qperations 61

14.1. Qperation 42: EXCHANGE ID - Instantiate the client ID....61
14.2. COperation 48: GETDEVI CELI ST - Get all device

mappi ngs for a file system....... 63
NFSV4. 2 Operati ONS e 64
15.1. Qperation 59: ALLOCATE - Reserve space in a
region of a file e 64
15.2. Qperation 60: COPY - |Initiate a server-side copy 65
15.3. Qperation 61: COPY_NOTIFY - Notify a source
server of a future copy 70
15. 4. Qperation 62: DEALLOCATE - Unreserve space in a
region of a file 72
St andards Track [Page 3]

RFC 7862 NFSv4. 2 Novenber 2016

15.5. Qperation 63: IO ADVISE - Send client 1/0O access

pattern hints to the server 73
15.6. QOperation 64: LAYOUTERROR - Provide errors for
the layout 79
15. 7. Operation 65: LAYQUTSTATS - Provide statistics
for the layout e 82
15.8. Qperation 66: OFFLOAD CANCEL - Stop an of fl oaded
OPErati ON ..o 84
15.9. Operation 67: OFFLOAD_STATUS - Poll for the
status of an asynchronous operation 85
15.10. Operation 68: READ PLUS - READ data or hol es
froma file e 86
15.11. Operation 69: SEEK - Find the next data or hole 91
15.12. Operation 70: WRI TE_SAME - WRI TE an ADB nultiple
times to a file 92
15.13. Operation 71: CLONE - Clone a range of a file
into another file 96
16. NFSv4.2 Callback Qperations, 98
16.1. Qperation 15: CB OFFLOAD - Report the results of
an asynchronous operation 98
17. Security Considerati ONS 99
18. TANA Considerati ONS i 99
19. References 100
19.1. Normative References 100
19.2. Informative References 101
ACKknNOW edgmBNt S 103
Aut hor’ s Addr €SS 104
1. Introduction

The NFS version 4 minor version 2 (NFSv4.2) protocol is the third

m nor version of the NFS version 4 (NFSv4) protocol. The first mnor
version, NFSv4.0, is described in [RFC7530], and the second m nor
version, NFSv4.1, is described in [RFC5661].

As a minor version, NFSv4.2 is consistent with the overall goals for
NFSv4, but NFSv4. 2 extends the protocol so as to better neet those
goal s, based on experiences with NFSv4.1. In addition, NFSv4.2 has
adopt ed sonme additional goals, which notivate sone of the ngjor
extensions in NFSv4. 2.

1.1. Requirenents Language
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

Haynes St andards Track [Page 4]

RFC 7862 NFSv4. 2 Novenber 2016

1.2. Scope of This Docunent

Thi s docunent describes the NFSv4.2 protocol as a set of extensions
to the specification for NFSv4.1. That specification remains current
and fornms the basis for the additions defined herein. The
specification for NFSv4.0 remains current as well.

It is necessary to inplenent all the REQUI RED features of NFSv4.1
bef ore addi ng NFSv4.2 features to the inplenentation. Wth respect
to NFSv4.0 and NFSv4.1, this docunent does not:

0 describe the NFSv4.0 or NFSv4.1 protocols, except where needed to
contrast with NFSv4. 2

o nodify the specification of the NFSv4.0 or NFSv4.1 protocols

o clarify the NFSv4.0 or NFSv4.1 protocols -- that is, any
clarifications nmade here apply only to NFSv4.2 and not to NFSv4.0
or NFSv4.1

NFSv4.2 is a superset of NFSv4.1, with all of the new features being
optional. As such, NFSv4.2 maintains the same conpatibility that
NFSv4.1 had with NFSv4.0. Any interactions of a new feature with
NFSv4.1 semantics is described in the relevant text.

The full External Data Representation (XDR) [RFC4506] for NFSv4.2 is
presented in [RFC7863].

1.3. NFSv4.2 Coal s
A maj or goal of the enhancenents provided in NFSv4.2 is to take
common |l ocal file systemfeatures that have not been avail able
through earlier versions of NFS and to offer themrenotely. These
features night

o0 already be avail able on the servers, e.g., sparse files

0 be under devel opnent as a new standard, e.g., SEEK pulls in both
SEEK_HOLE and SEEK_DATA

0 be used by clients with the servers via sone proprietary means,
e.g., Labeled NFS

NFSv4. 2 provides neans for clients to | everage these features on the

server in cases in which such | everagi ng had previously not been
possi ble within the confines of the NFS protocol

Haynes St andards Track [Page 5]

RFC 7862 NFSv4. 2 Novenber 2016

1.4. Overview of NFSv4.2 Features
1.4.1. Server-Side done and Copy

A traditional file copy of a renotely accessed file, whether from one
server to another or between |ocations in the same server, results in
the data being put on the network twice -- source to client and then
client to destination. New operations are introduced to allow
unnecessary traffic to be elim nated:

0 The intra-server CLONE feature allows the client to request a
synchronous cloni ng, perhaps by copy-on-wite semantics.

0 The intra-server COPY feature allows the client to request the
server to performthe copy internally, avoiding unnecessary
network traffic.

0 The inter-server COPY feature allows the client to authorize the
source and destination servers to interact directly.

As such copies can be I engthy, asynchronous support is also provided.
1.4.2. Application Input/Qutput (1/0O Advise

Applications and clients want to advise the server as to expected 1/0O
behavior. Using | O ADVI SE (see Section 15.5) to conmunicate future
I/ O behavior such as whether a file will be accessed sequentially or
random y, and whether a file will or will not be accessed in the near
future, allows servers to optimze future I/O requests for a file by,
for exanple, prefetching or evicting data. This operation can be
used to support the posix_fadvise() [posix _fadvise] function. In
addition, it rmay be hel pful to applications such as databases and

vi deo editors.

1.4.3. Sparse Files

Sparse files are files that have unallocated or uninitialized data

bl ocks as holes in the file. Such holes are typically transferred as
zeros when read fromthe file. READ PLUS (see Section 15.10) allows
a server to send back to the client nmetadata describing the hole, and
DEALLOCATE (see Section 15.4) allows the client to punch holes into a
file. In addition, SEEK (see Section 15.11) is provided to scan for
the next hole or data froma given | ocation

Haynes St andards Track [Page 6]

RFC 7862 NFSv4. 2 Novenber 2016

1.4.4. Space Reservation

When a file is sparse, one concern that applications have is ensuring
that there will always be enough data bl ocks available for the file
during future wites. ALLOCCATE (see Section 15.1) allows a client to
request a guarantee that space will be available. Al so, DEALLOCATE
(see Section 15.4) allows the client to punch a hole into a file,
thus rel easing a space reservation

1.4.5. Application Data Bl ock (ADB) Support

Sonme applications treat a file as if it were a disk and as such want
toinitialize (or format) the file inmage. The WRI TE_SAME operation
(see Section 15.12) is introduced to send this netadata to the server
to allowit to wite the block contents.

1.4.6. Label ed NFS

Wil e both clients and servers can enpl oy Mandatory Access Contro
(MAC) security nodels to enforce data access, there has been no
protocol support for interoperability. A newfile object attribute,
sec_l abel (see Section 12.2.4), allows the server to store MAC | abel s
on files, which the client retrieves and uses to enforce data access
(see Section 9.5.3). The format of the sec_| abel acconnobdates any
MAC security system

1.4.7. Layout Enhancenents

In the parallel NFS inplenentations of NFSv4.1 (see Section 12 of

[RFC5661]), the client cannot communicate back to the netadata server
any errors or performance characteristics with the storage devices.
NFSv4. 2 provides two new operations to do so: LAYOUTERROR (see
Section 15.6) and LAYOUTSTATS (see Section 15.7), respectively.

1.5. Enhancenents to M nor Versioning Mde

In NFSv4.1, the only way to introduce new variants of an operation
was to introduce a new operation. For instance, READ would have to
be replaced or supplenmented by, say, either READ2 or READ PLUS. Wth
the use of discrimnated unions as paraneters for such functions in
NFSv4.2, it is possible to add a new "arnf (i.e., a newentry in the
union and a corresponding new field in the structure) in a subsequent
m nor version. It is also possible to nove such an operation from
OPTI ONAL/ RECOMVENDED t o REQUI RED. Forcing an inpl enentation to adopt
each arm of a discrinminated union at such a tine does not neet the
spirit of the mnor versioning rules. As such, new arns of a

di scrimnated union MJIST foll ow the sane guidelines for m nor

Haynes St andards Track [Page 7]

RFC 7862 NFSv4. 2 Novenber 2016

versioning as operations in NFSv4.1 -- i.e., they nay not be nade
REQUI RED. To support this, a new error code, NFS4ERR UNI ON_NOTSUPP,
all ows the server to communicate to the client that the operation is
supported but the specific armof the discrimnated union is not.

2. M nor Versioning

NFSv4.2 is a minor version of NFSv4 and is built upon NFSv4.1 as
docunmented in [RFC5661] and [RFC5662] .

NFSv4. 2 does not nodify the rules applicable to the NFSv4 versioni ng
process and follows the rules set out in [RFC5661] or in

St andards Track docunents updating that document (e.g., in an RFC
based on [NFSv4- Versioning]).

NFSv4. 2 only defines extensions to NFSv4.1, each of which may be
supported (or not) independently. It does not

o introduce infrastructural features
0o make existing features MANDATORY to NOT i npl enent

o change the status of existing features (i.e., by changing their
status anmong OPTI ONAL, RECOMMENDED, REQUI RED)

The foll owi ng versioning-rel ated considerations should be noted.

0 Wien a new case is added to an existing switch, servers need to
report non-support of that new case by returning
NFS4ERR_UNI ON_NOTSUPP.

0 As regards the potential cross-mnor-version transfer of stateids,
Parall el NFS (pNFS) (see Section 12 of [RFC5661]) inplenmentations
of the file-mapping type may support the use of an NFSv4. 2
nmet adat a server (see Sections 1.7.2.2 and 12.2.2 of [RFC5661])
with NFSv4.1 data servers. In this context, a stateid returned by
an NFSv4.2 COMPOUND wi Il be used in an NFSv4.1 COVPOUND directed
to the data server (see Sections 3.2 and 3.3).

Haynes St andards Track [Page 8]

RFC 7862 NFSv4. 2 Novenber 2016

3. pNFS Considerations for New Operations

The interactions of the new operations with non-pNFS functionality
are straightforward and are covered in the rel evant sections.
However, the interactions of the new operations with pNFS are nore
conplicated. This section provides an overvi ew.

3.1. Atomicity for ALLOCATE and DEALLOCATE

Bot h ALLOCATE (see Section 15.1) and DEALLOCATE (see Section 15.4)
are sent to the nmetadata server, which is responsible for

coordi nating the changes onto the storage devices. |n particular
both operations nust either fully succeed or fail; it cannot be the
case that one storage device succeeds whilst another fails.

3.2. Sharing of Stateids with NFSv4.1

An NFSv4.2 netadata server can hand out a layout to an NFSv4.1
storage device. Section 13.9.1 of [RFC5661] discusses how the client
gets a stateid fromthe netadata server to present to a storage

devi ce.

3.3. NFSv4.2 as a Storage Protocol in pNFS: The File Layout Type

A file layout provided by an NFSv4.2 server may refer to either (1) a
storage device that only inplenents NFSv4.1 as specified in [RFC5661]
or (2) a storage device that inplenments additions from NFSv4. 2, in
which case the rules in Section 3.3.1 apply. As the file layout type
does not provide a neans for informng the client as to which m nor
version a particular storage device is providing, the client wll
have to negotiate this with the storage device via the nornmal Renote
Procedure Call (RPC) semantics of nmmjor and minor version discovery.
For exanple, as per Section 16.2.3 of [RFC5661], the client could try
a COWOUND with a minorversion field value of 2; if it gets
NFS4ERR_M NOR_VERS M SMATCH, it would drop back to 1.

3.3.1. Qperations Sent to NFSv4.2 Data Servers

In addition to the conmands listed in [RFC5661], NFSv4.2 data servers
MAY accept a COVPOUND containing the foll owi ng additional operations:
| O ADVI SE (see Section 15.5), READ PLUS (see Section 15.10)

VWRI TE_SAME (see Section 15.12), and SEEK (see Section 15.11), which
will be treated |ike the subset specified as "Qperations Sent to
NFSv4.1 Data Servers" in Section 13.6 of [RFC5661].

Additional details on the inplenentation of these operations in a
pNFS context are docunmented in the operation-specific sections.

Haynes St andards Track [Page 9]

RFC 7862 NFSv4. 2 Novenber 2016

4.

4.

Server - Si de Copy

The server-side copy features provide nmechani sns that allow an NFS
client to copy file data on a server or between two servers w thout
the data being transmtted back and forth over the network through
the NFS client. Wthout these features, an NFS client would copy
data fromone |ocation to another by reading the data fromthe source
server over the network and then witing the data back over the
network to the destination server

If the source object and destination object are on different file
servers, the file servers will comunicate with one another to
performthe COPY operation. The server-to-server protocol by which
this is acconplished is not defined in this docunent.

The copy feature allows the server to performthe copying either
synchronously or asynchronously. The client can request synchronous
copyi ng, but the server may not be able to honor this request. |If
the server intends to perform asynchronous copying, it supplies the
client with a request identifier that the client can use to nonitor
the progress of the copying and, if appropriate, cancel a request in
progress. The request identifier is a stateid representing the
internal state held by the server while the copying is perforned.
Mul ti pl e asynchronous copies of all or part of a file may be in
progress in parallel on a server; the stateid request identifier

all ows nonitoring and canceling to be applied to the correct request.

1. Pr ot ocol Overvi ew

The server-side copy offload operations support both intra-server and
inter-server file copies. An intra-server copy is a copy in which

the source file and destination file reside on the sane server. 1In
an inter-server copy, the source file and destination file are on
different servers. 1In both cases, the copy may be perforned

synchronously or asynchronously.

In addition, the CLONE operation provides COPY-like functionality in
the intra-server case, which is both synchronous and atonic in that
ot her operations may not see the target file in any state between the
state before the CLONE operation and the state after it.

Throughout the rest of this docunent, the NFS server containing the
source file is referred to as the "source server" and the NFS server
to which the file is transferred as the "destination server". In the
case of an intra-server copy, the source server and destination
server are the sanme server. Therefore, in the context of an
intra-server copy, the ternms "source server" and "destination server”
refer to the single server perform ng the copy.

Haynes St andards Track [Page 10]

RFC 7862 NFSv4. 2 Novenber 2016

The new operations are designed to copy files or regions within them
O her file systemobjects can be copied by building on these
operations or using other techniques. For exanple, if a user w shes
to copy a directory, the client can synthesize a directory COPY
operation by first creating the destination directory and the

i ndi vidual (enpty) files within it and then copying the contents of
the source directory's files to files in the new destination
directory.

For the inter-server copy, the operations are defined to be
conpatible with the traditional copy authorization approach. The
client and user are authorized at the source for reading. Then, they
are authorized at the destination for witing.

4.1.1. COPY (perations

CLONE: Used by the client to request a synchronous atom c COPY-1i ke
operation. (Section 15.13)

COPY_NOTI FY: Used by the client to request the source server to
authorize a future file copy that will be nade by a given
destination server on behalf of the given user. (Section 15.3)

COPY: Used by the client to request a file copy. (Section 15.2)

OFFLOAD CANCEL: Used by the client to termi nate an asynchronous file
copy. (Section 15.8)

OFFLOAD_STATUS: Used by the client to poll the status of an
asynchronous file copy. (Section 15.9)

CB OFFLOAD: Used by the destination server to report the results of
an asynchronous file copy to the client. (Section 16.1)

4.1.2. Requirenents for Operations

Inter-server copy, intra-server copy, and intra-server clone are each
OPTI ONAL features in the context of server-side copy. A server nay
choose independently to inplement any of them A server inplenenting
any of these features may be REQUI RED to inplenent certain
operations. Oher operations are OPTIONAL in the context of a
particular feature (see Table 5 in Section 13) but may becone

REQUI RED, dependi ng on server behavior. Cdients need to use these
operations to successfully copy a file.

Haynes St andards Track [Page 11]

RFC 7862 NFSv4. 2 Novenber 2016

For a client to do an intra-server file copy, it needs to use either
the COPY or the CLONE operation. |If COPY is used, the client MJST
support the CB_OFFLQOAD operation. |If COPY is used and it returns a
stateid, then the client MAY use the OFFLOAD CANCEL and
OFFLOAD_STATUS oper ati ons.

For a client to do an inter-server file copy, it needs to use the
COPY and COPY_NOTI FY operations and MJUST support the CB_OFFLOAD
operation. |If COPY returns a stateid, then the client MAY use the
OFFLOAD _CANCEL and OFFLOAD_STATUS operati ons.

If a server supports the intra-server COPY feature, then the server
MUST support the COPY operation. |If a server’s COPY operation
returns a stateid, then the server MJST al so support these
operations: CB_OFFLOAD, OFFLOAD CANCEL, and OFFLQAD_STATUS.

If a server supports the CLONE feature, then it MJST support the
CLONE operation and the clone_ bl ksize attribute on any file system on
whi ch CLONE i s supported (as either source or destination file).

If a source server supports the inter-server COPY feature, then it
MUST support the COPY_NOTI FY and OFFLOAD CANCEL operations. If a
destination server supports the inter-server COPY feature, then it
MUST support the COPY operation. |If a destination server’'s COPY
operation returns a stateid, then the destination server MJST al so
support these operations: CB OFFLOAD, OFFLQAD CANCEL, COPY_NOTI FY,
and OFFLOAD_STATUS.

Each operation is perfornmed in the context of the user identified by
the Open Network Conputing (ONC) RPC credential in the RPC request
contai ni ng the COVPOUND or CB_COVPOUND request. For exanple, an
OFFLOAD_CANCEL operation issued by a given user indicates that a
specified COPY operation initiated by the same user is to be

cancel ed. Therefore, an OFFLOAD CANCEL MUST NOT interfere with a
copy of the sane file initiated by another user.

An NFS server MAY allow an adninistrative user to nonitor or cancel
COPY operations using an inplenentation-specific interface.

Haynes St andards Track [Page 12]

RFC 7862 NFSv4. 2 Novenber 2016

4. 2.

4. 3.

Hay

Requirements for |nter-Server Copy

The specification of the inter-server copy is driven by severa
requirenents

0 The specification MUST NOT nandate the server-to-server protocol

0 The specification MJST provide guidance for using NFSv4.x as a
copy protocol. For those source and destination servers wlling
to use NFSv4.x, there are specific security considerations that
the specification MJST address.

0 The specification MJST NOT nandate preconfiguration between the
source and destination servers. Requiring that the source and
destination servers first have a "copying rel ati onship" increases
the adninistrative burden. However, the specification MIJST NOT
precl ude inplenentati ons that require preconfiguration

0 The specification MJUST NOT nandate a trust relationship between
the source and destination servers. The NFSv4 security nodel
requi res nutual authentication between a principal on an NFS
client and a principal on an NFS server. This nodel MJST conti nue
with the introduction of COPY.

| mpl enent ati on Consi derations
1. Locking the Files

Both the source file and the destination file may need to be | ocked
to protect the content during the COPY operations. A client can
achieve this by a conbination of OPEN and LOCK operations. That is,
either share |l ocks or byte-range | ocks night be desired.

Note that when the client establishes a | ock stateid on the source,
the context of that stateid is for the client and not the
destination. As such, there mght already be an outstandi ng stateid,
i ssued to the destination as the client of the source, with the sane
val ue as that provided for the lock stateid. The source MJST
interpret the lock stateid as that of the client, i.e., when the
destination presents it in the context of an inter-server copy, it is
on behalf of the client.

nes St andards Track [Page 13]

RFC 7862 NFSv4. 2 Novenber 2016

4,3.2. dient Caches

In a traditional copy, if the client is in the process of witing to
the file before the copy (and perhaps with a wite del egation), it
will be straightforward to update the destination server. Wth an

i nter-server copy, the source has no insight into the changes cached
on the client. The client SHOULD wite the data back to the source.
If it does not do so, it is possible that the destination wll
receive a corrupt copy of the file.

4.4. Intra-Server Copy

To copy a file on a single server, the client uses a COPY operation.
The server may respond to the COPY operation with the final results
of the copy, or it may performthe copy asynchronously and deliver
the results using a CB_OFFLOAD cal | back operation. |If the copy is
performed asynchronously, the client may poll the status of the copy
usi ng OFFLOAD _STATUS or cancel the copy using OFFLOAD CANCEL.

A synchronous intra-server copy is shown in Figure 1. In this
exanpl e, the NFS server chooses to performthe copy synchronously.
The COPY operation is conpleted, either successfully or
unsuccessfully, before the server replies to the client’s request.
The server’s reply contains the final result of the operation

dient Server
+ +
| |
[--- OPEN ----------cmmmmm e - - > Client opens
SR T R T /| the source file
| |
[--- OPEN ------mmmm i > dient opens
SR R T LT /| the destination file
| |
[--- COPY -----mmmmmm e - - > dient requests
[<emmmm /| a file copy
| |
[--- CLOSE ---------mmmmm e - > dient closes
SR R T LT /| the destination file
| |
[--- CLOSE --------------mmmmm oo - - > dient closes
[<emmmm /| the source file
|
|

Figure 1: A Synchronous Intra-Server Copy

Haynes St andards Track [Page 14]

RFC 7862 NFSv4. 2 Novenber 2016

An asynchronous intra-server copy is shown in Figure 2. |In this
exanpl e, the NFS server perforns the copy asynchronously. The
server’s reply to the copy request indicates that the COPY operation
was initiated and the final result will be delivered at a later tine.
The server’s reply also contains a copy stateid. The client may use
this copy stateid to poll for status information (as shown) or to
cancel the copy using an OFFLOAD CANCEL. When the server conpl etes
the copy, the server perforns a callback to the client and reports
the results.

Client Ser ver
+ +
| |
[--- OPEN ---------mmemmmeei e oo oo - > dient opens
SR R T LT /| the source file
| |
[--- OPEN ---------cmmmmmm oo - - > dient opens
SR T R T /| the destination file
| |
[--- COPY ---mmmmm e > dient requests
I /] a file copy
| |
| --- OFFLOAD _STATUS ------------------ > Cient may poll
IR i /| for status
| |
| | Multiple OFFLOAD STATUS
| | operations may be sent
| |
| <-- CB OFFLQOAD -----------mmmmmmm oo | Server reports results
R T R R >|
| |
[--- CLOSE -------------mmmmmme oo - - > dient closes
R e T /| the destination file
| |
[--- CLOSE -----------mmmmmmme e - > dient closes
R /| the source file
|
|

Fi gure 2: An Asynchronous Intra-Server Copy

Haynes St andards Track [Page 15]

RFC 7862 NFSv4. 2 Novenber 2016

4.5. Inter-Server Copy

A copy may al so be performed between two servers. The copy protoco
is designed to accommpdate a variety of network topologies. As shown
in Figure 3, the client and servers nmay be connected by multiple
networks. In particular, the servers may be connected by a
speci al i zed, hi gh-speed network (network 192.0.2.0/24 in the diagran
that does not include the client. The protocol allows the client to
set up the copy between the servers (over network 203.0.113.0/24 in
the diagram) and for the servers to comruni cate on the hi gh-speed
network if they choose to do so.

192.0.2.0/ 24

oo e e e e e e e e e e e aaa +

' :

| 192.0.2.18 | 192.0.2.56
F - Hom - - + Hom - - Hom - - +

Sour ce | | Destination
Fomm e Hom oo + Hom oo Hom oo +
203.0.113.18 203.0. 113.56

Figure 3: An Exanple Inter-Server Network Topol ogy

For an inter-server copy, the client notifies the source server that
afile will be copied by the destination server using a COPY_NOTI FY
operation. The client then initiates the copy by sending the COPY
operation to the destination server. The destination server nay
performthe copy synchronously or asynchronously.

Haynes St andards Track [Page 16]

RFC 7862 NFSv4. 2 Novenber 2016

A synchronous inter-server copy is shown in Figure 4. |In this case,
the destination server chooses to performthe copy before responding
to the client’s COPY request.

Cient Sour ce Desti nati on
+ + +
| | |
| --- OPEN ---> | Returns
| | open state osl
| |
| |
| <---mmmmmmee /1 |
| | |
[--- OPEN ------ o mm i >| Returns
I /| open state o0s2
| | |
[--- COPY ---mmmmme e >|
	<----- READ - ----
T	
I i /	Destination replies
[--- CLOSE -----------mmmmmmme e - >	Rel ease 0s2
R /]	
--- CLOSE --->	Rel ease osl
(SRR R R R I |

Fi gure 4: A Synchronous Inter-Server Copy

Haynes St andards Track [Page 17]

RFC 7862 NFSv4. 2 Novenber 2016

An asynchronous inter-server copy is shown in Figure 5. In this
case, the destination server chooses to respond to the client’s COPY
request i mediately and then performthe copy asynchronously.

Cient Sour ce Desti nation
+ + +
|
--- OPEN ---3> Ret ur ns
TR /] open state osl

Optional; could be done
with a share | ock

Need to pass in
osl or lock state

Ret ur ns
open state 0s2

Opt i onal

Need to pass in
0os2 or lock state

Mul tipl e READs may
be necessary

for status

Mul ti pl e OFFLOAD_STATUS

|
|
|
|
|
I
--- OFFLQOAD STATUS ------------------ > dient may pol
/]
|
l _
| operations may be sent
|
|
|
|

<-- CB OFFLOAD ----------------------- | Destination reports
I e R T > results

Haynes St andards Track [Page 18]

RFC 7862 NFSv4. 2 Novenber 2016

[--- LOCKU ---------mmmmmmmmeme oo oo - > Only if LOCK was done
SR /]

| | |

[--- CLOSE -------------mmmmmme oo - - >| Rel ease 0s2

[<emmmmmm e /]

| | |

| --- LOCKU ---> | Only if LOCK was done
T | |

| --- CLOSE ---> | Rel ease osl

| < /1 |

| |

Figure 5: An Asynchronous | nter-Server Copy
4.6. Server-to-Server Copy Protoco

The choice of what protocol to use in an inter-server copy is
ultimately the destination server’s decision. However, the
destination server has to be cognizant that it is working on behalf
of the client.

4.6.1. Considerations on Selecting a Copy Protocol

The client can have requirenents over both the size of transactions
and error recovery semantics. It may want to split the copy up such
that each chunk is synchronously transferred. It may want the copy
protocol to copy the bytes in consecutive order such that upon an
error the client can restart the copy at the |ast known good offset.
If the destination server cannot neet these requirenents, the client
may prefer the traditional copy nmechani smsuch that it can neet those
requirenents.

4.6.2. Using NFSv4.x as the Copy Protoco

The destination server MAY use standard NFSv4.x (where x >= 1)
operations to read the data fromthe source server. |If NFSv4.x is
used for the server-to-server copy protocol, the destination server
can use the source filehandle and ca_src_stateid provided in the COPY
request with standard NFSv4. x operations to read data fromthe source
server. Note that the ca _src_stateid MJST be the cnr_stateid
returned fromthe source via the COPY_NOTI FY (Section 15.3).

Haynes St andards Track [Page 19]

RFC 7862 NFSv4. 2 Novenber 2016

4.6.3. Using an Alternative Copy Protoco

In a honmobgeneous environnent, the source and destination servers

m ght be able to performthe file copy extrenely efficiently using
speci al i zed protocols. For exanmple, the source and destination
servers mght be two nodes sharing a common file system fornmat for
the source and destination file systens. Thus, the source and
destination are in an ideal position to efficiently render the inage
of the source file to the destination file by replicating the file
system formats at the block Ievel. Another possibility is that the
source and destination m ght be two nodes sharing a conmon storage
area network, and thus there is no need to copy any data at all

i nstead, ownership of the file and its contents mght sinply be
reassigned to the destination. To allow for these possibilities, the
destination server is allowed to use a server-to-server copy protoco
of its choice

In a heterogeneous environnent, using a protocol other than NFSv4. x
(e.g., HITP [RFC7230] or FTP [RFC959]) presents sone challenges. In
particular, the destination server is presented with the challenge of
accessing the source file given only an NFSv4.x fil ehandl e.

One option for protocols that identify source files with pathnanes is
to use an ASCI| hexadeci mal representation of the source fil ehandle
as the fil enane.

Anot her option for the source server is to use URLs to direct the
destination server to a specialized service. For exanple, the
response to COPY_NOTIFY could include the URL

<ftp://sl. exanpl e.com 9999/ FH 0x12345>, where 0x12345 is the ASCI
hexadeci mal representation of the source filehandle. Wen the
destination server receives the source server’s URL, it would use

" _FH 0x12345" as the filenane to pass to the FTP server |istening on
port 9999 of sl1.exanple.com On port 9999 there would be a speci al

i nstance of the FTP service that understands how to convert NFS
filehandles to an open file descriptor (in nmany operating systens,
this would require a new systemcall, one that is the inverse of the
makef h() function that the pre-NFSv4 MOUNT service needs).

Aut henti cating and identifying the destination server to the source

server is also a challenge. One solution would be to construct
uni que URLs for each destination server

Haynes St andards Track [Page 20]

RFC 7862 NFSv4. 2 Novenber 2016

4.7. netloc4 - Network Locations

The server-side COPY operations specify network | ocations using the
netl oc4 data type shown bel ow (see [RFC7863]):

<CODE BEG NS>

enum netl oc_typed {

NL4_NAME =1,
NL4_URL = 2,
NL4_NETADDR =3
s
union netloc4 switch (netloc_typed4 nl_type) {
case NL4_NAME: utf8str_cis nl_nane;
case NL4 URL: utf8str_cis nl _url
case NL4_NETADDR: net addr 4 nl _addr
s
<CODE ENDS>

If the netlocd is of type NL4_NAME, the nl _name field MIST be
specified as a UTF-8 string. The nl_nane is expected to be resol ved
to a network address via DNS, the Lightweight Directory Access
Protocol (LDAP), the Network Infornmation Service (NIS), /etc/hosts,

or some other neans. |If the netloc4 is of type NL4_URL, a server URL
[RFC3986] appropriate for the server-to-server COPY operation is
specified as a UTF-8 string. |If the netloc4 is of type NL4_NETADDR
the nl _addr field MJUST contain a valid netaddr4 as defined in

Section 3.3.9 of [RFC5661].

Wien netl oc4 values are used for an inter-server copy as shown in
Figure 3, their values may be eval uated on the source server
destination server, and client. The network environment in which
these systens operate should be configured so that the netloc4 val ues
are interpreted as intended on each system

4.8. Copy Ofload Stateids

A server may performa copy of fl oad operati on asynchronously. An
asynchronous copy is tracked using a copy offload stateid. Copy
of fload stateids are included in the COPY, OFFLOAD CANCEL,
OFFLOAD _STATUS, and CB_OFFLQAD operati ons.

A copy offload stateid will be valid until either (A) the client or
server restarts or (B) the client returns the resource by issuing an
OFFLOAD_CANCEL operation or the client replies to a CB_OFFLOAD
operation.

Haynes St andards Track [Page 21]

RFC 7862 NFSv4. 2 Novenber 2016

A copy offload stateid s seqid MJUST NOT be zero. In the context of a
copy of fload operation, it is inappropriate to indicate "the nost
recent copy offload operation"” using a stateid with a seqid of zero
(see Section 8.2.2 of [RFC5661]). It is inappropriate because the
stateid refers to internal state in the server and there may be
several asynchronous COPY operations being perforned in parallel on
the sane file by the server. Therefore, a copy offload stateid with
a seqid of zero MJUST be considered invalid.

4.9. Security Considerations for Server-Side Copy

Al'l security considerations pertaining to NFSv4.1 [RFC5661] apply to
this section; as such, the standard security nechani sns used by the
protocol can be used to secure the server-to-server operations.

NFSv4 clients and servers supporting the inter-server COPY operations
described in this section are REQU RED to inplenment the nechani sm
described in Section 4.9.1.1 and to support rejecting COPY_NOTI FY
requests that do not use the RPC security protocol (RPCSEC GSS)

[RFC7861] with privacy. |f the server-to-server copy protocol is
based on ONC RPC, the servers are al so REQUI RED to i npl enent

[RFC7861], including the RPCSEC GSSv3 "copy_to_auth",
"copy_fromauth", and "copy_confirmauth" structured privil eges.
This requirenent to inplenment is not a requirenment to use; for
exanpl e, a server may, depending on configuration, also allow
COPY_NOTI FY requests that use only AUTH SYS.

If a server requires the use of an RPCSEC GSSv3 copy_to_auth,
copy_fromauth, or copy_confirmauth privilege and it is not used,
the server will reject the request wi th NFS4ERR PARTNER NO AUTH

4.9.1. Inter-Server Copy Security
4.9.1.1. Inter-Server Copy via ONC RPC wi th RPCSEC GSSv3

When the client sends a COPY_NOTIFY to the source server to expect
the destination to attenpt to copy data fromthe source server, it is
expected that this copy is being done on behal f of the principa
(called the "user principal") that sent the RPC request that encl oses
t he COVPOUND procedure that contains the COPY_NOTI FY operation. The
user principal is identified by the RPC credentials. A nechanism
that allows the user principal to authorize the destination server to
performthe copy, lets the source server properly authenticate the
destination’s copy, and does not allow the destination server to
exceed this authorization is necessary.

Haynes St andards Track [Page 22]

RFC 7862 NFSv4. 2 Novenber 2016

An approach that sends del egated credentials of the client’s user
principal to the destination server is not used for the follow ng
reason. |If the client’s user delegated its credentials, the
destination would authenticate as the user principal. |f the
destination were using the NFSv4 protocol to performthe copy, then
the source server would authenticate the destination server as the
user principal, and the file copy would securely proceed. However,
this approach would allow the destination server to copy other files.
The user principal would have to trust the destination server to not
do so. This is counter to the requirenents and therefore is not
consi der ed.

Instead, a feature of the RPCSEC GSSv3 protocol [RFC7861] can be
used: RPC-application-defined structured privilege assertion. This
feature allows the destination server to authenticate to the source
server as acting on behalf of the user principal and to authorize the
destination server to perform READs of the file to be copied fromthe
source on behal f of the user principal. Once the copy is conplete,
the client can destroy the RPCSEC GSSv3 handl es to end the

aut hori zation of both the source and destination servers to copy.

For each structured privilege assertion defined by an RPC
application, RPCSEC GSSv3 requires the application to define a name
string and a data structure that will be encoded and passed between
client and server as opaque data. For NFSv4, the data structures
speci fied bel ow MUST be serialized using XDR

Three RPCSEC GSSv3 structured privilege assertions that work together
to authorize the copy are defined here. For each of the assertions,
the description starts with the nane string passed in the rp_nane
field of the rgss3 privs structure defined in Section 2.7.1.4 of

[RFC7861] and specifies the XDR encodi ng of the associated structured
data passed via the rp_privilege field of the structure.

Haynes St andards Track [Page 23]

RFC 78

cop

str

cop

str

Haynes

62 NFSv4. 2 Novenmber 2016

y fromauth: A user principal is authorizing a source principa
("nfs@source>") to allow a destination principa
("nfs@destination>") to set up the copy_confirmauth privilege
required to copy a file fromthe source to the destination on
behal f of the user principal. This privilege is established on
the source server before the user principal sends a COPY_NOTI FY
operation to the source server, and the resultant RPCSEC GSSv3
context is used to secure the COPY_NOTI FY operation.

<CODE BEG NS>

uct copy _fromauth priv {
secret4 cfap_shared_secret;
net | oc4 cfap_destination
/* the NFSv4 user nane that the user principal maps to */
utf8str_m xed cf ap_user nane;
<CODE ENDS>

cfap_shared_secret is an automatically generated random nunber
secret val ue.

y to auth: A user principal is authorizing a destination

principal ("nfs@destination>") to set up a copy_confirmauth
privilege with a source principal ("nfs@source>") to allowit to
copy a file fromthe source to the destination on behalf of the
user principal. This privilege is established on the destination
server before the user principal sends a COPY operation to the

destination server, and the resultant RPCSEC GSSv3 context is used

to secure the COPY operation.

<CODE BEG NS>

uct copy_to_auth_priv {
/* equal to cfap_shared _secret */
secret4 ctap_shared_secret;
netl oc4 ct ap_sour ce<>;
/* the NFSv4 user nane that the user principal maps to */
utf8str_m xed ctap_user nane;
<CODE ENDS>

ctap_shared_secret is the autonmatically generated secret val ue
used to establish the copy fromauth privilege with the source
principal. See Section 4.9.1.1.1.

St andards Track [Page 24]

RFC 7862 NFSv4. 2 Novenber 2016

copy_confirmauth: A destination principal ("nfs@destination>") is

confirmng with the source principal ("nfs@source>") that it is
aut hori zed to copy data fromthe source. This privilege is

est ablished on the destination server before the file is copied

fromthe source to the destination. The resultant RPCSEC GSSv3

context is used to secure the READ operations fromthe source to
the destination server

<CODE BEG NS>

struct copy_confirmauth_priv {

/* equal to GSS GetM C() of cfap_shared _secret */

opaque ccap_shared_secret _m c<>;
/* the NFSv4 user nane that the user principal maps to */
ut f 8str_mi xed ccap_user nane;

<CODE ENDS>

4.9.1.1.1. Establishing a Security Context

When the user principal wants to copy a file between two servers, if
it has not established copy_fromauth and copy_to_auth privileges on
the servers, it establishes themas foll ows:

(o]

Haynes

As noted in [RFC7861], the client uses an existing RPCSEC GSSv3
context termed the "parent"” handle to establish and protect
RPCSEC GSSv3 structured privil ege assertion exchanges. The
copy_fromauth privilege will use the context established between
the user principal and the source server used to OPEN the source
file as the RPCSEC GSSv3 parent handle. The copy_to_auth
privilege will use the context established between the user

princi pal and the destination server used to OPEN the destination
file as the RPCSEC GSSv3 parent handl e.

A random nunber is generated to use as a secret to be shared
between the two servers. Note that the random nunber SHOULD NOT
be reused between establishing different security contexts. The
resulting shared secret will be placed in the copy_fromauth_priv
cfap_shared_secret field and the copy_to_auth_priv
ctap_shared_secret field. Because of this shared_secret, the
RPCSEC _GSS3_CREATE control nessages for copy from auth and
copy_to _auth MJUST use a Quality of Protection (QP) of
rpc_gss_svc_privacy.

St andards Track [Page 25]

RFC 7862 NFSv4. 2 Novenber 2016

0 An instance of copy fromauth priv is filled in with the shared
secret, the destination server, and the NFSv4 user id of the user
principal and is placed in rpc_gss3 create_args
assertions[O].privs.privilege. The string "copy_fromauth" is
pl aced in assertions[0].privs.name. The source server unw aps the
rpc_gss_svc_privacy RPCSEC GSS3 CREATE payl oad and verifies that
the NFSv4 user id being asserted matches the source server’s
mappi ng of the user principal. |If it does, the privilege is
establi shed on the source server as <copy_fromauth, user id,
destination> The field "handle" in a successful reply is the
RPCSEC GSSv3 copy_fromauth "child* handle that the client will
use in COPY_NOTIFY requests to the source server

0 An instance of copy_to_auth_priv is filled in with the shared
secret, the cnr_source_server list returned by COPY_NOTIFY, and
the NFSv4 user id of the user principal. The copy_to_auth_priv
instance is placed in rpc_gss3 create_args
assertions[O].privs.privilege. The string "copy to auth" is
pl aced in assertions[0].privs.nane. The destination server
unwraps the rpc_gss_svc_privacy RPCSEC GSS3_CREATE payl oad and
verifies that the NFSv4 user id being asserted matches the
destination server’s mapping of the user principal. |If it does,
the privilege is established on the destination server as
<copy_to_auth, user id, source list> The field "handle" in a
successful reply is the RPCSEC GSSv3 copy_to_auth child handl e
that the client will use in COPY requests to the destination
server involving the source server.

As noted in Section 2.7.1 of [RFC7861] ("New Control Procedure -
RPCSEC GSS CREATE"), both the client and the source server should
associ ate the RPCSEC GSSv3 child handle with the parent RPCSEC GSSv3
handl e used to create the RPCSEC GSSv3 child handl e.

4.9.1.1.2. Starting a Secure Inter-Server Copy

When the client sends a COPY_NOTI FY request to the source server, it
uses the privileged copy fromauth RPCSEC GSSv3 handl e.
cna_destination_server in the COPY_NOTI FY MIST be the sane as
cfap_destination specified in copy_fromauth priv. Oherw se, the
COPY_NOTIFY will fail with NFSAERR ACCESS. The source server
verifies that the privilege <copy_fromauth, user id, destination>
exists and annotates it with the source filehandl e, if the user
principal has read access to the source file and if admi nistrative
policies give the user principal and the NFS client read access to
the source file (i.e., if the ACCESS operation would grant read
access). Oherwise, the COPY_NOTIFY will fail with NFS4ERR ACCESS.

Haynes St andards Track [Page 26]

RFC 7862 NFSv4. 2 Novenber 2016

When the client sends a COPY request to the destination server, it
uses the privileged copy_to auth RPCSEC GSSv3 handl e.
ca_source_server list in the COPY MIST be the same as ctap_source
list specified in copy_to_auth_priv. OQherwi se, the COPY will fai
with NFSAERR ACCESS. The destination server verifies that the
privilege <copy to_auth, user id, source |list> exists and annot at es
it with the source and destination filehandles. |f the COPY returns
a w_callback id, then this is an asynchronous copy and the
wr_cal I back_id must also nust be annotated to the copy_to_auth
privilege. |If the client has failed to establish the copy_to_auth
privilege, it will reject the request with NFS4AERR PARTNER NO AUTH

If either the COPY_NOTI FY operation or the COPY operations fail, the
associ ated copy_fromauth and copy_to_auth RPCSEC GSSv3 handl es MJST
be destroyed.

4.9.1.1.3. Securing ONC RPC Server-to-Server Copy Protocols

After a destination server has a copy_to_auth privilege established
onit and it receives a COPY request, if it knows it will use an ONC
RPC protocol to copy data, it will establish a copy_confirmauth
privilege on the source server prior to responding to the COPY
operation, as follows:

0 Before establishing an RPCSEC GSSv3 context, a parent context
needs to exi st between nfs@destination> as the initiator
princi pal and nfs@source> as the target principal. If NFSis to
be used as the copy protocol, this means that the destination
server mnust nount the source server using RPCSEC GSSv3.

0 An instance of copy confirmauth priv is filled in with
informati on fromthe established copy to auth privilege. The
val ue of the ccap_shared_secret_nic field is a GSS_ GetM C() of the
ctap_shared_secret in the copy_to_auth privil ege using the parent
handl e context. The ccap_usernane field is the mapping of the
user principal to an NFSv4 user nane ("user" @donai n" forn) and
MUST be the same as the ctap _username in the copy_to_auth
privilege. The copy_confirmauth_priv instance is placed in
rpc_gss3 create_args assertions[O].privs.privilege. The string
"copy_confirmauth" is placed in assertions[O0].privs. nane.

0 The RPCSEC GSS3 CREATE copy_from auth nmessage is sent to the
source server with a QoP of rpc_gss_svc_privacy. The source
server unw aps the rpc_gss_svc_privacy RPCSEC GSS3 CREATE payl oad
and verifies the cap_shared_secret_mnic by calling GSS_VerifyM C()
usi ng the parent context on the cfap_shared_secret fromthe
est ablished copy_fromauth privilege, and verifies that the
ccap_usernanme equal s the cfap_usernane.

Haynes St andards Track [Page 27]

RFC 7862 NFSv4. 2 Novenber 2016

o If all verifications succeed, the copy confirmauth privilege is
establ i shed on the source server as <copy_confirm auth,
shared_secret _mic, user id> Because the shared secret has been
verified, the resultant copy_confirmauth RPCSEC GSSv3 child
handle is noted to be acting on behalf of the user principal

o |If the source server fails to verify the copy fromauth privilege
the COPY_NOTIFY operation will be rejected with
NFS4ERR_PARTNER_NO AUTH.

o If the destination server fails to verify the copy_to_auth or
copy_confirmauth privilege, the COPY will be rejected with
NFSAERR _PARTNER NO AUTH, causing the client to destroy the
associ ated copy_fromauth and copy_to _auth RPCSEC GSSv3 structured
privilege assertion handl es.

0 All subsequent ONC RPC READ requests sent fromthe destination to
copy data fromthe source to the destination will use the
RPCSEC GSSv3 copy_confirmauth child handl e.

Note that the use of the copy_confirmauth privil ege acconplishes the
fol | owi ng:

o If a protocol like NFS is being used with export policies, the
export policies can be overridden if the destination server is not
aut horized to act as an NFS client.

o Manual configuration to allow a copy relationship between the
source and destination is not needed.

4.9.1.1.4. Maintaining a Secure |nter-Server Copy

If the client determ nes that either the copy_fromauth or the
copy_to_auth handl e beconmes invalid during a copy, then the copy MJST
be aborted by the client sending an OFFLOAD CANCEL to both the source
and destination servers and destroying the respective copy-rel ated
context handl es as described in Section 4.9.1.1.5.

4.9.1.1.5. Finishing or Stopping a Secure Inter-Server Copy
Under normal operation, the client MIST destroy the copy_fromauth
and the copy_to_auth RPCSEC GSSv3 handl e once the COPY operation

returns for a synchronous inter-server copy or a CB_OFFLOAD reports
the result of an asynchronous copy.

Haynes St andards Track [Page 28]

RFC 7862 NFSv4. 2 Novenber 2016

The copy_confirmauth privilege is constructed frominfornation held
by the copy to auth privilege and MJST be destroyed by the
destination server (via an RPCSEC _GSS3_DESTROY cal |) when the
copy_to_auth RPCSEC GSSv3 handl e i s destroyed.

The copy_confirm auth RPCSEC GSS3 handle is associated with a
copy_from aut h RPCSEC GSS3 handl e on the source server via the shared
secret and MJUST be locally destroyed (there is no

RPCSEC _GSS3_DESTROY, as the source server is not the initiator) when
the copy_from auth RPCSEC GSSv3 handl e is destroyed.

If the client sends an OFFLOAD CANCEL to the source server to rescind
the destination server’s synchronous copy privilege, it uses the
privileged copy_fromauth RPCSEC GSSv3 handl e, and the
cra_destination_server in the OFFLOAD CANCEL MJST be the sane as the
nane of the destination server specified in copy_fromauth priv. The
source server will then delete the <copy_from auth, user id,
destination> privilege and fail any subsequent copy requests sent
under the auspices of this privilege fromthe destination server

The client MUST destroy both the copy fromauth and the copy to _auth
RPCSEC_GSSv3 handl es.

If the client sends an OFFLOAD STATUS to the destination server to
check on the status of an asynchronous copy, it uses the privileged
copy_to_auth RPCSEC GSSv3 handl e, and the osa stateid in the
OFFLOAD _STATUS MUST be the sane as the w_call back id specified in
the copy_to_auth privilege stored on the destination server

If the client sends an OFFLOAD CANCEL to the destination server to
cancel an asynchronous copy, it uses the privileged copy to_auth
RPCSEC GSSv3 handl e, and the oaa_stateid in the OFFLOAD CANCEL MUST
be the same as the w_callback_id specified in the copy_to_auth
privilege stored on the destination server. The destination server
will then delete the <copy_to_auth, user id, source list> privilege
and the associ ated copy_confirmauth RPCSEC GSSv3 handle. The client
MUST destroy both the copy to _auth and copy_from auth RPCSEC GSSv3
handl es.

4.9.1.2. Inter-Server Copy via ONC RPC without RPCSEC GSS

ONC RPC security flavors other than RPCSEC GSS MAY be used with the
server-side copy offload operations described in this section. In
particul ar, host-based ONC RPC security flavors such as AUTH NONE and
AUTH_SYS MAY be used. |If a host-based security flavor is used, a

m ni mal | evel of protection for the server-to-server copy protocol is
possi bl e.

Haynes St andards Track [Page 29]

RFC 7862 NFSv4. 2 Novenber 2016

The biggest issue is that there is a lack of a strong security nethod
to allow the source server and destination server to identify
themsel ves to each other. A further conplication is that in a

mul ti honed environnment the destination server m ght not contact the
source server fromthe sane network address specified by the client
in the COPY_NOTIFY. The cnr_stateid returned fromthe COPY_NOTI FY
can be used to uniquely identify the destination server to the source
server. The use of the cnr_stateid provides initial authentication
of the destination server but cannot defend agai nst man-in-the-niddle
attacks after authentication or against an eavesdropper that observes
the opaque stateid on the wire. Oher secure conmunication

techni ques (e.g., |Psec) are necessary to bl ock these attacks.

Servers SHOULD reject COPY_NOTIFY requests that do not use RPCSEC GSS
with privacy, thus ensuring that the cnr_stateid in the COPY_NOTI FY
reply is encrypted. For the sane reason, clients SHOULD send COPY
requests to the destination using RPCSEC GSS with privacy.

5. Support for Application I/O Hints

Applications can issue client 1/O hints via posix_fadvise()

[posi x_fadvise] to the NFS client. Wile this can help the NFS
client optimze I/0O and caching for a file, it does not allow the NFS
server and its exported file systemto do likewise. The | O ADVISE
procedure (Section 15.5) is used to communicate the client file
access patterns to the NFS server. The NFS server, upon receiving an
| O_ADVI SE operation, MAY choose to alter its 1/O and cachi ng behavi or
but is under no obligation to do so.

Application-specific NFS clients such as those used by hypervisors
and dat abases can al so | everage application hints to comunicate
their specialized requirenents.

6. Sparse Files

A sparse file is a comobn way of representing a large file w thout
having to utilize all of the disk space for it. Consequently, a
sparse file uses | ess physical space than its size indicates. This
nmeans the file contains "holes", byte ranges within the file that
contain no data. Most nodern file systens support sparse files,
including nost UNIX file systens and M crosoft’s New Technol ogy File
System (NTFS); however, it should be noted that Apple’'s Hierarchica
File System Plus (HFS+) does not. Conmon exanpl es of sparse files
i nclude Virtual Machine (VM OS/disk i mages, database files, |og
files, and even checkpoint recovery files nost commonly used by the
H gh- Per f ormance Conputing (HPC) community.

Haynes St andards Track [Page 30]

RFC 7862 NFSv4. 2 Novenber 2016

In addition, nany nodern file systens support the concept of
"unwitten" or "uninitialized" blocks, which have uninitialized space
allocated to themon disk but will return zeros until data is witten
to them Such functionality is already present in the data nodel of
t he pNFS bl ock/vol une | ayout (see [RFC5663]). Uninitialized bl ocks
can be thought of as holes inside a space reservati on w ndow.

If an application reads a hole in a sparse file, the file system nust
return all zeros to the application. For |ocal data access there is
little penalty, but with NFS these zeros nust be transferred back to
the client. [If an application uses the NFS client to read data into
menory, this wastes tinme and bandwi dth as the application waits for
the zeros to be transferred.

A sparse file is typically created by initializing the file to be all
zeros. Nothing is witten to the data in the file; instead, the hole
is recorded in the netadata for the file. So, an 8G di sk i mage m ght
be represented initially by a few hundred bits in the netadata (on
UNI X file systens, the inode) and nothing on the disk. |If the VM
then wites 100Mto a file in the mddle of the inmage, there would
now be two holes represented in the netadata and 100Min the data.

No new operation is needed to allow the creation of a sparsely

popul ated file; when a file is created and a wite occurs past the
current size of the file, the non-allocated region will either be a
hole or be filled with zeros. The choice of behavior is dictated by
the underlying file systemand is transparent to the application
However, the abilities to read sparse files and to punch holes to
reinitialize the contents of a file are needed.

Two new operations -- DEALLOCATE (Section 15.4) and READ PLUS
(Section 15.10) -- are introduced. DEALLOCATE allows for the hole
punchi ng, where an application mght want to reset the allocation and
reservation status of a range of the file. READ PLUS supports al

the features of READ but includes an extension to support sparse
files. READ PLUS is guaranteed to performno worse than READ and can
dramatically inprove performance with sparse files. READ PLUS does
not depend on pNFS protocol features but can be used by pNFS to
support sparse files.

6.1. Term nol ogy
Regular file: An object of file type NFAREG or NF4ANAMEDATTR.
Sparse file: A regular file that contains one or nore holes.

Hole: A byte range within a sparse file that contains all zeros. A
hol e m ght or m ght not have space allocated or reserved to it.

Haynes St andards Track [Page 31]

RFC 7862 NFSv4. 2 Novenber 2016

6.2. New Qperations
6.2.1. READ PLUS

READ PLUS is a new variant of the NFSv4.1 READ operation [RFC5661].
Besi des being able to support all of the data semantics of the READ
operation, it can also be used by the client and server to
efficiently transfer holes. Because the client does not know in
advance whether a hole is present or not, if the client supports
READ PLUS and so does the server, then it should al ways use the
READ PLUS operation in preference to the READ operation.

READ PLUS extends the response with a new armrepresenting holes to
avoid returning data for portions of the file that are initialized to
zero and nay or may not contain a backing store. Returning actua
data bl ocks corresponding to holes wastes conputational and network
resources, thus reducing perfornance.

When a client sends a READ operation, it is not prepared to accept a
READ PLUS-styl e response providing a conpact encodi ng of the scope of
holes. |If a READ occurs on a sparse file, then the server nust
expand such data to be raw bytes. If a READ occurs in the niddle of
a hole, the server can only send back bytes starting fromthat
offset. By contrast, if a READ PLUS occurs in the niddle of a hole,
the server can send back a range that starts before the offset and
ext ends past the requested | ength.

6.2.2. DEALLCCATE

The client can use the DEALLOCATE operation on a range of a file as a
hol e punch, which allows the client to avoid the transfer of a

repetitive pattern of zeros across the network. This hole punch is a
result of the unreserved space returning all zeros until overwitten.

7. Space Reservation

Applications want to be able to reserve space for a file, report the
amount of actual disk space a file occupies, and free up the backing
space of a file when it is not required.

One exanple is the posix_fallocate() operation [posix_fallocate],
which allows applications to ask for space reservations fromthe
operating system wusually to provide a better file |ayout and reduce
overhead for random or slow growi ng fil e-appendi ng workl oads.

Haynes St andards Track [Page 32]

RFC 7862 NFSv4. 2 Novenber 2016

Anot her exanple is space reservation for virtual disks in a
hypervisor. In virtualized environnents, virtual disk files are
often stored on NFS-nounted volunes. Wen a hypervisor creates a
virtual disk file, it often tries to preallocate the space for the
file so that there are no future allocation-related errors during the
operation of the VM Such errors prevent a VM from conti nui ng
execution and result in downtine.

Currently, in order to achi eve such a guarantee, applications zero
the entire file. The initial zeroing allocates the backing bl ocks,
and all subsequent wites are overwites of already-allocated bl ocks.
This approach is not only inefficient in ternms of the anount of 1/0O
done; it is also not guaranteed to work on file systens that are

| og-structured or deduplicated. An efficient way of guaranteeing
space reservation would be beneficial to such applications.

The new ALLOCATE operation (see Section 15.1) allows a client to
request a guarantee that space will be available. The ALLOCATE
operation guarantees that any future wites to the region it was
successfully called for will not fail w th NFS4AERR _NOSPC

Anot her useful feature is the ability to report the nunber of bl ocks
that would be freed when a file is deleted. Currently, NFS reports
two size attributes:

size The logical file size of the file.
space_used The size in bytes that the file occupies on disk

While these attributes are sufficient for space accounting in
traditional file systens, they prove to be inadequate in nodern file
systens that support block-sharing. |In such file systens, nultiple
i nodes (the netadata portion of the file system object) can point to
a single block with a block reference count to guard agai nst
premature freeing. Having a way to tell the nunmber of bl ocks that
would be freed if the file was del eted woul d be useful to
applications that wish to nigrate files when a volune is | ow on
space.

Since virtual disks represent a hard drive in a VM a virtual disk
can be viewed as a file systemwithin a file. Since not all blocks
within a file systemare in use, there is an opportunity to reclaim
bl ocks that are no longer in use. A call to deallocate blocks could
result in better space efficiency; |ess space m ght be consuned for
backups after block deallocation.

Haynes St andards Track [Page 33]

RFC 7862 NFSv4. 2 Novenber 2016

The following attribute and operation can be used to resol ve these
i ssues:

space_freed This attribute reports the space that would be freed
when a file is deleted, taking block-sharing into consideration

DEALLOCATE Thi s operation deallocates the bl ocks backing a region of
the file.

If space_used of a file is interpreted to nean the size in bytes of
all disk blocks pointed to by the inode of the file, then shared

bl ocks get doubl e-counted, over-reporting the space utilization
This also has the adverse effect that the deletion of a file with
shared bl ocks frees up | ess than space_used bytes.

On the other hand, if space_used is interpreted to nean the size in
bytes of those disk bl ocks unique to the inode of the file, then
shared bl ocks are not counted in any file, resulting in
under-reporting of the space utilization

For exanple, two files, A and B, have 10 bl ocks each. Let six of
t hese bl ocks be shared between them Thus, the conbi ned space
utilized by the two files is 14 * BLOCK SIZE bytes. |In the former
case, the conbined space utilization of the two files would be
reported as 20 * BLOCK SI ZE. However, deleting either would only
result in 4 * BLOCK_SI ZE being freed. Conversely, the latter
interpretation would report that the space utilization is only

8 * BLOCK SI ZE.

Using the space freed attribute (see Section 12.2.2) is helpful in
solving this problem space freed is the nunber of blocks that are
all ocated to the given file that would be freed on its deletion. In
the exanple, both A and B would report space_freed as 4 * BLOCK S| ZE
and space_used as 10 * BLOCK SIZE. If Ais deleted, B wll report
space_freed as 10 * BLOCK SIZE, as the deletion of B would result in
t he deal |l ocation of all 10 bl ocks.

Using the space freed attribute does not solve the problem of space
bei ng over-reported. However, over-reporting is better than
under-reporting.

8. Application Data Bl ock Support

At the OS level, files are contained on disk bl ocks. Applications
are also free to inpose structure on the data contained in a file and
thus can define an Application Data Block (ADB) to be such a
structure. Fromthe application’s viewpoint, it only wants to handl e
ADBs and not raw bytes (see [Strohnmll]). An ADBis typically

Haynes St andards Track [Page 34]

RFC 7862 NFSv4. 2 Novenber 2016

conprised of two sections: header and data. The header describes the
characteristics of the block and can provide a neans to detect
corruption in the data payload. The data section is typically
initialized to all zeros.

The format of the header is application specific, but there are two
mai n conponents typically encountered:

1. An Application Data Bl ock Nunber (ADBN), which allows the
application to deterni ne which data block is being referenced.
This is useful when the client is not storing the blocks in
contiguous nenory, i.e., a logical block nunber.

2. Fields to describe the state of the ADB and a neans to detect
bl ock corruption. For both pieces of data, a useful property
woul d be that the allowed val ues are specially selected so that,
i f passed across the network, corruption due to translation
bet ween big-endian and little-endian architectures is detectable.
For exanpl e, OxfOdedefO0 has the sane (32 wide) bit pattern in
both architectures, nmaking it inappropriate.

Applications already inpose structures on files [Strohmll1l] and detect
corruption in data bl ocks [Ashdown08]. What they are not able to do
is efficiently transfer and store ADBs. To initialize a file with
ADBs, the client nust send each full ADB to the server, and that nust
be stored on the server.

This section defines a framework for transferring the ADB from client
to server and presents one approach to detecting corruption in a
gi ven ADB i npl enentation

8.1. Ceneric Framework

The representation of the ADB needs to be flexible enough to support
many different applications. The nost basic approach is no

i mposition of a block at all, which entails working with the raw
bytes. Such an approach would be useful for storing holes, punching
holes, etc. In nore conplex deploynents, a server mght be

supporting multiple applications, each with their own definition of
the ADB. One night store the ADBN at the start of the bl ock and then
have a guard pattern to detect corruption [MDougall07]. The next

m ght store the ADBN at an offset of 100 bytes within the bl ock and
have no guard pattern at all, i.e., existing applications night

al ready have well-defined formats for their data bl ocks.

The guard pattern can be used to represent the state of the block, to

protect against corruption, or both. Again, it needs to be able to
be placed anywhere within the ADB

Haynes St andards Track [Page 35]

RFC 7862 NFSv4. 2 Novenber 2016

Both the starting offset of the block and the size of the block need
to be represented. Note that nothing prevents the application from
defining different-sized blocks in a file.

8.1.1. Data Block Representation
<CODE BEG NS>

struct app_data_bl ockd {

of fset4 adb_of fset;
| engt h4 adb_bl ock_si ze;
| engt h4 adb_bl ock_count;
| engt h4 adb_rel of f _bl ocknum
count4 adb_bl ock_num
| engt h4 adb_rel off _pattern
opaque adb_pattern<>;
i
<CODE ENDS>

The app_data_bl ock4 structure captures the abstraction presented for
the ADB. The additional fields present are to allow the transm ssion
of adb_bl ock_count ADBs at one tine. The adb_block numis used to
convey the ADBN of the first block in the sequence. Each ADB will
contain the sane adb_pattern string.

As both adb_bl ock_num and adb_pattern are optional, if either
adb_rel off_pattern or adb_rel of f_bl ocknumis set to NFS4_UI NT64_MAX,
then the corresponding field is not set in any of the ADBs.

8.2. An Exanple of Detecting Corruption

In this section, an exanple ADB format is defined in which corruption
can be detected. Note that this is just one possible format and
means to detect corruption.

Consi der a very basic inplenentation of an operating system s disk

bl ocks. A block is either data or an indirect block that allows for
files that are larger than one block. It is desired to be able to
initialize a block. Lastly, to quickly unlink a file, a block can be
mar ked invalid. The contents remain intact; this would enable the CS
application in question to undelete a file.

Haynes St andards Track [Page 36]

RFC 7862 NFSv4. 2 Novenber 2016

The application defines 4K-sized data bl ocks, with an 8-byte bl ock
counter occurring at offset 0 in the block, and with the guard
pattern occurring at offset 8 inside the block. Furthernore, the
guard pattern can take one of four states:

Oxfeedface - This is the FREE state and indicates that the ADB
format has been appli ed.

Oxcafedead - This is the DATA state and indicates that real data has
been witten to this block

Oxed4e5c001 - This is the I NDIRECT state and indicates that the bl ock
contai ns bl ock counter nunbers that are chained off of this block

Oxbaled4a3 - This is the INVALID state and indicates that the bl ock
contai ns data whose contents are garbage

Finally, it also defines an 8-byte checksumstarting at byte 16 that
applies to the renaining contents of the block (see [Baira08] for an
exanpl e of using checksums to detect data corruption). |If the state
is FREE, then that checksumis trivially zero. As such, the
application has no need to transfer the checksuminplicitly inside
the ADB -- it need not nmake the transfer |ayer aware of the fact that
there is a checksum (see [Ashdown08] for an exanple of checksums used
to detect corruption in application data bl ocks).

Corruption in each ADB can thus be detected:

o If the guard pattern is anything other than one of the allowed
val ues, including all zeros.

o |If the guard pattern is FREE and any other byte in the renai nder
of the ADB is anything other than zero.

o If the guard pattern is anything other than FREE, then if the
stored checksum does not natch the conputed checksum

o If the guard pattern is I NDIRECT and one of the stored indirect
bl ock numbers has a val ue greater than the nunber of ADBs in
the file.

o |If the guard pattern is INDI RECT and one of the stored indirect
bl ock nunmbers is a duplicate of another stored indirect block
nunber.

As can be seen, the application can detect errors based on the

combi nation of the guard pattern state and the checksum but al so can
detect corruption based on the state and the contents of the ADB

Haynes St andards Track [Page 37]

RFC 7862 NFSv4. 2 Novenber 2016

This last point is inportant in validating the m ni mumanount of data
i ncorporated into the generic franework. That is, the guard pattern
is sufficient in allowing applications to design their own corruption
det ection.

Finally, it is inportant to note that none of these corruption checks
occur in the transport layer. The server and client conponents are
totally unaware of the file format and might report everything as
being transferred correctly, even in cases where the application
detects corruption.

8.3. An Exanpl e of READ PLUS
The hypot hetical application presented in Section 8.2 can be used to
illustrate how READ PLUS would return an array of results. Afileis
created and initialized with 100 4K ADBs in the FREE state with the
VWRI TE_SAME operation (see Section 15.12):
WRI TE_SAME {0, 4K, 100, 0, 0, 8, Oxfeedface}

Furt her, assune that the application wites a single ADB at 16K
changi ng the guard pattern to Oxcafedead; then there would be in

menory:
oK -> (4K - 1) : 00 00 00 00 ... fe ed fa ce 00 00 ... 00

4K -> (8K - 1) : 00 00 00 01 ... fe ed fa ce 00 00 ... 00

8K -> (12K - 1) : 00 00 00 02 ... fe ed fa ce 00 00 ... 00
12K -> (16K - 1) : 00 00 00 03 ... fe ed fa ce 00 00 ... 00
16K -> (20K - 1) : 00 00 00 04 ... ca fe de ad 00 00 ... 00
20K -> (24K - 1) : 00 00 00 05 ... fe ed fa ce 00 00 ... 00
24K -> (28K - 1) : 00 00 00 06 ... fe ed fa ce 00 00 ... 00
396K -> (400K - 1) : 00 00 00 63 ... fe ed fa ce 00 00 ... 00

And when the client did a READ PLUS of 64K at the start of the file,
it could get back a result of data:

oK -> (4K - 1) : 00 00 00 OO ... fe ed fa ce 00 00 ... 00
4K -> (8K - 1) : 00 00 00 01 ... fe ed fa ce 00 00 ... 00
8K -> (12K - 1) : 00 00 00 02 ... fe ed fa ce 00 00 ... 0O
12K -> (16K - 1) : 00 00 00 03 ... fe ed fa ce 00 00 ... 0O
16K -> (20K - 1) : 00 00 00 04 ... ca fe de ad 00 00 ... 00
20K -> (24K - 1) : 00 00 00 05 ... fe ed fa ce 00 OO0 ... 00
24K -> (28K - 1) : 00 00 00 06 ... fe ed fa ce 00 OO0 ... 00
62K -> (64K - 1) : 00 00 00 15 ... fe ed fa ce 00 00 ... 0O

Haynes St andards Track [Page 38]

RFC 7862 NFSv4. 2 Novenber 2016

8.4. An Exanpl e of Zeroing Space

A sinmpler use case for WRITE_SAME is applications that want to
efficiently zero out a file, but do not want to nodify space
reservations. This can easily be achieved by a call to WRI TE_SAME
wi t hout an ADB bl ock nunbers and pattern, e.g.

WRI TE_SAME {0, 1K, 10000, O, O, 0O, 0}
9. Label ed NFS

Access control nodels such as UNI X permni ssions or Access Contro
Lists (ACLs) are commonly referred to as Discretionary Access Contro
(DAC) nodels. These systenms base their access decisions on user
identity and resource ownership. 1In contrast, Mandatory Access
Control (MAC) nodel s base their access control decisions on the | abe
on the subject (usually a process) and the object it wi shes to access
[RFC4949]. These labels may contain user identity information but
usual ly contain additional information. In DAC systens, users are
free to specify the access rules for resources that they own. MAC
nodel s base their security decisions on a systemw de policy --

est abli shed by an adnministrator or organization -- that the users do
not have the ability to override. 1In this section, a MAC nodel is
added to NFSv4. 2.

First, a nmethod is provided for transporting and storing security

| abel data on NFSv4 file objects. Security |abels have severa
semantics that are nmet by NFSv4 recommended attributes such as the
ability to set the | abel value upon object creation. Access control
on these attributes is done through a conbination of two nechani sns.
As with other recommended attributes on file objects, the usual DAC
checks, based on the ACLs and pernission bits, will be perforned to
ensure that proper file ownership is enforced. |In addition, a MAC
system MAY be enpl oyed on the client, server, or both to enforce
addi tional policy on what subjects may nodify security | abel

i nformation.

Second, a nethod is described for the client to determine if an NFSv4
file object security |abel has changed. A client that needs to know
if alabel on a file or set of files is going to change SHOULD
request a del egation on each |abeled file. In order to change such a
security label, the server will have to recall del egations on any
file affected by the | abel change, so informng clients of the |abe
change.

Haynes St andards Track [Page 39]

RFC 7862 NFSv4. 2 Novenber 2016

An additional useful feature would be nodification to the RPC | ayer
used by NFSv4 to allow RPCs to assert client process subject security
| abel s and enabl e the enforcement of Full Mdde as described in
Section 9.5.1. Such nodifications are outside the scope of this
docunent (see [RFC7861]).

9.1. Definitions

Label Format Specifier (LFS): an identifier used by the client to
establish the syntactic format of the security |abel and the
semantic neaning of its conponents. LFSs exist in a registry
associ ated with docunents describing the format and senantics of
the | abel

Security Label Format Selection Registry: the |ANA registry (see
[RFC7569]) containing all registered LFSs, along with references
to the docunents that describe the syntactic format and senantics
of the security | abel

Policy lIdentifier (Pl): an optional part of the definition of an
LFS. The Pl allows clients and servers to identify specific
security policies.

hject: a passive resource within the systemthat is to be
protected. bjects can be entities such as files, directories,
pi pes, sockets, and many other systemresources relevant to the
protection of the system state.

Subject: an active entity, usually a process that is requesting
access to an object.

MAC- Aware: a server that can transmit and store object |abels.

MAC- Functional: a client or server that is Label ed NFS enabl ed.

Such a systemcan interpret |abels and apply policies based on the
security system

Mul ti-Level Security (MS): a traditional nodel where objects are
given a sensitivity level (Unclassified, Secret, Top Secret, etc.)
and a category set (see [LB96], [RFC1108], [RFC2401], and
[RFC4949]) .

(Note: RFC 2401 has been obsol eted by RFC 4301, but we |ist
RFC 2401 here because RFC 4301 does not discuss MS.)

Haynes St andards Track [Page 40]

RFC 7862 NFSv4. 2 Novenber 2016

9.2. MAC Security Attribute

MAC nodel s base access deci sions on security attributes bound to
subjects (usually processes) and objects (for NFS, file objects).
This information can range froma user identity for an identity-based
MAC nodel, sensitivity levels for M.S, or a type for type
enforcenent. These nodel s base their decisions on different

criteria, but the semantics of the security attribute remain the
sanme. The semantics required by the security attribute are listed
bel ow.

0 MJST provide flexibility with respect to the MAC nodel

0 MJST provide the ability to atomically set security information
upon obj ect creation

o0 MJIST provide the ability to enforce access control decisions on
both the client and the server

0 MJST NOT expose an object to either the client or server nanmespace
before its security information has been bound to it.

NFSv4 i npl ements the MAC security attribute as a recomended
attribute. This attribute has a fixed format and semantics, which
conflicts with the flexible nature of security attributes in general
To resolve this, the MAC security attribute consists of two
conmponents. The first conponent is an LFS, as defined in [RFC7569],
to allow for interoperability between MAC nechani sns. The second
component is an opaque field, which is the actual security attribute
data. To allow for various MAC nodels, NFSv4 should be used solely

as a transport nmechanismfor the security attribute. It is the
responsibility of the endpoints to consume the security attribute and
make access deci sions based on their respective nodels. 1In addition

creation of objects through OPEN and CREATE allows the security
attribute to be specified upon creation. By providing an atomc
create and set operation for the security attribute, it is possible
to enforce the second and fourth requirenents |isted above. The
reconmended attribute FATTRA_SEC LABEL (see Section 12.2.4) will be
used to satisfy this requirenent.

9.2.1. Delegations

In the event that a security attribute is changed on the server while
a client holds a delegation on the file, both the server and the
client MUST follow the NFSv4.1 protocol (see Section 10 of [RFC5661])
with respect to attribute changes. It SHOULD flush all changes back
to the server and relinquish the del egation

Haynes St andards Track [Page 41]

RFC 7862 NFSv4. 2 Novenber 2016

9.2.2. Perm ssion Checking

It is not feasible to enunerate all possible MAC nodels and even

| evel s of protection within a subset of these nodels. This neans
that the NFSv4 client and servers cannot be expected to directly make
access control decisions based on the security attribute. Instead,
NFSv4 shoul d defer pernission checking on this attribute to the host
system These checks are perforned in addition to existing DAC and
ACL checks outlined in the NFSv4 protocol. Section 9.5 gives a
specific exanpl e of how the security attribute is handl ed under a
particul ar MAC nodel .

9.2.3. bject Creation

When creating files in NFSv4, the OPEN and CREATE operations are
used. One of the paranmeters for these operations is an fattr4
structure containing the attributes the file is to be created wth.
This allows NFSv4 to atonmically set the security attribute of files

upon creation. Wen a client is MAGC Functional, it nust always
provide the initial security attribute upon file creation. 1In the
event that the server is MAC Functional as well, it should determ ne
by policy whether it will accept the attribute fromthe client or

i nstead make the determination itself. |If the client is not

MAC- Functional, then the MAC Functional server nust decide on a
default label. A nore in-depth explanation can be found in

Section 9.5.

9.2.4. Existing Objects

Not e that under the MAC nodel, all objects nust have | abels.
Therefore, if an existing server is upgraded to include Label ed NFS
support, then it is the responsibility of the security systemto
define the behavior for existing objects.

9.2.5. Label Changes

Consi der a CGuest Mde system (Section 9.5.3) in which the clients
enforce MAC checks and the server has only a DAC security systemthat
stores the labels along with the file data. In this type of system
a user with the appropriate DAC credentials on a client with poorly
configured or disabled MAC | abeling enforcenent is allowed access to
the file label (and data) on the server and can change the | abel.

Haynes St andards Track [Page 42]

RFC 7862 NFSv4. 2 Novenber 2016

Clients that need to know if a label on a file or set of files has
changed SHOULD request a delegation on each labeled file so that a
| abel change by another client will be known via the process
described in Section 9.2.1, which nust be followed: the del egation
will be recalled, which effectively notifies the client of the
change.

Note that the MAC security policies on a client can be such that the
client does not have access to the file unless it has a del egation

9.3. pNFS Consi derations

The new FATTR4_SEC LABEL attribute is nmetadata information, and as
such the storage device is not aware of the val ue contai ned on the
net adata server. Fortunately, the NFSv4.1 protocol [RFC5661] already
has provisions for doing access-1level checks fromthe storage device

to the nmetadata server. 1In order for the storage device to validate
the subject |abel presented by the client, it SHOULD utilize this
nmechani sm

9.4. Discovery of Server Label ed NFS Support

The server can easily deternmine that a client supports Label ed NFS
when it queries for the FATTR4_SEC LABEL | abel for an object.

Further, it can then deternine which LFS the client understands. The
client mght want to discover whether the server supports Label ed NFS
and whi ch LFS the server supports.

The foll owi ng COVPOUND MUST NOT be deni ed by any MAC | abel check
PUTROOTFH, GETATTR { FATTR4_SEC LABEL}

Note that the server might have inposed a security flavor on the root
that precludes such access. That is, if the server requires

Ker beri zed access and the client presents a COMOUND with AUTH SYS,
then the server is allowed to return NFS4AERR WRONGSEC in this case
But if the client presents a correct security flavor, then the server
MUST return the FATTRA_SEC LABEL attribute with the supported LFS
filled in.

9.5. MAC Security NFS Modes of Operation

A system using Label ed NFS nay operate in three nodes (see Section 4
of [RFC7204]). The first node provides the nost protection and is
called "Full Mde". |In this node, both the client and server

i npl ement a MAC nodel allow ng each end to make an access contro
decision. The second node is a subset of the Full Mde and is called
"Limted Server Mdde". |In this node, the server cannot enforce the

Haynes St andards Track [Page 43]

RFC 7862 NFSv4. 2 Novenber 2016

| abel s, but it can store and transmt them The renmaining node is
called the "Guest Mde"; in this node, one end of the connection is
not inplenmenting a MAC nodel and thus offers |less protection than
Ful I Mbde.

9.5.1. Full Mode

Full Mode environnments consi st of MAC-Functional NFSv4 servers and
clients and nay be conposed of mnixed MAC nodels and policies. The
systemrequires that both the client and server have an opportunity
to perform an access control check based on all relevant information
within the network. The file object security attribute is provided
usi ng the nechani sm described in Section 9. 2.

Ful |y MAC- Functional NFSv4 servers are not possible in the absence of
RPCSEC GSSv3 [RFC7861] support for client process subject |abe
assertion. However, servers nmay nake deci sions based on the RPC
credential information avail able.

9.5.1.1. Initial Labeling and Translation

The ability to create a file is an action that a MAC nodel may wi sh
to nediate. The client is given the responsibility to determ ne the
initial security attribute to be placed on a file. This allows the
client to make a decision as to the acceptable security attribute to
create a file with before sending the request to the server. Once
the server receives the creation request fromthe client, it may
choose to evaluate if the security attribute is acceptable.

Security attributes on the client and server may vary based on MAC
nodel and policy. To handle this, the security attribute field has
an LFS conponent. This conponent is a nechanismfor the host to
identify the format and neani ng of the opaque portion of the security
attribute. A Full Mde environment may contain hosts operating in
several different LFSs. In this case, a nechanismfor translating

t he opaque portion of the security attribute is needed. The actua
translation function will vary based on MAC nodel and policy and is
outside the scope of this docunent. |f a translation is unavailable
for a given LFS, then the request MJST be denied. Another recourse
is to allowthe host to provide a fallback mappi ng for unknown
security attributes.

9.5.1.2. Policy Enforcenent
In Full Mde, access control decisions are made by both the clients
and servers. \When a client nmakes a request, it takes the security

attribute fromthe requesting process and nmakes an access contro
deci sion based on that attribute and the security attribute of the

Haynes St andards Track [Page 44]

RFC 7862 NFSv4. 2 Novenber 2016

object it is trying to access. |If the client denies that access, an
RPC to the server is never nade. |f, however, the access is allowed,
the client will make a call to the NFS server

When the server receives the request fromthe client, it uses any
credential information conveyed in the RPC request and the attributes
of the object the client is trying to access to nake an access
control decision. |If the server’s policy allows this access, it wll
fulfill the client’s request; otherwise, it will return
NFS4ERR_ACCESS.

Future protocol extensions may also allow the server to factor into
the decision a security |abel extracted fromthe RPC request.

| mpl enent ati ons MAY validate security attributes supplied over the
network to ensure that they are within a set of attributes pernitted
froma specific peer and, if not, reject them Note that a system
may permt a different set of attributes to be accepted from

each peer.

9.5.2. Limted Server Nbde

A Limted Server node (see Section 4.2 of [RFC7204]) consists of a
server that is |abel aware but does not enforce policies. Such a
server will store and retrieve all object |abels presented by clients
and will utilize the methods described in Section 9.2.5 to allow the
clients to detect changing |abels, but may not factor the label into
access decisions. Instead, it will expect the clients to enforce al
such access locally.

9.5.3. Quest Mde

Quest Mobde inplies that either the client or the server does not
handl e labels. |If the client is not Labeled NFS aware, then it wll
not offer subject labels to the server. The server is the only
entity enforcing policy and may sel ectively provide standard NFS
services to clients based on their authentication credentials and/or

associ ated network attributes (e.g., |P address, network interface).
The | evel of trust and access extended to a client in this node is
configuration specific. |If the server is not Label ed NFS aware, then

it will not return object |labels to the client. Clients in this

envi ronnent nay consist of groups inplenenting different MAC node
policies. The systemrequires that all clients in the environnent be
responsi bl e for access control checks.

Haynes St andards Track [Page 45]

RFC 7862 NFSv4. 2 Novenber 2016

9. 6.

10.

Security Considerations for Label ed NFS

Dependi ng on the level of protection the MAC system offers, there may
be a requirenent to tightly bind the security attribute to the data.

When only one of the client or server enforces labels, it is
important to realize that the other side is not enforcing MAC
protections. Alternate nethods nmight be in use to handle the | ack of
MAC support, and care should be taken to identify and mitigate
threats from possi bl e tanpering outside of these nethods.

An exanple of this is that a server that nodifies READDIR or LOOKUP
results based on the client’s subject |abel mght want to al ways
construct the same subject label for a client that does not present
one. This will prevent a non-Labeled NFS client fromm xing entries
in the directory cache.

Sharing Change Attribute Inplenentation Characteristics with NFSv4
Clients

Al t hough both the NFSv4 [RFC7530] and NFSv4.1 [RFC5661] protocols
define the change attribute as being mandatory to inplenent, there is
little in the way of guidance as to its construction. The only
mandat ed constraint is that the value nust change whenever the file
data or netadata changes

While this allows for a wide range of inplenmentations, it also | eaves
the client with no way to determ ne which is the nost recent val ue
for the change attribute in a case where several RPCs have been
issued in parallel. 1In other words, if two COVPOUNDs, both

contai ning WRI TE and GETATTR requests for the sane file, have been

i ssued in parallel, how does the client determ ne which of the two
change attribute values returned in the replies to the GETATTR
requests corresponds to the nbost recent state of the file? In some
cases, the only recourse may be to send anot her COVPOUND cont ai ning a
third GETATTR that is fully serialized with the first two.

NFSv4. 2 avoids this kind of inefficiency by allowi ng the server to
share details about how the change attribute is expected to evol ve,
so that the client may i medi ately determ ne which, out of the
several change attribute values returned by the server, is the nost
recent. change attr_type is defined as a new recommended attribute
(see Section 12.2.3) and is a per-file systemattribute.

Haynes St andards Track [Page 46]

RFC 7862 NFSv4. 2 Novenber 2016

11.

11.

11.

11.

11.

11.

Error Val ues

NFS error nunbers are assigned to failed operations within a COVOUND
(COVMPOUND or CB_COVPOUND) request. A COVWOUND request contains a
nunber of NFS operations that have their results encoded in sequence
in a COPOUND reply. The results of successful operations will
consist of an NFS4_(K status followed by the encoded results of the
operation. |If an NFS operation fails, an error status will be
entered in the reply and the COVMPOUND request will be term nated.

1. Error Definitions

o e e e e e e e oo E R oo +
| Error | Nunber | Description |
o E R o e oo +
NFS4ERR_BADLABEL	10093	Section 11.1.3.1
NFS4ERR _COFFLOAD DENIED	10091	Section 11.1.2.1
NFS4ERR_CFFLOAD NO REQS	10094	Section 11.1.2.2
NFS4ERR_PARTNER_NO AUTH	10089	Section 11.1.2.3
NFS4ERR PARTNER NOTSUPP	10088	Section 11.1.2.4

| NFS4ERR_UNI ON_NOTSUPP | 10090 | Section 11.1.1.1 |
| NFS4ERR_WRONG LFS | 10092 | Section 11.1.3.2 |
o e e e e e e e e Fom e e e - Fom e e e e e o +

Table 1: Protocol Error Definitions
1.1. GCeneral Errors

This section deals with errors that are applicable to a broad set of
di fferent purposes.

1.1.1. NFS4ERR_UN ON_NOTSUPP (Error Code 10090)

One of the argunments to the operation is a discrimnated union, and
whil e the server supports the given operation, it does not support
the selected arm of the discrimnated union.

1.2. Server-to-Server Copy Errors

These errors deal with the interaction between server-to-server
copi es.

1.2.1. NFS4ERR_OFFLOAD DEN ED (Error Code 10091)

The COPY of fl oad operation is supported by both the source and the
destination, but the destination is not allowing it for this file.

If the client sees this error, it should fall back to the normal copy
semanti cs.

Haynes St andards Track [Page 47]

RFC 7862 NFSv4. 2 Novenber 2016

11.

11.

11.

11.

11.

11.

1.2.2. NFS4ERR OFFLOAD NO REQS (Error Code 10094)

The COPY offl oad operation is supported by both the source and the
destination, but the destination cannot neet the client requirenments
for either consecutive byte copy or synchronous copy. |If the client
sees this error, it should either relax the requirenents (if any) or
fall back to the nornmal copy semantics.

1.2.3. NFS4ERR_PARTNER _NO AUTH (Error Code 10089)

The source server does not authorize a server-to-server COPY offload
operation. This nay be due to the client’'s failure to send the
COPY_NOTI FY operation to the source server, the source server
receiving a server-to-server copy offl oad request after the copy

| ease time expired, or sone other pernission problem

The destination server does not authorize a server-to-server COPY
of fl oad operation. This nmay be due to an inter-server COPY request
where the destination server requires RPCSEC GSSv3 and it is not
used, or sone other pernm ssions problem

1.2.4. NFS4ERR_PARTNER _NOTSUPP (Error Code 10088)

The renote server does not support the server-to-server COPY offload
pr ot ocol

1.3. Labeled NFS Errors

These errors are used in Label ed NFS.

1.3.1. NFS4ERR BADLABEL (Error Code 10093)
The | abel specified is invalid in some manner
1.3.2. NFS4ERR VWRONG LFS (Error Code 10092)

The LFS specified in the subject |abel is not conpatible with the LFS
in the object |abel

Haynes St andards Track [Page 48]

RFC 7862 NFSv4. 2 Novenber 2016

11.2. New Qperations and Their Valid Errors

This section contains a table that gives the valid error returns for
each new NFSv4.2 protocol operation. The error code NFS4_ K
(indicating no error) is not listed but should be understood to be
returnabl e by all new operations. The error values for all other
operations are defined in Section 15.2 of [RFC5661].

+

|

+

| NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
| NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,

| NFS4ERR_DEADSESSI ON, NFS4ERR DELAY,

| NFS4ERR DELEG REVOKED, NFS4ERR DQUOT,

| NFS4ERR_EXPI RED, NFS4ERR FBI G

| NFS4ERR_FHEXPI RED, NFS4ERR GRACE, NFS4ERR | NVAL,
| NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_MOVED,

| NFS4ERR_NOFI LEHANDLE, NFS4ERR NOSPC,

| NFS4ERR_NOTSUPP, NFS4ERR OLD STATEI D,

| NFS4ERR_OPENMODE, NFS4ERR OP_NOT | N_SESSI ON,

| NFS4ERR_REP_TCO BI G

| NFS4ERR_REP_TOO Bl G_TO CACHE,

| NFS4ERR_REQ TOO Bl G, NFS4ERR RETRY_UNCACHED REP,
| NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,

| NFS4ERR_STALE, NFS4ERR SYM.I NK,

| NFS4ERR_TOO MANY_OPS, NFS4ERR W\RONG TYPE

o o o e m e e e e e m e e m e — -
| NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,

| NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,

| NFS4ERR_DEADSESSI ON, NFS4ERR DELAY,

| NFS4ERR DELEG REVOKED, NFS4ERR DQUOT,

| NFS4ERR_EXPI RED, NFS4ERR FBI G

| NFS4ERR_FHEXPI RED, NFS4ERR GRACE, NFS4ERR | NVAL,
| NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_MOVED,

| NFS4ERR_NOFI LEHANDLE, NFS4ERR NOSPC,

| NFS4ERR_NOTSUPP, NFS4ERR_OLD STATEI D,

| NFS4ERR_OPENMODE, NFS4ERR OP_NOT | N_SESSI ON,

| NFS4ERR_REP_TCO BI G

| NFS4ERR_REP_TOO Bl G TO CACHE,

| NFS4ERR_REQ TOO Bl G NFS4ERR RETRY_UNCACHED REP,
| NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,

| NFS4ERR_STALE, NFS4ERR_SYM.I NK,

| NFS4ERR_TOO MANY_OPS, NFS4ERR WWRONG TYPE,

| NFS4ERR_XDEV

- -+ — +

Haynes St andards Track [Page 49]

RFC 7862 NFSv4. 2 Novenber 2016

NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,
NFS4ERR_DEADSESSI ON, NFS4ERR_DELAY,
NFS4ERR_DELEG REVOKED, NFS4ERR_DQUOT,
NFS4ERR_EXP| RED, NFS4ERR FBI G,

NFS4ERR_FHEXPI RED, NFS4ERR_GRACE, NFS4ERR | NVAL,
NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_LOCKED,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOSPC, NFS4ERR_OFFLOAD DENI ED,
NFS4ERR_OLD_STATEI D, NFS4ERR_OPENMODE,
NFS4ERR_OP_NOT_| N_SESSI ON,

NFS4ERR_PARTNER NO_AUTH,
NFS4ERR_PARTNER_NOTSUPP, NFS4ERR PNFS | O HOLE,
NFS4ERR_PNFS_NO _LAYOUT, NFS4ERR REP_TOO Bl G,
NFS4ERR_REP_TOO Bl G TO CACHE,

NFS4ERR_REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR SYM.I NK,

NFS4ERR_TOO MANY_OPS, NFS4ERR WWRONG TYPE

+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

+

| NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
| NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,

| NFS4ERR_DEADSESSI ON, NFS4ERR DELAY,

| NFS4ERR_DELEG REVOKED, NFS4ERR EXPI| RED,

| NFS4ERR_FHEXPI RED, NFS4ERR GRACE, NFS4ERR | NVAL,
| NFS4ERR | O, NFS4ERR | SDIR, NFS4ERR_LOCKED,

| NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,

| NFS4ERR_OLD_STATEI D, NFS4ERR_OPENMODE,

| NFS4ERR_OP_NOT_| N_SESSI ON, NFS4ERR_PNFS_| O HOLE,
| NFS4ERR_PNFS_NO LAYOUT, NFS4ERR REP_TCO BI G

| NFS4ERR_REP_TOO Bl G TO CACHE,

| NFS4ERR_REQ TOO Bl G NFS4ERR_RETRY_UNCACHED REP,
| NFS4ERR_SERVERFAULT, NFS4ERR_STALE,

| NFS4ERR_SYMLI NK, NFS4ERR TOO_MANY_OPS,

| NFS4ERR_WRONG TYPE

+
|
|
|
|
|
|
|
|
|
|
|

NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,
NFS4ERR_DEADSESSI ON, NFS4ERR_DELAY,
NFS4ERR_DELEG REVOKED, NFS4ERR_EXPI RED,
NFS4ERR FBI G NFS4ERR_FHEXPI RED, NFS4ERR_GRACE,
NFS4ERR | NVAL, NFS4ERR | O, NFS4ERR | SDI R,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEI D,
NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_| N_SESSI ON,
NFS4ERR_REP_TCO BI G

NFS4ERR_REP_TCO Bl G_TO CACHE,

- - -+

Haynes St andards Track [Page 50]

RFC 7862

| O_ADVI SE

I
I
I
I
I
I
I
I
I
I
I
|
LAYOUTERROR

LAYQUTSTATS

Haynes

NFSv4. 2 Novenmber 2016

NFS4ERR _REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,
NFS4ERR_ROFS, NFS4ERR SERVERFAULT,
NFS4ERR_STALE, NFS4ERR SYM.I NK,
NFS4ERR_TOO _MANY OPS, NFS4ERR WWRONG TYPE

NFS4ERR ACCESS, NFS4ERR ADM N_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,
NFS4ERR_DEADSESS| ON, NFS4ERR_DELAY,
NFS4ERR_DELEG REVOKED, NFS4ERR_EXPI RED,
NFS4ERR FBI G NFS4ERR FHEXP| RED, NFS4ERR_GRACE,
NFS4ERR | NVAL, NFS4ERR | O, NFS4ERR | SDI R,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR OLD STATEI D,
NFS4ERR_OP_NOT_| N_SESSI ON,
NFS4ERR_RETRY_UNCACHED REP, NFS4ERR SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_SYM.I NK,

NFS4ERR_TOO MANY_OPS, NFS4ERR WRONG TYPE

NFS4ERR ADM N_REVOKED, NFS4ERR BADXDR,
NFS4ERR_BAD_STATEI D, NFS4ERR_DEADSESSI ON,
NFS4ERR_DELAY, NFS4ERR DELEG REVOKED,
NFS4ERR_EXPI RED, NFS4ERR_FHEXPI RED,
NFS4ERR_GRACE, NFS4ERR | NVAL, NFS4ERR | SDI R,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_NO GRACE,
NFS4ERR_OLD_STATEI D, NFS4ERR_OP_NOT_| N_SESSI ON,
NFS4ERR_REP_TCO Bl G

NFS4ERR_REP_TCO Bl G_TO CACHE,

NFS4ERR_REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,
NFS4ERR_SERVERFAULT, NFS4ERR STALE,

NFS4ERR_TOO MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE, NFS4ERR WRONG CRED,
NFS4ERR_W\RONG_TYPE

NFS4ERR_ADM N_REVOKED, NFS4ERR BADXDR,
NFS4ERR_BAD_STATEI D, NFS4ERR DEADSESSI ON,
NFS4ERR_DELAY, NFS4ERR DELEG REVOKED,
NFS4ERR_EXPI RED, NFS4ERR_FHEXPI RED,
NFS4ERR_GRACE, NFS4ERR | NVAL, NFS4ERR | SDI R,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_NO_GRACE,
NFS4ERR_OLD_STATEI D, NFS4ERR OP_NOT | N_SESSI ON,
NFS4ERR_REP_TOO BI G,

NFS4ERR_REP_TCO Bl G_TO CACHE,

NFS4ERR_REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,

- - -+ -+

St andards Track [Page 51]

RFC 7862

NFSv4. 2 Novenmber 2016

NFS4ERR_TOO MANY _OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE, NFS4ERR WRONG CRED,
NFS4ERR_WRONG TYPE

NFS4ERR_ADM N_REVOKED, NFS4ERR BADXDR,
NFS4ERR_BAD_STATEI D, NFS4ERR_COMPLETE_ALREADY,
NFS4ERR_DEADSESSI ON, NFS4ERR_DELAY,

NFS4ERR_EXPl| RED, NFS4ERR GRACE, NFS4ERR NOTSUPP,
NFS4ERR_OLD_STATEI D, NFS4ERR_OP_NOT_| N_SESSI ON,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO MANY_OPS

NFS4ERR_ADM N_REVOKED, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEI D, NFS4ERR_COMPLETE_ALREADY,
NFS4ERR_DEADSESS| ON, NFS4ERR_DELAY,

NFS4ERR_EXP| RED, NFS4ERR GRACE, NFS4ERR_NOTSUPP,
NFS4ERR_OLD_STATEI D, NFS4ERR OP_NOT_| N_SESSI ON,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO MANY_OPS

NFS4ERR _ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_BADXDR, NFS4ERR BAD STATEI D,
NFS4ERR_DEADSESSI ON, NFS4ERR_DELAY,
NFS4ERR_DELEG REVOKED, NFS4ERR_EXPI RED,
NFS4ERR_FHEXPI RED, NFS4ERR_GRACE, NFS4ERR | NVAL,
NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_LOCKED,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR OLD_STATEI D,
NFS4ERR_OPENMODE, NFS4ERR_OP_NOT | N_SESSI ON,
NFS4ERR_PARTNER NO AUTH, NFS4ERR_PNFS_| O HOLE,
NFS4ERR_PNFS_NO_LAYOUT, NFS4ERR REP_TOO BI G,
NFS4ERR_REP_TCO Bl G_TO CACHE,

NFS4ERR_REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,
NFS4ERR_SERVERFAULT, NFS4ERR STALE,
NFS4ERR_SYMLI NK, NFS4ERR_TOO MANY_COPS,
NFS4ERR_W\RONG_TYPE

NFS4ERR _ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D,
NFS4ERR_DEADSESS| ON, NFS4ERR_DELAY,
NFS4ERR_DELEG REVOKED, NFS4ERR_EXPI RED,
NFS4ERR_FHEXPI RED, NFS4ERR_GRACE, NFS4ERR | NVAL,
NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_LOCKED,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEI D,
NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_| N_SESSI ON,
NFS4ERR_PNFS_| O HOLE, NFS4ERR_PNFS_NO _LAYOUT,
NFS4ERR_REP_TCO Bl G

NFS4ERR_REP_TCO Bl G_TO CACHE,

NFS4ERR_REQ TOO Bl G, NFS4ERR_RETRY_UNCACHED REP,

- - -+ -+

St andards Track [Page 52]

RFC 7862 NFSv4. 2 Novenber 2016

NFS4ERR SERVERFAULT, NFS4ERR STALE,
NFS4ERR_SYMLI NK, NFS4ERR TOO MANY OPS,
NFS4ERR_UNI ON_NOTSUPP, NFS4ERR WRONG TYPE

| |
| |
| |
+ +
| NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED, |
| NFS4ERR_BADXDR, NFS4ERR_BAD STATEI D, |
| NFS4ERR_DEADSESSI ON, NFS4ERR DELAY, |
| NFS4ERR DELEG REVOKED, NFS4ERR DQUOT, |
| NFS4ERR_EXPI RED, NFS4ERR FBI G |
| NFS4ERR_FHEXPI RED, NFS4ERR GRACE, NFS4ERR | NVAL, |
| NFS4ERR | O, NFS4ERR | SDI R, NFS4ERR_LOCKED, |
| NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE, |
| NFS4ERR_NOSPC, NFS4ERR_NOTSUPP, |
| NFS4ERR_OLD_STATEI D, NFS4ERR OPENMODE, |
| NFS4ERR_OP_NOT | N_SESSI ON, NFS4ERR PNFS | O HOLE, |
| NFS4ERR_PNFS_NO LAYOUT, NFS4ERR REP _TCO Bl G |
| NFS4ERR_REP_TOO Bl G TO CACHE, |
| NFS4ERR_REQ TOO Bl G, NFS4ERR RETRY_UNCACHED REP, |
| NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, |
| NFS4ERR_STALE, NFS4ERR SYM.I NK, |
| NFS4ERR_TOO MANY_OPS, NFS4ERR W\RONG TYPE |
+ +

Table 2: Valid Error Returns for Each New Protocol Operation
11.3. New Cal | back Operations and Their Valid Errors

This secti