
Contents
Preface..4

Standardisation...4
So what is "standard"?...5
Notation...6
Where are all the grammar tables?..6
Acknowledgements..7

Overview of Z-machine architecture..8
1. The memory map..11

1.1 Regions of memory...11
1.2 Addresses...12
Remarks...13

2. Numbers and arithmetic...14
2.1 Numbers...14
2.2 Signed operations...14
2.3 Arithmetic errors..14
2.4 Random number generator...14
Remarks...15

3. How text and characters are encoded...16
3.1 Text..16
3.2 Alphabets...16
3.3 Abbreviations...17
3.4 ZSCII escape..17
3.5 Alphabet table..17
3.6 Padding and incompleteness..19
3.7 Dictionary truncation...19
3.8 Definition of ZSCII and Unicode..20
Remarks...26

4. How instructions are encoded..28
4.1 Instructions...28
4.2 Operand types..28
4.3 Form and operand count..29
4.4 Specifying operand types...29
4.5 Operands..30
4.6 Stores...30
4.7 Branches...30
4.8 Text opcodes..31
Remarks...31

5. How routines are encoded..33
5.1 Start position..33
5.2 Header..33
5.3 First instruction..33
5.4 Main routine (V6)..33
5.5 Initial execution point (other versions)..33
Remarks...33

6. The game state: storage and routine calls...34
6.1 Saved states..34
6.2 Storage of global variables..35
6.3 The stack..35
6.4 Routine calls..36
6.5 Stack frames...37

6.6 User stacks (V6)...37
Remarks...37

7. Output streams and file handling..39
7.1 Output streams...39
7.2 Buffering..40
7.3 Selection (V1 and V2)...40
7.4 Selection (later versions)...41
7.5 Dealing with Unicode or invalid characters..41
7.6 File handling..41
Remarks...43

8. The screen model..44
8.1 Fonts...44
8.2 Status line...45
8.3 Text colours..46
8.4 Screen dimensions...49
8.5 Screen model (V1, V2)..49
8.6 Screen model (V3)...49
8.7 Screen model (V4, V5)..50
8.8 Screen model (V6)...53
Remarks...59

9. Sound effects..63
9.1 Sound effects..63
9.2 Numbering of...63
9.3 Volume...63
9.4 Sound playing autonymously...63
Remarks...64

10. Input streams and devices...66
10.1 Keyboard only in V1..66
10.2 Input streams..66
10.3 Mouse support..66
10.4 Menu support...67
10.5 Terminating characters and timed input...68
10.6 Single keypresses...68
10.7 Reading ZSCII from the keyboard...68
Remarks...69

11. The format of the header...70
11.1 Header format..70
Remarks...74

12. The object table..75
12.1 Storage...75
12.2 Property defaults table...75
12.3 Object tree..75
12.5 Well-foundedness of the tree...77
Remarks...77

13. The dictionary and lexical analysis..78
13.1 Storage...78
13.2 Header..78
13.3 Entries (V1 to V3)..78
13.4 Entries (later versions)...78
13.5 Ordering...79
13.6 Lexical analysis..79
Remarks...79

14. Complete table of opcodes...80
14.1 Contents...84
14.2 Out of range opcodes...84
Reading the opcode tables...85
Inform assembly language...85
Remarks...88

15. Dictionary of opcodes...89
15.1..89
15.2..89
15.3..89

16. Font 3 and character graphics...113
16.1...113
Remarks...117

Appendix A. Error messages and debugging..119
Appendix B. Conventional contents of the header...120
Appendix C. Resources available...122

Public Interpreters..122
Testing compliance..122
Compilers...122
Utility programs...123
Story files...123
Documents...124

Appendix D. A short history of the Z-machine..125
Appendix E. Statistics..129
Appendix F. Canonical Story Files...132

Preface
 The Z-machine was created on a coffee table in Pittsburgh in 1979. It is an imaginary
computer whose programs are adventure games, and is well-adapted to its task,
implementing complex games remarkably compactly. They were still perhaps 100K long,
too large for the memory of the home computers of their day, and the Z-machine seems to
have made the first usage of virtual memory on a microcomputer. Further ahead of its time
was the ability to efficiently save and restore the entire execution state.

The design's cardinal principle is that any game is 100% portable to different computers:
that is, any legal program exactly determines its behaviour. This portability is largely made
possible by a willingness to constrain maximum as well as minimum levels of performance
(for instance, dynamic memory allocation is impossible).

Infocom's catalogue continues to be sold and to be played under interpreter programs, either
original Infocom ones or more recent and generally better freeware ones. About 130 story
files compiled by Infocom's compiler Zilch survive and since 1993 very many more story
files have been created with the Inform design system.

Eight Versions of the Z-machine exist, and the first byte of any "story file" (that is: any Z-
machine program) gives the Version number it must be interpreted under.

Standardisation
The majority of opcode names used in this document were agreed between 1994 and 1995
as a standard set by Mark Howell, author of the disassembler Txd (part of the Ztools suite
of utility programs), and Graham Nelson, author of the assembly level of Inform. They do
not correspond to Infocom's opcode names.

The first vesion of this Standard was drawn up in November 1995, drawing on a rougher
description written in 1993 and, before that, sketches of table formats by Mike Threepoint
and others. It formalised what different interpreter writers regard as the Z-machine,
guaranteeing a reliable and well-featured platform for writers of new games. The initial 0.2
Standard was followed by the 1.0 Standard, which contained mostly corrections and
clarifications, but also added some new features.

This third version of the Standard was initially put together by Kevin Bracey and Jason C.
Penney and proposed on the Z-Machine Mailing List in December 2001. After much
discussion, and nine drafts, the final list of changes to the Standard was uploaded to the if-
archive in May 2006. This 2014 document adds no new material to that final draft, and is
merely a merging of those changes to the main Standard.

The main additions in the 1.1 Standard are:

 Better colour support, giving games access to 32,768 colours as opposed to the
previous 11. Version 6 games may also make use of the new 'transparent' background
colour.

 Version 6 games may now hint to the interpreter that it is safe to make changes to the
display in a backing store and flush them to the screen later, rather than making
changes directly to the screen. In a program carrying out a complex layered graphical
composition, this may speed up the process.

 The save and restore opcodes have a new optional operand that allow the game to
control whether the interpreter prompts for a filename or executes the intructions
silently.

 The optional operand removed from set_font in the previous Standard has been
reinstated.

There are three companion documents are attached to this Standard.

 Quetzal by Martin Frost, defines a standard format for saved-game files, the purpose
of which is to allow a player to save a game using one interpreter, and then restore
and continure playing on a new interpreter, or even an entirely new machine.

 Blorb by Andrew Plotkin is a standard for a "resources" file to accompany or
encapsulate a Z-machine game, neatly packaging up sound and graphics in modern
formats.

 The Treaty of Babel is a standard for bibliographic information for interactive
fiction games. The aim is to provide a unified way to identify and describe story files
of many different internal formats. The Treaty is not "owned" by any individual, but
by a committee of representatives from each of the pieces of software which have
signed up.

Standard interpreters are not required to support these standards, since they do not affect Z-
Machine behaviour, but interpreter-writers are strongly encouraged to consider it.

So what is "standard"?
To call itself "Standard", an interpreter should (as far as anyone knows) obey this document
exactly for every Version of the Z-machine it claims to interpret. Interpreters need not
provide optional features suggested in the "remarks" sections, and need not make their
source code public. Each edition of this document has a Revision number, somewhat like
the JFIF identification number used by the JPEG standard. A standard interpreter should
communicate its revision number in three ways:

 To someone downloading it from the Internet: by including it in its filename.

 To the player: for instance by means of an "information" option on a menu, or in an
initialisation sequence.

 To the game: by writing it into bytes in the header which were always left zero before
this standard was devised (see S11). A game compiled with Inform library 5/12 or
later prints the revision number in its banner (if this isn't 0.0).

Few arbitrary choices have been made in writing this document. Where Infocom's own
shipped interpreters disagree, or contain manifest bugs, it has usually been possible to
decide which was "correct". Elsewhere, minimum levels of performance have been invented
where necessary. (For example, a minimum call-stack size is needed for programmers to be
sure of what level of recursion is safe.)

Those paragraphs which genuinely extend the Infocom format are marked ***[n.m], where
n and m are the major and minor version numbers for the Standard in which the feature was
added. In any event, Infocom's original shipped interpreters do not conform to this standard
document, because of bugs or because of slight variations between the Inform output format
and Infocom's.

Notation
Hexadecimal numbers are written with an initial dollar, as in $ff, while binary numbers are
written with a double-dollar as in $$11011, according to Inform conventions. The bits in a
byte are numbered 0 to 7, 0 being the least significant and the top bit, 7, the most.

Story files are mechanically best identified by their release number and serial code, which
are written into the header information at the bottom of Z-machine memory. The release
number can be anything between 0 and 65535 but is usually between 1 and 100. The serial
code can consist of any six textual characters but is usually the date of compilation,
arranged YYMMDD: thus 970619 refers to June 19th, 1997.

Paul David Doherty, in his extensive investigations into Infocom's released games,
introduced the notation

Release number.Serial code

to identify particular story files: for example the first production copy of 'Enchanter' is
10.830810. This notation is used throughout the Standard when individual Infocom files
need to be referred to.

Where are all the grammar tables?
The Z-machine has some lexical acuity but it doesn't contain a full parser: it's like a
computer without an operating system. A game program has to contain its own parser and
the tables this uses are not part of the formal Z-machine specification. (Many Infocom
games have similar parsing table formats simply because, until Version 6, they used an
evolving version of the 'Zork I' parser. A quite different parser was used in Version 6.)
Inform's parsing table formats are documented in the Inform Technical Manual. For the
usual format of Infocom's parsing tables, see the Ztools utility Infodump.

Acknowledgements
There is an obvious resemblance between an unreadable script and a secret code; similar
methods can be employed to break both. But the differences must not be overlooked. The
code is deliberately designed to baffle the investigator; the script is only puzzling by
accident.

John Chadwick, The Decipherment of Linear B

The Z-machine was originally devised by Joel Berez and Marc Blank in 1979. Marc Blank
made most of the Version 4 extensions, and Version 5 was created by Dave Lebling (with
contributions from others including Brian Moriarty, Duncan Blanchard and Linde
Dynneson). Version 6 was largely the work of Tim Anderson and Dave Lebling.

In the reverse direction, decipherment is mostly due to the InfoTaskForce (David Beazley,
George Janczuk, Peter Lisle, Russell Hoare and Chris Tham), Matthias Pfaller, Mike
Threepoint, Mark Howell, Paul David Doherty and Stefan Jokisch. Only a few of the pieces
in the jigsaw were placed by myself.

I gratefully acknowledge the help of Paul David Doherty and Mark Howell, who each read
drafts of this paper and sent back detailed corrections; also, of Stefan Jokisch and Marnix
Klooster who have put a great deal of work into the fine detail of the specification; and of
all those who commented on the circulated draft. Mistakes and misunderstandings remain
my own.

Graham Nelson

15 November 1995

Kevin Bracey and Stefan Jokisch discovered most of the mistakes in Standard 0.2, in
developing the first Version 6 interpreters of the modern age: Zip2000 and Frotz. Matthew
Russotto and Mark Knibbs supplied helpful information about Infocom's own Version 6
interpreters. Stefan also kindly read and commented on numerous drafts of the present
revision. Finally, discussion about this document was greatly assisted by the Z-Machine
Mailing List, organised by Marnix Klooster.

Graham Nelson

22 June 1997

The majority of the clarifications and updates in this latest revision are the work of Kevin
Bracey and Jason C. Penney. Thanks go also to the members of the (now defunct) Z-
Machine Mailing List, and those of the intfiction.org forum, especially Dannii Willis, for
bringing to light issues with my initial revision. Special thanks to Andrew Plotkin for his
notes, advice and general help while working on this revised document.

David Fillmore

21 February 2014

The Z-Machine Standard Version 1.1 was the work of Kevin Bracey & Jason C. Penney.
The initial document went through several drafts before arriving at the finished document,
thanks to the comments and advice of the members of the Z-Machine Mailing List.

David Fillmore

24 February 2014

Overview of Z-machine architecture

The Z-machine is a design for an imaginary computer: Z is for 'Zork', the adventure game it
was originally designed to play. Like any computer, it stores its information (mostly) in an
array of variables numbered from 0 up to some large number: this is called its memory. A
stock of some 240 memory locations are set aside for easy and quick access, and these are
called global variables (since they are available to any part of the program which is
running, at any time).

The two important pieces of information not stored in memory are the program counter
(PC) and the stack. The Z-machine continuously runs a program by getting the instruction
stored at position PC in memory, acting on the instruction and then moving the PC forward
to the next. The instruction set of the Z-machine (the range of possible actions and how
they are encoded as numbers in memory) occupies much of this document.

Programs are divided into routines: the Z-machine is always executing a particular routine,
the one which the PC currently points inside. However, some instructions cause the Z-
machine to call a new routine and then to return where the first routine left off. The Z-
machine therefore needs to remember details of where to go back, and it stores these on the
stack.

The stack is a second bank of memory, quite separate from the main one, which has variable
size: initially it is empty. From time to time values are added to, or taken from, the top of the
stack. As well as being used to keep return details, the stack is also used to store local
variables (values needed only by a particular routine) and, for short periods only, the partial
results of calculations.

Thus, whereas most physical processors (e.g. Z80 or 6502) have a number of quick-access
variables outside of memory (called "registers") and a stack inside memory, the Z-machine
has the reverse: it has global variables inside memory and a stack kept outside.

There is no access to hardware except by executing particular Z-machine instructions. For
instance, read and read_char allow use of the keyboard; print and draw_picture allow use
of the screen. The screen's image is not stored anywhere in memory. Conversely, hardware
can cause the Z-machine to interrupt, that is, to make a spontaneous call to a particular
routine, interrupting what it was previously working on. This happens only if the program
has previously requested it: for example, by setting a sound effect playing and asking for a
routine to be called when it finishes; or by asking for an interrupt if thirty seconds pass
while the player is thinking what to type.

This simple architecture is overlaid by a number of special structures which the Z-machine
maintains inside memory. There are around a dozen of these but the most important are:

the header, at the bottom of memory, giving details about the program and a
map of the rest of memory;

the dictionary, a list of English words which the program expects that it
might want to read from the keyboard;

the object tree, an arrangement of chunks of memory called objects.

The Z-machine is primarily used for adventure games, where the dictionary holds names of
items and verbs that the player might type, and the objects tend to be the places and artifacts
which make up the game. Each object in the tree may have a parent, a sibling and a child.
For instance, in the start position of 'Zork I':

West of House

You are standing in an open field west of a white house, with a boarded front door.
There is a small mailbox here.

>open mailbox

Opening the small mailbox reveals a leaflet.

At this point (part of) the game's object tree looks like this:

[41] ""
 . [68] "West of House"
 . . [21] "you"
 . . [239] "small mailbox"
 . . . [80] "leaflet"
 . . [127] "door"

Note that objects are numbered from 1 upward. (Object 41 is a dummy object being used by
the game to contain all the "rooms" or locations, and it has many more children besides
object 68.) The parent of the player is "West of House", whose parent is 41, which has no
parent. The sibling of the player is the mailbox; the child of the mailbox is the leaflet; the
sibling of the mailbox is the door and so on.

Objects are bundled-up collections of variables, which come in two kinds: attributes and
properties. Attributes are simply flags, that is, they can be set or unset, but have no
numerical value. Properties hold numbers, which may in turn represent pieces of text or
other information. For instance, one of the properties of the mailbox object above contains
the information that the English word "mailbox" refers to it. One of the attributes of the
mailbox object is set to indicate that it's a container, whereas the same attribute for the
leaflet object is unset. Here is a breakdown of the state of the mailbox:

239. Attributes: 30, 34
 Parent object: 68 Sibling object: 127 Child object: 80
 Property address: 2b53
 Description: "small mailbox"
 Properties:
 [49] 00 0a
 [46] 54 bf 4a c3
 [45] 3e c1
 [44] 5b 1c

So the only set attributes are 30 and 34: all others are unset. Values are given for properties
44, 45, 46 and 49. The Z-machine itself does not know or care what this information means:
that is for the program to sort out.

As a final example, here is part of one of the routines in 'Zork I':

l0006: print_ret "Suicide is not the answer."
l0007: je g57 #84 ~l0008
 je g48 #15 ~rfalse
 print_ret "Why don't you just walk like normal people?"
l0008: je g57 #63 ~l0009
 print_ret "How romantic!"
l0009: je g57 #3b ~rfalse
 get_parent "mirror" local0
 get_parent "mirror" sp
 je g6b local0 sp ~l0010
 print_ret "Your image in the mirror looks tired."
l0010: print_ret "That's difficult unless your eyes are
 prehensile."

Z-machine programs are stored on disc, or archived on the Internet, in what are called story
files. (Since they were introduced to hold interactive stories.) A story file consists of a
snapshot of main memory only. The processor begins to run a story file by starting with an
empty stack and a PC value set according to some information in the story file's header.
Note that the story file has to be set up with many of the structures in memory, such as the
dictionary and the object tree, already created and with sensible contents.

The first byte of any story file, and so the byte at memory address 0, always contains the
version number of the Z-machine to be used. The design was evolutionary over a period of a
decade: as version number increases, the instruction set grows and tables are reformatted to
allow more room for larger games. All of Infocom's games can be played using versions
between 3 (the majority) and 6. Games compiled by Inform mainly use versions 5 or 8.

1. The memory map

1.1 Regions of memory
The memory map of the Z-machine is an array of bytes with "byte addresses" running from
0 upwards. This is divided into three regions: "dynamic", "static" and "high". Dynamic
memory begins from byte address $00000 and runs up to the byte before the byte address
stored in the word at $0e in the header. (Dynamic memory must contain at least 64 bytes.)
Static memory follows immediately on. Its extent is not defined in the header (or anywhere
else), though it must end by the last byte of the story file or by byte address $0ffff
(whichever is lower). High memory begins at the "high memory mark" (the byte address
stored in the word at $04 in the header) and continues to the end of the story file. The
bottom of high memory may overlap with the top of static memory (but not with dynamic
memory).

1.1.1

Dynamic memory can be read or written to (either directly, using loadb, loadw, storeb and
storew, or indirectly with opcodes such as insert_obj and remove_obj).

1.1.1.1

By tradition, the first 64 bytes are known as the "header". The contents of this are given
later but note that games are not permitted to alter many bits inside it.

1.1.1.2

It is legal for games to alter any of the tables stored in dynamic memory above the header,
provided they leave the tables in legal states.

1.1.2

Static memory can be read using the opcodes loadb and loadw. It is illegal for a game to
attempt to write to static memory.

1.1.3

Except for its (possible) overlap with static memory, high memory cannot be directly
accessed at all by a game program. It contains routines, which can be called, and strings,
which can be printed using print_paddr.

1.1.4

The maximum permitted length of a story file depends on the Version, as follows:

V1-3 V4-5 V6-8
128 256 512

1.2 Addresses
There are three kinds of address in the Z-machine, all of which can be stored in a 2-byte
number: byte addresses, word addresses and packed addresses.

1.2.1

A byte address specifies a byte in memory in the range 0 up to the last byte of static
memory.

1.2.2

A word address specifies an even address in the bottom 128K of memory (by giving the
address divided by 2). (Word addresses are used only in the abbreviations table.)

1.2.3

***[1.0] A packed address specifies where a routine or string begins in high memory. Given
a packed address P, the formula to obtain the corresponding byte address B is:

2P Versions 1, 2 and 3
4P Versions 4 and 5
4P + 8R_O Versions 6 and 7, for routine calls
4P + 8S_O Versions 6 and 7, for print_paddr
8P Version 8

R_O and S_O are the routine and strings offsets (specified in the header as words at $28 and
$2a, respectively).

 An example memory map of a small game

Dynamic 00000 header

00040 abbreviation strings

00042 abbreviation table

00102 property defaults

00140 objects

002f0 object descriptions and properties

006e3 global variables

008c3 arrays

Static 00b48 grammar table

010a7 actions table

01153 preactions table

01201 adjectives table

0124d dictionary

High 01a0a Z-code

05d56 static strings

06ae6 end of file

Remarks
Inform never compiles any overlap between static and high memory (it places all data tables
in dynamic memory). However, many Infocom games group tables of static data just above
the high memory mark, before routines begin; some, such as 'Nord 'n' Bert...', interleave
static data between routines, so that static memory actually overlaps code; and a few, such
as 'Seastalker' release 15, even contain routines placed below the high memory mark. (The
original idea behind the high memory mark was that everything below it should be stored in
the interpreter's RAM, while what was above could reasonably be kept in "virtual memory",
i.e., loaded off disc as needed.)

Note that the total of dynamic plus static memory must not exceed 64K. (In fact, 64K minus
2 bytes.) This is the most serious limitation on the Z-machine.

Throughout the specification, Versions 7 and 8 are identical to Version 5 except as stated at
1.1.4 and 1.2.3 above.

2. Numbers and arithmetic

2.1 Numbers
In the Z-machine, numbers are usually stored in 2 bytes (in the form most-significant-byte
first, then least-significant) and hold any value in the range $0000 to $ffff (0 to 65535
decimal).

2.2 Signed operations
These values are sometimes regarded as signed, in the range -32768 to 32767. In effect -n is
stored as 65536-n and so the top bit is the sign bit.

2.2.1

The operations of numerical comparison, multiplication, addition, subtraction, division,
remainder-after-division and printing of numbers are signed; bitwise operations are
unsigned. (In particular, since comparison is signed, it is unsafe to compare two addresses
using simply jl and jg.)

2.3 Arithmetic errors
Arithmetic errors:

2.3.1

It is illegal to divide by 0 (or to ask for remainder after division by 0) and an interpreter
should halt with an error message if this occurs.

2.3.2

Formally it has never been specified what the result of an out-of-range calculation should
be. The author suggests that the result should be reduced modulo $10000.

2.4 Random number generator
The Z-machine needs a random number generator which at any time has one of two states,
"random" and "predictable". When the game starts or restarts the state becomes "random".
Ideally the generator should not produce identical sequences after each restart.

2.4.1

When "random", it must be capable of generating a uniformly random integer in the range 1
<= x <= n, for any value 1 <= n <= 32767. Any method can be used for this (for instance,
using the host computer's clock time in milliseconds). The uniformity of randomness should
be optimised for low values of n (say, up to 100 or so) and it is especially important to avoid
regular patterns appearing in remainders after division (most crudely, being alternately odd
and even).

2.4.2

The generator is switched into "predictable" state with a seed value. On any two occasions
when the same seed is sown, identical sequences of values must result (for an indefinite
period) until the generator is switched back into "random" mode. The generator should cope
well with very low seed values, such as 10, and should not depend on the seed containing
many non-zero bits.

2.4.3

The interpreter is permitted to switch between these states on request of the player. (This is
useful for testing purposes.)

Remarks
It is dangerous to rely on the older ANSI C random number routines (rand() and srand()), as
some implementations of these are very poor. This has made some games (in particular,
'Balances') unwinnable on some Unix ports of Zip.

The author suggests the following algorithm:

1. In "random" mode, the generator uses the host computer's clock to obtain a random
sequence of bits.

2. In "predictable" mode, the generator should store the seed value S. If S < 1000 it should
then internally generate

1, 2, 3, ..., S, 1, 2, 3, ..., S, 1, ...

so that random n produces the next entry in this sequence modulo n. If S >= 1000 then S is
used as a seed in a standard seeded random-number generator.

(The rising sequence is useful for testing, since it will produce all possible values in
sequence. On the other hand, a seeded but fairly random generator is useful for testing entire
scripts.)

Note that version 0.2 of this standard mistakenly asserted that division and remainder are
unsigned, a myth deriving from a bug in Zip. Infocom's interpreters do sign division (this is
relied on when calculating pizza cooking times for the microwave oven in 'The Lurking
Horror'). Here are some correct Z-machine calculations:

-11 / 2 = -5 -11 / -2 = 5 11 / -2 = -5
-13 % 5 = -3 13 % -5 = 3 -13 % -5 = -3

3. How text and characters are encoded
This technique is similar to the five-bit Baudot code, which was used by early Teletypes
before ASCII was invented.

Marc S. Blank and S. W. Galley, How to Fit a Large Program Into a Small Machine

3.1 Text
Z-machine text is a sequence of ZSCII character codes (ZSCII is a system similar to ASCII:
see S 3.8 below). These ZSCII values are encoded into memory using a string of Z-
characters. The process of converting between Z-characters and ZSCII values is given in SS
3.2 to 3.7 below.

3.2 Alphabets
Text in memory consists of a sequence of 2-byte words. Each word is divided into three 5-
bit 'Z-characters', plus 1 bit left over, arranged as

--first byte------- --second byte---
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
bit --first-- --second--- --third--

The bit is set only on the last 2-byte word of the text, and so marks the end.

3.2.1

There are three 'alphabets', A0 (lower case), A1 (upper case) and A2 (punctuation) and
during printing one of these is current at any given time. Initially A0 is current. The
meaning of a Z-character may depend on which alphabet is current.

3.2.2

In Versions 1 and 2, the current alphabet can be any of the three. The Z-characters 2 and 3
are called 'shift' characters and change the alphabet for the next character only. The new
alphabet depends on what the current one is:

 from A0 from A1 from A2
Z-char 2 A1 A2 A0
Z-char 3 A2 A0 A1

Z-characters 4 and 5 permanently change alphabet, according to the same table, and are
called 'shift lock' characters.

3.2.3

In Versions 3 and later, the current alphabet is always A0 unless changed for 1 character
only: Z-characters 4 and 5 are shift characters. Thus 4 means "the next character is in A1"
and 5 means "the next is in A2". There are no shift lock characters.

3.2.4

An indefinite sequence of shift or shift lock characters is legal (but prints nothing).

3.3 Abbreviations
In Versions 3 and later, Z-characters 1, 2 and 3 represent abbreviations, sometimes also
called 'synonyms' (for traditional reasons): the next Z-character indicates which abbreviation
string to print. If z is the first Z-character (1, 2 or 3) and x the subsequent one, then the
interpreter must look up entry 32(z-1)+x in the abbreviations table and print the string at
that word address. In Version 2, Z-character 1 has this effect (but 2 and 3 do not, so there are
only 32 abbreviations).

3.3.1

Abbreviation string-printing follows all the rules of this section except that an abbreviation
string must not itself use abbreviations and must not end with an incomplete multi-Z-
character construction (see S 3.6.1 below).

3.4 ZSCII escape
Z-character 6 from A2 means that the two subsequent Z-characters specify a ten-bit ZSCII
character code: the next Z-character gives the top 5 bits and the one after the bottom 5.

3.5 Alphabet table
The remaining Z-characters are translated into ZSCII character codes using the "alphabet
table".

3.5.1

The Z-character 0 is printed as a space (ZSCII 32).

3.5.2

In Version 1, Z-character 1 is printed as a new-line (ZSCII 13).

3.5.3

In Versions 2 to 4, the alphabet table for converting Z-characters into ZSCII character codes
is as follows:

 Z-char 6789abcdef0123456789abcdef
current --------------------------
 A0 abcdefghijklmnopqrstuvwxyz
 A1 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 A2 ^0123456789.,!?_#'"/\-:()

(Character 6 in A2 is printed as a space here, but is not translated using the alphabet table:
see S 3.4 above. Character 7 in A2, written here as a circumflex ^, is a new-line.) For
example, in alphabet A1 the Z-character 12 is translated as a capital G (ZSCII character
code 71).

3.5.4

Version 1 has a slightly different A2 row in its alphabet table (new-line is not needed,
making room for the < character):

 6789abcdef0123456789abcdef

 A2 0123456789.,!?_#'"/\<-:()

3.5.5

In Versions 5 and later, the interpreter should look at the word at $34 in the header. If this is
zero, then the alphabet table drawn out in S 3.5.3 continues in use. Otherwise it is
interpreted as the byte address of an alphabet table specific to this story file.

3.5.5.1

Such an alphabet table consists of 78 bytes arranged as 3 blocks of 26 ZSCII values,
translating Z-characters 6 to 31 for alphabets A0, A1 and A2. Z-characters 6 and 7 of A2,
however, are still translated as escape and newline codes (as above).

3.6 Padding and incompleteness
Since the end-bit only comes up once every three Z-characters, a string may have to be
'padded out' with null values. This is conventionally achieved with a sequence of 5's, though
a sequence of (for example) 4's would work equally well.

3.6.1

It is legal for the string to end while a multi-Z-character construction is incomplete: for
instance, after only the top half of an ASCII value has been given. The partial construction
is simply ignored. (This can happen in printing dictionary words which have been
guillotined to the dictionary resolution of 6 or 9 Z-characters.)

3.7 Dictionary truncation
When an interpreter is encrypting typed-in text to match against dictionary words, the
following restrictions apply. Text should be converted to lower case (as a result A1 will not
be needed unless the game provides its own alphabet table). Abbreviations may not be used.
The pad character, if needed, must be 5. The total string length must be 6 Z-characters (in
Versions 1 to 3) or 9 (Versions 4 and later): any multi-Z-character constructions should be
left incomplete (rather than omitted) if there's no room to finish them. For example, "i" is
encrypted as:

14, 5, 5, 5, 5, 5, 5, 5, 5

$48a5 $14a5 $94a5

3.7.1

In Versions 1 and 2 only, when encoding text for dictionary words, shift-lock Z-characters 4
and 5 are used instead of the single-shift Z-characters 2 and 3 when the next two characters
come from the same alphabet.

3.8 Definition of ZSCII and Unicode
The character set of the Z-machine is called ZSCII (Zork Standard Code for Information
Interchange; pronounced to rhyme with "xyzzy"). ZSCII codes are 10-bit unsigned values
between 0 and 1023. Story files may only legally use the values which are defined below.
Note that some values are defined only for input and some only for output.

Table 2: summary of the ZSCII rules

0 null Output

1-7 ----

8 delete Input

9 tab (V6) Output

10 ----

11 sentence space (V6) Output

12 ----

13 newline Input/Output

14-26 ----

27 escape Input

28-31 ----

32-126 standard ASCII Input/Output

127-128 ----

129-132 cursor u/d/l/r Input

133-144 function keys f1 to f12 Input

145-154 keypad 0 to 9 Input

155-251 extra characters Input/Output

252 menu click (V6) Input

253 double-click (V6) Input

254 single-click Input

255-1023 ----

3.8.1

The codes 256 to 1023 are undefined, so that for all practical purposes ZSCII is an 8-bit
unsigned code.

3.8.2

The codes 0 to 31 are undefined except as follows:

3.8.2.1

ZSCII code 0 ("null") is defined for output but has no effect in any output stream. (It is also
used as a value meaning "no character" when reporting terminating character codes, but is
not formally defined for input.)

3.8.2.2

ZSCII code 8 ("delete") is defined for input only.

3.8.2.3

ZSCII code 9 ("tab") is defined for output in Version 6 only. At the start of a screen line this
should print a paragraph indentation suitable for the font being used: if it is printed in the
middle of a screen line, it should be converted to a space (Infocom's own interpreters do not
do this, however).

3.8.2.4

ZSCII code 11 ("sentence space") is defined for output in Version 6 only. This should be
printed as a suitable gap between two sentences (in the same way that typographers
normally place larger spaces after the full stops ending sentences than after words or
commas).

3.8.2.5

ZSCII code 13 ("carriage return") is defined for input and output.

3.8.2.6

ZSCII code 27 ("escape" or "break") is defined for input only.

3.8.3

ZSCII codes between 32 ("space") and 126 ("tilde") are defined for input and output, and
agree with standard ASCII (as well as all of the ISO 8859 character sets and Unicode).
Specifically:

 0123456789abcdef0123456789abcdef

 $20 !"#$%&'()*+,-./0123456789:;<=>?
 $40 @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
 $60 'abcdefghijklmnopqrstuvwxyz{!}~

Note that code $23 (35 decimal) is a hash mark, not a pound sign. (Code $7c (124 decimal)
is a vertical stroke which is shown as ! here for typesetting reasons.)

3.8.3.1

ZSCII codes 127 ("delete" in some forms of ASCII) and 128 are undefined.

3.8.4

ZSCII codes 129 to 154 are defined for input only:

129: cursor up 130: cursor down 131: cursor left 132: cursor right
133: f1 134: f2 144: f12
145: keypad 0 146: keypad 1 154: keypad 9

3.8.5

The block of codes between 155 and 251 are the "extra characters" and are used differently
by different story files. Some will need accented Latin characters (such as French E-acute),
others unusual punctuation (Spanish question mark), others new alphabets (Cyrillic or
Hebrew); still others may want dingbat characters, mathematical or musical symbols, and so
on.

3.8.5.1

***[1.0] To define which characters are required, the Unicode (or ISO 10646-1) Basic
Multilingual Plane character set is used: characters are specified by unsigned 16-bit codes.
These values agree with ISO 8859 Latin-1 in the range 0 to 255, and with ASCII and ZSCII
in the range 32 to 126. The Unicode standard leaves a range of values, the Private Use Area,
free: however, an Internet group called the ConScript Unicode Registry is organising a
standard mapping of invented scripts (such as Klingon, or Tolkien's Elvish) into the Private
Use Area, and this should be considered part of the Unicode standard for Z-machine
purposes.

The Z-machine does not provide access to non-BMP characters (ie characters outside the
range U+0000 to U+FFFF).

3.8.5.2

***[1.0] The story file chooses its stock of extra characters with a "Unicode translation
table" as follows. Under Versions 1 to 4, the "default table" is always used (see below). In
Version 5 or later, if Word 3 of the header extension table is present and non-zero then it is
interpreted as the byte address of the Unicode translation table. If Word 3 is absent or zero,
the default table is used.

3.8.5.2.1

The table consists of one byte giving a number N, followed by N two-byte words.

3.8.5.2.2

This indicates that ZSCII characters 155 to 155+N-1 are defined for both input and output.
(It's possible for N to be zero, leaving the whole range 155 to 251 undefined.)

3.8.5.2.3

The words in the table give Unicode character codes for each of the ZSCII characters 155 to

155+N-1 in turn.

3.8.5.3

The default table is as shown in Table 1.

3.8.5.4

The defined extra characters are entirely normal ZSCII characters. They can appear in a
story file's alphabet table, in an array created by print stream 3 and so on.

3.8.5.4.1

***[1.0] The interpreter is required to be able to print representations of every defined
Unicode character under $0100 (i.e. of every defined ISO 8859-1 Latin1 character). If no
suitable letter forms are available, textual equivalents may be used (such as "ss" in place of
German sharp "s").

3.8.5.4.2

Normally, and where sensibly possible, all punctuation and letter characters in ISO 8859-1
Latin1 should be readable from the interpreter's keyboard. (However, some interpreters may
want to provide alternative keyboard mappings, or to run in a different ISO 8859 set:
Cyrillic, for example.)

3.8.5.4.3

***[1.0] An interpreter is not required to have suitable letter-forms for printing Unicode
characters $0100 to $FFFF. (It may, if it chooses, allow the user to configure certain fonts
for certain Unicode ranges; but this is not required.) If a Unicode character must be printed
which an interpreter has no letter-form for, a question mark should be printed instead.

3.8.5.4.4

The Z-machine is not required to handle complex Unicode formatting like combining
characters, bidirectional formatting and unusual line-wrapping rules.

In Versions other than 6, interpreters may either handle these features, or not, in window 0.
In window 1, and all version 6 windows, they should be ignored.

3.8.5.4.5

Unicode characters U+0000 to U+001F and U+007F to U+009F are control codes, and must
not be used.

3.8.6

ZSCII codes 252 to 254 are defined for input only:

252: menu click 253: mouse double-click 254: mouse single-click

Menu clicks are available only in Version 6. A single click, or the first click of a double-
click, is passed in as 254. The second click of a double-click is passed in as 253. In Versions
5 and later it is recommended that an interpreter should only send code 254, whether the
mouse is clicked once or twice.

3.8.7

ZSCII code 255 is undefined. (This value is needed in the "terminating characters table" as a
wildcard, indicating "any Input-only character with code 128 or above." However, it cannot
itself be printed or read from the keyboard.)

 Table 1: default Unicode translations (see S 3.8.5.3)

ZSCII code (dec) Unicode code (hex) Name Character Textual Equivalent

155 0e4 a-diaeresis ä ae

156 0f6 o-diaeresis ö oe

157 0fc u-diaeresis ü ue

158 0c4 A-diaeresis Ä Ae

159 0d6 O-diaeresis Ö Oe

160 0dc U-diaeresis Ü Ue

161 0df sz-ligature ß ss

162 0bb quotation » >> or "

163 0ab marks « << or "

164 0eb e-diaeresis ë e

165 0ef i-diaeresis ï i

166 0ff y-diaeresis ÿ y

167 0cb E-diaeresis Ë E

168 0cf I-diaeresis Ï I

169 0e1 a-acute á a

170 0e9 e-acute é e

171 0ed i-acute í i

172 0f3 o-acute ó o

173 0fa u-acute ú u

174 0fd y-acute ý y

175 0c1 A-acute Á A

176 0c9 E-acute É E

177 0cd I-acute Í I

178 0d3 O-acute Ó O

179 0da U-acute Ú U

180 0dd Y-acute Ý Y

181 0e0 a-grave à a

182 0e8 e-grave è e

183 0ec i-grave ì i

184 0f2 o-grave ò o

185 0f9 u-grave ù u

186 0c0 A-grave À A

187 0c8 E-grave È E

188 0cc I-grave Ì I

189 0d2 O-grave Ò O

190 0d9 U-grave Ù U

191 0e2 a-circumflex â a

192 0ea e-circumflex ê e

193 0ee i-circumflex î i

194 0f4 o-circumflex ô o

195 0fb u-circumflex û u

196 0c2 A-circumflex Â A

197 0ca E-circumflex Ê E

198 0ce I-circumflex Î I

199 0d4 O-circumflex Ô O

200 0db U-circumflex Û U

201 0e5 a-ring å a

202 0c5 A-ring Å A

203 0f8 o-slash ø o

204 0d8 O-slash Ø O

205 0e3 a-tilde ã a

206 0f1 n-tilde ñ n

207 0f5 o-tilde õ o

208 0c3 A-tilde Ã A

209 0d1 N-tilde Ñ N

210 0d5 O-tilde Õ O

211 0e6 ae-ligature æ ae

212 0c6 AE-ligature Æ AE

213 0e7 c-cedilla ç c

214 0c7 C-cedilla Ç C

215 0fe Icelandic thorn þ th

216 0f0 Icelandic eth ð th

217 0de Icelandic Thorn Þ Th

218 0d0 Icelandic Eth Ð Th

219 0a3 pound symbol £ L

220 153 oe-ligature œ oe

221 152 OE-ligature Œ OE

222 0a1 inverted ! ¡ !

223 0bf inverted ? ¿ ?

Remarks
In practice the text compression factor is not really very good: for instance, 155000
characters of text squashes into 99000 bytes. (Text usually accounts for about 75% of a
story file.) Encoding does at least encrypt the text so that casual browsers can't read it. Well-
chosen abbreviations will reduce total story file size by 10% or so.

The German translation of 'Zork I' uses an alphabet table to make accented letters (from the
standard extra characters set) efficient in dictionary words. In Version 6, 'Shogun' also uses
an alphabet table.

Unicode translation tables are new in Standard 1.0: in Standard 0.2, the extra characters
were always mapped using the default Unicode translation table.

Note that if a random stretch of memory is accidentally printed as a string (due to an error in
the story file), illegal ZSCII codes may well be printed using the 4-Z-character escape
sequence. It's helpful for interpreters to filter out any such illegal codes so that the resulting
on-screen mess will not cause trouble for the terminal (e.g. by causing the interpreter to
print ASCII 12, clear screen, or 7, bell sound).

The continental European quotation marks << and >> should have spacing which looks
sensible either in French style <<Merci!>> or in German style >>Danke!<<.

Ideally, an interpreter should be able to read time delays (for timed input) from stream 1
(i.e., from a script file). See the remarks in S 7.

The 'Beyond Zork' story file is capable of receiving both mouse-click codes (253 and 254),
listing both in its terminating characters table and treating them equally.

The extant Infocom games in Versions 4 and 5 use the control characters 1 to 31 only as
follows: they all accept 10 or 13 as equivalent, except that 'Bureaucracy' will only accept 13.
'Bureaucracy' needs either 127 or 8 to be a delete code. No other codes are used.

Curiously, 'Nord 'n' Bert Couldn't Make Head Nor Tail Of It' and 'A Mind Forever Voyaging'
allow some letter characters to be typed in with the top bit set. That is, if reading an A, they
would recognise 65 or 91 (upper or lower case) and also 193 or 219. Matthew Russotto
suggests this was an accommodation for the Apple II, whose keyboard primitives returned
the last key pressed in the bottom 7 bits of a byte, plus a top bit flag indicating whether or
not the keyboard had been hit since last time.

In the past, not just in the Z-machine world, there has been general confusion over the
rendering of ASCII/ZSCII/Latin-1/Unicode characters $27 and $60. For the Z-machine, the
traditional interpretations of right-single-quote/apostrophe and left-single-quote are
preferred over the modern neutral-single-quote and grave accent - see Table 2A of the
Inform Designer's Manual. $22 is a neutral double-quote.

An alternative rendering is to interpret both $27 and $60 as neutral quotes, but interpreting
$60 as a grave accent is to be avoided.

No doubt aware of this confusion, Infocom never used character $60, and used $27 almost
exclusively as an apostrophe - hardly any single quotes appear in Infocom games. Modern
authors would do well to follow their lead.

The few Infocom games that do use single quotes use $27 for both opening and closing - but
even on many of their interpreters this looked a little odd, so suggesting that $27 be a right
quote introduces no extra compatibility problems.

In Version 3 and later, many of Infocom's interpreters (and some subsequent interpreters,
such as ITF's) treat two consecutive Z-characters 4 or 5 as shift locks, contrary to the
Standard. As a result, story files should not use multiple consecutive 4 or 5 codes except for
padding at the end of strings and dictionary words. In any case, these shift locks are not used
in dictionary words, or any of Infocom's story files.

To handle languages like Arabic or Hebrew, text would have to be output "visually", with
manual line breaks (possibly via an in-game formatting engine).

Far eastern languages are generally straightforward, except they usually use no spaces, and
line wraps can occur almost anywhere. The easiest to way to handle this would be for the
game to turn off buffering. A more sophisticated game might include its own formatting
engine. Also, fixed-space output is liable to be problematical with most Far Eastern fonts,
which use a mixture of "full width" and "half width" forms - all half-width characters would
have to be forced to full width.

4. How instructions are encoded
We do but teach bloody instructions

Which, being taught, return to plague th' inventor

Shakespeare, Macbeth

4.1 Instructions
A single Z-machine instruction consists of the following sections (and in the order shown):

Opcode 1 or 2 bytes
(Types of operands) 1 or 2 bytes: 4 or 8 2-bit fields
Operands Between 0 and 8 of these: each 1 or 2 bytes
(Store variable) 1 byte
(Branch offset) 1 or 2 bytes
(Text to print) An encoded string (of unlimited length)

Bracketed sections are not present in all opcodes. (A few opcodes take both "store" and
"branch".)

4.2 Operand types
There are four 'types' of operand. These are often specified by a number stored in 2 binary
digits:

$$00 Large constant (0 to 65535) 2 bytes
$$01 Small constant (0 to 255) 1 byte
$$10 Variable 1 byte
$$11 Omitted altogether 0 bytes

4.2.1

Large constants, like all 2-byte words of data in the Z-machine, are stored with most
significant byte first (e.g. $2478 is stored as $24 followed by $78). A 'large constant' may in
fact be a small number.

4.2.2

Variable number $00 refers to the top of the stack, $01 to $0f mean the local variables of the
current routine and $10 to $ff mean the global variables. It is illegal to refer to local
variables which do not exist for the current routine (there may even be none).

4.2.3

The type 'Variable' really means "variable by value". Some instructions take as an operand a
"variable by reference": for instance, inc has one operand, the reference number of a
variable to increment. This operand usually has type 'Small constant' (and Inform
automatically assembles a line like @inc turns by writing the operand turns as a small
constant with value the reference number of the variable turns).

4.3 Form and operand count
Each instruction has a form (long, short, extended or variable) and an operand count (0OP,
1OP, 2OP or VAR). If the top two bits of the opcode are $$11 the form is variable; if $$10,
the form is short. If the opcode is 190 ($BE in hexadecimal) and the version is 5 or later, the
form is "extended". Otherwise, the form is "long".

4.3.1

In short form, bits 4 and 5 of the opcode byte give an operand type as above. If this is $11
then the operand count is 0OP; otherwise, 1OP. In either case the opcode number is given in
the bottom 4 bits.

4.3.2

In long form the operand count is always 2OP. The opcode number is given in the bottom 5
bits.

4.3.3

In variable form, if bit 5 is 0 then the count is 2OP; if it is 1, then the count is VAR. The
opcode number is given in the bottom 5 bits.

4.3.4

In extended form, the operand count is VAR. The opcode number is given in a second
opcode byte.

4.4 Specifying operand types
Next, the types of the operands are specified.

4.4.1

In short form, bits 4 and 5 of the opcode give the type.

4.4.2

In long form, bit 6 of the opcode gives the type of the first operand, bit 5 of the second. A
value of 0 means a small constant and 1 means a variable. (If a 2OP instruction needs a large
constant as operand, then it should be assembled in variable rather than long form.)

4.4.3

In variable or extended forms, a byte of 4 operand types is given next. This contains 4 2-bit
fields: bits 6 and 7 are the first field, bits 0 and 1 the fourth. The values are operand types as
above. Once one type has been given as 'omitted', all subsequent ones must be. Example: $
$00101111 means large constant followed by variable (and no third or fourth opcode).

4.4.3.1

In the special case of the "double variable" VAR opcodes call_vs2 and call_vn2 (opcode
numbers 12 and 26), a second byte of types is given, containing the types for the next four
operands.

4.5 Operands
The operands are given next. Operand counts of 0OP, 1OP or 2OP require 0, 1 or 2 operands
to be given, respectively. If the count is VAR, there must be as many operands as there were
types other than 'omitted'.

4.5.1

Note that only call_vs2 and call_vn2 can have more than 4 operands, and no instruction can
have more than 8.

4.5.2

Opcode operands are always evaluated from first to last - this order is important when the
stack pointer appears as an argument. Thus

@sub sp sp -> i;

subtracts the second-from-top stack item from the topmost stack item.

4.6 Stores
"Store" instructions return a value: e.g., mul multiplies its two operands together. Such
instructions must be followed by a single byte giving the variable number of where to put
the result.

4.7 Branches
Instructions which test a condition are called "branch" instructions. The branch information
is stored in one or two bytes, indicating what to do with the result of the test. If bit 7 of the
first byte is 0, a branch occurs when the condition was false; if 1, then branch is on true. If
bit 6 is set, then the branch occupies 1 byte only, and the "offset" is in the range 0 to 63,
given in the bottom 6 bits. If bit 6 is clear, then the offset is a signed 14-bit number given in
bits 0 to 5 of the first byte followed by all 8 of the second.

4.7.1

An offset of 0 means "return false from the current routine", and 1 means "return true from
the current routine".

4.7.2

Otherwise, a branch moves execution to the instruction at address

 Address after branch data + Offset – 2.

4.8 Text opcodes
Two opcodes, print and print_ret, are followed by a text string. This is stored according to
the usual rules: in particular execution continues after the last 2-byte word of text (the one
with top bit set).

Remarks
Some opcodes have type VAR only because the available codes for the other types had run
out; print_char, for instance. Others, especially call, need the flexibility to have between 1
and 4 operands.

The Inform assembler can assemble branches in either form, though the programmer should
always use long form unless there's a good reason. Inform automatically optimises branch
statements so as to force as many of them as possible into short form. (This optimisation
will happen to branches written by hand in assembler as well as to branches compiled by
Inform.)

The disassembler Txd numbers locals from 0 to 14 and globals from 0 to 239 in its output
(corresponding to variable numbers 1 to 15, and 16 to 255, respectively).

The branch formula is sensible because in the natural implementation, the program counter
is at the address after the branch data when the branch takes place: thus it can be regarded as

 PC = PC + Offset – 2.

If the rule were simply "add the offset" then, since the offset couldn't be 0 or 1 (because of
the return-false and return-true values), we would never be able to skip past a 1-byte
instruction (say, a 0OP like quit), or specify the branch "don't branch at all" (sometimes
useful to ignore the result of the test altogether). Subtracting 2 means that the only effects
we can't achieve are

 PC = PC - 1 and PC = PC – 2

and we would never want these anyway, since they would put the program counter
somewhere back inside the same instruction, with horrid consequences.

On disassembly

Briefly, the first byte of an instruction can be decoded using the following table:

$00 -- $1f long 2OP small constant, small constant
$20 -- $3f long 2OP small constant, variable
$40 -- $5f long 2OP variable, small constant
$60 -- $7f long 2OP variable, variable
$80 -- $8f short 1OP large constant
$90 -- $9f short 1OP small constant
$a0 -- $af short 1OP variable
$b0 -- $bf short 0OP
except $be extended opcode given in next byte
$c0 -- $df variable 2OP (operand types in next byte)
$e0 -- $ff variable VAR (operand types in next byte(s))

Here is an example disassembly:

@inc_chk c 0 label; 05 02 00 d4
 long form; count 2OP; opcode number 5; operands:
 02 small constant (referring to variable c)
 00 small constant 0
 branch if true: 1-byte offset, 20 (since label is
 18 bytes forward from here).
@print "Hello.^"; b2 11 aa 46 34 16 45 9c a5
 short form; count 0OP.
 literal string, Z-chars: 4 13 10 17 17 20 5 18 5 7 5 5.
@mul 1000 c -> sp; d6 2f 03 e8 02 00
 variable form; count 2OP; opcode number 22; operands:
 03 e8 long constant (1000 decimal)
 02 variable c
 store result to stack pointer (var number 00).
@call_1n Message; 8f 01 56
 short form; count 1OP; opcode number 15; operand:
 01 56 long constant (packed address of routine)
.label;

5. How routines are encoded

5.1 Start position
A routine is required to begin at an address in memory which can be represented by a
packed address (for instance, in Version 5 it must occur at a byte address which is divisible
by 4).

5.2 Header
A routine begins with one byte indicating the number of local variables it has (between 0
and 15 inclusive).

5.2.1

In Versions 1 to 4, that number of 2-byte words follows, giving initial values for these local
variables. In Versions 5 and later, the initial values are all zero.

5.3 First instruction
Execution of instructions begins from the byte after this header information. There is no
formal 'end-marker' for a routine (it is simply assumed that execution eventually results in a
return taking place).

5.4 Main routine (V6)
In Version 6, there is a "main" routine (whose packed address is stored in the word at $06 in
the header) called when the game starts up. It is illegal to return from this routine.

5.5 Initial execution point (other versions)
In all other Versions, the word at $06 contains the byte address of the first instruction to
execute. The Z-machine starts in an environment with no local variables from which, again,
a return is illegal.

Remarks
Note that it is permissible for a routine to be in dynamic memory. Marnix Klooster suggests
this might be used for compiling code at run time!

In Versions 3 and 4, Inform always stores 0 as the initial values for local variables.

6. The game state: storage and routine calls

6.1 Saved states
The "state of play" is defined as the following: the contents of dynamic memory; the
contents of the stack; the value of the program counter (PC), and the "routine call state"
(that is, the chain of routines which have called each other in sequence, and the values of
their local variables). Note that the routine call state, the stack and the PC must be stored
outside the Z-machine memory map, in the interpreter's private memory.

6.1.1

The entire state of play must be stored when the game is saved.

6.1.1.1

The format of a saved game file is not specified.

6.1.1.2

An internal saved game for "undo" purposes (if there is one) is not part of the state of play.
This is important: if a saved game file also contained the internal saved game at the time of
saving, it would be impossible to undo the act of restoration. It also prevents internal saved
games from growing larger and larger as they include their predecessors.

6.1.1.3

It is illegal to save the game (either with save or save_undo) during an "interrupt routine"
(one coming about through timed input, sound effect termination or newline interrupts).
Therefore saved games need not store information capable of restoring such a position.

6.1.2

On a "restore" or "undo" (which restores a game saved into internal memory), the entire
state of play is written back except that 'Flags 2' in the header is preserved. (This
information includes whether the game is being transcribed to printer and whether a fixed-
pitch font is being used.)

6.1.2.1

Before a "restore", an interpreter should check that the file to be used has been saved from
the same game currently being played. (See remark below.)

6.1.2.2

After a "restore" or "undo", an interpreter should reset the header values marked Rst in the
header table of S 11. (It should not be assumed that the game was saved by the same
interpreter.)

6.1.3

A "restart" is similar: the entire state is restored from the original story file, and the stack is
emptied; but 'Flags 2' is preserved; and the interpreter should reset the Rst parts of the
header.

6.1.4

In Versions 5 and later, an interpreter unable to save the game state into internal memory
(for "undo" purposes) must clear bit 4 of 'Flags 2' in the header.

6.2 Storage of global variables
Global variables (variable numbers $10 to $ff) are stored in a table in the Z-machine's
dynamic memory, at a byte address given in word 6 of the header. The table consists of 240
2-byte words and the initial values of the global variables are the values initially contained
in the table. (It is legal for a program to alter the table's contents directly in play, though not
for it to change the table's address.)

6.3 The stack
Writing to the stack pointer (variable number $00) pushes a value onto the stack; reading
from it pulls a value off. Stack entries are 2-byte words as usual.

6.3.1

The stack is considered as empty at the start of each routine: it is illegal to pull values from
it unless values have first been pushed on.

6.3.2

The stack is left empty at the end of each routine: when a return occurs, any values pushed
during the routine are thrown away.

6.3.3

The absolute minimum standard for stack size is defined as:

let the 'usage' of a routine call be 4 plus the number of local variables it has. During a game
the total of the usages for each routine in the recursive chain of routines being called, plus
the game's own stack usage, can be assumed to never reach 1024.

However, more recent games have required a much larger stack size than this allows for. It
is advised that interpreters allow for these games by having a larger stack size if at all
possible.

Two examples of modern interpreters with increased stack size are Windows Frotz, with
32768, and nfrotz with 61440.

6.3.4

In the seven opcodes that take indirect variable references (inc, dec, inc_chk, dec_chk,
load, store, pull), an indirect reference to the stack pointer does not push or pull the top
item of the stack - it is read or written in place.

6.4 Routine calls
Routine calls occur in the following circumstances: when one of the call... opcodes is
executed; in Versions 4 and later, when timed keyboard input is being monitored; in
Versions 5 and later, when a sound effect finishes; in Version 6, when the game begins (to
call the "main" routine); in Version 6, when a "newline interrupt" occurs.

6.4.1

A routine call may have any number of arguments, from 0 to 3 (in Versions 1 to 3) or 0 to 7
(Versions 4 and later). All routines return a value (though sometimes this value is thrown
away afterward: for example by opcodes in the form call_vn*).

6.4.2

Routine calls preserve local variables and the stack (except when the return value is stored
in a local variable or onto the top of the stack).

6.4.3

A routine call to packed address 0 is legal: it does nothing and returns false (0). Otherwise it
is illegal to call a packed address where no routine is present.

6.4.4

When a routine is called, its local variables are created with initial values taken from the
routine header (Versions 1 to 4) or with initial value 0 (Versions 5 and later). Next, the
arguments are written into the local variables (argument 1 into local 1 and so on).

6.4.4.1

It is legal for there to be more arguments than local variables (any spare arguments are
thrown away) or for there to be fewer.

6.4.5

The return value of a routine can be any Z-machine number. Returning 'false' means
returning 0; returning 'true' means returning 1.

6.5 Stack frames
A "stack frame" is an index to the routine call state (that is, the call-stack of return addresses
from routines currently running, and values of local variables within them). This index is a
Z-machine number. The interpreter must be able to produce the current value and to set a
value further down the call-stack than the current one, effectively throwing away its recent
history (see catch and throw).

6.6 User stacks (V6)
In Version 6, the Z-machine understands a third kind of stack: a "user stack", which is a
table of words in dynamic memory. The first word in this table always holds the number of
spare slots on the stack (so the initial value is the capacity of the stack). The Z-machine
makes no check on stack under-flow (i.e., pulling more values than were pushed) which
would over-run the length of the table if the program allowed it to happen.

Remarks
Some interpreters store the whole of dynamic memory to disc as part of their saved game
files, which can make them as much as 45K or so long. A player making a serious attack on
a game may end up wasting a whole megabyte, more than convenient without a hard disc. A
technique invented by Bryan Scattergood, taken up by most modern interpreters, greatly
reduces file size by only saving bytes of dynamic memory which differ from the initial state
of the game.

It is unspecified how an interpreter should decide whether a saved game file belongs to the
game currently being played. It is normal to insist that the release numbers, serial codes and
checksums all match. The Pinfocom interpreter deliberately checks only the release number,
so that saved games can be exchanged between different editions of 'Seastalker' (presumably
compiled to handle the sonarscope differently).

These issues are taken up in great detail in Martin Frost's Quetzal standard for saved game
files, created to allow different interpreters to exchange saved games. This Standard doesn't
require compliance with Quetzal, but interpreter writers are urged to consider it: it can only
help authors if players can send them saved games where bugs seem to have appeared.

The stack is stored in the interpreter's own memory, not anywhere in the Z-machine. The
game program has no direct access to the stack memory or stack pointer; on some
implementations the game's main stack is also used to store the routine call state (i.e. the
game stack and the call-stack are the same) but this need not be true.

The stack size specification guarantees in particular that if the game itself never uses more
than 32 stack entries at once then it can have a recursive depth of at least 90 routine calls.
The author believes that old Infocom games will all run with a stack size of 512 words.

Note that the "state of play" does not include numerous input/output settings (the current
window, cursor position, splitness or otherwise, which streams are selected, etc.): neither
does it include the state of the random-number generator. (Games with elaborate status lines
must redraw them after a restore has taken place.)

Zip provides "undo" but most versions of the ITF interpreter do not (and save_undo returns
0, unfortunately). This is probably its greatest failing. Some Infocom-written interpreters
will only provide "undo" to a game which has bit 4 of 'Flags 2' set: but Inform 5.5 doesn't
set this bit, so modern interpreters should be more generous.

Given the existence of Quetzal, a portable saved file format, it is quite possible that after
loading, the game may be running on a different interpreter to that on which the game
started. As a result, it is strongly advisable for games to recheck any interpreter capabilities
(eg Standard version, unicode support, etc) after loading.

7. Output streams and file handling

7.1 Output streams
At any given time text is being output through a selection of "output streams" (possibly
none, possibly several at once).

7.1.1

Two output streams are common to all Versions: number 1 (the screen) and 2 (the game
transcript, usually printed to a printer or a file).

7.1.1.1

In Versions 1 to 5, the player's input to the read opcode should be echoed to output streams
1 and 2 (if stream 2 is active), so that text typed in appears in any transcript. In Version 6
input should be sent only to stream 1 and it is the game's responsibility to write to the
transcript.

7.1.1.2

In Infocom's Version 4 game 'A Mind Forever Voyaging', which anticipated a printer rather
than a file to receive the transcript, stream 2 is turned off and on again several times in quick
succession. Thus if an interpreter decides where to send the transcript by asking the player
for a filename, this question should only be asked once per game session, not every time
stream 2 is selected.

7.1.2

Versions 3 and later supply these and two other output streams, numbered 3 (Z-machine
memory) and 4 (a script file of the player's whole commands and of individual keypresses
as read by read_char).

7.1.2.1

Output stream 3 writes to a table in dynamic memory. When the stream is selected, the table
may have any contents (even the initial 'size' word will be ignored by the interpreter). While
the stream is selected, the table's contents are unspecified (and a game cannot safely read or
write to it). When the stream is deselected, the initial word of the table holds the number of
characters printed and subsequent bytes hold those characters. Similarly, in Version 6, the
total width of printing (in units) will then be stored in the word at $30 in the header. (It is the
programmer's responsibility to make the table large enough: the interpreter performs no
overflow checking.)

7.1.2.1.1

***[1.0] It is possible for stream 3 to be selected while it is already on. If this happens, the
previous table address is remembered and the previous table is resumed when the new one is
finished. This nesting can reach a depth of up to 16: if stream 3 is opened for a seventeenth
time, the interpreter should halt with an error message.

7.1.2.2

Output stream 3 is unusual in that, while it is selected, no text is sent to any other output
streams which are selected. (However, they remain selected.)

7.1.2.2.1

Newlines are written to output stream 3 as ZSCII 13. (A game should never print_char the
value 10, or any other value which is undefined as a ZSCII output code.)

7.1.2.3

Output stream 4 is unusual in that, when it is selected, the only text printed to it is that of the
player's commands and keypresses (as read by read_char). (Each command is written, in
one go, when it has been finished. Time delays and mouse-clicks should ideally be recorded.
For suggestions on how this might be achieved, see the remarks section below. Mistypes
and uses of 'delete' are not written.)

7.2 Buffering
On output streams 1 and 2 (only), text printing may be "buffered" in that new-lines are
automatically printed to ensure that no word (of length less than the width of the screen)
spreads across two lines (if the interpreter is able to control this). (This process is sometimes
called "word-wrapping".)

7.2.1

In Versions 1 to 3, buffering is always on. In Versions 4 and later it is on by default (at the
start of a game) and a game can switch it on or off using the buffer_mode opcode.

7.2.2

In Version 6, each of the eight windows has its own "buffering flag". In Versions 3 to 5, the
buffer_mode applies only to the lower window, and buffering never happens in the upper
window.

7.3 Selection (V1 and V2)
In Versions 1 and 2, output stream 1 is always selected and stream 2 can be selected or
deselected by the game, by setting or clearing bit 0 of 'Flags 2'.

7.4 Selection (later versions)
In Versions 3 and later, all four output streams can be selected or deselected using the
output_stream opcode. In addition, stream 2 can be selected or deselected by setting or
clearing bit 0 of 'Flags 2'. Whichever method is used, the interpreter must ensure that this
flag holds the current status of stream 2. ('A Mind Forever Voyaging' requires this.)

7.5 Dealing with Unicode or invalid characters
***[1.0] Because of the print_unicode opcode, it is possible for arbitrary Unicode
characters to be sent to the output streams: that is, for characters which are not in the ZSCII
set at all, even in the "extra characters" range.

7.5.1

See S 3.8.5.4 for rules on printing Unicode to stream 1.

7.5.2

Interpreters are free to use any representation of non-ASCII Unicode characters in stream 2.
For example, they might print "[1a05]" to signify Unicode character $1a05; or they might
be configurable to write transcript files which conform to any chosen ISO 8859 set.

7.5.3

When printed to stream 3, Unicode characters should be converted to ZSCII if possible. If
this is not possible, a question mark should be printed to stream 3.

7.5.4

Non-ZSCII characters never need to be printed to stream 4.

7.6 File handling
***[1.0] In Versions 5 and later, the Z-machine has the ability to load and save files (using
optional operands with the save and restore opcodes: these operands were not used in
Infocom's Version 5 games, but I wish to specify them as in Version 5 anyway).

7.6.1

***[1.0] Filenames have the following format (approximately the MS-DOS 8.3 rule): one to
eight alphanumeric characters, a full stop and zero to three alphanumeric characters (the
"file extension").

7.6.1.1

The interpreter must convert all filenames to upper case before use. If no full stop is given,
".AUX" should be appended.

7.6.1.2

Games should avoid the extensions ".INF", ".H", ".Z" followed by a number or ".SAV":
otherwise they may be in danger of erasing their own object code, source code or saved
game files.

7.6.1.3

***[1.1] The interpreter should delete from the filename any characters illegal for a
filename. This will include all of the following characters (and more, if the OS requires it):
slash, backslash, angle brackets (less-than and greater-than), colon, double-quote, pipe
(vertical bar), question-mark, asterisk. The library should also truncate the argument at the
first full stop (delete the first full stop and any following characters). If the result is the
empty string, change it to the string "NULL".

7.6.2

***[1.0] Saved files are not associated with any particular session of a game. They are not
part of the "state of play".

7.6.3

***[1.0] A game may depend on having up to 32 auxiliary files (with different names).

7.6.4

File-handling errors such as "disc corrupt" and "disc full" should be reported directly to the
player by the interpreter. The error "file not found" should only cause a failure return code
from restore.

7.6.5

Interpreters are allowed to not support access to external files (such as with output_stream 2,
or the extra features of save and restore), or to only support some methods of access.
Interpreters should support these features if possible, as some games may rely on external
files, and in any case transcripts are very useful for testing, but in some environments such
access is not feasible.

7.6.5.1

An attempt by the game to use save or restore in a manner not supported by the interpreter
should simply return 0 as with any failure, and the game should notice and take appropriate
actions.

7.6.5.2

An attempt by the game to use streams to access external files which is not supported by the
interpreter should ideally print a warning to the user that the functionality is not available,
and otherwise do nothing.

Remarks
The ITF interpreter incorrectly applies buffering when printing to the upper window.

Note that the requirement 7.1.2.1.1, that usages of stream 3 can be 'nested', is new in
Standard 1.0. This is potentially important for Inform games, as stream 3 is often used to
examine text before printing, for instance to choose between the articles "a" and "an" in
front of an object name. But the process of printing an object name may itself require a
usage of stream 3, and so on.

An ambiguous point about output stream 4 is whether it should contain the answers to
interpreter questions like "what file name should your saved game have?": it can actually be
quite useful to be able to include such answers in test script files. (When running a long
script, I often save the game at several places during it, in order to save time in re-running
passages.)

An interpreter should be able to write time delays (for timed input), accented characters or
mouse clicks into stream 4 (i.e., to a script file). One possible style to record this
information might be:

take lamp an ordinary command
turn it on.[154] command, full stop, then keypad 9

(which might abbreviate for NE)
look unde[0] timed out input
look under the rock the same input continuing
[254][10][6] mouse-click at (10,6)

A typical auxiliary file might be one containing the player's preferred choices. This would
be created when he first changed any of the default settings, and loaded (if present)
whenever the game started up.

8. The screen model

8.1 Fonts
Text may be printed in any font of the interpreter's choice, variable- or fixed-pitch: except
that when bit 1 of 'Flags 2' in the header is set, font 4 has been selected, or when the text
style has been set to Fixed Pitch, then a fixed-pitch font must be used. The fixed pitch-bit is
deprecated in Version 5 and later, and interpreter support in Version 6 is optional.

8.1.1

In Version 5, the height and width of the current font (in units (see below)) should be written
to bytes $27 and $26 of the header, respectively. In Version 6, these bytes are the other way
round (height in $27, width in $26). The width of a font is defined as the width of its '0'
character.

8.1.2

An interpreter should ideally provide 4 fonts, with ID numbers as follows:

1: the normal font
2: a picture font
3: a character graphics font
4: a Courier-style font with fixed pitch

(Selecting font ID 0 is legal, and does not change the current font.) Ideally all text styles
should be available for each font (for instance, Courier bold should be obtainable) except
that font 3 need only be available in Roman and Reverse Video. Each font should provide
characters for character codes 32 to 126 (plus character codes for any accented characters
with codes greater than 127 which are being implemented as single accented letters on-
screen).

8.1.3

***[1.0] A game must not use fonts other than 1 unless allowed to by the interpreter: see the
set_font opcode for how to give or refuse permission. (This paragraph is marked ***[1.0]
because existing Infocom games determined the availability of font 3 for 'Beyond Zork' in a
complicated and unsatisfactory way: see S 16.)

8.1.3.1

***[1.0] It is legal for a game to change font at any time, including halfway through the
printing of a word. (This might be needed to introduce exotic foreign accents in the future.)

8.1.4

The specification of the "picture font" is unknown (conjecturally, it was intended to provide
pictures before Version 6 was properly developed). Interpreters should not implement it, and
should refuse permission to any game requesting it.

8.1.5

The specification of the character graphics font is given in S 16.

8.1.5.1

In Version 5 (only), an interpreter which cannot provide the character graphics font should
clear bit 3 of 'Flags 2' in the header.

8.1.6

Any new fonts will have numbers higher than 4. Fonts 5-1023 are reserved for future
Standards to specify. Local use may be made of higher font numbers.

8.2 Status line
In Versions 1 to 3, a status line should be printed by the interpreter, as follows. In Version 3,
it must set bit 4 of 'Flags 1' in the header if it is unable to produce a status line.

8.2.1

In Versions 1 and 2, all games are "score games". In Version 3, if bit 1 of 'Flags 1' is clear
then the game is a "score game"; if it is set, then the game is a "time game".

8.2.2

The short name of the object whose number is in the first global variable should be printed
on the left hand side of the line.

8.2.2.1

Whenever the status line is being printed the first global must contain a valid object number.
(It would be useful if interpreters could protect themselves in case the game accidentally
violates this requirement.)

8.2.2.2

If the object's short name exceeds the available room on the status line, the author suggests
that an interpreter should break it at the last space and append an ellipsis "...". There is no
guaranteed maximum length for location names but an interpreter should expect names of
length up to at least 49 characters.

8.2.3

If there is room, the right hand side of the status line should display:

8.2.3.1

For "score games": the score and number of turns, held in the values of the second and third
global variables respectively. The score may be assumed to be in the range -99 to 999
inclusive, and the turn number in the range 0 to 9999.

8.2.3.2

For "time games": the time, in the form hours:minutes (held in the second and third
globals). The time may be given on a 24-hour clock or the number of hours may be reduced
modulo 12 (but if so, "AM" or "PM" should be appended). Either way the player should be
able to see the difference between 4am and 4pm, for example. The hours global may be
assumed to be in the range 0 to 23 and the minutes global in the range 0 to 59.

8.2.4

The status line is updated in exactly two circumstances: when a show_status opcode is
executed, and just before the keyboard is read by read. (It is not displayed when the game
begins.)

8.3 Text colours
Under Versions 5 and later, text printing has a current foreground and background colour. In
Version 6, each window has its own pair. (Note that a Version 6 interpreter going under the
Amiga interpreter number must use the same pair of colours for all windows when running
Infocom's games. If either is changed, then the interpreter must change the colour of all text
on the screen to match. This simulates the Amiga hardware, which used two logical colours
for text and switched palette to change their physical colour. This behaviour should not
occur when running non-Infocom games, and modern games should never expect it. An
interpreter that does not wish to handle this behaviour at all should avoid using the Amiga
interpreter number when running Infocom's Version 6 games.)

8.3.1

The following codes are used to refer to colours:

-1 = the colour of the pixel under the cursor (if any) (true -3)
[V6 only]

 0 = current (true -2)
 1 = default (true -1)
 2 = black (true $0000, $$0000000000000000)
 3 = red (true $001D, $$0000000000011101)
 4 = green (true $0340, $$0000001101000000)
 5 = yellow (true $03BD, $$0000001110111101)
 6 = blue (true $59A0, $$0101100110100000)
 7 = magenta (true $7C1F, $$0111110000011111)

 8 = cyan (true $77A0, $$0111011110100000)
 9 = white (true $7FFF, $$0111111111111111)
10 = light grey (true $5AD6, $$0101101011010110)
11 = medium grey (true $4631, $$0100011000110001)
12 = dark grey (true $2D6B, $$0010110101101011)
13 reserved
14 reserved
15 = transparent (true -4) [V6 only]

 Colours 10, 11, 12, 15 and -1 are available only in Version 6.

8.3.1.1

***[1.1] The equivalences between the colour numbers and true colours are recommended.
The interpreter may allow the user to change the mapping, but the given values should be
the default. If necessary, the game can check what true colour is being used for a given
colour number using window properties 17 and 18.

Interpreters may provide different colours (eg making colour 10 dark grey), but if and only
if they can detect they are running an original Infocom story file.

8.3.2

If the interpreter cannot produce colours, it should clear bit 0 of 'Flags 1' in the header. In
Version 6 it should write colours 2 and 9 (black and white), either way round, into the
default background and foreground colours in bytes $2c and $2d of the header.

8.3.3

If the interpreter can produce colours, it should set bit 0 of 'Flags 1' in the header, and write
its default background and foreground colours into bytes $2c and $2d of the header.

8.3.4

If a game wishes to use colours, it should have bit 6 in 'Flags 2' set in its story file.
(However, an interpreter should not rule out the use of colours just because this has not been
done.)

8.3.5

If a true colour, or an "under the cursor" colour has been requested by the game, then the
foreground or background colour shown in window property 11 is implementation defined,
with two exceptions:

8.3.5.1

If the colour selected was one of the standard set (2-15), then that colour is indicated in
property 11.

8.3.5.2

If the colour selected was not one of the standard set (this can happen when using graphics,
which may use many more colours), the colour shown in property 11 will be >= 16.

8.3.6

***[1.1] In Version 6 only, colour 15 is defined as transparent. This is only valid as a
background colour; an attempt to select it for the foreground should produce a diagnostic.
Interpreters not supporting transparency must ignore any attempt to select colour 15.

If the current background colour is transparent, then printed text is superimposed on the
current window contents, without filling the background behind the text. erase_window,
erase_line and erase_picture become null operations. The intent is to make it possible to
superimpose text on non-uniform images. Up until now, only uniform images could be
satisfactorily written on by sampling the background colour - that in itself would be
problematical if the interpreter used dithering.

Scrolling with the background set to transparent is not permitted, so transparent should only
be requested in a non-scrolling window. It is not valid to use Reverse Video style with the
background set to transparent. Instructions that prompt for user input, such as read and
save, should beavoided when the background is set to transparent, as it will not generally be
possible for text entry to take place satisfactorily in the absence of a defined background
colour. Printing text multiple times on top itself with the background set to transparent
should be avoided, as the interpreter may use anti-aliasing, resulting in the text getting
progressively heavier.

8.3.7

***[1.1] Standard 1.1 adds the ability for games to select many more colours with
set_true_colour, which uses 15-bit RBG colour values, with the following special values:

(-1) = default setting
(-2) = current setting
(-3) = colour under cursor (V6 only)
(-4) = transparent (V6 only)

8.3.7.1

***[1.1] The interpreter selects the closest approximations available to the requested
colours. In V6, the interpreter may store the approximations in window properties 16 and
17, so the program can tell how close it got (although it is acceptable for the interpreter to
just store the requested value).

In the minimal implementation, interpreters just need to match to the closest of the standard
colours and internally call set_colour (although that would have to ensure window
properties 16 and 17 were updated). In a full implementation this would be turned around
and set_colour would internally call set_true_colour.

True colour specifications are in the sRGB colour space, $0000 being black and $7FFF
being white. Colours should be gamma adjusted if necessary. See the PNG specification for
a good introduction to colour spaces and gamma correction.

8.4 Screen dimensions
The screen should ideally be at least 60 characters wide by 14 lines deep. (Old Apple II
interpreters had a 40 character width and some modern laptop ones have a 9 line height, but
implementors should seek to avoid these extremes if possible.) The interpreter may change
the exact dimensions whenever it likes but must write the current height (in lines) and width
(in characters) into bytes $20 and $21 in the header.

8.4.1

The interpreter should use the screen height for calculating when to pause and print
"[MORE]". A screen height of 255 lines means "infinite height", in which case the
interpreter should never stop printing for a "[MORE]" prompt. (In case, say, the screen is
actually a teletype printer, or has very good "scrollback".)

8.4.2

Screen dimensions are measured in notional "units". In Versions 1 to 4, one unit is simply
the height or width of one character. In Version 5 and later, the interpreter is free to
implement units as anything from character sizes down to individual pixels.

8.4.3

In Version 5 and later, the screen's width and height in units should be written to the words
at $22 and $24.

8.5 Screen model (V1, V2)
The screen model for Versions 1 and 2 is as follows:

8.5.1

The screen can only be printed to (like a teletype) and there is no control of the cursor.

8.5.2

At the start of a game, the screen should be cleared and the text cursor placed at the bottom
left (so that text scrolls upwards as the game gets under way).

8.6 Screen model (V3)
The screen model for Version 3 is as follows:

8.6.1

The screen is divided into a lower and an upper window and at any given time one of these
is selected. (Initially it is the lower window.) The game uses the set_window opcode to
select one of the two. Each window has its own cursor position at which text is printed.
Operations in the upper window do not move the cursor of the lower. Whenever the upper
window is selected, its cursor position is reset to the top left. Selecting, or re-sizing, the
upper window does not change the screen's appearance.

8.6.1.1

The upper window has variable height (of n lines) and the same width as the screen. This
should be displayed on the n lines of the screen below the top one (which continues to hold
the status line). Initially the upper window has height 0. When the lower window is selected,
the game can split off an upper window of any chosen size by using the split_window
opcode.

8.6.1.1.1

Printing onto the upper window overlays whatever text is already there.

8.6.1.1.2

When a screen split takes place in Version 3, the upper window is cleared.

8.6.1.2

An interpreter need not provide the upper window at all. If it is going to do so, it should set
bit 5 of 'Flags 1' in the header to signal this to the game. It is only legal for a game to use
set_window or split_window if this bit has been set.

8.6.1.3

Following a "restore" of the game, the interpreter should automatically collapse the upper
window to size 0.

8.6.2

When text reaches the bottom right of the lower window, it should be scrolled upwards. The
upper window should never be scrolled: it is legal for a character to be printed on the bottom
right position of the upper window (but the position of the cursor after this operation is
undefined: the author suggests that it stay put).

8.6.3

At the start of a game, the screen should be cleared and the text cursor placed at the bottom
left (so that text scrolls upwards as the game gets under way).

8.7 Screen model (V4, V5)
The screen model for Versions 4 and later, except Version 6, is as follows:

8.7.1

Text can be printed in five different styles (modelled on the VT100 design of terminal).
These are: Roman (the default), Bold, Italic, Reverse Video (usually printed with foreground
and background colours reversed) and Fixed Pitch. The specification does not require the
interpreter to be able to display more than one of these at once (e.g. to combine italic and
bold), and most interpreters can't. If the interpreter is going to allow certain combinations,
then note that changing back to Roman should turn off all the text styles currently active.

8.7.1.1

An interpreter need not provide Bold or Italic (even for font 1) and is free to interpret them
broadly. (For example, rendering bold-face by changing the colour, or rendering italic with
underlining.)

8.7.1.2

It is legal to change text style at any point, including in the middle of a word being printed.

8.7.1.3

***[1.1] Although a story file can determine which individual styles are available by
inspecting the header, this gives no indication of which styles can be combined. To improve
this situation, at least for Version 6, Standard 1.1 requires window property 10 to show the
actual style combination currently in use; with this a story file can probe for the availability
of particular combinations.

8.7.2

There are two "windows", called "upper" and "lower": at any given time one of these two is
selected. (Initially it is the lower window.) The game uses the set_window opcode to select
one of the two. Each window has its own cursor position at which text is printed. Operations
in the upper window do not move the cursor of the lower. Whenever the upper window is
selected, its cursor position is reset to the top left.

8.7.2.1

The upper window has variable height (of n lines) and the same width as the screen. (It is
usual for interpreters to print the upper window on the top n lines of the screen, overlaying
any text which is already there, having been printed in the lower window some time ago.)
Initially the upper window has height 0. When the lower window is selected, the game can
split off an upper window of any chosen size by using the split_window opcode.

8.7.2.1.1

It is unclear exactly what split_window should do if the upper window is currently selected.
The author suggests that it should work as usual, leaving the cursor where it is if the cursor
is still inside the new upper window, and otherwise moving the cursor back to the top left.
(This is analogous to the Version 6 practice.)

8.7.2.2

In Version 4, the lower window's cursor is always on the bottom screen line. In Version 5 it
can be at any line which is not underneath the upper window. If a split takes place which
would cause the upper window to swallow the lower window's cursor position, the
interpreter should move the lower window's cursor down to the line just below the upper
window's new size.

8.7.2.3

When the upper window is selected, its cursor position can be moved with set_cursor. This
position is given in characters in the form (row, column), with (1,1) at the top left. The
opcode has no effect when the lower window is selected. It is illegal to move the cursor
outside the current size of the upper window.

8.7.2.4

An interpreter should use a fixed-pitch font when printing on the upper window.

8.7.2.5

In Versions 3 to 5, text buffering is never active in the upper window (even if a game begins
printing there without having turned it off).

8.7.3

Clearing regions of the screen:

8.7.3.1

When text reaches the bottom right of the lower window, it should be scrolled upwards.
(When the text style is Reverse Video the new blank line should not have reversed colours.)
The upper window should never be scrolled: it is legal for a character to be printed on the
bottom right position of the upper window (but the position of the cursor after this operation
is undefined: the author suggests that it stay put).

8.7.3.2

Using the opcode erase_window, the specified window can be cleared to background
colour. (Even if the text style is Reverse Video the new blank space should not have
reversed colours.)

8.7.3.2.1

In Versions 5 and later, the cursor for the window being erased should be moved to the top
left. In Version 4, the lower window's cursor moves to its bottom left, while the upper
window's cursor moves to top left.

8.7.3.3

Erasing window -1 clears the whole screen to the background colour of the lower screen,
collapses the upper window to height 0, moves the cursor of the lower screen to bottom left
(in Version 4) or top left (in Versions 5 and later) and selects the lower screen. The same
operation should happen at the start of a game.

8.7.3.4

Using erase_line in the upper window should erase the current line from the cursor position
to the right-hand edge, clearing it to background colour. (Even if the text style is Reverse

Video the new blank space should not have reversed colours.)

8.8 Screen model (V6)
The screen model for Version 6 is as follows:

8.8.1

The display is an array of pixels. Coordinates are usually given (in units) in the form (y,x),
with (1,1) in the top left.

8.8.2

If the interpreter thinks the screen should be redrawn (e.g. because a menu window has been
clicked over it), it may set bit 2 of 'Flags 2'. The game is expected to notice, take action and
clear the bit. (However, a more efficient interpreter would handle redraws itself.)

8.8.3

There are eight "windows", numbered 0 to 7. The code -3 is used as a window number to
mean "the currently selected window". This selection can be changed with the set_window
opcode. Windows are invisible and usually lie on top of each other. All text and graphics
plotting is always clipped to the current window, and anything showing through is plotted
onto the screen. Subsequent movements of the window do not move what was printed and
there is no sense in which characters or graphics 'belong' to any particular window once
printed. Each window has a position (in units), a size (in units), a cursor position within it
(in units, relative to its own origin), a number of flags called "attributes" and a number of
variables called "properties".

8.8.3.1

There are four attributes, numbered as follows:

0: wrapping
1: scrolling
2: text copied to output stream 2 (the transcript, if selected)
3: buffered printing

Each can be turned on or off, using the window_style opcode.

8.8.3.1.1

"Wrapping" is the continuation of printed text from one line to the next. Text running up to
the right margin will continue from the left margin of the following line. If "wrapping" is off
then characters will be printed until no more can be fitted in without hitting the right margin,
at which point the cursor will move to the right margin and stay there, so that any further
text will be ignored.

8.8.3.1.2

"Buffered printing" means that text to be printed in the window is temporarily stored in a
buffer and only flushed onto the screen at intervals convenient for the interpreter.

8.8.3.1.2.1

"Buffered printing" has two practical effects: firstly it causes a delay before printed text
actually appears.

8.8.3.1.2.2

Secondly it affects the way "wrapping" is done. If "buffered printing" is on, then text is
wrapped after the last word which could fit on a line. If not, then text is wrapped after the
last character that could fit.

Example: suppose the text "Here is an abacus" is printed in a narrow window. The
appearance (after the buffer has been flushed, if there is buffered printing) might be:

 |...margins....|
wrapping on buffering on Here is an
 abacus^
 off buffering on Here is an aba^

wrapping on buffering off Here is an aba
 cus^
 off buffering off Here is an aba^

where the caret denotes the final position of the cursor. (Games often alter "wrapping": it
would normally be on for a window holding running text but off for a status-line window,
which is why window 0 has "wrapping" on by default but all other windows have
"wrapping" off by default. On the other hand all windows have "buffered printing" on by
default and games only alter this in rare circumstances to avoid delays in the appearance of
individual printed characters.)

8.8.3.2

There are 16 properties, numbered as follows:

0 y coordinate 9 interrupt countdown
1 x coordinate 10 text style

2 y size 11 colour data
3 x size 12 font number
4 y cursor 13 font size
5 x cursor 14 attributes
6 left margin size 15 line count
7 right margin size 16 true foreground colour
8 newline interrupt routine 17 true background colour

Each property is a standard Z-machine number and is readable with get_wind_prop.
Properties 0 through 15 are writeable with put_wind_prop. However, a game should only
use put_wind_prop to set the newline interrupt routine, the interrupt countdown and the
line count: everything else is either set by the interpreter or by specialised opcodes (such as
set_font). The true foreground and true background properties must not be written by
put_wind_prop.

8.8.3.2.1

If a window has character wrapping, then text is clipped to stay inside the left and right
margins. After a new-line, the cursor moves to the left margin on the next line. Margins can
be set with set_margins but this should only be done just after a newline or just after the
window has been selected. (These values are margin sizes in pixels, and are by default 0.)

8.8.3.2.2

If the interrupt countdown is set to a non-zero value (which by default it is not), then the line
count is decremented on each new-line, and when it hits zero the routine whose packed
address is stored in the "newline interrupt routine" property is called before text printing
resumes. (This routine may, for example, meddle with margins to roll text around a crinkly-
shaped picture.) The interrupt routine should not attempt to print anything.

8.8.3.2.2.1

Because of an Infocom bug, if the interpreter number is 6 (for MSDOS) and the story file is
'Zork Zero' release 393.890714, but in no other case, the interpreter must do the following
instead: (1) move to the new line, (2) put the cursor at the current left margin, (3) call the
interrupt routine (if it's time to do so). This is the least bad way to get around a basic
inconsistency in existing Infocom story files and interpreters.

8.8.3.2.2.2

Note that the set_margins opcode, which is often used by newline interrupt routines (to
adjust the shape of a margin as it flows past a picture), automatically moves the cursor if the
change in margins would leave the cursor outside them. The effect will depend,
unfortunately, on which sequence of events above takes place.

8.8.3.2.2.3

A line count is never decremented below -999.

8.8.3.2.3

The text style is set just as in Version 4, using set_text_style (which sets that for the current
window). The property holds the operand of that instruction (e.g. 4 for italic).

8.8.3.2.4

The foreground colour is stored in the lower byte of the colour data property, the
background colour in the upper byte.

8.8.3.2.5

The font height (in pixels) is stored in the upper byte of the font size property, the font width
(in pixels) in the lower byte.

8.8.3.2.6

The interpreter should use the line count to see when it should print "[MORE]". A line count
of -999 means "never print [MORE]". (Version 6 games often set line counts to manipulate
when "[MORE]" is printed.)

8.8.3.2.7

If an attempt is made by the game to read the cursor position at a time when text is held
unprinted in a buffer, then this text should be flushed first, to ensure that the cursor position
is accurate before being read.

8.8.3.2.8

***[1.1] The true foreground and background colours show the actual colour being used for
the foreground and background, whether it was set using set_colour or set_true_colour.
Transparent is indicated as -4. If the colour was sampled from a picture then the value
shown may be a 15-bit rounding of a more precise colour, leading to a slight inaccuracy if
the colour is read and then written back.

8.8.3.3

All eight windows begin at (1,1). Window 0 occupies the whole screen and is initially
selected. Window 1 is as wide as the screen but has zero height. Windows 2 to 7 have zero
width and height. Window 0 initially has attribute 1 off and 2, 3 and 4 on (scrolling, copy to
printer transcript, buffering). Windows 1 to 7 initially have attribute 4 (buffering) on, and
the other attributes off.

8.8.3.4

A window can be moved with move_window and resized with window_size. If the window
size is reduced so that its cursor lies outside it, the cursor should be reset to the left margin
on the top line.

8.8.3.5

Each window remembers its own cursor position (relative to its own coordinates, so that the
position (1,1) is at its top left). These can be changed using set_cursor (and it is legal to
move the cursor for an unselected window). It is illegal to move the cursor outside the
current window.

8.8.3.6

Each window can be scrolled vertically (up or down) any number of pixels, using the
scroll_window opcode.

8.8.4

To some extent windows 0 and 1 mimic the behaviour of the lower and upper windows in
the Version 4 screen model:

8.8.4.1

The split_screen opcode tiles windows 0 and 1 together to fill the screen, so that window 1
has the given height and is placed at the top left, while window 0 is placed just below it
(with its height suitably shortened, possibly making it disappear altogether if window 1
occupies the whole screen).

8.8.4.2

An "unsplit" (that is, a split_screen 0) takes place when the entire screen is cleared with
erase_window -1, if a "split" has previously occurred (meaning that windows 0 and 1 have
been set up as above).

8.8.5

Screen clearing operations:

8.8.5.1

Erasing a picture is like drawing it (see below), except that the space where it would appear
is painted over with background colour instead.

8.8.5.2

The current line can be erased using erase_line, either all the way to the right margin or by
any positive number of pixels in that direction. The space is painted over with background
colour (even if the current text style is Reverse Video).

8.8.5.3

Each window can be erased using erase_window, erasing to background colour (even if the
current text style is Reverse Video).

8.8.5.3.1

Erasing window number -1 erases the entire screen to the background colour of window 0,
unsplits windows 0 and 1 (see S 8.7.3.3 above) and selects window 0.

8.8.5.3.2

Erasing window -2 erases the entire screen to the current background colour. (It doesn't
perform erase_window for all the individual windows, and it doesn't change any window
attributes or cursor positions.)

8.8.6

Pictures may accompany the game. They are not stored in the story file (or the Z-machine)
itself, and the interpreter is simply expected to know where to find them.

8.8.6.1

Pictures are numbered from 1 upwards (not necessarily contiguously). They can be "drawn"
or "erased" (using draw_picture and erase_picture). Before attempting to do so, a game
may ask the interpreter about the picture (using picture_data): this allows the interpreter to
signal that the picture in question is unavailable, or to specify its height and width.

8.8.6.2

The game may, if it wishes, use the picture_table opcode to give the interpreter advance
warning that a group of pictures will soon be needed (for instance, a collection of icons
making up a control panel). The interpreter may want to load these pictures off disc and into
a memory cache.

8.8.7

***[1.1] Interpreters may use a backing store to store the Z-machine screen state, rather
than plotting directly to the screen. This would normally be the case in a windowed
operating system environment. If a backing store is in use, display changes executed by the
Z-machine may not be immediately made visible to the user. Standard 1.1 adds the new
opcode buffer_screen to Version 6 to control screen updates. An interpreter is free to ignore
the opcode if it doesn't fit its display model (in which case it must act as if buffer_screen is
always set to 0).

8.8.7.1

***[1.1] When buffer_screen is set to 0 (the default), all display changes are expected to
become visible to the user either immediately, or within a short period of time, at the
interpreter's discretion. At a minimum, all updates become visible before waiting for input.
Any intermediate display states between input requests may not be seen; for example when
printing a large amount of new text into a scrolling window, all the intermediate scroll
positions may or may not be shown.

When buffer_screen is set to 1, the interpreter need not change the visible display at all.
Any display changes can be done purely in the backing store. A program may set
buffer_screen to 1 before carrying out a complex layered graphical composition, to indicate
that the intermediate states are not worth showing. It would be extremely ill-advised to
prompt for input with buffer_screen set to 1.

When buffer_screen is set back to 0, the display is not necessarily updated immediately. If
this is required, the game must request it seperately (see S 8.8.7.2 below).

8.8.7.2

***[1.1] With buffer_screen in either state, an update of the visible display can be forced
immediately by issuing buffer_screen -1, without altering the current buffering state. Note
that buffer_screen -1 does not flush the text buffer.

Remarks
See S 16 for comment on how 'Beyond Zork' uses fonts.

Some interpreters print the status line when they begin running a Version 3 game, but this is
incorrect. (It means that a small game printing text and then quitting cannot be run unless it
includes an object.) The author's preferred status line formats are:

Hall of Mists 80/733
Lincoln Memorial 12:03 PM

Thus the score/turns block always fits in 3+1+4=8 characters and the time in 2+1+2+1+2=8
characters. (Games needing more exotic time lines, for example, should not be written in
Version 3.)

The only existing Version 3 game to use an upper window is 'Seastalker' (for its sonarscope
display).

Some ports of ITF apply buffering (i.e. word-wrapping) and scrolling to the upper window,
with unfortunate consequences. This is why the standard Inform status line is one character
short of the width of the screen.

The original Infocom files seldom use erase_window, except with window -1 (for instance
'Trinity' only uses it in this form). ITF does not implement it in any other case.

The Version 5 re-releases of older games make use of consecutive set_text_style
instructions to attempt to combine boldface reverse video (in the hints system).

None of Infocom's Version 4 or 5 files use erase_line at all, and ITF implements it badly
(with unpredictable behaviour in Reverse Video text style). (It's interesting to note that the
Version 5 edition of 'Zork I' - one of the earliest Version 5 files -- blanks out lines by looking
up the screen width and printing that many spaces.)

It's recommended that a Version 5 interpreter always use units to correspond to characters:
that is, characters occupy 1×1 units. 'Beyond Zork' was written in the expectation
that it could be using either 1x1 or 8x8, and contains correct code to calculate screen

positions whatever units are used. (Infocom's Version 5 interpreter for MSDOS could either
run in a text mode, 1x1, or a graphics mode, 8x8.) However, the German translation of 'Zork
I' contains incorrect code to calculate screen positions unless 1x1 units are used.

Note that a minor bug in Zip writes bytes $22 to $25 in the header as four values, giving the
screen dimensions in the form left, right, top, bottom: provided units are characters (i.e.
provided the font width and height are both 1) then since "left" and "top" are both 0, this
bug has no effect.

Some details of the known IBM graphics files are given in Paul David Doherty's "Infocom
Fact Sheet". See also Mark Howell's program "pix2gif", which extracts pictures to GIF files.
(This is one of his "Ztools" programs.)

Although Version 6 graphics files are not specified here, and were released in several
different formats by Infocom for different computers, a consensus seems to have emerged
that the MCGA pictures are the ones to adopt (files with filenames *.MG1). These are
visually identical to Amiga pictures (whose format has been deciphered by Mark Knibbs).
However, some Version 6 story files were tailored to the interpreters they would run on, and
use the pictures differently according to what they expect the pictures to be. (For instance,
an Amiga-intended story file will use one big Amiga-format picture where an MSDOS-
intended story file will use several smaller MCGA ones.)

The easiest option is to interpret only DOS-intended Version 6 story files and only MCGA
pictures. But it may be helpful to examine the Frotz source code, as Frotz implements
draw_picture and picture_data so that Amiga and Macintosh forms of Version 6 story files
can also be used.

It is generally felt that newly-written graphical games should not imitate the old Infocom
graphics formats, which are very awkward to construct and have been overtaken by
technology. Instead, the Blorb proposal for packaging up resources with Z-machine games
calls for PNG format graphics glued together in a fairly simple way. The graphics for
Infocom's Version 6 games have been made available in Blorb format, so that understanding
Infocom's picture-sets is no longer very useful.

The line count of -999 preventing "[MORE]" is a device used by the demonstration mode of
'Zork Zero'.

Interpreter authors are advised that all 8 windows in Version 6 must be treated identically.
The only ways in which they are distinguished are:

 Different default positions + sizes

 Different default attributes

 split_window manipulates windows 0 and 1 specifically

 Window 1 is the default mouse window

Differences in interpreter behaviour must only arise from differences in window attributes
and properties.

In V6, it is legal to position the cursor up against the right or bottom of a window - eg at
(1,1) in a zero-sized window or at (641,401) in 640x400 window. Indeed, this is the default
state of windows 1 to 7, and the cursor may be left at the right-hand side of a window when
wrapping is off.

Attempting to print text (including new-lines) when the cursor is fewer than font_height
units from the bottom of the window results in undefined behaviour - this precludes any
printing in windows less than font_height units high.

It is legal for interpreters to always show the same value in property 11 if a true or sampled
colour is in use. As a result, story files cannot assume that setting a value that was read from
property 11 will give the same colour, if set_colour -1 has been used in that window.

The same rules apply if an interpreter offers non-standard default colours although in this
case it would be ill-advised to show the same colour numbers for foreground and
background - unless they can be distinguished, non-standard default colours should
probably not be offered.

If the interpreter offers a limited palette, then there is no problem, as it can be arranged for
there to be fewer than 240 distinct non-standard colours. In an interpreter with a higher
colour-depth, a good implementation would be to use colours 16-255 to represent the last
240 distinct non-standard colours used, re-using numbers after 240 colours have been used.
This will minimize potential problems caused by non-standard colours, particularly when
set as defaults.

Regardless of the limitations on colour numbers, in Version 6 each window must remember
accurately the colour pair selected, so it is preserved across window switches.

S 8.7.2.3 states that it is illegal to move the cursor outside the current size of the upper
window. S 8.8.3.5 gives the equivalent rule for Version 6.

Many modern games have been lax in obeying this rule; in particular some of the standard
Inform menu libraries have violated it. Infocom's Sherlock also miscalculated the size of the
upper window to use for box quotes.

It is recommended that if the cursor is moved below the split position in V4/V5, interpreters
should execute an implicit "split_window" to contain the requested cursor position, if
possible. Diagnostics should be produced, but should be suppressable.

Some modern Z-Machine interpeters (mainly those using Andrew Plotkin's Glk interface
standard) use a seperate text windows for the status line. While this is not Standard
behaviour, it largely causes no problems. However Trinity, and many more recent Inform
games, print quote boxes using a technique that is not compatible with this implementation.

Andrew Plotkin has written up some notes on the issue, including a workaround.

Infocom's Version 6 interpreters and story files disagree on the meaning of window
attributes 0 and 3 and the opcode buffer_mode, in such a way that the original specification
is hard to deduce from the final behaviour. If we call the three possible ways that text can
appear "word wrap", "char wrap" and "char clip":

 |...margins....|
word wrap Here is an
 abacus^
char wrap Here is an aba
 cus^
char clip Here is an aba^

then Infocom's interpreters behave as follows:

 Apple II MSDOS Macintosh Amiga
A0 off, A3 off char clip(LR) char clip() --- ---
A0 off, A3 on char clip(LR) char clip(LR) --- ---
A0 on, A3 off word wrap char wrap --- ---
A0 on, A3 on word wrap word wrap --- ---
buffer_mode off --- --- char wrap char clip(L)
buffer_mode on --- --- word wrap word wrap

Here "---" means that the interpreter ignores the given state, and the presence of L, R or both
after "char clipp" indicates which of the left and right margins are respected. The Amiga
behaviour may be due to a bug and two bugs have also been found in the MSDOS
implementation. Under this standard, the appearance is as follows:

 Standard
A0 off, A3 off char clip(LR)
A0 off, A3 on char clip(LR)
A0 on, A3 off char wrap
A0 on, A3 on word wrap
buffer_mode off ---
buffer_mode on ---

Due to a bug or an oversight, the V6 story files for all interpreters use buffer_mode once: to
remove buffering while printing "Please wait..." with a row of full stops trickling out during
a slow operation. Buffering would frustrate this, but fortunately on modern computers the
operation is no longer slow and so the bug does not cause trouble.

9. Sound effects

9.1 Sound effects
Some games, from Version 3 onward, have sound effects attached. These are not stored in
the story files (or the Z-machine) itself, and the interpreter is simply expected to know
where to find them. Other games have only one sound effect, usable in a much more
restricted way: a beep or bell sound, which we shall call a "bleep".

9.1.1

In Version 6, the interpreter should set bit 5 of 'Flags 1' if it can provide sound effects
beyond a bleep.

9.1.2

In Version 5 and later, a game should have bit 7 of 'Flags 2' set in its story file if it wants to
use sound effects beyond a bleep. The interpreter should then clear this bit if it cannot
oblige.

9.2 Numbering of
Sound effects are numbered upwards from 1. Number 1 is a high-pitched bleep, number 2 a
low-pitched one and effects from 3 upward are supplied by the interpreter somehow for the
particular game in question.

9.2.1

***[1.1] Aside from bleeps, there are two types of sound effect, samples and music. The
game has no way of telling the type of a given sound effect.

9.3 Volume
Sound effects (other than bleeps) can be played at any volume level from 1 to 8 (8 being
loudest of these). The volume level -1 should be implemented as "loudest possible".

9.4 Sound playing autonymously
Bleeps are immediate and brief. Other sound effects take place in the background, while
normal operation of the Z-machine is going on. Control is via the sound_effect opcode,
allowing the game to prepare, start, stop or finish with an effect.

9.4.1

The game may (but need not) "prepare" a sound effect before use. This would indicate to the
interpreter that the game intends to use the effect soon: an interpreter might act on this
information by loading the sampled sound off disc and into a memory cache.

9.4.2

***[1.1] A sound effect (other than a bleep) can then be "stopped" or "started". Only one
sound effect of each type can play at any given time, so that starting a new music sound
effect stops any current music playing, and starting any new sample sound effect stops any
current sample sound playing. Samples and music do not interrupt each other.

9.4.3

In Versions 5 and later, a sound effect may repeat any specified number of times, or repeat
forever (until stopped).

9.4.4

Eventually, though, if it has not been stopped, it may end by itself. A routine (specified at
start time) can then be called. The intention is that this routine may implement effects such
as fading in and out, by replaying the sound effect at a different volume. (A game should not
place any important code in such a routine.) The routine is only called when the sound has
played the requested number of times. If manually stopped or interrupted by another sound,
the routine is not called.

9.4.5

The game may, but need not, explicitly "finish with" any sound effect which is not likely to
occur again for a while: the interpreter can then throw it out of memory.

Remarks
The safest way an Inform program can try to produce a bleep is by executing
@sound_effect 1. Some ports of Zip believe that the first operand of this is the number of
bleeps to make (so that @sound_effect 2 bleeps twice), but this is incorrect.

Several Infocom games bleep (using sound_effect with only one operand, always equal to 1
or 2). Two provided sampled sound effects but did not bleep: 'The Lurking Horror' and
'Sherlock'. Their story files contain the following usages of sound_effect:

 sound_effect number 2 volume (in TLH)
 sound_effect number 2 volume/repeats function (in Sherlock)
 sound_effect 0 3
 sound_effect number 3
 sound_effect 0 4

except that, probably due to a bug in its own code, 'TLH' can also generate

 sound_effect 4 8
 sound_effect 4095 2 15

A further difficulty with 'TLH' is that it assumes the interpreter is as slow as Infocom's

Amiga interpreter was: it fires off several sound effects in one game round, assuming there
will be time for it to play most of each one. To simulate this, sound_effect must be rewritten
to pause sometimes:

if a new sample sound effect is begun while there is still one playing which was started
since the last keyboard input, then wait until that earlier one finishes one cycle before
replacing it with the new sound effect. Music sound effects are not affected by this. New
music should interrupt old music immediately at all times.

Infocom's MS-DOS interpreters for V4 to V6 set bit 5 of 'Flags 1' in all circumstances (i.e.,
whether or not sound effects are available). This would be incorrect behaviour for a standard
interpreter.

Infocom implemented sound effects differently on different machines. The format of
Infocom's shipped sound effects files has been documented by Stefan Jokisch and his notes
are available from www.ifarchive.org.

However, modern interpreters are strong encouraged to support Andrew Plotkin's Blorb
format, which is a more modern way to make sound effects available to newer games. Blorb
files have been made available for the Infocom sound effects, so that modern interpreters
need no longer support the Infocom format.

When using Blorb resources, the default interpreter behaviour (unless over- ridden by the
player) should be for samples played at maximum volume (64), in one channel of a SONG
or MOD played at volume 8, to be of equal volume to samples played at maximum volume
(8) as an effect. This will be the natural behaviour if effects use one physical channel and
MODs/SONGs use four physical channels.

Ideally, a sound played at volume n in a SONG played at volume m should sound the same
as when played as an effect at volume n*m/64. This mandates that the volume scale for
effects be equivalent to the scale defined for samples in the MOD specification.

If multi-channel effects are used, the overall volume should be independent of the number
of channels used in the sound. Thus a stereo AIFF containing the same samples for left and
right should sound as loud as a mono AIFF containing the same data. This will need
adjustment of volume if stereo AIFFs use two physical channels and mono AIFFs use one.
No adjustment would be required if an interpreter reduced all AIFFs to mono.

10. Input streams and devices

10.1 Keyboard only in V1
In Versions 1 and 2, the player's commands can only be drawn from the keyboard.

10.2 Input streams
In Versions 3 and later, the player's keypresses are drawn from the current "input stream".
There are two input streams: numbered 0 (the keyboard) and 1 (a file containing
commands). Other inputs (mouse clicks or menu selections), if available, are also
implemented as keypresses (see below).

10.2.1

The format of a file containing commands must be the same as that written in output
stream 4.

10.2.2

The game can change the current input stream itself, using the opcode input_stream. It has
no way of finding out which input stream is currently in use. An interpreter is free to change
the input stream whenever it likes (e.g. at the player's request) or, indeed, to run the entire
game under input stream 1 (for testing purposes).

10.2.3

When input stream 1 is first selected, the interpreter may use any method of choosing a file
name for the file of commands. (Good practice is to use the same conventions as when
choosing a filename for output to stream 4.)

10.2.4

When the the current stream is stream 1, the interpreter should not hold up long passages of
text (by printing "[MORE]" and waiting for a keypress, for instance).

10.3 Mouse support
Mouse support is optional but can be provided in Versions 5 and later.

10.3.1

In a game which wishes to use the mouse, bit 5 of 'Flags 2' in the header should be set in the
story file. If it wishes to read the mouse position after clicks, it must provide at least the first
two words of a header extension table. (Note that Inform 6.12 and later always provide a
header extension table at least this large, but Inform 6.11 and earlier never provide an
extension table at all.)

10.3.1.1

If the interpreter cannot offer mouse support, then it should clear bit 5 of 'Flags 2' to signal
this to the game.

10.3.2

Whenever a mouse click takes place (and provided the header extension table exists and
contains at least 2 words) the interpreter should update the coordinates as follows:

Word 1: x coordinate where click took place
Word 2: y coordinate where click took place

10.3.3

The mouse is presumed to have between 0 and 16 buttons. The state of these buttons can be
read by the read_mouse opcode in Version 6. Otherwise, mouse clicks are treated as
keyboard input codes (see below).

10.3.4

In Version 6, the mouse can either be free or constrained to one of the 8 windows: if so,
clicks outside the 'mouse window' must be ignored, and the interpreter is at liberty to
confine the mouse's movement to the boundary of its window.

10.4 Menu support
Menu support can optionally be provided in Version 6.

10.4.1

In a game which wishes to use menus, bit 8 of 'Flags 2' in the header should be set in the
story file.

10.4.1.1

If the interpreter cannot offer menu support, then it should clear bit 8 of 'Flags 2' to signal
this to the game.

10.4.2

Menus are numbered from 0 upwards. 0, 1 and 2 are reserved for the interpreter to manage
(this system has only been implemented on the Macintosh, wherein 0 is the Apple menu, 1
the File menu and 2 the Edit menu). Menus numbered 3 and upwards can be created or
removed with the make_menu opcode.

10.4.3

Menu selection is reported to the game as a keypress (see below). Details of what selection
has been made are read with read_mouse.

10.5 Terminating characters and timed input
Whole commands are read from the input stream using the read opcode. (Note that this has
two different internal names in Inform, sread for Versions 1 to 4 and aread subsequently.)

10.5.1

In Versions 1 to 3, the interpreter must redisplay the status line before it begins accepting
input.

10.5.2

Commands are normally terminated by a new-line (a carriage return or a line feed as
appropriate for the machine's keyboard or file format).

10.5.2.1

In Versions 5 and later, the game may provide a "terminating characters table" by giving its
byte address in the word at $2e in the header. This table is a zero-terminated list of input
character codes which cause aread to finish the command (in addition to new-line). Only
function key codes are permitted: these are defined as those between 129 and 154 inclusive,
together with 252, 253 and 254. The special value 255 means "any function key code is
terminating".

10.5.3

***[1.0] In Versions 4 and later, an interpreter should ideally be able to time input and to
call a (game) routine at periodic intervals: see the read opcode. If it is able to do this, it
should set bit 7 of 'Flags 1' in the header.

10.6 Single keypresses
In Versions 4 and later, individual characters can be read from the current input stream,
using read_char. Again, the interpreter should ideally be able to time input and to call a
(game) routine at periodic intervals. If it is able to do this, it should set bit 7 of 'Flags 1' in
the header.

10.7 Reading ZSCII from the keyboard
The only characters which can be read from the keyboard are ZSCII characters defined for
input (see S 3).

10.7.1

Every ZSCII character defined for input can be returned by read_char.

10.7.2

Only ZSCII characters defined for both input and output can be stored in the text buffer
supplied to the read opcode.

10.7.3

The "escape" code is optional: that is, an interpreter need not provide an escape key. (The
Inform library clears and quits menus if this code is returned to read_char.)

Remarks
Menus in 'Beyond Zork' define cursor up and cursor down as terminating characters, and
make use of read in the upper window.

Mouse co-ordinates, whether returned by read_mouse or written into the header during
input, are always relative to the top of the display at (1,1), regardless of the position of the
current mouse window.

read_mouse is realtime. When called it must read the current mouse location, whether or
not the mouse is inside the current mouse window. Interpreters are allowed to show
positions and button states outside the Z-machine screen if the pointer is outside the
interpreter's own user interface (using negative values if needed).

Programs must be prepared to cope with this. For example in a painting program you might
want to ignore all buttons down outside the screen. When dragging something you might
want to keep trying to follow the pointer, even outside the screen, until the buttons are
released.

Interpreters may constrain the pointer to the screen as long as buttons are held down - this
might aid dragging operations - although this is not required.

11. The format of the header

11.1 Header format
The header table summarises those locations in the Z-machine's header which an interpreter
must deal with. (For further notes on traditional usage, see Appendix B.) "Hex" means the
address, in hexadecimal; "V" the earliest Version to which the rule is applicable; "Dyn"
means that the byte or bit may legally be changed by the game during play; "Int" means that
the interpreter may change it; "Rst" means that the interpreter must set it correctly after
loading the game, after a restore or after a restart.

Header format

Hex V Dyn Int Rst Cont

0 1 Version number (1 to 6)

1 3 Flags 1 (in Versions 1 to 3):

Bit 1: Status line type: 0=score/turns, 1=hours:mins

2: Story file split across two discs?

* * 4: Status line not available?

* * 5: Screen-splitting available?

* * 6: Is a variable-pitch font the default?

4 Flags 1 (from Version 4):

5 * * Bit 0: Colours available?

6 * * 1: Picture displaying available?

4 * * 2: Boldface available?

4 * * 3: Italic available?

4 * * 4: Fixed-space style available?

6 * * 5: Sound effects available?

4 * * 7: Timed keyboard input available?

4 1 Base of high memory (byte address)

6 1 Initial value of program counter (byte address)

6 Packed address of initial "main" routine

8 1 Location of dictionary (byte address)

A 1 Location of object table (byte address)

C 1 Location of global variables table (byte address)

E 1 Base of static memory (byte address)

10 1 Flags 2:

1 * * * Bit 0: Set when transcripting is on

3 * * 1: Game sets to force printing in fixed-pitch font

6 * * 2: Int sets to request screen redraw: game clears
 when it complies with this.5 * * 3: If set, game wants to use pictures

5 * * 4: If set, game wants to use the UNDO opcodes

5 * * 5: If set, game wants to use a mouse

5 6: If set, game wants to use colours

5 * * 7: If set, game wants to use sound effects

6 * * 8: If set, game wants to use menus

(For bits 3,4,5,7 and 8, Int clears again if it cannot
provide the requested effect.)18 2 Location of abbreviations table (byte address)

1A 3+ Length of file (see note)

1C 3+ Checksum of file

1E 4 * * Interpreter number

1F 4 * * Interpreter version

20 4 * * Screen height (lines): 255 means "infinite"

21 4 * * Screen width (characters)

22 5 * * Screen width in units

24 5 * * Screen height in units

26 5 * * Font width in units (defined as width of a '0')

6 * * Font height in units

27 5 * * Font height in units

6 * * Font width in units (defined as width of a '0')

28 6 Routines offset (divided by 8)

2A 6 Static strings offset (divided by 8)

2C 5 * * Default background colour

2D 5 * * Default foreground colour

2E 5 Address of terminating characters table (bytes)

30 6 * Total width in pixels of text sent to output stream 3

32 1 * * Standard revision number

34 5 Alphabet table address (bytes), or 0 for default

36 5 Header extension table address (bytes)

Some early Version 3 files do not contain length and checksum data, hence the notation 3+.

11.1.1

It is illegal for a game to alter those fields not marked as "Dyn". An interpreter is therefore
free to store values of such fields in its own variables.

11.1.2

The state of the transcription bit (bit 0 of Flags 2) can be changed directly by the game to
turn transcribing on or off (see S 7.3, S 7.4). The interpreter must also alter it if stream 2 is
turned on or off, to ensure that the bit always reflects the true state of transcribing. Note that
the interpreter ensures that its value survives a restart or restore.

11.1.3

Infocom used the interpreter numbers:

1 DECSystem-20 5 Atari ST 9 Apple Iic
2 Apple IIe 6 IBM PC 10 Apple Iigs
3 Macintosh 7 Commodore 128 11 Tandy Color
4 Amiga 8 Commodore 64

(The DECSystem-20 was Infocom's own in-house mainframe.) An interpreter should choose
the interpreter number most suitable for the machine it will run on. In Versions up to 5, the
main consideration is that the behaviour of 'Beyond Zork' depends on the interpreter number
(in terms of its usage of the character graphics font). In Version 6, the decision is more
serious, as existing Infocom story files depend on interpreter number in many ways:
moreover, some story files expect to be run only on the interpreters for a particular machine.
(There are, for instance, specifically Amiga versions.)

11.1.3.1

Interpreter versions are conventionally ASCII codes for upper-case letters in Versions 4 and
5 (note that Infocom's Version 6 interpreters just store numbers here).

Modern games are strongly discouraged from testing the interpreter number or interpreter
version header information for any game-changing behaviour. It is rarely meaningful, and a
Standard interpreter provides many better ways to query the interpreter for information.

11.1.4

***[1.0] The use of bit 7 in 'Flags 1' to signal whether timed input is available was new in
the 1.0 document: see the preface.

11.1.5

***[1.0] If an interpreter obeys Revision n.m of this document perfectly, as far as anyone
knows, then byte $32 should be written with n and byte $33 with m. If it is an earlier (non-
standard) interpreter, it should leave these bytes as 0.

11.1.6

The file length stored at $1a is actually divided by a constant, depending on the Version, to
make it fit into a header word. This constant is 2 for Versions 1 to 3, 4 for Versions 4 to 5 or
8 for Versions 6 and later.

11.1.7

The header extension table provides potentially unlimited room for further header
information. It is a table of word entries, in which the initial word contains the number of
words of data to follow.

11.1.7.1

If the interpreter needs to read a word which is beyond the length of the extension table, or
the extension table doesn't exist at all, then the result is 0.

11.1.7.2

If the interpreter needs to write a word which is beyond the length of the extension table, or
the extension table doesn't exist at all, then the result is that nothing happens.

11.1.7.3

***[1.0][1.1] Words in the header extension table have been allocated as follows:

Header extension format

Hex V Dyn Int Rst Cont

0 5 Number of further words in table

1 5 * X-coordinate of mouse after a click

2 5 * Y-coordinate of mouse after a click

3 5 Unicode translation table address (optional)

4 5 Flags 3:

6 * * 0: If set, game wants to use transparency

5 5 * * True default foreground colour

6 5 * * True default background colour

11.1.7.4

***[1.1] The bits in Flags 3 are set by the game to request use of a feature. If the interpreter
cannot provide a feature, it must clear the relevant bit.

11.1.7.4.1

***[1.1] All unused bits in Flags 3 must be cleared by the interpreter.

Remarks
In the Infocom period, the larger Version 3 story files would not entirely fit on a single Atari
800 disc (though they would fit on a single Apple II, or a single PC disc). Atari versions
were therefore made which were identical to the normal ones except for having Flags 1 bit 2
set, and were divided into the resident part on one disc and the rest on another. (This
discovery was announced by Stefan Jokisch on 26 August 1997 and sees the end of one of
the very few Z-machine mysteries left when Standard 1.0 was first published.)

See the "Infocom fact sheet" for numbers and letters of the known interpreters shipped by
Infocom. Interpreter versions are conventionally the upper case letters in sequence (A, B, C,
...). At present most ports of Zip use interpreter number 6, and most of ITF use number 2.

The unusual behaviour of 'Beyond Zork' concerns its character graphics: see the remarks to
S 16.

The Macintosh story file for 'Zork Zero' erroneously does not set the pictures bit (Flags 2,
bit 3).

The bit in the header described as "requesting screen redraw" may be set by modern
interpreters after, for example, resizing the "screen"; games should ideally redraw the screen
if they see this bit set. This will usually mean the game clears the screen contents and
rearranges borders, etc, so the bit should not be set except when necessary.

The (Version 6) sound and picture bits in Flags 1 indicate general availability of sound and
graphics - ie whether the associated opcodes are available and functional.

The bits in Flags 2 should ideally be set reflecting current availability, rather than general
support. In other words, if no Blorb (or other) resources for this story file have been found,
or if the Blorb file contains no graphics or no sound, the corresponding bits should be
cleared.

Also, it is recommended that interpreters that would prompt for an auxiliary Blorb file
should do so immediately on start up if any of the "game wants to use
sound/music/graphics" bits are set; this allows the bits to be cleared if no file is forthcoming,
before the game starts execution. The game can then take appropriate action.

12. The object table

12.1 Storage
The object table is held in dynamic memory and its byte address is stored in the word at $0a
in the header. (Recall that objects have flags attached called attributes, numbered from 0
upward, and variables attached called properties, numbered from 1 upward. An object need
not provide every property.)

12.2 Property defaults table
The table begins with a block known as the property defaults table. This contains 31 words
in Versions 1 to 3 and 63 in Versions 4 and later. When the game attempts to read the value
of property n for an object which does not provide property n, the n-th entry in this table is
the resulting value.

12.3 Object tree
Next is the object tree. Objects are numbered consecutively from 1 upward, with object
number 0 being used to mean "nothing" (though there is formally no such object). The table
consists of a list of entries, one for each object.

12.3.1

In Versions 1 to 3, there are at most 255 objects, each having a 9-byte entry as follows:

 the 32 attribute flags parent sibling child properties
 ---32 bits in 4 bytes--- ---3 bytes------------------ ---2 bytes--

parent, sibling and child must all hold valid object numbers. The properties pointer is the
byte address of the list of properties attached to the object. Attributes 0 to 31 are flags (at
any given time, they are either on (1) or off (0)) and are stored topmost bit first: e.g.,
attribute 0 is stored in bit 7 of the first byte, attribute 31 is stored in bit 0 of the fourth.

12.3.2

In Version 4 and later, there are at most 65535 objects, each having a 14-byte entry as
follows:

 the 48 attribute flags parent sibling child properties
 ---48 bits in 6 bytes--- ---3 words, i.e. 6 bytes---- ---2 bytes--

12.4 Property tables

Each object has its own property table. Each of these can be anywhere in dynamic memory
(indeed, a game can legally change an object's properties table address in play, provided the
new address points to another valid properties table). The header of a property table is as
follows:

 text-length text of short name of object
 -----byte---- --some even number of bytes---

where the text-length is the number of 2-byte words making up the text, which is stored in
the usual format. (This means that an object's short name is limited to 765 Z-characters.)
After the header, the properties are listed in descending numerical order. (This order is
essential and is not a matter of convention.)

12.4.1

In Versions 1 to 3, each property is stored as a block

 size byte the actual property data
 ---between 1 and 8 bytes--

where the size byte is arranged as 32 times the number of data bytes minus one, plus the
property number. A property list is terminated by a size byte of 0. (It is otherwise illegal for
a size byte to be a multiple of 32.)

12.4.2

In Versions 4 and later, a property block instead has the form

 size and number the actual property data
 --1 or 2 bytes--- --between 1 and 64 bytes--

The property number occupies the bottom 6 bits of the first size byte.

12.4.2.1

If the top bit (bit 7) of the first size byte is set, then there are two size-and-number bytes as
follows. In the first byte, bits 0 to 5 contain the property number; bit 6 is undetermined (it is
clear in all Infocom or Inform story files); bit 7 is set. In the second byte, bits 0 to 5 contain
the property data length, counting in bytes; bit 6 is undetermined (it is set in Infocom story
files, but clear in Inform ones); bit 7 is always set.

12.4.2.1.1

***[1.0] A value of 0 as property data length (in the second byte) should be interpreted as a
length of 64. (Inform can compile such properties.)

12.4.2.2

If the top bit (bit 7) of the first size byte is clear, then there is only one size-and-number
byte. Bits 0 to 5 contain the property number; bit 6 is either clear to indicate a property data
length of 1, or set to indicate a length of 2; bit 7 is clear.

12.5 Well-foundedness of the tree
It is the game's responsibility to keep the object tree well-founded: the interpreter is not
required to check. "Well-founded" means the following:

(a) An object with a sibling also has a parent.

(b) An object is the parent of exactly those objects in the sibling list of its child.

(c) Each object can be given a level n, such that parentless objects have level 0 and
 all children of a level n object have level n+1.

Remarks
The largest valid object number is not directly stored anywhere in the Z-machine. Utility
programs like Infodump deduce this number by assuming that, initially, the object entries
end where the first property table begins.

Infocom's 'Sherlock' contains a bug making it try to set and clear attribute 48.

The reason why the second property size byte needs to have top bit set is that the size field
must be parsable either forwards or backwards -- the Z-machine needs to be able to
reconstruct the length of a property given only the address of the first byte of its data. (There
are very many (e.g. 2000) property entries in a story file, so optimising size into one byte
most of the time is worthwhile.)

Bit 6 in the second byte is presently wasted, which is a pity as it could be used to allow up
to 128 bytes of property data. But such a change would cause Infocom's story files to fail
(since they set this bit, unlike Inform story files).

Inform can only construct well-founded object trees as the initial game state, but it is easy to
compile sequences of code like "move red box to blue box" followed by "move blue box to
red box" which leave the object tree in an ill-founded state. (The Inform library protects the
standard object-movement verbs against this.)

13. The dictionary and lexical analysis

13.1 Storage
The dictionary table is held in static memory and its byte address is stored in the word at
$08 in the header.

13.2 Header
The table begins with a short header:

 n list of keyboard input codes entry-length number-of-entries
 byte ------n bytes----------------- byte 2-byte word

The keyboard input codes are "word-separators": typically (and under Inform mandatorily)
these are the ZSCII codes for full stop, comma and double-quote. Note that a space
character (32) should never be a word-separator. The "entry length" is the length of each
word's entry in the dictionary table. (It must be at least 4 in Versions 1 to 3, and at least 6 in
later Versions.)

13.2.1

Note that the word-separators table can only contain codes which are defined in ZSCII for
both input and output.

13.3 Entries (V1 to V3)
In Versions 1 to 3, each word has an entry in the form

 encoded text of word bytes of data
 ------- 4 bytes ------ (entry length-4) bytes

The interpreter ignores the bytes of data (presumably the game's parser will use them). The
encoded text contains 6 Z-characters (it is always padded out with Z-character 5's to make
up 4 bytes: see S 3). The text may include spaces or other word-separators (though, if so, the
interpreter will never match any text to the dictionary word in question: surprisingly, this
can be useful and is a trick used in the Inform library).

13.4 Entries (later versions)
In Versions 4 and later, the encoded text has 6 bytes and always contains 9 Z-characters.

13.5 Ordering
The word entries follow immediately after the dictionary header and must be given in
numerical order of the encoded text (when the encoded text is regarded as a 32 or 48-bit
binary number with most-significant byte first). It must not contain two entries with the
same encoded text.

13.6 Lexical analysis
Lexical analysis takes place in two circumstances: on request of a tokenise opcode (in
which case it can use any dictionary table it likes, in the format above) and during
acceptance of a game command (in which case the standard dictionary is used).

13.6.1

First, the text is broken up into words. Spaces divide up words and are otherwise ignored.
Word separators also divide words, but each one of them is considered a word in its own
right. Thus, the erratically-spaced text "fred,go fishing" is divided into four words:

fred / , / go / fishing

13.6.2

Each word is then encoded as a Z-machine string in dictionary form, and searched for in the
dictionary.

13.6.3

A "parse table" is then written, recording the number of words, the length and position of
each word and the dictionary address of each word which is recognised. For the format, see
the read opcode.

Remarks
Usually (under Inform, mandatorily) there are three bytes of data in the word entries, so that
dictionary entry lengths are 7 and 9 in the early and late Z-machine, respectively.

It is essential that dictionary entries are in numerical order of the bytes of encrypted text so
that interpreters can search the dictionary efficiently (e.g. by a binary-chop algorithm).
Because the letters in A0 are in alphabetical order, because the bits are ordered in the right
way and because the pad character 5 is less than the values for the letters, the numerical
ordering corresponds to normal English alphabetical order for ordinary words. (For instance
"an" comes before "anaconda".)

Both Infocom and Inform-compiled games contain words whose initial character is not a
letter (for instance, "#record").

Linards Ticmanis reports that some of Infocom's interpreters convert question marks to
spaces before lexical analysis. This is not Standard behaviour. (Thus, typing "What is a
grue?" into 'Zork I' no longer works: the player must type "What is a grue" instead.)

14. Complete table of opcodes
Two-operand opcodes 2OP

St Br Opcode Hex V Inform name and syntax Link

----- 0 --- ---

* 2OP:1 1 je a b ?(label) je

* 2OP:2 2 jl a b ?(label) jl

* 2OP:3 3 jg a b ?(label) jg

* 2OP:4 4 dec_chk (variable) value ?(label) dec_chk

* 2OP:5 5 inc_chk (variable) value ?(label) inc_chk

* 2OP:6 6 jin obj1 obj2 ?(label) jin

* 2OP:7 7 test bitmap flags ?(label) test

* 2OP:8 8 or a b -> (result) or

* 2OP:9 9 and a b -> (result) and

* 2OP:10 A test_attr object attribute ?(label) test_attr

2OP:11 B set_attr object attribute set_attr

2OP:12 C clear_attr object attribute clear_attr

2OP:13 D store (variable) value store

2OP:14 E insert_obj object destination insert_obj

* 2OP:15 F loadw array word-index -> (result) loadw

* 2OP:16 10 loadb array byte-index -> (result) loadb

* 2OP:17 11 get_prop object property -> (result) get_prop

* 2OP:18 12 get_prop_addr object property -> (result) get_prop_addr

* 2OP:19 13 get_next_prop object property -> (result) get_next_addr

* 2OP:20 14 add a b -> (result) add

* 2OP:21 15 sub a b -> (result) sub

* 2OP:22 16 mul a b -> (result) mul

* 2OP:23 17 div a b -> (result) div

* 2OP:24 18 mod a b -> (result) mod

* 2OP:25 19 4 call_2s routine arg1 -> (result) call_2s

2OP:26 1A 5 call_2n routine arg1 call_2n

2OP:27 1B 5 set_colour foreground background set_color

6 set_colour foreground background window set_color

2OP:28 1C 5/6 throw value stack-frame throw

----- 1D --- ---

----- 1E --- ---

----- 1F --- ---

Opcode numbers 32 to 127: other forms of 2OP with different types.

One-operand opcodes 1OP

St Br Opcode Hex V Inform name and syntax Link

* 1OP:128 0 jz a ?(label) jz

* * 1OP:129 1 get_sibling object -> (result) ?(label) get_sibling

* * 1OP:130 2 get_child object -> (result) ?(label) get_child

* 1OP:131 3 get_parent object -> (result) get_parent

* 1OP:132 4 get_prop_len property-address -> (result) get_prop_len

1OP:133 5 inc (variable) inc

1OP:134 6 dec (variable) dec

1OP:135 7 print_addr byte-address-of-string print_addr

* 1OP:136 8 4 call_1s routine -> (result) call_ls

1OP:137 9 remove_obj object remove_obj

1OP:138 A print_obj object print_obj

1OP:139 B ret value ret

1OP:140 C jump ?(label) jump

1OP:141 D print_paddr packed-address-of-string print_paddr

* 1OP:142 E load (variable) -> (result) load

* 1OP:143 F 1/4 not value -> (result) not

5 call_1n routine call_ln

Opcode numbers 144 to 175: other forms of 1OP with different types.

Zero-operand opcodes 0OP

St Br Opcode Hex V Inform name and syntax Link

0OP:176 0 rtrue rtrue

0OP:177 1 rfalse rfalse

0OP:178 2 print (literal-string) print

0OP:179 3 print_ret (literal-string) print_ret

0OP:180 4 1/- nop nop

* 0OP:181 5 1 save ?(label) save

4 save -> (result) save

5 [illegal]

* 0OP:182 6 1 restore ?(label) restore

4 restore -> (result) restore

5 [illegal]

0OP:183 7 restart restart

0OP:184 8 ret_popped ret_popped

0OP:185 9 1 pop pop

* 5/6 catch -> (result) catch

0OP:186 A quit quit

0OP:187 B new_line new_line

0OP:188 C 3 show_status show_status

4 [illegal]

* 0OP:189 D 3 verify ?(label) verify

0OP:190 E 5 [first byte of extended opcode] extended

* 0OP:191 F 5/- piracy ?(label) piracy

Opcode numbers 192 to 223: VAR forms of 2OP:0 to 2OP:31.

Variable-operand opcodes VAR

St Br Opcode Hex V Inform name and syntax Link

* VAR:224 0 1 call routine ...0 to 3 args... -> (result) call

4 call_vs routine ...0 to 3 args... -> (result) call_vs

VAR:225 1 storew array word-index value storew

VAR:226 2 storeb array byte-index value storeb

VAR:227 3 put_prop object property value put_prop

VAR:228 4 1 sread text parse sread

4 sread text parse time routine sread

* 5 aread text parse time routine -> (result) aread

VAR:229 5 print_char output-character-code print_char

VAR:230 6 print_num value print_num

* VAR:231 7 random range -> (result) random

VAR:232 8 push value push

VAR:233 9 1 pull (variable) pull

* 6 pull stack -> (result) pull

VAR:234 A 3 split_window lines split_window

VAR:235 B 3 set_window window set_window

* VAR:236 C 4 call_vs2 routine ...0 to 7 args... -> (result) call_vs2

VAR:237 D 4 erase_window window erase_window

VAR:238 E 4/- erase_line value erase_line

6 erase_line pixels erase_line

VAR:239 F 4 set_cursor line column set_cursor

6 set_cursor line column window set_cursor

VAR:240 10 4/6 get_cursor array get_cursor

VAR:241 11 4 set_text_style style set_text_style

VAR:242 12 4 buffer_mode flag buffer_mode

VAR:243 13 3 output_stream number output_stream

5 output_stream number table output_stream

6 output_stream number table width output_stream

VAR:244 14 3 input_stream number input_stream

VAR:245 15 5/3 sound_effect number effect volume routine sound_effect

* VAR:246 16 4 read_char 1 time routine -> (result) read_char

* * VAR:247 17 4 scan_table x table len form -> (result) scan_table

* VAR:248 18 5/6 not value -> (result) not

VAR:249 19 5 call_vn routine ...up to 3 args... call_vn

VAR:250 1A 5 call_vn2 routine ...up to 7 args... call_vn2

VAR:251 1B 5 tokenise text parse dictionary flag tokenise

VAR:252 1C 5 encode_text zscii-text length from coded-text encode_text

VAR:253 1D 5 copy_table first second size copy_table

VAR:254 1E 5 print_table zscii-text width height skip print_table

* VAR:255 1F 5 check_arg_count argument-number check_arg_count

Extended opcodes EXT

St Br Opcode Hex V Inform name and syntax Link

* EXT:0 0 5 save table bytes name prompt -> (result) save

* EXT:1 1 5 restore table bytes name prompt -> (result) restore

* EXT:2 2 5 log_shift number places -> (result) log_shift

* EXT:3 3 5/- art_shift number places -> (result) art_shift

* EXT:4 4 5 set_font font -> (result) set_font

* 6/- set_font font window -> (result) set_font

EXT:5 5 6 draw_picture picture-number y x draw_picture

* EXT:6 6 6 picture_data picture-number array ?(label) picture_data

EXT:7 7 6 erase_picture picture-number y x erase_picture

EXT:8 8 6 set_margins left right window set_margins

* EXT:9 9 5 save_undo -> (result) save_undo

* EXT:10 A 5 restore_undo -> (result) restore_undo

EXT:11 B 5/* print_unicode char-number print_unicode

EXT:12 C 5/* check_unicode char-number -> (result) check_unicode

EXT:13 D 5/* set_true_colour foreground background set_true_color

6/* set_true_colour foreground background window set_true_color

------- E --- ---

------- F --- ---

EXT:16 10 6 move_window window y x move_window

EXT:17 11 6 window_size window y x window_size

EXT:18 12 6 window_style window flags operation window_style

* EXT:19 13 6 get_wind_prop window property-number -> (result) get_wind_prop

EXT:20 14 6 scroll_window window pixels scroll_window

EXT:21 15 6 pop_stack items stack pop_stack

EXT:22 16 6 read_mouse array read_mouse

EXT:23 17 6 mouse_window window mouse_window

* EXT:24 18 6 push_stack value stack ?(label) push_stack

EXT:25 19 6 put_wind_prop window property-number value put_wqind_prop

EXT:26 1A 6 print_form formatted-table print_form

* EXT:27 1B 6 make_menu number table ?(label) make_menu

EXT:28 1C 6 picture_table table picture_table

* EXT:29 1D 6/* buffer_screen mode -> (result) buffer_screen

14.1 Contents
This table contains all 119 opcodes and, taken with the dictionary in S 15, describes exactly
what each should do. In addition, it lists which opcodes are actually used in the known
Infocom story files, and documents the Inform assembly language syntax.

14.2 Out of range opcodes
Formally, it is illegal for a game to contain an opcode not specified for its version. An
interpreter should normally halt with a suitable message.

14.2.1

However, extended opcodes in the range EXT:29 to EXT:255 should be simply ignored
(perhaps with a warning message somewhere off-screen).

14.2.2

***[1.0][1.1] EXT:11 and EXT:12 were opcodes added in Standard 1.0 and can be
generated in code compiled by Inform 6.12 or later. EXT:13 and EXT:29 are new in
Standard 1.1. EXT:14 to EXT:15, and EXT:30 to EXT:127, are reserved for future versions
of this document to specify.

14.2.3

Designers who wish to create their own "new" opcodes, for one specific game only, are
asked to use opcode numbers in the range EXT:128 to EXT:255. It is easy to modify Inform
to name and assemble such opcodes. (Of course the game will then have to be circulated
with a suitably modified interpreter to run it.)

14.2.4

Interpreter-writers should ideally make this easy by providing a routine which is called if
EXT:128 to EXT:255 are found, so that the minimum possible modification to the
interpreter is needed.

Reading the opcode tables
The two columns "St" and "Br" (store and branch) mark whether an instruction stores a
result in a variable, and whether it must provide a label to jump to, respectively.

The "Opcode" is written TYPE:Decimal where the TYPE is the operand count (2OP, 1OP,
0OP or VAR) or else EXT for two-byte opcodes (where the first byte is (decimal) 190). The
decimal number is the lowest possible decimal opcode value. The hex number is the opcode
number within each TYPE.

The "V" column gives the Version information. If nothing is specified, the opcode is as
stated from Version 1 onwards. Otherwise, it exists only from the version quoted onwards.
Before this time, its use is illegal. Some opcodes change their meanings as the Version
increases, and these have more than one line of specification. Others become illegal again,
and these are marked [illegal].

In a few cases, the Version is given as "3/4" or some such. The first number is the Version
number whose specification the opcode belongs to, and the second is the earliest Version in
which the opcode is known actually to be used in an Infocom-produced story file. A dash
means that it seems never to have been used (in any of Versions 1 to 6). The notation "5/*"
or "6/*" means that the opcode was introduced in this Standards document long after the
Infocom era.

The table explicitly marks opcodes which do not exist in any version of the Z-machine as
------: in addition, none of the extended set of codes after EXT:29 have been used.

Inform assembly language
This section documents Inform 6 assembly language, which is richer than that of Inform 5.
The Inform 6 assembler can generate every legal opcode and automatically sets any
consequent header bits (for instance, a usage of set_colour will set the "colours needed"
bit).

One way to get a picture of Inform assembly language is to compile a short program with
tracing switched on (using the -a or -t switches).

1. An Inform statement beginning with an @ is sent directly to the assembler. In the syntax
below, (variable) and (result) must be variables (or sp, a special variable name available
only in assembly language, and meaning the stack pointer); (label) a label (not a routine
name).

(literal-string) must be literal text in quotation marks "thus".

routine should be the name of a routine (this assembles to its packed address). Otherwise
any Inform constant term (such as '/' or 'beetle') can be given as an operand.

2. It is optional, but sensible, to place a -> sign before a store-variable. For example, in

@mul a 56 -> sp;

("multiply variable a by 56, and put the result on the stack") the -> can be omitted, but
should be included for clarity.

3. A label to branch to should be prefaced with a question mark ?, as in

@je a b ?Equal; ! Branch to Equal if a == b

(If the question mark is omitted, the branch is compiled in the short form, which will only
work for very nearby labels and is very seldom useful in code written by hand.) Note that
the effect of any branch instruction can be negated using a tilde ~:

@je a b ?~Different; ! Branch to Different if a ~= b

4. Labels are assembled using full stops:

.MyLabel;

All branches must be to such a label within the same routine. (The Inform assembler
imposes the same-routine restriction.)

5. Most operands are assembled in the obvious way: numbers and constant values (like
characters) as numbers, variables as variables, sp as the value on top of the stack. There are
two exceptions. "Call" opcodes expect as first operand the name of a routine to call:

@call_1n MyRoutine;

but one can also give an indirect address, as a constant or variable, using square brackets:

@call_1n [x]; ! Call routine whose address is in x

Secondly, seven Z-machine opcodes access variables but by their numbers: thus one should
write, say, the constant 0 instead of the variable sp. This is inconvenient, so the Inform
assembler accepts variable names instead. The operands affected are those marked as
(variable) in the syntax chart; Inform translates the variable name as a "small constant"
operand with that variable's number as value. The affected opcodes are:

inc, dec, inc_chk, dec_chk, store, pull, load.

This is useful, but there is another possibility, of genuinely giving a variable operand. The
Inform notation for this involves square brackets again:

@inc frog; ! Increment var "frog"
@inc [frog]; ! Increment var whose number is in "frog"

Infocom story files often use such instructions.

6. The Inform assembler is also written with possible extensions to the Z-machine
instruction set in mind. (Of course these can only work if a customised interpreter is used.)
Simply give a specification in double-quotes where you would normally give the opcode
name. For example,

@"1OP:4S" 34 -> i;
@get_prop_len 34 -> i;

are equivalent instructions, since get_prop_len is instruction 4 in the 1OP (one-operand)
set, and is a Store opcode. The syntax is:

" 0OP : decimal-number flags " (range 0 to 15)
 1OP 0 15
 2OP 0 15
 VAR 32 63
 VAR_LONG 32 63
 EXT 0 255
 EXT_LONG 0 255

(EXT_LONG is a logical possibility but has not been used in the Z-machine so far: the
assembler provides it in case it might be useful in future.) The possible flags are:

S Store opcode
B Branch opcode
T Text in-line instead of operands

 (as with "print" and "print_ret")
I "Indirect addressing": first operand is a (variable)
Fnn Set bit nn in Flags 2 (signalling to the interpreter that an

 unusual feature has been called for): the number is in decimal

For example,

"EXT:128BSF14"

is an exotic new opcode, number 128 in the extended range, which is both Branch and
Store, and the assembly of which causes bit 14 to be set in "Flags 2". See S 14.2 below for
rules on how to number newly created opcodes.

Remarks
The opcodes EXT:5 to EXT:8 were very likely in Infocom's own Version 5 specification
(documentary records of which are lost): they seem to have been partially implemented in
existing Infocom interpreters, but do not occur in any existing Version 5 story file. They are
here left unspecified.

The notation "5/3" for sound_effect is because this plainly Version 5 feature was used also
in one solitary Version 3 game, 'The Lurking Horror' (the sound version of which was the
last Version 3 release, in September 1987).

The 2OP opcode 0 was possibly intended for setting break-points in debugging (and may be
used for this again). It was not nop.

read_mouse and make_menu are believed to have been used only in 'Journey' (based on a
check of 11 Version 6 story files).

picture_table is used once by 'Shogun' and several times by 'Zork Zero'.

15. Dictionary of opcodes
The highest ideal of a translation... is achieved when the reader flings it impatiently into the
fire, and begins patiently to learn the language for himself.

Philip Vellacott

15.1
The dictionary below is alphabetical and includes entries on every opcode listed in the table
above, as well as brief notes on a few opcodes once thought to exist but now disproved.

15.2
The Z-machine has the same concept of "table" (as an internal data structure) as Inform.
Specifically, a table is an array of words (in dynamic or static memory) of which the initial
entry is the number of subsequent words in the table. For example, a table with three entries
occupies 8 bytes, arranged as the words 3, x, y, z.

15.3
In all cases below where one operand is supposed to be in a particular range, behaviour is
undefined if it is not. For instance an interpreter complies with the Standard even if it
crashes when an illegal object number (including 0) is given for an object operand.
However, see S A for guidelines on detecting and dealing with errors.

add

2OP:20 14 add a b -> (result)

Signed 16-bit addition.

and

2OP:9 9 and a b -> (result)

Bitwise AND.

aread

This is the Inform name for the keyboard-reading opcode under Version 5 and later. (Inform
calls the same opcode sread under Versions 3 and 4.) See read for the specification.

art_shift

EXT:3 3 5/- art_shift number places -> (result)

Does an arithmetic shift of number by the given number of places, shifting left (i.e.
increasing) if places is positive, right if negative. In a right shift, the sign bit is preserved as
well as being shifted on down. (The alternative behaviour is log_shift.)

The "places" operand must be in the range -15 to +15, otherwise behaviour is undefined.

buffer_mode

VAR:242 12 4 buffer_mode flag

If set to 1, text output on the lower window in stream 1 is buffered up so that it can be word-
wrapped properly. If set to 0, it isn't.

In Version 6, this opcode is redundant (the "buffering" window attribute can be set instead).
It is used twice in each of Infocom's Version 6 story files, in the $verify routine. Frotz
responds by setting the current window's "buffering" attribute, while Infocom's own
interpreters respond by doing nothing. This standard leaves the result of buffer_mode
undefined in Version 6.

buffer_screen

EXT:29 1D 6/* buffer_screen mode -> (result)

Tells the interpreter how to handle display buffering. If mode is 0, updates must be made as
soon as possible. If mode is 1, the interpreter may make changes to a backing store, and
need not update the screen. The interpreter is free to ignore the advice, but if so must always
act as though the mode is 0 (update the screen as soon as possible).

With buffer_screen in either state, an update of the visible display can be forced
immediately by issuing buffer_screen -1, without altering the current buffering state. Note
that buffer_screen -1 does not flush the text buffer.

The return value is the old buffer_screen state.

See S 8 for more details.

***[1.1] This opcode will only be present in interpreters obeying Standard 1.1 or later, so
story files should check the standard number of the interpreter before executing this opcode.

call

VAR:224 0 1 call routine ...up to 3 args... -> (result)

The only call instruction in Version 3, Inform reads this as call_vs in higher versions: it calls
the routine with 0, 1, 2 or 3 arguments as supplied and stores the resulting return value.
(When the address 0 is called as a routine, nothing happens and the return value is false.)

call_1n

1OP:143 F 5 call_1n routine

Executes routine() and throws away result.

call_1s

1OP:136 8 4 call_1s routine -> (result)

Stores routine().

call_2n

2OP:26 1A 5 call_2n routine arg1

Executes routine(arg1) and throws away result.

call_2s

2OP:25 19 4 call_2s routine arg1 -> (result)

Stores routine(arg1).

call_vn

VAR:249 19 5 call_vn routine ...up to 3 args...

Like call, but throws away result.

call_vs

VAR:224 0 4 call_vs routine ...up to 3 args... -> (result)

See call.

call_vn2

VAR:250 1A 5 call_vn2 routine ...up to 7 args...

Call with a variable number (from 0 to 7) of arguments, then throw away the result. This
(and call_vs2) uniquely have an extra byte of opcode types to specify the types of
arguments 4 to 7. Note that it is legal to use these opcodes with fewer than 4 arguments (in
which case the second byte of type information will just be $ff).

call_vs2

VAR:236 C 4 call_vs2 routine ...up to 7 args... -> (result)

See call_vn2.

catch

0OP:185 9 5/6 catch -> (result)

Opposite to throw (and occupying the same opcode that pop used in Versions 3 and 4).
catch returns the current "stack frame".

check_arg_count

VAR:255 1F 5 check_arg_count argument-number

Branches if the given argument-number (counting from 1) has been provided by the routine
call to the current routine. (This allows routines in Versions 5 and later to distinguish
between the calls routine(1) and routine(1,0), which would otherwise be impossible to tell
apart.)

check_unicode

EXT:12 C 5/* check_unicode char-number -> (result)

Determines whether or not the interpreter can print, or receive from the keyboard, the given
Unicode character. Bit 0 of the result should be set if and only if the interpreter can print the
character; bit 1 if and only if the interpreter can receive it from the keyboard. Bits 2 to 15
are undefined.

***[1.0] This opcode will only be present in interpreters obeying Standard 1.0 or later, so
story files should check the standard number of the interpreter before executing this opcode.

clear_attr

2OP:12 C clear_attr object attribute

Make object not have the attribute numbered attribute.

copy_table

VAR:253 1D 5 copy_table first second size

If second is zero, then size bytes of first are zeroed.

Otherwise first is copied into second, its length in bytes being the absolute value of size
(i.e., size if size is positive, -size if size is negative).

The tables are allowed to overlap. If size is positive, the interpreter must copy either
forwards or backwards so as to avoid corrupting first in the copying process. If size is
negative, the interpreter must copy forwards even if this corrupts first. ('Beyond Zork' uses
this to fill an array with spaces.)

(Version 0.2 of this document wrongly specified that if size is positive then copying should
always run backward. This results in the player being unable to cross the river near the start
of 'Journey', as the game uses copy_table to shuffle menu options, and the menu
"Downstream, Upstream, Cross, Return" is changed to "Return, Return, Return".)

dec

1OP:134 6 dec (variable)

Decrement variable by 1. This is signed, so 0 decrements to -1.

dec_chk

2OP:4 4 dec_chk (variable) value ?(label)

Decrement variable, and branch if it is now less than the given value.

div

2OP:23 17 div a b -> (result)

Signed 16-bit division. Division by zero should halt the interpreter with a suitable error
message.

draw_picture

EXT:5 5 6 draw_picture picture-number y x

Displays the picture with the given number. (y,x) coordinates (of the top left of the picture)
are each optional, in that a value of zero for y or x means the cursor y or x coordinate in the
current window. It is illegal to call this with an invalid picture number.

encode_text

VAR:252 1C 5 encode_text zscii-text length from coded-text

Translates a ZSCII word to Z-encoded text format (stored at coded-text), as if it were an
entry in the dictionary. The text begins at from in the zscii-text buffer and is length
characters long. (Some interpreters ignore this and keep translating until they hit a 0
character anyway, or have already filled up the 6-byte Z-encoded string.)

erase_line

VAR:238 E 4/6 erase_line value

Versions 4 and 5: if the value is 1, erase from the current cursor position to the end of its line
in the current window. If the value is anything other than 1, do nothing.

Version 6: if the value is 1, erase from the current cursor position to the end of the its line in
the current window. If not, erase the given number of pixels minus one across from the
cursor (clipped to stay inside the right margin). The cursor does not move.

erase_picture

EXT:7 7 6 erase_picture picture-number y x

Like draw_picture, but paints the appropriate region to the background colour for the given
window. It is illegal to call this with an invalid picture number.

erase_window

VAR:237 D 4 erase_window window

Erases window with given number (to background colour); or if -1 it unsplits the screen and
clears the lot; or if -2 it clears the screen without unsplitting it. In cases -1 and -2, the cursor
may move (see S 8 for precise details).

"extended"

This byte (decimal 190) is not an instruction, but indicates that the opcode is "extended": the
next byte contains the number in the extended set.

get_child

1OP:130 2 get_child object -> (result) ?(label)

Get first object contained in given object, branching if this exists, i.e. is not nothing (i.e., is
not 0).

get_cursor

VAR:240 10 4/6 get_cursor array

Puts the current cursor row into the word 0 of the given array, and the current cursor column
into word 1. (The array is not a table and has no size information in its initial entry.)

get_next_prop

2OP:19 13 get_next_prop object property -> (result)

Gives the number of the next property provided by the quoted object. This may be zero,
indicating the end of the property list; if called with zero, it gives the first property number
present. It is illegal to try to find the next property of a property which does not exist, and an
interpreter should halt with an error message (if it can efficiently check this condition).

get_parent

1OP:131 3 get_parent object -> (result)

Get parent object (note that this has no "branch if exists" clause).

get_prop

2OP:17 11 get_prop object property -> (result)

Read property from object (resulting in the default value if it had no such declared
property). If the property has length 1, the value is only that byte. If it has length 2, the first
two bytes of the property are taken as a word value. It is illegal for the opcode to be used if
the property has length greater than 2, and the result is unspecified.

get_prop_addr

2OP:18 12 get_prop_addr object property -> (result)

Get the byte address (in dynamic memory) of the property data for the given object's
property. This must return 0 if the object hasn't got the property.

get_prop_len

1OP:132 4 get_prop_len property-address -> (result)

Get length of property data (in bytes) for the given object's property. It is illegal to try to
find the property length of a property which does not exist for the given object, and an
interpreter should halt with an error message (if it can efficiently check this condition).

@get_prop_len 0 must return 0. This is required by some Infocom games and files
generated by old versions of Inform.

get_sibling

1OP:129 1 get_sibling object -> (result) ?(label)

Get next object in tree, branching if this exists, i.e. is not 0.

get_wind_prop

EXT:19 13 6 get_wind_prop window property-number -> (result)

Reads the given property of the given window (see S 8).

inc

1OP:133 5 inc (variable)

Increment variable by 1. (This is signed, so -1 increments to 0.)

inc_chk

2OP:5 5 inc_chk (variable) value ?(label)

Increment variable, and branch if now greater than value.

input_stream

VAR:244 14 3 input_stream number

Selects the current input stream.

insert_obj

2OP:14 E insert_obj object destination

Moves object O to become the first child of the destination object D. (Thus, after the
operation the child of D is O, and the sibling of O is whatever was previously the child of
D.) All children of O move with it. (Initially O can be at any point in the object tree; it may
legally have parent zero.)

je

2OP:1 1 je a b c d ?(label)

Jump if a is equal to any of the subsequent operands. (Thus @je a never jumps and @je a b
jumps if a = b.)

je with just 1 operand is not permitted.

jg

2OP:3 3 jg a b ?(label)

Jump if a > b (using a signed 16-bit comparison).

jin

2OP:6 6 jin obj1 obj2 ?(label)

Jump if object a is a direct child of b, i.e., if parent of a is b.

jl

2OP:2 2 jl a b ?(label)

Jump if a < b (using a signed 16-bit comparison).

jump

1OP:140 C jump ?(label)

Jump (unconditionally) to the given label. (This is not a branch instruction and the operand
is a 2-byte signed offset to apply to the program counter.) It is legal for this to jump into a
different routine (which should not change the routine call state), although it is considered
bad practice to do so and the Txd disassembler is confused by it.

The destination of the jump opcode is:

address after instruction + Offset – 2

This is analogous to the calculation for branch offsets.

jz

1OP:128 0 jz a ?(label)

Jump if a = 0.

load

1OP:142 E load (variable) -> (result)

The value of the variable referred to by the operand is stored in the result. (Inform doesn't
use this; see the notes to S 14.)

loadb

2OP:16 10 loadb array byte-index -> (result)

Stores array->byte-index (i.e., the byte at address array+byte-index, which must lie in
static or dynamic memory).

loadw

2OP:15 F loadw array word-index -> (result)

Stores array-->word-index (i.e., the word at address array+2*word-index, which must lie
in static or dynamic memory).

log_shift

EXT:2 2 5 log_shift number places -> (result)

Does a logical shift of number by the given number of places, shifting left (i.e. increasing)
if places is positive, right if negative. In a right shift, the sign is zeroed instead of being
shifted on. (See also art_shift.)

The "places" operand must be in the range -15 to +15, otherwise behaviour is undefined.

make_menu

EXT:27 1B 6 make_menu number table ?(label)

Controls menus with numbers greater than 2 (i.e., it doesn't control the three system menus).
If the table supplied is 0, the menu is removed. Otherwise it is a table of tables. Each table is
a ZSCII string: the first item being a menu name, subsequent ones the entries.

mod

2OP:24 18 mod a b -> (result)

Remainder after signed 16-bit division. Division by zero should halt the interpreter with a
suitable error message.

mouse_window

EXT:23 17 6 mouse_window window

Constrain the mouse arrow to sit inside the given window. By default it sits in window 1.
Setting to -1 takes all restriction away. (The mouse clicks are not reported if the arrow is
outside the window and interpreters are presumably supposed to hold the arrow there by
hardware means if possible.)

move_window

EXT:16 10 6 move_window window y x

Moves the given window to pixels (y,x): (1,1) being the top left. Nothing actually happens
(since windows are entirely notional transparencies): but any future plotting happens in the
new place.

mul

2OP:22 16 mul a b -> (result)

Signed 16-bit multiplication.

new_line

0OP:187 B new_line

Print carriage return.

nop

0OP:180 4 1/- nop

Probably the official "no operation" instruction, which, appropriately, was never operated
(in any of the Infocom datafiles): it may once have been a breakpoint.

not

1OP:143 F 1/4 not value -> (result)
VAR:248 18 5/6 not value -> (result)

Bitwise NOT (i.e., all 16 bits reversed). Note that in Versions 3 and 4 this is a 1OP
instruction, reasonably since it has 1 operand, but in later Versions it was moved into the
extended set to make room for call_1n.

or

2OP:8 8 or a b -> (result)

Bitwise OR.

output_stream

VAR:243 13 3 output_stream number table
6 output_stream number table width

If stream is 0, nothing happens. If it is positive, then that stream is selected; if negative,
deselected. (Recall that several different streams can be selected at once.)

When stream 3 is selected, a table must be given into which text can be printed. The first
word always holds the number of characters printed, the actual text being stored at bytes
table+2 onward. It is not the interpreter's responsibility to worry about the length of this
table being overrun.

In Version 6, a width field may optionally be given: text will then be justified as if it were in
the window with that number (if width is zero or positive) or a box -width pixels wide (if
negative). Then the table will contain not ordinary text but formatted text: see print_form.

picture_data

EXT:6 6 6 picture_data picture-number array ?(label)

Asks the interpreter for data on the picture with the given number. If the picture number is
valid, a branch occurs and information is written to the array: the height in word 0, the width
in word 1, in pixels. (This is an array, not a "table" with initial size information.)

Otherwise, if the picture number is zero, the interpreter writes the number of available
pictures into word 0 of the array and the release number of the picture file into word 1, and
branches if any pictures are available. (Infocom's first Version 6 Amiga interpreter did not
handle this case properly, and early releases of 'Zork Zero' did not use it. The feature may
have been added on the MSDOS release of 'Zork Zero'.)

Otherwise, nothing happens.

picture_table

EXT:28 1C 6 picture_table table

Given a table of picture numbers, the interpreter may if it wishes load or unpack these
pictures from disc into a cache for convenient rapid plotting later. 'Zork Zero' makes
frequent use of this, for instance for its peggleboard display. Moreover, it expects rapid
plotting only for those images listed in the last call to picture_table. In other words, any
images still in the cache when picture_table is called can safely be thrown away. (The
Amiga interpreter 6.14 uses a cache of size 5K and never caches any individual image larger
than 1K.)

piracy

0OP:191 F 5/- piracy ?(label)

Branches if the game disc is believed to be genuine by the interpreter (which is assumed to
have some arcane way of finding out). Interpreters are asked to be gullible and to
unconditionally branch.

pop

0OP:185 9 1 pop

Throws away the top item on the stack. (This was useful to lose unwanted routine call
results in early Versions.)

pop_stack

EXT:21 15 6 pop_stack items stack

The given number of items are thrown away from the top of a stack: by default the system
stack, otherwise the one given as a second operand.

print

0OP:178 2 print <literal-string>

Print the quoted (literal) Z-encoded string.

print_addr

1OP:135 7 print_addr byte-address-of-string

Print (Z-encoded) string at given byte address, in dynamic or static memory.

print_char

VAR:229 5 print_char output-character-code

Print a ZSCII character. The operand must be a character code defined in ZSCII for output
(see S 3). In particular, it must certainly not be negative or larger than 1023.

print_form

EXT:26 1A 6 print_form formatted-table

Prints a formatted table of the kind written to output stream 3 when formatting is on. This is
an elaborated version of print_table to cope with fonts, pixels and other impedimenta. It is
a sequence of lines, terminated with a zero word. Each line is a word containing the number
of characters, followed by that many bytes which hold the characters concerned.

print_num

VAR:230 6 print_num value

Print (signed) number in decimal.

print_obj

1OP:138 A print_obj object

Print short name of object (the Z-encoded string in the object header, not a property). If the
object number is invalid, the interpreter should halt with a suitable error message.

print_paddr

1OP:141 D print_paddr packed-address-of-string

Print the (Z-encoded) string at the given packed address in high memory.

print_ret

0OP:179 3 print_ret <literal-string>

Print the quoted (literal) Z-encoded string, then print a new-line and then return true (i.e., 1).

print_table

VAR:254 1E 5 print_table zscii-text width height skip

Print a rectangle of text on screen spreading right and down from the current cursor
position, of given width and height, from the table of ZSCII text given. (Height is optional
and defaults to 1.) If a skip value is given, then that many characters of text are skipped
over in between each line and the next. (So one could make this display, for instance, a 2 by
3 window onto a giant 40 by 40 character graphics map.)

print_unicode

EXT:11 B 5/* print_unicode char-number

Print a Unicode character. See S 3.8.5.4 and S 7.5 for details. The given character code must
be defined in Unicode.

***[1.0] This opcode will only be present in interpreters obeying Standard 1.0 or later, so
story files should check the standard number of the interpreter before executing this opcode.

pull

VAR:233 9 1 pull (variable)
 6 pull stack -> (result)

Pulls value off a stack. (If the stack underflows, the interpreter should halt with a suitable
error message.) In Version 6, the stack in question may be specified as a user one: otherwise
it is the game stack.

push

VAR:232 8 push value

Pushes value onto the game stack.

push_stack

EXT:24 18 6 push_stack value stack ?(label)

Pushes the value onto the specified user stack, and branching if this was successful. If the
stack overflows, nothing happens (this is not an error condition).

put_prop

VAR:227 3 put_prop object property value

Writes the given value to the given property of the given object. If the property does not
exist for that object, the interpreter should halt with a suitable error message. If the property
length is 1, then the interpreter should store only the least significant byte of the value. (For
instance, storing -1 into a 1-byte property results in the property value 255.) As with
get_prop the property length must not be more than 2: if it is, the behaviour of the opcode is
undefined.

put_wind_prop

EXT:25 19 6 put_wind_prop window property-number value

Writes a window property (see get_wind_prop). This should only be used when there is no
direct command (such as move_window) to use instead, as some such operations may have
side-effects.

quit

0OP:186 A quit

Exit the game immediately. (Any "Are you sure?" question must be asked by the game, not
the interpreter.) It is not legal to return from the main routine (that is, from where execution
first begins) and this must be used instead.

random

VAR:231 7 random range -> (result)

If range is positive, returns a uniformly random number between 1 and range. If range is
negative, the random number generator is seeded to that value and the return value is 0.
Most interpreters consider giving 0 as range illegal (because they attempt a division with
remainder by the range), but correct behaviour is to reseed the generator in as random a
way as the interpreter can (e.g. by using the time in milliseconds).

(Some version 3 games, such as 'Enchanter' release 29, had a debugging verb #random such
that typing, say, #random 14 caused a call of random with -14.)

read

VAR:228 4 1 sread text parse
4 sread text parse time routine
5 aread text parse time routine -> (result)

(Note that Inform internally names the read opcode as aread in Versions 5 and later and
sread in Versions 3 and 4.)

This opcode reads a whole command from the keyboard (no prompt is automatically
displayed). It is legal for this to be called with the cursor at any position on any window.

In Versions 1 to 3, the status line is automatically redisplayed first.

A sequence of characters is read in from the current input stream until a carriage return (or,
in Versions 5 and later, any terminating character) is found.

In Versions 1 to 4, byte 0 of the text-buffer should initially contain the maximum number of
letters which can be typed, minus 1 (the interpreter should not accept more than this). The
text typed is reduced to lower case (so that it can tidily be printed back by the program if
need be) and stored in bytes 1 onward, with a zero terminator (but without any other
terminator, such as a carriage return code). (This means that if byte 0 contains n then the
buffer must contain n+1 bytes, which makes it a string array of length n in Inform
terminology.)

In Versions 5 and later, byte 0 of the text-buffer should initially contain the maximum
number of letters which can be typed (the interpreter should not accept more than this). The
interpreter stores the number of characters actually typed in byte 1 (not counting the
terminating character), and the characters themselves (reduced to lower case) in bytes 2
onward (not storing the terminating character). (Some interpreters wrongly add a zero byte
after the text anyway, so it is wise for the buffer to contain at least n+3 bytes.)

Moreover, if byte 1 contains a positive value at the start of the input, then read assumes that
number of characters are left over from an interrupted previous input, and writes the new
characters after those already there. Note that the interpreter does not redisplay the
characters left over: the game does this, if it wants to. This is unfortunate for any interpreter
wanting to give input text a distinctive appearance on-screen, but 'Beyond Zork', 'Zork Zero'
and 'Shogun' clearly require it. ("Just a tremendous pain in my butt" -- Andrew Plotkin; "the
most unfortunate feature of the Z-machine design" -- Stefan Jokisch.)

In Version 4 and later, if the operands time and routine are supplied (and non-zero) then the
routine call routine() is made every time/10 seconds during the keyboard-reading process.

If this routine returns true, all input is erased (to zero) and the reading process is terminated
at once. (The terminating character code is 0.) The routine is permitted to print to the screen
even if it returns false to signal "carry on": the interpreter should notice and redraw the input
line so far, before input continues. (Frotz notices by looking to see if the cursor position is
at the left-hand margin after the interrupt routine has returned.)

If input was terminated in the usual way, by the player typing a carriage return, then a
carriage return is printed (so the cursor moves to the next line). If it was interrupted, the
cursor is left at the rightmost end of the text typed in so far.

Next, lexical analysis is performed on the text (except that in Versions 5 and later, if parse-
buffer is zero then this is omitted). Initially, byte 0 of the parse-buffer should hold the
maximum number of textual words which can be parsed. (If this is n, the buffer must be at
least 2 + 4*n bytes long to hold the results of the analysis.)

The interpreter divides the text into words and looks them up in the dictionary, as described
in S 13. The number of words is written in byte 1 and one 4-byte block is written for each
word, from byte 2 onwards (except that it should stop before going beyond the maximum
number of words specified). Each block consists of the byte address of the word in the
dictionary, if it is in the dictionary, or 0 if it isn't; followed by a byte giving the number of
letters in the word; and finally a byte giving the position in the text-buffer of the first letter
of the word.

In Version 5 and later, this is a store instruction: the return value is the terminating character
(note that the user pressing his "enter" key may cause either 10 or 13 to be returned; the
interpreter must return 13). A timed-out input returns 0.

(Versions 1 and 2 and early Version 3 games mistakenly write the parse buffer length 240
into byte 0 of the parse buffer: later games fix this bug and write 59, because 2+4*59 = 238
so that 59 is the maximum number of textual words which can be parsed into a buffer of
length 240 bytes. Old versions of the Inform 5 library commit the same error. Neither
mistake has very serious consequences.)

(Interpreters are asked to halt with a suitable error message if the text or parse buffers have
length of less than 3 or 6 bytes, respectively: this sometimes occurs due to a previous array
being overrun, causing bugs which are very difficult to find.)

read_char

VAR:246 16 4 read_char 1 time routine -> (result)

Reads a single character from input stream 0 (the keyboard). The first operand must be 1
(presumably it was provided to support multiple input devices, but only the keyboard was
ever used). time and routine are optional (in Versions 4 and later only) and dealt with as in
read above.

read_mouse

EXT:22 16 6 read_mouse array

The four words in the array are written with the mouse y coordinate, x coordinate, button
bits, and a menu word.

The buttons bits are arranged so that the "primary" button is the lowest bit, the "secondary"
(if present) is the next lowest bit, and so on, up to a potential 16 buttons. The ordering of
buttons should be that which is most natural for the host system. Here are some suggested
assignments:

 Button assignments
Platform Bit 0 (low) Bit 1 Bit 2
--
RISC OS Select Adjust Menu
MacOS Primary/only Secondary Tertiary ...
Windows Left Right Middle
X Left Right Middle

In the menu word, the upper byte is the menu number and the lower byte is the item number
(from 0). (Note that the array isn't a table and has no initial size information. The data is
written to words 0 to 3 in the array.)

remove_obj

1OP:137 9 remove_obj object

Detach the object from its parent, so that it no longer has any parent. (Its children remain in
its possession.)

restart

0OP:183 7 1 restart

Restart the game. (Any "Are you sure?" question must be asked by the game, not the
interpreter.) The only pieces of information surviving from the previous state are the
"transcribing to printer" bit (bit 0 of 'Flags 2' in the header, at address $10) and the "use
fixed pitch font" bit (bit 1 of 'Flags 2').

In particular, changing the program start address before a restart will not have the effect of
restarting from this new address.

restore

0OP:182 6 1 restore ?(label)
0OP:182 5 4 restore -> (result)
EXT:1 1 5 restore table bytes name prompt-> (result)

See save. In Version 3, the branch is never actually made, since either the game has
successfully picked up again from where it was saved, or it failed to load the save game file.

As with restart, the transcription and fixed font bits survive. The interpreter gives the game
a way of knowing that a restore has just happened (see save).

***[1.0] From Version 5 it can have optional parameters as save does, and returns the
number of bytes loaded if so. (Whether Infocom intended these options as part of Version 5
is doubtful, but it's too useful a feature to exclude from this Standard.)

If the restore fails, 0 is returned, but once again this necessarily happens since otherwise
control is already elsewhere.

restore_undo

EXT:10 A 5 restore_undo -> (result)

Like restore, but restores the state saved to memory by save_undo. (The optional
parameters of restore may not be supplied.) The behaviour of restore_undo is unspecified
if no save_undo has previously occurred (and a game may not legally use it): an interpreter
might simply ignore this.

ret

1OP:139 B ret value

Returns from the current routine with the value given.

ret_popped

0OP:184 8 ret_popped

Pops top of stack and returns that. (This is equivalent to ret sp, but is one byte cheaper.)

rfalse

0OP:177 1 rfalse

Return false (i.e., 0) from the current routine.

rtrue

0OP:176 0 rtrue

Return true (i.e., 1) from the current routine.

save

0OP:181 5 1 save ?(label)
0OP:181 5 4 save -> (result)
EXT:0 0 5 save table bytes name prompt -> (result)

On Versions 3 and 4, attempts to save the game (all questions about filenames are asked by
interpreters) and branches if successful. From Version 5 it is a store rather than a branch
instruction; the store value is 0 for failure, 1 for "save succeeded" and 2 for "the game is
being restored and is resuming execution again from here, the point where it was saved".

It is illegal to use this opcode within an interrupt routine (one called asynchronously by a
sound effect, or keyboard timing, or newline counting).

***[1.0] The extension also has (optional) parameters, which save a region of the save area,
whose address and length are in bytes, and provides a suggested filename: name is a pointer
to an array of ASCII characters giving this name (as usual preceded by a byte giving the
number of characters). See S 7.6. (Whether Infocom intended these options as part of
Version 5 is doubtful, but it's too useful a feature to exclude from this Standard.)

***[1.1] As of Standard 1.1 an additional optional parameter, prompt, is allowed on
Version 5 extended save/restore. This allows a game author to tell the interpreter whether it
should ask for confirmation of the provided file name (prompt is 1), or just silently
save/restore using the provided filename (prompt is 0). If the parameter is not provided,
whether to prompt or not is a matter for the interpreter - this might be globally user-
configurable. Infocom's interpreters do prompt for filenames, many modern ones do not.

save_undo

EXT:9 9 5 save_undo -> (result)

Like save, except that the optional parameters may not be specified: it saves the game into a
cache of memory held by the interpreter. If the interpreter is unable to provide this feature, it
must return -1: otherwise it returns the save return value.

It is illegal to use this opcode within an interrupt routine (one called asynchronously by a
sound effect, or keyboard timing, or newline counting).

(This call is typically needed once per turn, in order to implement "UNDO", so it needs to
be quick.)

scan_table

VAR:247 17 4 scan_table x table len form -> (result)

Is x one of the words in table, which is len words long? If so, return the address where it
first occurs and branch. If not, return 0 and don't.

The form is optional (and only used in Version 5?): bit 7 is set for words, clear for bytes: the
rest contains the length of each field in the table. (The first word or byte in each field being
the one looked at.) Thus $82 is the default.

scroll_window

EXT:20 14 6 scroll_window window pixels

Scrolls the given window by the given number of pixels (a negative value scrolls
backwards, i.e., down) writing in blank (background colour) pixels in the new lines. This
can be done to any window and is not related to the "scrolling" attribute of a window.

set_attr

2OP:11 B set_attr object attribute

Make object have the attribute numbered attribute.

set_colour

2OP:27 1B 5 set_colour foreground background
6 set_colour foreground background window

If coloured text is available, set text to be foreground-against-background. (Flush any
buffered text to screen, in the old colours, first.) In version 6, the window argument is
optional and is by default the current window. (This option is supported in Infocom's Amiga
and DOS interpreters.)

(One Version 5 game uses this: 'Beyond Zork' (Paul David Doherty reports it as used "76
times in 870915 and 870917, 58 times in 871221") and from the structure of the table it
clearly logically belongs in version 5.)

set_cursor

VAR:239 F 4 set_cursor line column
6 set_cursor line column window

Move cursor in the current window to the position (x,y) (in units) relative to (1,1) in the top
left. (In Version 6 the window is supplied and need not be the current one. Also, if the cursor
would lie outside the current margin settings, it is moved to the left margin of the current
line.)

In Version 6, set_cursor -1 turns the cursor off, and either set_cursor -2 or set_cursor -2 0
turn it back on. It is not known what, if anything, this second argument means: in all known
cases it is 0.

set_font

EXT:4 4 5 set_font font -> (result)
EXT:4 4 6 set_font font window -> (result)

If the requested font is available, then it is chosen for the current window, and the store
value is the font ID of the previous font (which is always positive). If the font is unavailable,
nothing will happen and the store value is 0.

If the font ID requested is 0, the font is not changed, and the ID of the current font is
returned.

(Infocom's old interpreters did not store 0 for an unavailable font, but the feature is clearly
useful and so was introduced in release 0.2 of this Standard.

***[1.1] In Version 6, set_font has an optional window parameter, as for set_colour. This
was part of the original Infocom design, but omitted by earlier Standards. It is reinstated
here, as it is useful to be able to measure a font that is about to be used in another window,
so that window can be sized before attempting to place the cursor in it. A window number of
-3 signifies "the currently selected window"

set_margins

EXT:8 8 6 set_margins left right window

Sets the margin widths (in pixels) on the left and right for the given window (which are by
default 0). If the cursor is overtaken and now lies outside the margins altogether, move it
back to the left margin of the current line (see S 8.8.3.2.2.1).

set_text_style

VAR:241 11 4 set_text_style style

Sets the text style to: Roman (if 0), Reverse Video (if 1), Bold (if 2), Italic (4), Fixed Pitch
(8). In some interpreters (though this is not required) a combination of styles is possible
(such as reverse video and bold). In these, changing to Roman should turn off all the other
styles currently set.

***[1.1] As of Standard 1.1, it is legal to request style combinations in a single
set_text_style opcode by adding the values (which are powers of two) together. If the
parameter is non-zero, then all the styles given are activated. If the parameter is zero, then
all styles are deactivated. If the interpreter is unable to provide the requested style
combination, it must give precedence first to the styles requested in the most recent call to
set_text_style, and within that to the highest bit, making the priority Fixed, Italic, Bold,
Reverse.

set_true_colour

EXT:13 D 5/* set_true_colour foreground background
EXT:13 D 6/* set_true_colour foreground background window

The foreground and background are 15-bit colour values:

bit 15 = 0
bits 14-10 blue
bits 9-5 green
bits 4-0 red

The optional window parameter is only allowed in V6, and operates the same as in
set_colour.

***[1.1] This opcode will only be present in interpreters obeying Standard 1.1 or later, so
story files should check the standard number of the interpreter before executing this opcode.

set_window

VAR:235 B 3 set_window window

Selects the given window for text output.

show_status

0OP:188 C 3 show_status

(In Version 3 only.) Display and update the status line now (don't wait until the next
keyboard input). (In theory this opcode is illegal in later Versions but an interpreter should
treat it as nop, because Version 5 Release 23 of 'Wishbringer' contains this opcode by
accident.)

sound_effect

VAR:245 15 5/3 sound_effect number effect volume routine

The given effect happens to the given sound number. The low byte of volume holds the
volume level, the high byte the number of repeats. (The value 255 means "loudest possible"
and "forever" respectively.) (The "repeats" parameter indicates the total number of times to
play the sound, not the number of times to repeat it after the first play.) (In Version 3,
repeats are unsupported and the high byte must be 0.)

Note that sound effect numbers 1 and 2 are bleeps (see S 9) and in these cases the other
operands must be omitted. Conversely, if any of the other operands are present, the sound
effect number must be 3 or higher.

The effect can be: 1 (prepare), 2 (start), 3 (stop), 4 (finish with).

In Versions 5 and later, the routine is called (with no parameters) after the sound has been
finished (it has been playing in the background while the Z-machine has been working on
other things). (This is used by 'Sherlock' to implement fading in and out, which explains
why mysterious numbers like $34FB were previously thought to be to do with fading.) The
routine is not called if the sound is stopped by another sound or by an effect 3 call.

See the remarks to S 9 for which forms of this opcode were actually used by Infocom.

In theory, @sound_effect; (with no operands at all) is illegal. However interpreters are
asked to beep (as if the operand were 1) if possible, and in any case not to halt.

Setting repeats to zero in V5 is illegal - it is suggested that interpreters treat this as a request
to play the sound once, and maybe issue a warning.

To clarify:

@sound_effect number 3/4

will stop (and optionally unload) sound "number" if it is currently playing (or loaded).
Otherwise it is ignored.

@sound_effect 0 3/4

will stop (and unload) all sounds - music and effects.

split_window

VAR:234 A 3 split_window lines

Splits the screen so that the upper window has the given number of lines: or, if this is zero,
unsplits the screen again. In Version 3 (only) the upper window should be cleared after the
split.

In Version 6, this is supposed to roughly emulate the earlier Version 5 behaviour (see S 8),
though the line count is in units rather than lines. (Existing Version 6 games seem to use this
opcode only for bounding cursor movement. 'Journey' creates a status region which is the
whole screen and then overlays it with two other windows.)

Windows 0 and 1 are tiled together to fill the screen, so that window 1 has the given height
and is placed at the top left, while window 0 is placed just below it (with its height suitably
shortened, possibly making it disappear altogether if window 1 occupies the whole screen).

A cursor remains in the same absolute screen position (which means that its y-coordinate
will be different relative to the window origin, since this origin will have moved) unless this
position is no longer in the window at all, in which case it is moved to the window origin (at
the top left of the window).

sread

This is the Inform name for the keyboard-reading opcode under Versions 3 and 4. (Inform
calls the same opcode aread in later Versions.) See read for the specification.

store

2OP:13 D store (variable) value

Set the variable referenced by the operand to value.

storeb

VAR:226 2 storeb array byte-index value

array->byte-index = value, i.e. stores the given value in the byte at address array+byte-
index (which must lie in dynamic memory). (See loadb.)

storew

VAR:225 1 storew array word-index value

array-->word-index = value, i.e. stores the given value in the word at address
array+2*word-index (which must lie in dynamic memory). (See loadw.)

sub

2OP:21 15 sub a b -> (result)

Signed 16-bit subtraction.

test

2OP:7 7 test bitmap flags ?(label)

Jump if all of the flags in bitmap are set (i.e. if bitmap & flags == flags).

"test_array"

See clear_flag. (ITF implements this as unconditionally false.)

test_attr

2OP:10 A test_attr object attribute ?(label)

Jump if object has attribute.

throw

2OP:28 1C 5/6 throw value stack-frame

Opposite of catch: resets the routine call state to the state it had when the given stack frame
value was 'caught', and then returns. In other words, it returns as if from the routine which
executed the catch which found this stack frame value.

tokenise

VAR:251 1B 5 tokenise text parse dictionary flag

This performs lexical analysis (see read above).

The dictionary and flag operands are optional.

If a non-zero dictionary is supplied, it is used (if not, the ordinary game dictionary is). If
the flag is set, unrecognised words are not written into the parse buffer and their slots are
left unchanged: this is presumably so that if several tokenise instructions are performed in a
row, each fills in more slots without wiping those filled by the others.

Parsing a user dictionary is slightly different. A user dictionary should look just like the
main one but need not be alphabetically sorted. If the number of entries is given as -n, then
the interpreter reads this as "n entries unsorted". This is very convenient if the table is being
altered in play: if, for instance, the player is naming things.

verify

0OP:189 D 3 verify ?(label)

Verification counts a (two byte, unsigned) checksum of the file from $0040 onwards (by
taking the sum of the values of each byte in the file, modulo $10000) and compares this
against the value in the game header, branching if the two values agree. (Early Version 3
games do not have the necessary checksums to make this possible.)

The interpreter must stop calculating when the file length (as given in the header) is
reached. It is legal for the file to contain more bytes than this, but if so the extra bytes
should all be 0. (Some story files are padded out to an exact number of virtual-memory
pages.) However, many Infocom story files in fact contain non-zero data in the padding, so
interpreters must be sure to exclude the padding from checksum calculations.

window_size

EXT:17 11 6 window_size window y x

Change size of window in pixels. (Does not change the current display.)

window_style

EXT:18 12 6 window_style window flags operation

Changes attributes for a given window. A bitmap of attributes is given, in which the bits are:
0 -- keep text within margins, 1 -- scroll when at bottom, 2 -- copy text to output stream 2
(the printer), 3 -- buffer text to word-wrap it between the margins of the window.

The operation, by default, is 0, meaning "set to these settings". 1 means "set the bits
supplied". 2 means "clear the ones supplied", and 3 means "reverse the bits supplied" (i.e.
eXclusive OR).

16. Font 3 and character graphics

16.1
The following table of 8x8 bitmaps gives a suitable appearance for font 3. The font must
have a fixed pitch and characters must be printed immediately next to each other in all four
directions.

 32(): 76543210 33(!): 76543210 34("): 76543210 35(#): 76543210
 0 0 0 0 #
 1 1 1 1 #
 2 2 # 2 # 2 #
 3 3 ## 3 ## 3 #
 4 4####### 4####### 4 #
 5 5 ## 5 ## 5 #
 6 6 # 6 # 6 #
 7 7 7 7#
 36($): 76543210 37(%): 76543210 38(&): 76543210 39('): 76543210
 0# 0 0 0
 1 # 1 1 1
 2 # 2 2 2
 3 # 3 3 3########
 4 # 4 4######## 4
 5 # 5 5 5
 6 # 6 6 6
 7 # 7 7 7
 40((): 76543210 41()): 76543210 42(*): 76543210 43(+): 76543210
 0 # 0 # 0 # 0
 1 # 1 # 1 # 1
 2 # 2 # 2 # 2
 3 # 3 # 3######## 3
 4 # 4 # 4 4########
 5 # 5 # 5 5 #
 6 # 6 # 6 6 #
 7 # 7 # 7 7 #
 44(,): 76543210 45(-): 76543210 46(.): 76543210 47(/): 76543210
 0 # 0 # 0 # 0
 1 # 1 # 1 # 1
 2 # 2 # 2 # 2
 3 # 3 # 3 # 3 #####
 4 #### 4#### 4 ##### 4 #
 5 # 5 # 5 5 #
 6 # 6 # 6 6 #
 7 # 7 # 7 7 #
 48(0): 76543210 49(1): 76543210 50(2): 76543210 51(3): 76543210
 0 0 # 0 # 0#
 1 1 # 1 # 1 #
 2 2 # 2 # 2 #
 3##### 3 # 3 # 3 #####
 4 # 4##### 4 ##### 4 #
 5 # 5 5 # 5 #
 6 # 6 6 # 6 #
 7 # 7 7# 7 #

 52(4): 76543210 53(5): 76543210 54(6): 76543210 55(7): 76543210
 0 # 0 # 0######## 0########
 1 # 1 # 1######## 1########
 2 # 2 # 2######## 2########
 3##### 3 # 3######## 3########
 4 # 4##### 4######## 4########
 5 # 5 # 5######## 5
 6 # 6 # 6######## 6
 7 # 7 # 7######## 7
 56(8): 76543210 57(9): 76543210 58(:): 76543210 59(;): 76543210
 0 0##### 0 ##### 0 #
 1 1##### 1 ##### 1 #
 2 2##### 2 ##### 2 #
 3######## 3##### 3 ##### 3########
 4######## 4##### 4 ##### 4########
 5######## 5##### 5 ##### 5########
 6######## 6##### 6 ##### 6########
 7######## 7##### 7 ##### 7########
 60(<): 76543210 61(=): 76543210 62(>): 76543210 63(?): 76543210
 0######## 0##### 0 ##### 0 #####
 1######## 1##### 1 ##### 1 #####
 2######## 2##### 2 ##### 2 #####
 3######## 3##### 3 ##### 3 #####
 4######## 4######## 4######## 4 #####
 5 # 5##### 5 ##### 5
 6 # 6##### 6 ##### 6
 7 # 7##### 7 ##### 7
 64(@): 76543210 65(A): 76543210 66(B): 76543210 67(C): 76543210
 0 0 0##### 0 #####
 1 1 1##### 1 #####
 2 2 2##### 2 #####
 3 ##### 3##### 3##### 3 #####
 4 ##### 4##### 4##### 4 #####
 5 ##### 5##### 5 5 #
 6 ##### 6##### 6 6 #
 7 ##### 7##### 7 7#
 68(D): 76543210 69(E): 76543210 70(F): 76543210 71(G): 76543210
 0# 0 # 0##### 0 #
 1 # 1 # 1##### 1
 2 # 2 # 2##### 2
 3 ##### 3##### 3##### 3
 4 ##### 4##### 4##### 4
 5 ##### 5##### 5 # 5
 6 ##### 6##### 6 # 6
 7 ##### 7##### 7 # 7
 72(H): 76543210 73(I): 76543210 74(J): 76543210 75(K): 76543210
 0 0 0# 0########
 1 1 1 1
 2 2 2 2
 3 3 3 3
 4 4 4 4
 5 5 5 5
 6 6 6 6
 7 # 7# 7 7

 76(L): 76543210 77(M): 76543210 78(N): 76543210 79(O): 76543210
 0 0# 0 # 0
 1 1# 1 # 1########
 2 2# 2 # 2
 3 3# 3 # 3
 4 4# 4 # 4
 5 5# 5 # 5
 6 6# 6 # 6########
 7######## 7# 7 # 7
 80(P): 76543210 81(Q): 76543210 82(R): 76543210 83(S): 76543210
 0 0 0 0
 1######## 1######## 1######## 1########
 2# 2## 2### 2####
 3# 3## 3### 3####
 4# 4## 4### 4####
 5# 5## 5### 5####
 6######## 6######## 6######## 6########
 7 7 7 7
 84(T): 76543210 85(U): 76543210 86(V): 76543210 87(W): 76543210
 0 0 0 0
 1######## 1######## 1######## 1########
 2##### 2###### 2####### 2########
 3##### 3###### 3####### 3########
 4##### 4###### 4####### 4########
 5##### 5###### 5####### 5########
 6######## 6######## 6######## 6########
 7 7 7 7
 88(X): 76543210 89(Y): 76543210 90(Z): 76543210 91([): 76543210
 0 0 0# # 0 #
 1 # 1# 1 # # 1 #
 2 # 2# 2 # # 2 #
 3 # 3# 3 ## 3 #
 4 # 4# 4 ## 4########
 5 # 5# 5 # # 5 #
 6 # 6# 6 # # 6 #
 7 7 7# # 7 #
 92(\): 76543210 93(]): 76543210 94(^): 76543210 95(_): 76543210
 0 ## 0 ## 0 ## 0########
 1 #### 1 ## 1 #### 1# #
 2## ## ## 2 ## 2## ## ## 2# #
 3 ## 3 ## 3 ## 3# #
 4 ## 4## ## ## 4## ## ## 4# #
 5 ## 5 #### 5 #### 5# #
 6 ## 6 ## 6 ## 6# #
 7 7 7 7########
 96('): 76543210 97(a): 76543210 98(b): 76543210 99(c): 76543210
 0 #### 0## # 0 ## 0 #
 1 ## ## 1# # # 1 # # 1 ##
 2 ## 2# # 2 # # 2 # #
 3 ## 3## 3 ### 3# # #
 4 ## 4# # 4 # # 4 # #
 5 5# # 5 # # 5 ##
 6 ## 6# 6 ## 6 #
 7 7 7 7

100(d): 76543210 101(e): 76543210 102(f): 76543210 103(g): 76543210
 0# # 0# # 0# # # 0# #
 1## ## 1## ## 1# # # 1 # #
 2# # # # 2# # # # 2## # 2 # #
 3# # # 3# # # 3# # 3 #
 4# # # # 4# # 4## 4 # #
 5## ## 5# # 5# 5 # #
 6# # 6# # 6# 6# #
 7 7 7 7
104(h): 76543210 105(i): 76543210 106(j): 76543210 107(k): 76543210
 0## # 0 # 0 # 0 #
 1# # # 1 # 1 ### 1 #
 2## # # 2 # 2 # # # 2 #
 3# # # # 3 # 3# # # 3 ###
 4# # ## 4 # 4 # # # 4 # # #
 5# # # 5 # 5 ### 5# # #
 6# ## 6 # 6 # 6# # #
 7 7 7 7
108(l): 76543210 109(m): 76543210 110(n): 76543210 111(o): 76543210
 0 # 0## ## 0# # 0## #
 1 ## 1# # # # 1 # # 1# # ##
 2 # # 2# # # 2 ### 2## # #
 3 # # 3# # # # 3 # # 3# # #
 4 # 4## ## 4 # # 4# #
 5 # 5# # 5 # 5#
 6 # 6# # 6 # 6#
 7 7 7 7
112(p): 76543210 113(q): 76543210 114(r): 76543210 115(s): 76543210
 0# 0 # 0 ## 0 #
 1# 1 # 1 # # 1 # #
 2# 2 # 2 # # 2 # ##
 3# # 3 #### 3 # # 3 # # #
 4# # # 4 # # 4 ## 4 ## #
 5## # 5 # # 5 # # 5 # #
 6# # 6 # # 6 # # 6 #
 7 7 7 7
116(t): 76543210 117(u): 76543210 118(v): 76543210 119(w): 76543210
 0 # 0 ## 0 # 0 ##
 1 ### 1 # # 1# ### # 1 # #
 2 # # # 2 # # 2 # # # 2 # #
 3# # # 3 # # 3 # 3 # #
 4 # 4 # # 4 # 4 ##
 5 # 5 # # 5 # 5 #
 6 # 6 # # 6 # 6 #
 7 7 7 7
120(x): 76543210 121(y): 76543210 122(z): 76543210 123({): 76543210
 0# # # 0### 0 # 0### ###
 1 # # # 1## # 1 # # 1## ##
 2 ### 2# # # 2 # # 2 # #
 3 # 3# # # 3 # # 3### ###
 4 # 4# ## # 4 # 4### ###
 5 # 5# # ## 5 # # 5### ###
 6 # 6# # # 6 # # 6### ###
 7 7 7 7########

124(): 76543210 125(}): 76543210 126(~): 76543210
 0### ### 0### ### 0## ##
 1### ### 1## ## 1# ## #
 2### ### 2 # # 2##### #
 3### ### 3### ### 3#### ##
 4 # # 4 # # 4### ###
 5## ## 5## ## 5########
 6### ### 6### ### 6### ###
 7######## 7######## 7########

Remarks
Two different versions of font 3 were supplied by Infocom, which we shall call the Amiga
and PC forms (the Atari form is the same as for the PC). The arrow shape differed slightly
and so did the rune alphabet. Each was an attempt to map the late Anglian ("futhorc") runic
alphabet, which has 33 characters, onto our Latin alphabet. The drawings above are from the
Amiga set.

Most of the mappings are straightforward (e.g., Latin A maps to Anglian a), except that:
Latin C is mapped to Anglian eo; K to "other k" (previously a z sound); Q to Anglian k (the
same rune as c); V to ea; X to z and Z to oe. The PC runes differ as follows: G has an
ornamental circle making it more look like "other z"; K maps to Anglian k (or c); Q is an
Anglian ea (which resembles the late Anglian q); V is an oe; X is an "other k" and Z is a
symbol Infocom seem to have invented themselves. (Though less well drawn the PC runes
arguably have a better sound-mapping.)

The font behaviour of 'Beyond Zork', which does have bit 3 of 'Flags 2' set, is rather
complicated and depends on the interpreter number it finds in the header (see S 11).
Specifically:

1. (a Digital terminal) 'BZ' asks whether the player has a VT220 terminal (a model
capable of character graphics) and uses font 3 if and only if the answer is yes. (An in-
house convenience: Infocom used a Digital mainframe.)

2. (Apple IIe) 'BZ' never uses font 3.
3. (Macintosh) 'BZ' always uses font 3.
4. (Amiga) 'BZ' always uses font 3.
5. (Atari ST) 'BZ' always uses font 3.
6. (MSDOS) 'BZ' uses font 3 if it finds bit 3 of 'Flags 2' set (indicating that a graphical

screen mode is in use) and otherwise uses IBM PC graphics codes. These need to be
converted back into ASCII. The conversion process used by the Zip interpreter is as
follows:

 179 becomes a vertical stroke (ASCII 124)
 186 a hash (ASCII 35)
 196 a minus sign (ASCII 45)
 205 an equals sign (ASCII 61)
 all others in the range 179 to 218 become a plus sign (ASCII 43)

7. (Commodore 128) 'BZ' always uses font 3.
8. (Commodore 64) 'BZ' always uses font 3.
9. (Apple IIc) 'BZ' uses Apple character graphics (possibly "Mousetext"), but has

problems when the units used are not 1×1.

10. (Apple IIgs) 'BZ' always uses font 3.
11. (Tandy) 'BZ' crashes on the public interpreters.

A similarly tangled process is used in 'Journey'. It is obviously highly unsatisfactory to have
to make the decision in the above way, which is why set_font is now required to return 0
indicating non-availability of a font.

Stefan Jokisch suggests that Infocom originally intended the graphics bit as a way to
develop Version 5 to allow a graphical version in parallel with the normal text one. For
instance, when the Infocom MSDOS interpreter starts up, it looks at the graphics flag and:

if clear, it sets the font width/height to 1/1 (so that screen units are character positions);

if set, it enters MGCA, a graphical screen mode and sets the font width/height to 8/8 (so that
screen units are pixels).

The "COLOR" command in 'BZ' (typed at the keyboard) also behaves differently depending
on the interpreter number, which is legal behaviour and has no impact on the specification.

Appendix A. Error messages and debugging
Older interpreters, such as ITF, are extremely curt when an error condition is reached (for
example, an illegal opcode). It was assumed that Infocom's shipped story files were bug-
free, which is mostly true, so that errors could only arise through a bug elsewhere in the
interpreter.

In debugging Inform games, though, many error conditions can arise and it is extremely
helpful to report these as fully as possible. These include:

1. An illegal opcode being hit;
2. A call to what can't be a routine (because the initial byte is not between 0 and 15);
3. A jump or call to an address beyond the size of the story file;
4. An attempt to print_obj, or otherwise access, an object which doesn't exist, such as

object number 0.
5. An attempt to write to, or get the property length of, a nonexistent property.
6. An attempt to access an attribute outside the range 0 to 31 or 0 to 47 (depending on

Version). (But note that Infocom's 'Sherlock' contains a bug causing it to try setting or
clearing attribute number 48.)

7. Division by zero. The player sometimes then has the annoying task of working out
where the error took place in source code. Providing a stack back-trace would be a
help.

As mentioned in S 3, it's helpful to screen out any illegal ZSCII characters between 0 and 31
which are accidentally printed: crashes can be very mysterious when they cause interpreters
to send control codes to the terminal.

In addition, an interpreter might provide options for keeping track of maximum stack usage
and the typical number of opcodes executed between each read from the keyboard. (But
watching these is a time-wasting activity, so they should be options.)

Finally, infinite loops fairly often happen, as in any programming language. On a system
without pre-emptive multi-tasking, this may lock up the whole machine, as the usual way
that porters implement multi-tasking is to return control to the host operating system only
when the keyboard is read. This can be avoided by providing a point in the code which
could return control to the OS from time to time (say, every 2000 instructions).

A number of post-Infocom games have been released which contain errors, most often
trying to perform illegal operations on object 0. Many interpreters silently ignored these
errors, which can make it very to notice and track down bugs.

It is desirable for modern interpreters to be able to notify players about these bugs, but this
can also ruin gameplay. It is highly recommended, then, that interpreters have four levels of
error checking, selectable by the user (through a command-line or menu option, or similar):

• Never report the bug.
• Report the first instance of each type of error.
• Report every error.
• Fatal error and close the interpreter on any error.

Appendix B. Conventional contents of the header
The header table in section 11 details everything the interpreter needs to know about the
header's contents. A few other slots in the header are meaningful but only by convention
(since existing Infocom and Inform games write them). These additional slots are described
here.

As in S 11, "Hex" means the address, in hexadecimal; "V" the earliest version in which the
feature appeared; "Dyn" means that the byte or bit may legally be changed by the game
during play (no others may legally be changed by the game); "Int" means that the interpreter
may (in some cases must) do so.

Conventional usage of unspecified header memory
Hex V Dyn Int Contents

1 1 Flags 1:

3 * The legendary "Tandy" bit (see note)

2 1 Release number (word)

10 1 * Flags 2:

3 Bit 4: Set in the Amiga version of The Lurking Horror so presumably to
do with sound effects?

? ? * 10: Possibly set by interpreter to indicate an error with the printer during
transcription

12 2 Serial code (six characters of ASCII)

3 Serial number (ASCII for the compilation date in the form YYMMDD)

38 6 * Infocom used this as 8 bytes of ASCII: the player's user-name on their
own mainframe, useful to identify which person played a saved-game
(however, the bytes are all 0 in shipped story files)

3C Inform 6 stores 4 bytes of ASCII here, giving the version of Inform used
to compile the file: for instance, "6.11".

1. In Versions 1 to 3, bits 0 and 7 of 'Flags 1' are unused. (The meaning of bit 2 has
recently been discovered: see section 11.) In later Versions, bits 0, 6 and 7 are
unused. In 'Flags 2', bits 9 and 11-15 are unused. Infocom used up almost the whole
header: only the bytes at $32 and $33 are unused in any Version, and those are now
allocated for standard interpreters to give their Revision numbers.

2. Some early Infocom games were sold by the Tandy Corporation, who seem to have
been sensitive souls. 'Zork I' pretends not to have sequels if it finds the Tandy bit set.
And to quote Paul David Doherty:

In 'The Witness', the Tandy Flag can be set while playing the game, by
typing $DB and then $TA. If it is set, some of the prose will be less
offensive. For example, "private dicks" become "private eyes", "bastards"
are only "idiots", and all references to "slanteyes" and "necrophilia" are
removed.

We live in an age of censorship.

3. For comment on interpreter numbers, see S 11. Infocom's own interpreters were
generally rewritten for each of versions 3 to 6. For instance, interpreters known to
have been shipped with the Macintosh gave version letters B, C, G, I (Version 3), E,
H, I (Version 4), A, B, C (Version 5) and finally 6.1 for Version 6. (Version 6
interpreters seem to have version numbers rather than letters.) See the "Infocom fact
sheet" for fuller details.

4. Inform 6 story files are easily distinguished from all other story files by their usage of
the last four header bytes. Inform 1 to 5 story files are best distinguished from
Infocom ones by the serial code date: anything before 930000 is either an Infocom
file, or a fake. (The author of 'Jigsaw' is tempted to compile a millenial version with
serial code 991231 when the time comes, but then the next day serial codes will
clock over to 000101. The decision of how to continue serial codes past the year
2079 is deferred to a future revision of this Standard.) Clearly there is no point going
to any trouble to prevent fakes, but with a little practice it's easy to tell whether Zilch
or Inform compiled a file from the style of code generated.

Appendix C. Resources available
...the dead hand of the academy had yet to stifle the unbridled enthusiasms of a small band
of amateurs in Europe and America.

Michael D. Coe, Breaking the Maya Code

[Note: the hypertext links in this appendix are to WWW sites external to the standards
document, and were correct as of 21th February 2014.]1

The resources below are mainly available from the if-archive maintained by David Kinder
and Stephen Granade.2

Public Interpreters
Since the 1.0 Standard was first introduced, a variety of interpreters have become available,
for many different platforms and with a variety of features. The page on Playing Interactive
Fiction at inform7.com is a good place to start when looking for an interpreter, as is the
ifwiki page on the Z-Machine.

Testing compliance
A few story files exist to test interpreter for various Z-Machine features:

1. Czech is a general Z-Machine unit test by Evin Robertson and Amir Karger.
2. Praxix is a general Z-Machine unit test by Andrew Plotkin and Dannii Willis.
3. TerpEtude by Andrew Plotkin is a unit test with a focus on IO.
4. Unicode by David Kinder tests Unicode input and output.
5. Strict Z Test by Torbjorn Andersson tests an interpreter's abilitity to handle errors in

story files.

Compilers
Infocom's original compiler Zilch no longer exists, but a PDF copy of Learning ZIL,
Infocom's documentation for their ZIL language, is available. Since the emergence of this
file, there have been a few attempts at making a new ZIL compiler, most notably ZILF by
Jesse McGrew.3

No continuous part of the source code of any of Infocom's games is in the public domain
[but see Stu Galley's chapter of an Infocom history article, and the IEEE article, for
fragments].4

1 There is no links in this document.

2 2020 the if-archive is reachable at www.ifarchive.org

3 ZILF can now (2020) compile most of Infocom's ZIL source.

4 The source to Inocom's games is, since 2019, publically available.

http://www.ifarchive.org/

Inform remains the most popular compiler for Z-Machine games. In 2006, the first public
release of Inform 7 was made available. Inform 7 is a very different language from previous
versions of Inform, with a focus on natural language and a powerful IDE.

While Inform 7 is the main focus of development, Inform 6 is still widely used and the
compiler and libraries continue to be maintained.

A few other compilers have been made available over the years.

Utility programs
Mark Howell has written a toolkit of Ztools, or utility programs (1991-5, updated 1997),
which includes:

1. Txd, a disassembler for Versions 1 to 8. (Uses the same opcode names as Inform and
this document, and has an option to disassemble in Inform assembly-language
syntax.)

2. Infodump, capable of printing the header information, object tree (with properties
and attributes), dictionary and grammar tables of any Infocom or Inform-compiled
game. (Understands four varieties of grammar table: Infocom pre-Version 6, Infocom
Version 6, Inform GV1 and GV2.)

3. Pix2gif, for converting Version 6 picture data to GIF files.
4. Check, for verifying Infocom or Inform story files.

These continue to be maintained (by Matthew Russotto) and the first two are extremely
useful. Infodump largely supersedes Mike Threepoint's vocabulary dumper Zorkword
(1991-2), which was important in its day (and which this author found extremely helpful
when writing Inform 1).

Reform, by Ben Rudiak-Gould, is a decompiler for Z-Machine games which will attempt to
convert them into Inform 6 source code.

Story files
1. Numerous Inform-compiled story files are publically available.
2. A few Infocom story files are public, notably two 4-in-1 sample games (released for

advertising purposes: 55.850823 and 97.870601) and Minizork (a heavily
abbreviated form of Zork I released with a Commodore magazine).

3. Almost all Infocom's games remain commercially available in anthologies published
by Activision. Copyright resides in them and they should not available by FTP from
any site.

4. A few other Infocom story files have existed but are neither on sale nor released from
copyright: this applies to several of the Version 6 games, those games involving
literary rights or other legal issues ('Shogun', 'Hitch-Hiker's Guide To The Galaxy')
and ephemera such as beta-test versions (notably the German version of 'Zork I')
which have somehow passed into private circulation.

Most of the Infocom games exist in several different releases, and some were written for
one Version and then ported to later ones. 'Zork I', for instance, has at least 11 releases, 2

early, 8 in Version 3 (with release numbers between 5 to 88 in chronological order) and one
in Version 5 (release 52 -- the releases go back to 1 when the version changes).

Version 1 and 2 games are extinct, though there are a few fossils in the hands of collectors.

Documents
The definitive guide to all Infocom story files known to exist, and an indispensable
reference for anyone interested in Infocom, is Paul David Doherty's Infocom fact sheet,
which is regularly updated, concise and precise. This supersedes Paul Smith's "Infocom
Game Information" file.

Stefan Jokisch has written a brief specification of Infocom-format sound effects files.

Martin Frost is the author of the Quetzal standard for saved-game files. Patches to adapt
Zip-based interpreters to use Quetzal are available.

Andrew Plotkin is the author of the Blorb standard for packaging up images and sounds
with Z-machine games.

The Inform Technical Manual documents the format of parsing tables used in Inform games.

The documentation for Infocom's games is available online (with permission from
Activision) courtesy of the Infocom Documentation Project. In addition, an archive of the "
samplers" is publically available, as is an interesting historical archive of magazine articles
concerning Infocom, and articles from Infocom's own publicity magazine [indexed here].

Appendix D. A short history of the Z-machine
Infocom made six main Versions of the Z-machine and several minor variant forms. These
are recognisably similar but with labyrinthine differences, like different archaic dialects of
the same language. (The archaeological record stops sharply in 1989 when the civilisation in
question collapsed.)

Broadly, these fall into two groups: early (Versions 1 to 3) and late (4 to 6). More fully:

Version 1 Early Apple II and TRS-80 Model I games
Version 2 Early Apple II and TRS-80 Model I games
Version 3 "Standard" series games
Version 4 "Plus" series games
Version 5 "Advanced" series games, or, as the marketing division would
 have it, "Solid Gold Interactive Fiction" -- a reference to
 the colour (though not composition) of the boxes they came in
Version 6 Later games with graphics, mouse support, etc.

Infocom called their own interpreters ZIP (versions 1 to 3), EZIP/LZIP (V4), XZIP (V5) and
YZIP (V6). They speculated on the possibility of an interpreter capable of running all
Versions, but never published one.

The original purpose of the Z-machine was simply to implement as much as possible of the
mainframe game "Zork" on the first popular wave of home computers.

(Apparently "zork" was a nonsense word used at MIT for the current uninstalled program in
progress, and stuck. Just as this document uses the term "Z-machine" for both the machine
and its loaded program (which is also sometimes called the "story file"), so ZIP (Zork
Implementation Program) was used to mean either the interpreter or the object code it
interpreted. Code was written in ZIL (Zork Implementation Language), which was derived
from MDL (informally called "muddle"), a particularly unhelpful form of LISP. It was then
compiled by ZILCH to assembly code which was passed to ZAP to make the ZIP.)

The Z-machine as originally constructed was surprisingly similar to that in use today.
Version 1 (by Joel Berez and Marc Blank, in Autumn 1979) contained essentially all of the
main architecture: the header, the memory divided into three, the variables and stack, the
object tree, the dictionary, the instruction format. It used "shift lock" characters (a text
compression trick which did not survive, though it was more efficient on long sequences of
capital letters or punctuation characters than the technique which replaced it). The first
micro interpreters were for the TRS-80 Model I (by Scott Cutler) and the Apple II (by Bruce
K. Daniels). (A TRS-80 Model II interpreter was written but never actually shipped.)

Version 2 was only a minor enhancement. Abbreviations (used to help text compression)
appeared, but only in one 32-word bank, and the six-digit serial number appeared in the
header, though it wasn't always the date in those days: Release 7 of 'Zork II', for instance, is
numbered UG3AU5. (Other bizarre serial numbers, such as 000000, appear on fakes or
beta-test releases.)

In Version 3, the text encoding alphabets changed again, and the old "shift lock" codes were
dropped in favour of expanding the abbreviations bank to 96 entries. The "verify" opcode
and checksums appeared; and a new opcode to reprint the status line at the top of the screen
was introduced. (Previously, this had been updated only when input was taken from the
keyboard.) The earliest Version 3 releases ('Deadline', then reissues of 'Zork I' and 'II') were
in March and April 1982; the last (the 'Minizork', a cassette-based Commodore-64 sample of
'Zork') was in November 1987.

The idea of widespread portability finally came of age as (between 1982 and 1985)
interpreters were developed for the Atari 400/800, CP/M, the IBM PC, the TRS-80 Model
III, the NEC APC, the DEC Rainbow, the Commodore 64, the TI Professional, the
DECmate, the Tandy-2000, the Kaypro II, the Osborne 1, MS-DOS, the TI 99/4a, the Apple
Macintosh, the Epson QX-10, the Apricot, the Atari ST and the Amiga. Infocom's middle
period coincided with the bubble in home computers, before the market collapsed to its
present apparently stable state (in which IBM and Apple share almost the entire market),
and the Z-machine's portability gave Infocom a unique advantage over its competitors. Also,
it was an expertly marketed quality brand at a time when standards of workmanship were
very variable; and text-only games did not seem so dull at a time when graphics were on the
whole crude and slow. These factors combined to give Infocom considerable (though never
enormous) commercial success.

By 1982, then, the Z-machine had stabilised to a clean design which was to remain in use
for six years. It was very portable, contained everything reasonably necessary and most of
its complications were badly-needed space optimisations. (Although Version 3 can fit 128K
of story file, the practical limit in 1982-4 was about 110K, that being the typical disc
capacity on target machines.) The ZAP assembler was cleverly written to exploit these
optimisations, though the Zilch compiler's code generator was much less efficient.
(Interestingly, Infocom did not develop any generic central library, and Infocom's authors
worked fairly independently of each other: each new game would inherit a small core of
code from a previous one, but this would make up only about 10K of code (about a third of
the size of the Inform library) and would end up being hacked about to suit the new game.
Without a central library, Infocom games waste a fair amount of space in duplicating code
for routine operations many times over. For this reason, Inform games tend to squash
appreciably more design into the format.)

"Verify" and checksum data were quickly introduced. However, the first serious variant on
Version 3 was made in 1984 when a primitive form of screen-splitting was invented to give
'Seastalker' a sonar display. This design (perhaps accidentally) became the foundation for
the graphics systems of later versions.

Much later (in 1987) sound effects were added to Version 3 for 'The Lurking Horror', though
by that time it was really a Version 5 feature being passed down to the old model (and only
to the Amiga interpreter in any case). ('TLH' is contemporaneous with 'Sherlock' (in Version
5), the only other game to actually use the sound effects features.)

During 1983-5, Infocom poured resources into an ambitious pet project of its founders:
'Cornerstone', a database which used some of the same portable virtual machine ideas as the
Z-machine. The business market, however, was not nearly as diverse as the home computer
market: 'Cornerstone' probably was the best database available on the Atari ST, but it made
no impression on the IBM PC market. The result was a commercial failure which
compounded the company's over-expansion problems (driving it into a merger with
Activision), though it certainly did not destroy Infocom's viability.

By 1985, Infocom had begun to write interpreters in C for the sake of portability
(previously, a different assembly-language program had to be maintained for every model of
computer). The main motivation to keep the format stable was therefore largely removed: it
became possible to upgrade the Z-machine for every new game, if need be.

There were two basic pressures for change. One was that home computers were larger, and
several fundamental restrictions (the game size being only 128K, the number of objects only
255, the attributes only 32, the properties only 31) were beginning to bite. The other was the
drive for more gimmicks - character graphics, flashier status lines, sound effects, different
typefaces, and so on. The former led to logical, easy to understand structural changes in the
machine (designed by Marc Blank). The latter, in contrast, made a mess of the system of
opcodes (designed by committee).

More does not mean better (halving the price of paper does not double the quality of the
novel). The relieving of size restrictions only increased design time -- or endangered the
quality of the designs being produced. The Version 3 games have a spare, concise literary
style which is absent from the later games. (But Inform authors have certainly found Version
3 slightly too small for comfort, and it's useful to be able to spill over its boundaries.)

In August the first Version 4 game ('A Mind Forever Voyaging') reached production.
Opinions vary as to whether it was brilliant or awful, but it was certainly a departure (and
could not have been written under Version 3). In retrospect there is no doubt about 'Trinity',
now generally considered the finest game written: it had previously been shelved as too
ambitious for the Version 3 format. Still, most of the new 1985/6 games remained in Version
3: there were still plenty of 8-bit home computers around which were too small for Version
4 games. Despite critical acclaim, the new games consequently did not sell as well. (Brian
Moriarty commented that 'Trinity' "sold tolerably well. Better than we'd hoped." But his
previous game, the more modest 'Wishbringer', had sold rather better.)

Version 5 games began to appear in September 1987 with 'Beyond Zork' and 'Border Zone'.
Both of these games needed new features -- character graphics run wild in the case of the
former, and real-time keyboard interaction in the latter. The number of opcodes grew ever
faster as a result.

Although five old games were re-released in Version 5 editions (with an in-game hints
system added, and benefiting from 9-letter word dictionaries, but otherwise as written), the
direction was all too clearly away from the old text game into graphics: 'Beyond Zork' can
look like a parody of an early mainframe maze game, for instance. Version 6 completed the
process during something of a hiatus in 1988, after which the last few increasingly-
unrecognisable Infocom games appeared: 'Zork Zero', 'Shogun', 'Journey' and 'Arthur'.

It would be wrong, though, to suggest that Infocom regarded text and graphics as
incompatible opposites. Infocom had never been puritanically opposed to graphics --

We have nothing against graphics per se. However, given the quality of graphics currently
available on home computers, we would rather use that disk space for additional puzzles and
richer descriptions.

The New Zork Times (Spring 1984)

(and, after all, the same author wrote both 'Trinity' and 'Beyond Zork'). Although the old
Infocom parser was considered to have passed its sell-by date, Version 6 did not drop textual
input in favour of some inane point-and-click interface. Instead, an entirely new parser was
devised from scratch ("using the theory of computational linguistics", according to a puff by
Stu Galley: broadly an LALR(1) parser).

Infocom gradually ceased to exist during 1987-9 as its financial problems grew. But its
products were increasingly regarded as anachronistic and most of its staff had left since the
middle years: if Infocom had not finally been wound up, whether it would have continued to
release text games of the classical style is arguable.

Two new formats, versions 7 and 8, have recently been devised to cope with large Inform
games.

Appendix E. Statistics
LORD DIMWIT FLATHEAD: "It must have two hundred thousand rooms, four million
takeable objects, and understand a vocabulary of every single word ever spoken in every
language ever invented."

The New Zork Times (Winter 1984)

[Note: the information below has not been updated since the 20th June 1997 revision of this
document.]

To give some idea of the sizes found in typical story files, here are a few statistics, mostly
gathered by Paul David Doherty, whose "Infocom fact sheet" file is the definitive reference.

(i) Length

The shortest files are those dating from the time of the 'Zork' trilogy, at about 85K; middle-
period Version 3 games are typically 105K, and only the latest use the full memory map. In
Versions 4 and 5, only 'Trinity', 'A Mind Forever Voyaging' and 'Beyond Zork' use the full
256K. 'Border Zone' and 'Sherlock', for instance, are about 180K. (The author's short story
'Balances' is about 50K, an edition of 'Adventure' takes 80K, and 'Curses' takes 256K (it's
padded out to the maximum size with background information; the actual game comprises
only about 245K). Under Inform, the library occupies about 35K regardless of the size of
game.)

(ii) Code size

'Zork I' uses only about 5500 opcodes, but the number rises steeply with later games;
'Hollywood Hijinx' has 10355 and, e.g. 'Moonmist' has 15900 (both these being Version 3).
Against this, 'A Mind Forever Voyaging' has only 18700, and only 'Trinity' and 'Beyond
Zork' reach 32000 or so. (Inform games are more efficiently compiled and make better use
of common code -- the library -- so perform much better here: the old Version 3, release 10
of 'Curses' (128K long, and a larger game than any Infocom Version 3 game) has only 6720
opcodes.)

(iii) Objects and rooms

This varies greatly with the style of game. 'Zork I' has 110 rooms and 60 takeable objects,
but several quite complex games have as few as 30 rooms (the mysteries, or 'Hitch-hikers').
The average for Version 3 games is 69 rooms, 39 takeable objects.

'A Mind Forever Voyaging' contains many rooms (178) but few objects (30). 'Trinity', a
more typical style of game, contains 134 rooms and 49 objects: the Version 5 'Curses' has a
few more of each. Of the Version 6 games, only 'Zork Zero' scores highly here, with 215
rooms and 106 objects. The average for Version 4/5 games is 105 rooms and 54 objects.

The total number of objects tends to be close to the limit of 255 in Version 3 games. 'Curses'
contains 508.

(iv) Dictionary

Early games such as 'Zork I' know about 600 words, but again this rises steeply to about
1000 even in Version 3. Later games know 1569 ('Beyond Zork') to the record, 2120
('Trinity'). (This is achieved by heroic inclusion of unlikely synonyms: e.g. the Japanese
lady with the umbrella can be called WOMAN, LADY, CRONE, MADAM, MADAME,

MATRON, DAME or FACE with any of the adjectives OLD, AGED, ANCIENT, JAP,
JAPANESE, ORIENTAL or YELLOW.) Version 6 games have smaller dictionaries. So has
'Curses', at 1364.

(v) Opcodes

(a) Of the 1426854 opcodes in the shipped Infocom story files in Paul David Doherty's
collection, here are the top and bottom ten most popular. (Leaving out those which never
occur and so score 0: nop, art_shift, piracy and the two post-Infocom opcodes,
print_unicode and check_unicode.)

 Top Ten Opcodes Chart Bottom Ten Opcodes Chart
 1. je 195959 1. print_form 2
 2. print 142755 2. erase_picture 3
 3. jz 112016 3. read_mouse 3
 4. call_vs 104075 4. encode_text 7
 5. print_ret 80870 5. make_menu 9
 6. store 71128 6. not 14
 7. rtrue 66125 7. scroll_window 16
 8. jump 56534 8. pop_stack 17
 9. new_line 52553 9. restore_undo 18
 10. test_attr 46627 10. mouse_window 22

So about 2/3rds of all opcodes are those in the top ten; 1 in 8 opcodes is a je, and only 1 in
710000 is a print_form.

(b) An experiment (conducted with the help of Kevin Bracey) sheds some light on the
opcodes most frequently interpreted in typical play. Two very different games ('Zork I',
Version 5 "solid gold" edition; 'Museum of Inform', a complex Inform example game) were
played for about 50000 cycles of the Z-machine (about 20 moves in 'Zork I', rather less in
the 'Museum'). The following table records all opcodes with a frequency of at least 1% (i.e.,
0.01):

 Zork I Solid Gold (Infocom) Museum of Inform (Inform)
 0.116110 loadb 0.104952 je
 0.103990 storeb 0.101151 jz
 0.101616 jz 0.092727 jump
 0.074979 dec_chk 0.080985 jg
 0.066375 add 0.079039 jl
 0.066283 je 0.070550 inc
 0.060760 store 0.070139 store
 0.053867 loadw 0.047058 loadw
 0.038095 storew 0.034137 get_prop_addr
 0.036428 mul 0.024105 jin
 0.032069 inc_chk 0.022734 rtrue
 0.030243 jump 0.021583 storew
 0.029170 test_attr 0.020075 add
 0.020634 call_vs 0.018485 call_vs
 0.011184 get_sibling 0.016731 and
 0.016082 loadb
 0.012061 call_vn
 0.011879 test_attr
 0.011824 dec
 0.011687 ret

Adventure games spend most of the time parsing, and the differences between these tables
reflect different parser designs (byte arrays versus word arrays and arrays stored in
properties) as well as different compiler code generators (Inform does not use inc_chk or
dec_chk, so it uses inc, dec, jl and jg correspondingly more). In the case of 'Zork I', about a
third of all opcodes are branches: in the case of 'Museum', almost half.

Appendix F. Canonical Story Files
Story files are mechanically best identified by their release number and serial code, which
are written into the header information at the bottom of Z-machine memory. The release
number can be anything between 0 and 65535 but is usually between 1 and 100. The serial
code can consist of any six textual characters but is usually the date of compilation,
arranged YYMMDD: thus 970619 refers to June 19th, 1997. The notation

Release number.Serial code

identifies particular story files: for example the first production copy of 'Enchanter' is
10.830810.

Paul David Doherty's investigations into Infocom's released games have resulted in the
following list of all known story files compiled by Zilch, the Infocom compiler:

Version 1 story file

Zork I 5. (no serial code)

Version 2 story file

Zork I 15.UG3AU5

Zork II 7.UG3AU5

Version 3 story file

Ballyhoo 97.851218

Cutthroats 23.840809

Deadline 18.820311, 19.820427, 21.820512, 26.821108, 27.831005

Enchanter 10.830810, 15.831107, 16.831118, 24.851118, 29.860820

Four-In-One Sampler I 26.840731, 53.850407, 55.850823

Four-In-One Sampler II 97.870601

The Hitch Hiker's Guide To The Galaxy 47.840914, 56.841221, 58.851002, 59.851108

Hollywood Hijinx 37.861215

Infidel 22.830916

Leather Goddesses of Phobos 118.860325? (beta), 50.860711?, 59.860730, 59.861114

Lurking Horror 203.870506, 219.870912 (s), 221.870918 (s)

Mini-Zork I 34.871124

Moonmist 4.860918, 9.861022

Planetfall 20.830708, 29.840118, 37.851003

Plundered Hearts 26.870730

Seastalker 86.840320 (beta), 15.840501, 15.840522, 16.850515, 16.850603

Sorcerer 67.000000? (beta), 4.840131, 6.840508, 13.851021, 15.851108, 18.860904

Spellbreaker 63.850916, 87.860904

Starcross 15.820901, 17.821021

Stationfall 107.870430

Suspect 14.841005

Suspended 5.830222, 7.830419, 8.830521, 8.840521

Wishbringer 68.850501, 69.850920

Witness 13.830524, 18.830910, 20.831119, 21.831208, 22.840924

Zork I 23.820428, 25.820515, 26.820803, 28.821013, 30.830330, 75.830929,
76.840509, 88.840726

Zork II 17.820427, 18.820512, 18.820517, 19.820721, 22.830331, 23.830411,
48.840904, ?.841220?

Zork III 10.820818, 15.830331, 16.830410, 15.840518, 17.840727

Note that the two samplers and the mini-Zork are in the public domain and may be
downloaded from Internet archive sites. One form of 'Zork I' can be downloaded freely from
Activision's Web pages promoting the Zork brand name.

The two problem children here are 'Seastalker', a submarine game which produces a sonar
display across the top of the screen (and thus needs more sophisticated screen control
features than the other Version 3 games) and 'The Lurking Horror', which uses sound effects
(hence the "(s)" notation).

Version 4 story file

A Mind Forever Voyaging 77.850814, 79.851122

Bureaucracy 86.870212, 116.870602

Nord and Bert Couldn't Make Head Nor Tail Of It 19.870722

Trinity 11.860509, 12.860926

Version 5 story file

Beyond Zork 47.870915, 49.870917, 51.870923, 57.871221

Border Zone 9.871008

The Hitch Hiker's Guide To The Galaxy SG 31.871119

Leather Goddesses of Phobos SG 4.880405

Planetfall SG 10.880531

Sherlock 21.871214, 26.880127 (s)

Wishbringer SG 23.880706

Zork I SG 52.871125

Zork I German 3.880113 (beta)

The "SG" games were "solid gold" revisions of existing Version 3 games, adding on-line
hints and an UNDO command. Regrettably these are not the versions distributed by
Activision on their recent re-releases of the Infocom back catalogue.

One form of 'Sherlock' uses sound effects. 'Border Zone' introduces timed input. 'Beyond
Zork' features a character-graphics font. But the most interesting file is the German
translation of 'Zork I', which was never commercially released, introducing an alphabet table
to the format.

Version 6 story file

Game Mac Amiga Apple II IBM

Arthur 54.890606 same as Mac 63.890622? 74.890714

Journey 26.890316 30.890322 77.890616? 83.890706

Shogun 292.890314 295.890321 311.890510? 322.890706

Zork Zero 296.881019 366.890323 383.890602? 393.890714

The rule that story files should be independent of their target computers was dropped for
Version 6 games and this leads to copious footnotes and exceptions in sections 8.8 and 16 of
the standard. Story files for a particular game are substantially similar to each other but use
fonts, pictures and so on slightly differently.

Note that a new Infocom game, Zork: The Undiscovered Underground was published by
Activision in 1997. 16.970828 is the only public version I know of: however, note that this
file was compiled by Inform and not by Zilch. It is therefore not useful as a witness to Z-
machine rules.

	Preface
	Standardisation
	So what is "standard"?
	Notation
	Where are all the grammar tables?
	Acknowledgements

	Overview of Z-machine architecture
	1. The memory map
	1.1 Regions of memory
	1.1.1
	1.1.1.1
	1.1.1.2
	1.1.2
	1.1.3
	1.1.4

	1.2 Addresses
	1.2.1
	1.2.2
	1.2.3

	Remarks

	2. Numbers and arithmetic
	2.1 Numbers
	2.2 Signed operations
	2.2.1

	2.3 Arithmetic errors
	2.3.1
	2.3.2

	2.4 Random number generator
	2.4.1
	2.4.2
	2.4.3

	Remarks

	3. How text and characters are encoded
	3.1 Text
	3.2 Alphabets
	3.2.1
	3.2.2
	3.2.3
	3.2.4

	3.3 Abbreviations
	3.3.1

	3.4 ZSCII escape
	3.5 Alphabet table
	3.5.1
	3.5.2
	3.5.3
	3.5.4
	3.5.5
	3.5.5.1

	3.6 Padding and incompleteness
	3.6.1

	3.7 Dictionary truncation
	3.7.1

	3.8 Definition of ZSCII and Unicode
	3.8.1
	3.8.2
	3.8.2.1
	3.8.2.2
	3.8.2.3
	3.8.2.4
	3.8.2.5
	3.8.2.6
	3.8.3
	3.8.3.1
	3.8.4
	3.8.5
	3.8.5.1
	3.8.5.2
	3.8.5.2.1
	3.8.5.2.2
	3.8.5.2.3
	3.8.5.3
	3.8.5.4
	3.8.5.4.1
	3.8.5.4.2
	3.8.5.4.3
	3.8.5.4.4
	3.8.5.4.5
	3.8.6
	3.8.7

	Remarks

	4. How instructions are encoded
	4.1 Instructions
	4.2 Operand types
	4.2.1
	4.2.2
	4.2.3

	4.3 Form and operand count
	4.3.1
	4.3.2
	4.3.3
	4.3.4

	4.4 Specifying operand types
	4.4.1
	4.4.2
	4.4.3
	4.4.3.1

	4.5 Operands
	4.5.1
	4.5.2

	4.6 Stores
	4.7 Branches
	4.7.1
	4.7.2

	4.8 Text opcodes
	Remarks
	On disassembly

	5. How routines are encoded
	5.1 Start position
	5.2 Header
	5.2.1

	5.3 First instruction
	5.4 Main routine (V6)
	5.5 Initial execution point (other versions)
	Remarks

	6. The game state: storage and routine calls
	6.1 Saved states
	6.1.1
	6.1.1.1
	6.1.1.2
	6.1.1.3
	6.1.2
	6.1.2.1
	6.1.2.2
	6.1.3
	6.1.4

	6.2 Storage of global variables
	6.3 The stack
	6.3.1
	6.3.2
	6.3.3
	6.3.4

	6.4 Routine calls
	6.4.1
	6.4.2
	6.4.3
	6.4.4
	6.4.4.1
	6.4.5

	6.5 Stack frames
	6.6 User stacks (V6)
	Remarks

	7. Output streams and file handling
	7.1 Output streams
	7.1.1
	7.1.1.1
	7.1.1.2
	7.1.2
	7.1.2.1
	7.1.2.1.1
	7.1.2.2
	7.1.2.2.1
	7.1.2.3

	7.2 Buffering
	7.2.1
	7.2.2

	7.3 Selection (V1 and V2)
	7.4 Selection (later versions)
	7.5 Dealing with Unicode or invalid characters
	7.5.1
	7.5.2
	7.5.3
	7.5.4

	7.6 File handling
	7.6.1
	7.6.1.1
	7.6.1.2
	7.6.1.3
	7.6.2
	7.6.3
	7.6.4
	7.6.5
	7.6.5.1
	7.6.5.2

	Remarks

	8. The screen model
	8.1 Fonts
	8.1.1
	8.1.2
	8.1.3
	8.1.3.1
	8.1.4
	8.1.5
	8.1.5.1
	8.1.6

	8.2 Status line
	8.2.1
	8.2.2
	8.2.2.1
	8.2.2.2
	8.2.3
	8.2.3.1
	8.2.3.2
	8.2.4

	8.3 Text colours
	8.3.1
	8.3.1.1
	8.3.2
	8.3.3
	8.3.4
	8.3.5
	8.3.5.1
	8.3.5.2
	8.3.6
	8.3.7
	8.3.7.1

	8.4 Screen dimensions
	8.4.1
	8.4.2
	8.4.3

	8.5 Screen model (V1, V2)
	8.5.1
	8.5.2

	8.6 Screen model (V3)
	8.6.1
	8.6.1.1
	8.6.1.1.1
	8.6.1.1.2
	8.6.1.2
	8.6.1.3
	8.6.2
	8.6.3

	8.7 Screen model (V4, V5)
	8.7.1
	8.7.1.1
	8.7.1.2
	8.7.1.3
	8.7.2
	8.7.2.1
	8.7.2.1.1
	8.7.2.2
	8.7.2.3
	8.7.2.4
	8.7.2.5
	8.7.3
	8.7.3.1
	8.7.3.2
	8.7.3.2.1
	8.7.3.3
	8.7.3.4

	8.8 Screen model (V6)
	8.8.1
	8.8.2
	8.8.3
	8.8.3.1
	8.8.3.1.1
	8.8.3.1.2
	8.8.3.1.2.1
	8.8.3.1.2.2
	8.8.3.2
	8.8.3.2.1
	8.8.3.2.2
	8.8.3.2.2.1
	8.8.3.2.2.2
	8.8.3.2.2.3
	8.8.3.2.3
	8.8.3.2.4
	8.8.3.2.5
	8.8.3.2.6
	8.8.3.2.7
	8.8.3.2.8
	8.8.3.3
	8.8.3.4
	8.8.3.5
	8.8.3.6
	8.8.4
	8.8.4.1
	8.8.4.2
	8.8.5
	8.8.5.1
	8.8.5.2
	8.8.5.3
	8.8.5.3.1
	8.8.5.3.2
	8.8.6
	8.8.6.1
	8.8.6.2
	8.8.7
	8.8.7.1
	8.8.7.2

	Remarks

	9. Sound effects
	9.1 Sound effects
	9.1.1
	9.1.2

	9.2 Numbering of
	9.2.1

	9.3 Volume
	9.4 Sound playing autonymously
	9.4.1
	9.4.2
	9.4.3
	9.4.4
	9.4.5

	Remarks

	10. Input streams and devices
	10.1 Keyboard only in V1
	10.2 Input streams
	10.2.1
	10.2.2
	10.2.3
	10.2.4

	10.3 Mouse support
	10.3.1
	10.3.1.1
	10.3.2
	10.3.3
	10.3.4

	10.4 Menu support
	10.4.1
	10.4.1.1
	10.4.2
	10.4.3

	10.5 Terminating characters and timed input
	10.5.1
	10.5.2
	10.5.2.1
	10.5.3

	10.6 Single keypresses
	10.7 Reading ZSCII from the keyboard
	10.7.1
	10.7.2
	10.7.3

	Remarks

	11. The format of the header
	11.1 Header format
	11.1.1
	11.1.2
	11.1.3
	11.1.3.1
	11.1.4
	11.1.5
	11.1.6
	11.1.7
	11.1.7.1
	11.1.7.2
	11.1.7.3
	11.1.7.4
	11.1.7.4.1

	Remarks

	12. The object table
	12.1 Storage
	12.2 Property defaults table
	12.3 Object tree
	12.3.1
	12.3.2
	12.4 Property tables
	12.4.1
	12.4.2
	12.4.2.1
	12.4.2.1.1
	12.4.2.2

	12.5 Well-foundedness of the tree
	Remarks

	13. The dictionary and lexical analysis
	13.1 Storage
	13.2 Header
	13.2.1

	13.3 Entries (V1 to V3)
	13.4 Entries (later versions)
	13.5 Ordering
	13.6 Lexical analysis
	13.6.1
	13.6.2
	13.6.3

	Remarks

	14. Complete table of opcodes
	14.1 Contents
	14.2 Out of range opcodes
	14.2.1
	14.2.2
	14.2.3
	14.2.4

	Reading the opcode tables
	Inform assembly language
	Remarks

	15. Dictionary of opcodes
	15.1
	15.2
	15.3

	16. Font 3 and character graphics
	16.1
	Remarks

	Appendix A. Error messages and debugging
	Appendix B. Conventional contents of the header
	Appendix C. Resources available
	Public Interpreters
	Testing compliance
	Compilers
	Utility programs
	Story files
	Documents

	Appendix D. A short history of the Z-machine
	Appendix E. Statistics
	Appendix F. Canonical Story Files

