
RFC 9331

The Explicit Congestion Notification (ECN) Protocol

for Low Latency, Low Loss, and Scalable Throughput

(L4S)

Abstract

This specification defines the protocol to be used for a new network service called Low Latency,

Low Loss, and Scalable throughput (L4S). L4S uses an Explicit Congestion Notification (ECN)

scheme at the IP layer that is similar to the original (or 'Classic') ECN approach, except as

specified within. L4S uses 'Scalable' congestion control, which induces much more frequent

control signals from the network, and it responds to them with much more fine-grained

adjustments so that very low (typically sub-millisecond on average) and consistently low queuing

delay becomes possible for L4S traffic without compromising link utilization. Thus, even

capacity-seeking (TCP-like) traffic can have high bandwidth and very low delay at the same time,

even during periods of high traffic load.

The L4S identifier defined in this document distinguishes L4S from 'Classic' (e.g., TCP-Reno-

friendly) traffic. Then, network bottlenecks can be incrementally modified to distinguish and

isolate existing traffic that still follows the Classic behaviour, to prevent it from degrading the

low queuing delay and low loss of L4S traffic. This Experimental specification defines the rules

that L4S transports and network elements need to follow, with the intention that L4S flows

neither harm each other's performance nor that of Classic traffic. It also suggests open questions

to be investigated during experimentation. Examples of new Active Queue Management (AQM)

marking algorithms and new transports (whether TCP-like or real time) are specified separately.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9331

Experimental

January 2023 

2070-1721

  K. De Schepper

Nokia Bell Labs

B. Briscoe,  Ed.

Independent

Status of This Memo 

This document is not an Internet Standards Track specification; it is published for examination,

experimental implementation, and evaluation.

De Schepper & Briscoe Experimental Page 1

https://www.rfc-editor.org/rfc/rfc9331


This document defines an Experimental Protocol for the Internet community. This document is a

product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF

community. It has received public review and has been approved for publication by the Internet

Engineering Steering Group (IESG). Not all documents approved by the IESG are candidates for

any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9331

Copyright Notice 

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents ( ) in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents 

1.  Introduction

1.1.  Latency, Loss, and Scaling Problems

1.2.  Terminology

1.3.  Scope

2.  L4S Packet Identification: Document Roadmap

3.  Choice of L4S Packet Identifier: Requirements

4.  Transport-Layer Behaviour (the 'Prague L4S Requirements')

4.1.  Codepoint Setting

4.2.  Prerequisite Transport Feedback

4.3.  Prerequisite Congestion Response

4.3.1.  Guidance on Congestion Response in the RFC Series

4.4.  Filtering or Smoothing of ECN Feedback

5.  Network Node Behaviour

5.1.  Classification and Re-Marking Behaviour

5.2.  The Strength of L4S CE Marking Relative to Drop

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 2

https://www.rfc-editor.org/info/rfc9331
https://trustee.ietf.org/license-info


5.3.  Exception for L4S Packet Identification by Network Nodes with Transport-Layer

Awareness

5.4.  Interaction of the L4S Identifier with Other Identifiers

5.4.1.  DualQ Examples of Other Identifiers Complementing L4S Identifiers

5.4.1.1.  Inclusion of Additional Traffic with L4S

5.4.1.2.  Exclusion of Traffic from L4S Treatment

5.4.1.3.  Generalized Combination of L4S and Other Identifiers

5.4.2.  Per-flow Queuing Examples of Other Identifiers Complementing L4S Identifiers

5.5.  Limiting Packet Bursts from Links

5.5.1.  Limiting Packet Bursts from Links Fed by an L4S AQM

5.5.2.  Limiting Packet Bursts from Links Upstream of an L4S AQM

6.  Behaviour of Tunnels and Encapsulations

6.1.  No Change to ECN Tunnels and Encapsulations in General

6.2.  VPN Behaviour to Avoid Limitations of Anti-Replay

7.  L4S Experiments

7.1.  Open Questions

7.2.  Open Issues

7.3.  Future Potential

8.  IANA Considerations

9.  Security Considerations

10. References

10.1.  Normative References

10.2.  Informative References

Appendix A.  Rationale for the 'Prague L4S Requirements'

A.1.  Rationale for the Requirements for Scalable Transport Protocols

A.1.1.  Use of L4S Packet Identifier

A.1.2.  Accurate ECN Feedback

A.1.3.  Capable of Replacement by Classic Congestion Control

A.1.4.  Fall Back to Classic Congestion Control on Packet Loss

A.1.5.  Coexistence with Classic Congestion Control at Classic ECN Bottlenecks

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 3



A.1.6.  Reduce RTT Dependence

A.1.7.  Scaling Down to Fractional Congestion Windows

A.1.8.  Measuring Reordering Tolerance in Time Units

A.2.  Scalable Transport Protocol Optimizations

A.2.1.  Setting ECT in Control Packets and Retransmissions

A.2.2.  Faster than Additive Increase

A.2.3.  Faster Convergence at Flow Start

Appendix B.  Compromises in the Choice of L4S Identifier

Appendix C.  Potential Competing Uses for the ECT(1) Codepoint

C.1.  Integrity of Congestion Feedback

C.2.  Notification of Less Severe Congestion than CE

Acknowledgements

Authors' Addresses

1. Introduction 

This Experimental specification defines the protocol to be used for a new network service called

Low Latency, Low Loss, and Scalable throughput (L4S). L4S uses an Explicit Congestion

Notification (ECN) scheme at the IP layer with the same set of codepoint transitions as the

original (or 'Classic') ECN .  requires an ECN mark to be equivalent to a drop,

both when applied in the network and when responded to by a transport. Unlike Classic ECN

marking, i) the network applies L4S marking more immediately and more frequently than drop

and ii) the transport response to each mark is reduced and smoothed relative to that for drop.

The two changes counterbalance each other so that the throughput of an L4S flow will be

roughly the same as a comparable non-L4S flow under the same conditions. Nonetheless, the

much more frequent ECN control signals and the finer responses to these signals result in very

low queuing delay without compromising link utilization, and this low delay can be maintained

during high load. For instance, queuing delay under heavy and highly varying load with the

example DCTCP/DualQ solution described below on a DSL or Ethernet link is sub-millisecond on

average and roughly 1 to 2 milliseconds at the 99th percentile without losing link utilization 

 . Note that the queuing delay while waiting to acquire a shared

medium such as wireless has to be added to the above. It is a different issue that needs to be

addressed, but separately (see Section 6.3 of the L4S architecture ).

L4S relies on 'Scalable' congestion controls for these delay properties and for preserving low

delay as flow rate scales, hence the name. The congestion control used in Data Center TCP

(DCTCP) is an example of a Scalable congestion control, but DCTCP is applicable solely to

[RFC3168] [RFC3168]

[L4Seval22] [DualPI2Linux]

[RFC9330]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 4

https://www.rfc-editor.org/rfc/rfc9330#section-6.3


controlled environments like data centres , because it is too aggressive to coexist with

existing TCP-Reno-friendly traffic. Dual-Queue Coupled AQM, which is defined in a

complementary Experimental specification , is an AQM framework that enables

Scalable congestion controls derived from DCTCP to coexist with existing traffic, each getting

roughly the same flow rate when they compete under similar conditions. Note that a Scalable

congestion control is still not safe to deploy on the Internet unless it satisfies the requirements

listed in Section 4.

L4S is not only for elastic (TCP-like) traffic -- there are Scalable congestion controls for real-time

media, such as the L4S variant  of the SCReAM  RTP Media Congestion

Avoidance Techniques (RMCAT). The factor that distinguishes L4S from Classic traffic is its

behaviour in response to congestion. The transport wire protocol, e.g., TCP, QUIC, the Stream

Control Transmission Protocol (SCTP), the Datagram Congestion Control Protocol (DCCP), or RTP/

RTCP, is orthogonal (and therefore not suitable for distinguishing L4S from Classic packets).

The L4S identifier defined in this document is the key piece that distinguishes L4S from 'Classic'

(e.g., Reno-friendly) traffic. Then, network bottlenecks can be incrementally modified to

distinguish and isolate existing Classic traffic from L4S traffic, to prevent the former from

degrading the very low queuing delay and loss of the new Scalable transports, without harming

Classic performance at these bottlenecks. Although both sender and network deployment are

required before any benefit, initial implementations of the separate parts of the system have

been motivated by the potential performance benefits.

[RFC8257]

[RFC9332]

[SCReAM-L4S] [RFC8298]

1.1. Latency, Loss, and Scaling Problems 

Latency is becoming the critical performance factor for many (perhaps most) Internet

applications, e.g., interactive web, web services, voice, conversational video, interactive video,

interactive remote presence, instant messaging, online gaming, remote desktop, cloud-based

applications & services, and remote control of machinery and industrial processes. In many parts

of the world, further increases in access network bitrate offer diminishing returns ,

whereas latency is still a multi-faceted problem. As a result, much has been done to reduce

propagation time by placing caches or servers closer to users. However, queuing remains a

major, albeit intermittent, component of latency.

The Diffserv architecture provides Expedited Forwarding (EF)  so that low-latency

traffic can jump the queue of other traffic. If growth in latency-sensitive applications continues,

periods with solely latency-sensitive traffic will become increasingly common on links where

traffic aggregation is low. During these periods, if all the traffic were marked for the same

treatment, Diffserv would make no difference. The links with low aggregation also tend to

become the path bottleneck under load, for instance, the access links dedicated to individual sites

(homes, small enterprises, or mobile devices). So, instead of differentiation, it becomes

imperative to remove the underlying causes of any unnecessary delay.

[Dukkipati06]

[RFC3246]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 5



The Bufferbloat project has shown that excessively large buffering ('bufferbloat') has been

introducing significantly more delay than the underlying propagation time . These

delays appear only intermittently -- only when a capacity-seeking (e.g., TCP) flow is long enough

for the queue to fill the buffer, causing every packet in other flows sharing the buffer to have to

work its way through the queue.

AQM was originally developed to solve this problem (and others). Unlike Diffserv, which gives

low latency to some traffic at the expense of others, AQM controls latency for all traffic in a class.

In general, AQM methods introduce an increasing level of discard from the buffer, the longer the

queue persists above a shallow threshold. This gives sufficient signals to capacity-seeking (a.k.a.

greedy) flows to keep the buffer empty for its intended purpose: absorbing bursts. However,

Random Early Detection (RED) and other algorithms from the 1990s were sensitive to their

configuration and hard to set correctly . So this form of AQM was not widely deployed.

More recent state-of-the-art AQM methods, such as Flow Queue CoDel , Proportional

Integral controller Enhanced (PIE) , or Adaptive RED , are easier to configure,

because they define the queuing threshold in time not bytes, so configuration is invariant

whatever the link rate. However, the sawtoothing window of a Classic congestion control creates

a dilemma for the operator: either i) configure a shallow AQM operating point so the tips of the

sawteeth cause minimal queue delay, but then the troughs underutilize the link, or ii) configure

the operating point deeper into the buffer so the troughs utilize the link better, but then the tips

cause more delay variation. Even with a perfectly tuned AQM, the additional queuing delay at

the tips of the sawteeth will be of the same order as the underlying base round-trip time (RTT),

thereby roughly doubling the total RTT.

If a sender's own behaviour is introducing queuing delay variation, no AQM in the network can

'un-vary' the delay without significantly compromising link utilization. Even flow queuing (e.g., 

), which isolates one flow from another, cannot isolate a flow from the delay variations

it inflicts on itself. Therefore, those applications that need to seek out high bandwidth but also

need low latency will have to migrate to Scalable congestion control, which uses much smaller

sawtooth variations.

Altering host behaviour is not enough on its own though. Even if hosts adopt low-latency

Scalable congestion controls, they need to be isolated from the large queue variations induced by

existing Classic congestion controls. L4S AQMs provide that latency isolation in the network, and

the L4S identifier enables the AQMs to distinguish the two types of packets that need to be

isolated: L4S and Classic. L4S isolation can be achieved with a queue per flow (e.g., ),

but a DualQ  is sufficient and actually gives better tail latency . Both

approaches are addressed in this document.

The DualQ solution was developed to make very low latency available without requiring per-

flow queues at every bottleneck. This was useful because per-flow queuing (FQ) has well-known

downsides -- not least the need to inspect transport-layer headers in the network, which makes it

incompatible with privacy approaches such as IPsec Virtual Private Network (VPN) tunnels and

incompatible with link-layer queue management, where transport-layer headers can be hidden,

e.g., 5G.

[Bufferbloat]

[RFC7567]

[RFC8290]

[RFC8033] [ARED01]

[RFC8290]

[RFC8290]

[RFC9332] [DCttH19]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 6



Latency is not the only concern addressed by L4S. It was known when TCP congestion avoidance

was first developed that it would not scale to high bandwidth-delay products (see footnote 6 of

Jacobson and Karels ). Given that Reno congestion control is already beyond its scaling

range at regular broadband bitrates over WAN distances , 'less unscalable' CUBIC 

 and Compound  variants of TCP have been successfully deployed. However,

these are now approaching their scaling limits. Unfortunately, fully Scalable congestion controls

such as DCTCP  outcompete Classic ECN congestion controls sharing the same queue,

which is why they have been confined to private data centres or research testbeds.

It turns out that these Scalable congestion control algorithms that solve the latency problem can

also solve the scalability problem of Classic congestion controls. The finer sawteeth in the

congestion window (cwnd) have low amplitude, so they cause very little queuing delay variation,

and the average time to recover from one congestion signal to the next (the average duration of

each sawtooth) remains invariant, which maintains constant tight control as flow rate scales. A

background paper  gives the full explanation of why the design solves both the

latency and the scaling problems, both in plain English and in more precise mathematical form.

The explanation is summarized without the mathematics in Section 4 of the L4S architecture 

.

[TCP-CA]

[RFC3649]

[RFC8312] [CTCP]

[RFC8257]

[L4Seval22]

[RFC9330]

Classic Congestion Control:

Scalable Congestion Control:

1.2. Terminology 

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14   when, and only when, they appear in

all capitals, as shown here.

A congestion control behaviour that can coexist with standard Reno

 without causing significantly negative impact on its flow rate . With

Classic congestion controls, such as Reno or CUBIC, because flow rate has scaled since TCP

congestion control was first designed in 1988, it now takes hundreds of round trips (and

growing) to recover after a congestion signal (whether a loss or an ECN mark) as shown in the

examples in Section 5.1 of the L4S architecture  and in . Therefore, control

of queuing and utilization becomes very slack, and the slightest disturbances (e.g., from new

flows starting) prevent a high rate from being attained. 

A congestion control where the average time from one congestion

signal to the next (the recovery time) remains invariant as flow rate scales, all other factors

being equal. This maintains the same degree of control over queuing and utilization whatever

the flow rate, as well as ensuring that high throughput is robust to disturbances. For instance,

DCTCP averages 2 congestion signals per round trip, whatever the flow rate, as do other

recently developed Scalable congestion controls, e.g., Relentless TCP , Prague

for TCP and QUIC  , the L4S ECN part of Bottleneck Bandwidth and

Round-trip propagation time (BBRv2)  , and the L4S variant of SCReAM for

real-time media  . See Section 4.3 for more explanation. 

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC5681] [RFC5033]

[RFC9330] [RFC3649]

[RELENTLESS]

[PRAGUE-CC] [PragueLinux]

[BBRv2] [BBR-CC]

[SCReAM-L4S] [RFC8298]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 7

https://www.rfc-editor.org/rfc/rfc9330#section-4
https://www.rfc-editor.org/rfc/rfc9330#section-5.1


1.3. Scope 

The new L4S identifier defined in this specification is applicable for IPv4 and IPv6 packets (as is

Classic ECN ). It is applicable for the unicast, multicast, and anycast forwarding modes.

The L4S identifier is an orthogonal packet classification to the Differentiated Services Code Point

(DSCP) . Section 5.4 explains what this means in practice.

Classic Service:

Low Latency, Low Loss, and Scalable throughput (L4S) service:

Reno-friendly:

Classic ECN:

Site:

The Classic service is intended for all the congestion control behaviours that

coexist with Reno  (e.g., Reno itself, CUBIC , Compound , and TFRC 

). The term 'Classic queue' means a queue providing the Classic service. 

The 'L4S' service is intended for

traffic from Scalable congestion control algorithms, such as the Prague congestion control 

, which was derived from DCTCP . The L4S service is for more general

traffic than just Prague -- it allows the set of congestion controls with similar scaling

properties to Prague to evolve, such as the examples listed above (Relentless, SCReAM, etc.).

The term 'L4S queue' means a queue providing the L4S service.

The terms Classic or L4S can also qualify other nouns, such as 'queue', 'codepoint', 'identifier',

'classification', 'packet', and 'flow'. For example, an L4S packet means a packet with an L4S

identifier sent from an L4S congestion control.

Both Classic and L4S services can cope with a proportion of unresponsive or less-responsive

traffic as well but, in the L4S case, its rate has to be smooth enough or low enough to not build

a queue (e.g., DNS, Voice over IP (VoIP), game sync datagrams, etc.).

The subset of Classic traffic that is friendly to the standard Reno congestion

control defined for TCP in . The TFRC spec  indirectly implies that

'friendly' is defined as "generally within a factor of two of the sending rate of a TCP flow

under the same conditions". Reno-friendly is used here in place of 'TCP-friendly', given the

latter has become imprecise, because the TCP protocol is now used with so many different

congestion control behaviours, and Reno is used in non-TCP transports, such as QUIC 

. 

The original Explicit Congestion Notification (ECN) protocol  that

requires ECN signals to be treated as equivalent to drops, both when generated in the

network and when responded to by the sender.

For L4S, the names used for the four codepoints of the 2-bit IP-ECN field are unchanged from

those defined in the ECN spec , i.e., Not-ECT, ECT(0), ECT(1), and CE, where ECT

stands for ECN-Capable Transport and CE stands for Congestion Experienced. A packet

marked with the CE codepoint is termed 'ECN-marked' or sometimes just 'marked' where the

context makes ECN obvious.

A home, mobile device, small enterprise, or campus where the network bottleneck is

typically the access link to the site. Not all network arrangements fit this model, but it is a

useful, widely applicable generalization. 

[RFC5681] [RFC8312] [CTCP]

[RFC5348]

[PRAGUE-CC] [RFC8257]

[RFC5681] [RFC5348]

[RFC9000]

[RFC3168]

[RFC3168]

[RFC3168]

[RFC2474]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 8



This document is Experimental, so it does not update any Standards Track RFCs. Therefore, it

depends on , which is a Standards Track specification that:

updates the ECN Proposed Standard  to allow Experimental RFCs to relax the

requirement that an ECN mark must be equivalent to a drop (when the network applies

markings and/or when the sender responds to them). For instance, in the Alternative Backoff

with ECN (ABE) experiment , this relaxation permits a sender to respond less to

ECN marks than to drops; 

changes the status of the Experimental ECN nonce spec  to Historic; and 

makes consequent updates to the following additional Proposed Standard RFCs to reflect the

above two bullets:

ECN for RTP  and 

the congestion control specifications of various DCCP Congestion Control Identifier (CCID)

profiles   . 

This document is about identifiers that are used for interoperation between hosts and networks.

So the audience is broad, covering developers of host transports and network AQMs, as well as

covering how operators might wish to combine various identifiers, which would require

flexibility from equipment developers.

[RFC8311]

• [RFC3168]

[RFC8511]

• [RFC3540]

• 

◦ [RFC6679]

◦ 

[RFC4341] [RFC4342] [RFC5622]

2. L4S Packet Identification: Document Roadmap 

The L4S ECN marking treatment is an experimental alternative to the Classic ECN treatment in 

, which has been updated by  to allow experiments such as the one defined

in the present specification.  discusses some of the issues and evaluation criteria when

defining alternative ECN semantics, which are further discussed in Section 4.3.1.

The L4S architecture  describes the three main components of L4S: the sending host

behaviour, the marking behaviour in the network, and the L4S ECN protocol that identifies L4S

packets as they flow between the two.

Section 3 of this document records the requirements that informed the choice of L4S identifier.

Then, subsequent sections specify the L4S ECN protocol, which i) identifies packets that have

been sent from hosts that are expected to comply with a broad type of sending behaviour and ii)

identifies the marking treatment that network nodes are expected to apply to L4S packets.

For a packet to receive L4S treatment as it is forwarded, the sender sets the ECN field in the IP

header to the ECT(1) codepoint. See Section 4 for full transport-layer behaviour requirements,

including feedback and congestion response.

A network node that implements the L4S service always classifies arriving ECT(1) packets for L4S

treatment and by default classifies CE packets for L4S treatment unless the heuristics described

in Section 5.3 are employed. See Section 5 for full network element behaviour requirements,

including classification, ECN marking, and interaction of the L4S identifier with other identifiers

and per-hop behaviours.

[RFC3168] [RFC8311]

[RFC4774]

[RFC9330]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 9



L4S ECN works with ECN tunnelling and encapsulation behaviour as is, except there is one

known case where careful attention to configuration is required, which is detailed in Section 6.

This specification of L4S ECN currently has Experimental status. So Section 7 collects the general

questions and issues that remain open for investigation during L4S experimentation. Open issues

or questions specific to particular components are called out in the specifications of each

component part, such as the DualQ .

The IANA assignment of the L4S identifier is specified in Section 8. And Section 9 covers security

considerations specific to the L4S identifier. System security aspects, such as policing and privacy,

are covered in the L4S architecture .

[RFC9332]

[RFC9330]

3. Choice of L4S Packet Identifier: Requirements 

This subsection briefly records the process that led to the chosen L4S identifier.

The identifier for packets using the L4S service needs to meet the following requirements:

it  survive end to end between source and destination endpoints: across the

boundary between host and network, between interconnected networks, and through

middleboxes; 

it  be visible at the IP layer; 

it  be common to IPv4 and IPv6 and be transport-agnostic; 

it  be incrementally deployable; 

it  enable an AQM to classify packets encapsulated by outer IP or lower-layer

headers; 

it  consume minimal extra codepoints; and 

it  be consistent on all the packets of a transport-layer flow, so that some packets of a

flow are not served by a different queue to others. 

Whether the identifier would be recoverable if the experiment failed is a factor that could be

taken into account. However, this has not been made a requirement, because that would favour

schemes that would be easier to fail rather than more likely to succeed.

It is recognized that any choice of identifier is unlikely to satisfy all these requirements,

particularly given the limited space left in the IP header. Therefore, a compromise will always be

necessary, which is why all the above requirements are expressed with the word " " not

" ".

After extensive assessment of alternative schemes, "ECT(1) and CE codepoints" was chosen as the

best compromise. Therefore, this scheme is defined in detail in the following sections, while 

Appendix B records its pros and cons against the above requirements.

• SHOULD

• SHOULD

• SHOULD

• SHOULD

• SHOULD

• SHOULD

• SHOULD

SHOULD

MUST

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 10



4. Transport-Layer Behaviour (the 'Prague L4S Requirements') 

This section defines L4S behaviour at the transport layer, also known as the 'Prague L4S

Requirements' (see Appendix A for the origin of the name).

4.1. Codepoint Setting 

A sender that wishes a packet to receive L4S treatment as it is forwarded  set the ECN field

in the IP header (v4 or v6) to the ECT(1) codepoint.

MUST

TCP:

SCTP:

RTP over UDP:

QUIC:

DCCP:

4.2. Prerequisite Transport Feedback 

For a transport protocol to provide Scalable congestion control (Section 4.3), it  provide

feedback of the extent of CE marking on the forward path. When ECN was added to TCP 

, the feedback method reported no more than one CE mark per round trip. Some

transport protocols derived from TCP mimic this behaviour while others report the accurate

extent of ECN marking. This means that some transport protocols will need to be updated as a

prerequisite for Scalable congestion control. The position for a few well-known transport

protocols is given below.

Support for the accurate ECN feedback requirements  (such as that provided by

AccECN ) by both ends is a prerequisite for Scalable congestion control in TCP.

Therefore, the presence of ECT(1) in the IP headers even in one direction of a TCP connection

will imply that both ends support accurate ECN feedback. However, the converse does not

apply. So even if both ends support AccECN, either of the two ends can choose not to use a

Scalable congestion control, whatever the other end's choice is. 

A suitable ECN feedback mechanism for SCTP could add a chunk to report the number of

received CE marks (as described in a long-expired document  or as sketched out in

Appendix A of the now-obsolete second Standards Track specification of SCTP ). 

A prerequisite for Scalable congestion control is for both (all) ends of one media-

level hop to signal ECN support  and use the new generic RTCP feedback format of 

. The presence of ECT(1) implies that both (all) ends of that media-level hop support

ECN. However, the converse does not apply. So each end of a media-level hop can

independently choose not to use a Scalable congestion control, even if both ends support ECN.

Support for sufficiently fine-grained ECN feedback is provided by IETF QUIC transport v1 

. 

The Acknowledgement (ACK) vector in DCCP  is already sufficient to report the

extent of CE marking as needed by a Scalable congestion control. 

MUST

[RFC3168]

[RFC7560]

[ACCECN]

[SCTP-ECN]

[RFC4960]

[RFC6679]

[RFC8888]

[RFC9000]

[RFC4340]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 11

https://www.rfc-editor.org/rfc/rfc4960#appendix-A


4.3. Prerequisite Congestion Response 

As a condition for a host to send packets with the L4S identifier (ECT(1)), it  implement a

congestion control behaviour that ensures that, in steady state, the average duration between

induced ECN marks does not increase as flow rate scales up, all other factors being equal. This is

termed a Scalable congestion control. This invariant duration ensures that, as flow rate scales,

the average period with no feedback information about capacity does not become excessive. It

also ensures that queue variations remain small, without having to sacrifice utilization.

With a congestion control that sawtooths to probe capacity, this duration is called the recovery

time, because each time the sawtooth yields, on average it takes this time to recover to its

previous high point. A Scalable congestion control does not have to sawtooth, but it has to coexist

with Scalable congestion controls that do.

For instance, for DCTCP , TCP Prague  , and the L4S variant

of SCReAM  , the average recovery time is always half a round trip (or

half a reference round trip), whatever the flow rate.

As with all transport behaviours, a detailed specification (probably an Experimental RFC) is

expected for each congestion control, following the guidelines for specifying new congestion

control algorithms in . In addition, it is expected that these L4S-specific matters will be

documented, specifically the timescale over which the proportionality is averaged and the

control of burstiness. The recovery time requirement above is worded as a " " rather than

a " " to allow reasonable flexibility for such implementations.

The condition 'all other factors being equal' allows the recovery time to be different for different

round-trip times, as long as it does not increase with flow rate for any particular RTT.

Saying that the recovery time remains roughly invariant is equivalent to saying that the number

of ECN CE marks per round trip remains invariant as flow rate scales, all other factors being

equal. For instance, an average recovery time of half of 1 RTT is equivalent to 2 ECN marks per

round trip. For those familiar with steady-state congestion response functions, it is also

equivalent to say that the congestion window is inversely proportional to the proportion of bytes

in packets marked with the CE codepoint (see Section 2 of ).

In order to coexist safely with other Internet traffic, a Scalable congestion control is not allowed

to tag its packets with the ECT(1) codepoint unless it complies with the following numbered

requirements and recommendations:

SHOULD

[RFC8257] [PRAGUE-CC] [PragueLinux]

[SCReAM-L4S] [RFC8298]

[RFC5033]

SHOULD

MUST

[PI2]

1. A Scalable congestion control  be capable of being replaced by a Classic congestion

control (by application and/or by administrative control). If a Classic congestion control is

activated, it will not tag its packets with the ECT(1) codepoint (see Appendix A.1.3 for

rationale). 

MUST

2. As well as responding to ECN markings, a Scalable congestion control  react to packet

loss in a way that will coexist safely with Classic congestion controls such as standard Reno 

, as required by  (see Appendix A.1.4 for rationale). 

MUST

[RFC5681] [RFC5033]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 12



3. In uncontrolled environments, monitoring  be implemented to support detection of

problems with an ECN-capable AQM at the path bottleneck that appears not to support L4S

and that might be in a shared queue. Such monitoring  be applied to live traffic that

is using Scalable congestion control. Alternatively, monitoring need not be applied to live

traffic, if monitoring with test traffic has been arranged to cover the paths that live traffic

takes through uncontrolled environments.

A function to detect the above problems with an ECN-capable AQM  also be

implemented and used. The detection function  be capable of making the congestion

control adapt its ECN-marking response in real time to coexist safely with Classic congestion

controls such as standard Reno , as required by . This could be

complemented by more detailed offline detection of potential problems. If only offline

detection is used and potential problems with such an AQM are detected on certain paths,

the Scalable congestion control  be replaced by a Classic congestion control, at least for

the problem paths.

See Section 4.3.1, Appendix A.1.5, and the L4S operational guidance  for rationale

and explanation.

Note that a Scalable congestion control is not expected to change to setting ECT(0) while it

transiently adapts to coexist with Classic congestion controls, whereas a replacement

congestion control that solely behaves in the Classic way will set ECT(0).

MUST

SHOULD

MUST

SHOULD

[RFC5681] [RFC5033]

MUST

[L4SOPS]

4. In the range between the minimum likely RTT and typical RTTs expected in the intended

deployment scenario, a Scalable congestion control  converge towards a rate that is as

independent of RTT as is possible without compromising stability or utilization (see 

Appendix A.1.6 for rationale). 

MUST

5. A Scalable congestion control  remain responsive to congestion when typical RTTs

over the public Internet are significantly smaller because they are no longer inflated by

queuing delay. It would be preferable for the minimum window of a Scalable congestion

control to be lower than 1 segment rather than use the timeout approach described for TCP

in  (or an equivalent for other transports). However, a

lower minimum is not set as a formal requirement for L4S experiments (see Appendix A.1.7

for rationale). 

SHOULD

Section 6.1.2 of the ECN spec [RFC3168]

6. A Scalable congestion control's loss detection  be resilient to reordering over an

adaptive time interval that scales with throughput and adapts to reordering (as in Recent

ACK (RACK) ), as opposed to counting only in fixed units of packets (as in the 3

Duplicate ACK (DupACK) rule of NewReno  , which is not scalable). As

data rates increase (e.g., due to new and/or improved technology), congestion controls that

detect loss by counting in units of packets become more likely to incorrectly treat reordering

events as congestion-caused loss events (see Appendix A.1.8 for further rationale). This

requirement does not apply to congestion controls that are solely used in controlled

environments where the network introduces hardly any reordering. 

SHOULD

[RFC8985]

[RFC5681] [RFC6675]

7. A Scalable congestion control is expected to limit the queue caused by bursts of packets. It

would not seem necessary to set the limit any lower than 10% of the minimum RTT expected

in a typical deployment (e.g., additional queuing of roughly 250 us for the public Internet).

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 13

https://www.rfc-editor.org/rfc/rfc3168#section-6.1.2


Each sender in a session can use a Scalable congestion control independently of the congestion

control used by the receiver(s) when they send data. Therefore, there might be ECT(1) packets in

one direction and ECT(0) or Not-ECT in the other.

Later, this document discusses the conditions for mixing other "'Safe' Unresponsive Traffic" (e.g.,

DNS, Lightweight Directory Access Protocol (LDAP), NTP, voice, and game sync packets) with L4S

traffic; see Section 5.4.1.1. To be clear, although such traffic can share the same queue as L4S

traffic, it is not appropriate for the sender to tag it as ECT(1), except in the (unlikely) case that it

satisfies the above conditions.

This would be converted to a number of packets by multiplying by the current average

packet rate. Then, the queue caused by each burst at the bottleneck link would not exceed

250 us (under the worst-case assumption that the flow is filling the capacity). No normative

requirement to limit bursts is given here, and until there is more industry experience from

the L4S experiment, it is not even known whether one is needed -- it seems to be in an L4S

sender's self-interest to limit bursts. 

4.3.1. Guidance on Congestion Response in the RFC Series 

 requires the congestion responses to a CE-marked packet and a dropped packet to be

the same.  is a Standards Track update to  that is intended to enable

experimentation with ECN, including the L4S experiment.  allows an experimental

congestion control's response to a CE-marked packet to differ from the response to a dropped

packet, provided that the differences are documented in an Experimental RFC, such as the

present document.

BCP 124  gives guidance to protocol designers, when specifying alternative semantics

for the IP-ECN field.  explained that it did not need to update the best current practice

in BCP 124 in order to relax the 'equivalence with drop' requirement because, although BCP 124

quotes the same requirement from , the BCP does not impose requirements based on it.

BCP 124  describes three options for incremental deployment, with Option 3 (in 

) best matching the L4S case. Option 3's requirement for end-nodes is

that they respond to CE marks "in a way that is friendly to flows using IETF-conformant

congestion control." This echoes other general congestion control requirements in the RFC Series,

for example,  states that "...congestion controllers that have a significantly negative

impact on traffic using standard congestion control may be suspect" and , which

concerns UDP congestion control, states that "Bulk-transfer applications that choose not to

implement TFRC or TCP-like windowing  implement a congestion control scheme that

results in bandwidth (capacity) use that competes fairly with TCP within an order of magnitude."

The normative Item 3 in Section 4.3 above (which concerns L4S response to congestion from a

Classic ECN AQM) aims to ensure that these 'coexistence' requirements are satisfied, but it makes

some compromises. This subsection highlights and justifies those compromises, and Appendix A.

1.5 and the L4S operational guidance  give detailed analysis, examples, and references

(the normative text in that bullet takes precedence if any informative elaboration leads to

[RFC3168]

[RFC8311] [RFC3168]

[RFC8311]

[RFC4774]

[RFC8311]

[RFC3168]

[RFC4774] Section

4.3 of BCP 124 [RFC4774]

[RFC5033]

[RFC8085]

SHOULD

[L4SOPS]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 14

https://www.rfc-editor.org/rfc/rfc4774#section-4.3
https://www.rfc-editor.org/rfc/rfc4774#section-4.3


Prevalence:

Severity:

ambiguity). The approach is based on an assessment of the risk of harm, which is a combination

of the prevalence of the conditions necessary for harm to occur, and the potential severity of the

harm if they do.

There are three cases:

Drop Tail: Coexistence between L4S and Classic flows is not in doubt where the bottleneck

does not support any form of ECN, which has remained by far the most prevalent case

since the ECN spec  was published in 2001. 

L4S: Coexistence is not in doubt if the bottleneck supports L4S. 

Classic ECN: The compromises centre around cases where the bottleneck supports Classic

ECN  but not L4S. But it depends on which sub-case:

Shared Queue with Classic ECN: At the time of writing, the members of the Transport

Working Group are not aware of any current deployments of single-queue Classic ECN

bottlenecks in the Internet. Nonetheless, at the scale of the Internet, rarity need not

imply small numbers nor that there will be rarity in the future. 

Per-Flow Queues with Classic ECN: Most AQMs with per-flow queuing deployed from

2012 onwards had Classic ECN enabled by default, specifically FQ-CoDel  and

COBALT . But the compromises only apply to the second of two further sub-

cases:

With per-flow queuing, coexistence between Classic and L4S flows is not normally a

problem, because different flows are not meant to be in the same queue (BCP 124 

 did not foresee the introduction of per-flow queuing, which appeared as a

potential isolation technique some eight years after the BCP was published). 

However, the isolation between L4S and Classic flows is not perfect in cases where

the hashes of flow identifiers (IDs) collide or where multiple flows within a Layer 3

VPN are encapsulated within one flow ID. 

To summarize, the coexistence problem is confined to cases of imperfect flow isolation in an

FQ or in potential cases where a Classic ECN AQM has been deployed in a shared queue (see

the L4S operational guidance  for further details including recent surveys attempting

to quantify prevalence). Further, if one of these cases does occur, the coexistence problem

does not arise unless sources of Classic and L4S flows are simultaneously sharing the same

bottleneck queue (e.g., different applications in the same household), and flows of each type

have to be large enough to coincide for long enough for any throughput imbalance to have

developed. Therefore, how often the coexistence problem arises in practice is listed in Section

7 as an open question that L4S experiments will need to answer.

Where long-running L4S and Classic flows coincide in a shared queue, testing of one

L4S congestion control (TCP Prague) has found that the imbalance in average throughput

between an L4S and a Classic flow can reach 25:1 in favour of L4S in the worst case 

. However, when capacity is most scarce, the Classic flow gets a higher proportion of

the link, for instance, over a 4 Mb/s link the throughput ratio is below ~10:1 over paths with a

base RTT below 100 ms, and it falls below ~5:1 for base RTTs below 20 ms. 

• 

[RFC3168]

• 

• 

[RFC3168]

◦ 

◦ 

[RFC8290]

[COBALT]

▪ 

[RFC4774]

▪ 

[L4SOPS]

[ecn-

fallback]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 15



4.4. Filtering or Smoothing of ECN Feedback 

Section 5.2 below specifies that an L4S AQM is expected to signal L4S ECN immediately, to avoid

introducing delay due to filtering or smoothing. This contrasts with a Classic AQM, which filters

out variations in the queue before signalling ECN marking or drop. In the L4S architecture 

, responsibility for smoothing out these variations shifts to the sender's congestion

control.

This shift of responsibility has the advantage that each sender can smooth variations over a

timescale proportionate to its own RTT. Whereas, in the Classic approach, the network doesn't

know the RTTs of any of the flows, so it has to smooth out variations for a worst-case RTT to

ensure stability. For all the typical flows with shorter RTTs than the worst-case, this makes

congestion control unnecessarily sluggish.

These throughput ratios can clearly fall well outside current RFC guidance on coexistence.

However, the tendency towards leaving a greater share for Classic flows at lower link rate and

the very limited prevalence of the conditions necessary for harm to occur led to the possibility of

allowing the RFC requirements to be compromised, albeit briefly:

The recommended approach is still to detect and adapt to a Classic ECN AQM in real time,

which is fully consistent with all the RFCs on coexistence. In other words, the " "s in

Item 3 of Section 4.3 above expect the sender to implement something similar to the proof-of-

concept code that detects the presence of a Classic ECN AQM and falls back to a Classic

congestion response within a few round trips . However, although this code

reliably detects a Classic ECN AQM, the current code can also wrongly categorize an L4S

AQM as Classic, most often in cases when link rate is low or RTT is high. Although this is the

safe way round, and although implementers are expected to be able to improve on this proof

of concept, concerns have been raised that implementers might lose faith in such detection

and disable it. 

Item 3 in Section 4.3 above therefore allows a compromise where coexistence could briefly

diverge from the requirements in the RFC Series, but mandatory monitoring is required in

order to detect such cases and trigger remedial action. This approach tolerates a brief

divergence from the RFCs given the likely low prevalence and given harm here means a flow

progresses more slowly than it would otherwise, but it does progress. The L4S operational

guidance  outlines a range of example remedial actions that include alterations to

either the sender or the network. However, the final normative requirement in Item 3 of 

Section 4.3 above places ultimate responsibility for remedial action on the sender. If

coexistence problems with a Classic ECN AQM are detected (implying they have not been

resolved by the network), it states that the sender " " revert to a Classic congestion

control. 

 also gives example ways in which L4S congestion controls can be rolled out initially in

lower-risk scenarios.

• 

SHOULD

[ecn-fallback]

• 

[L4SOPS]

MUST

[L4SOPS]

[RFC9330]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 16



This also gives an L4S sender the choice not to smooth, depending on its context (start-up,

congestion avoidance, etc.). Therefore, this document places no requirement on an L4S

congestion control to smooth out variations in any particular way. Implementers are encouraged

to openly publish the approach they take to smoothing as well as results and experience they

gain during the L4S experiment.

5. Network Node Behaviour 

5.1. Classification and Re-Marking Behaviour 

A network node that implements the L4S service:

 classify arriving ECT(1) packets for L4S treatment, unless overridden by another

classifier (e.g., see Section 5.4.1.2). 

 classify arriving CE packets for L4S treatment as well, unless overridden by another

classifier or unless the exception referred to next applies.

CE packets might have originated as ECT(1) or ECT(0), but the above rule to classify them as if

they originated as ECT(1) is the safe choice (see Appendix B for rationale). The exception is

where some flow-aware in-network mechanism happens to be available for distinguishing

CE packets that originated as ECT(0), as described in Section 5.3, but there is no implication

that such a mechanism is necessary.

An L4S AQM treatment follows similar codepoint transition rules to those in .

Specifically, the ECT(1) codepoint  be changed to any codepoint other than CE, and CE 

 be changed to any other codepoint. An ECT(1) packet is classified as 'ECN-capable', and

if congestion increases, an L4S AQM algorithm will increasingly mark the IP-ECN field as CE,

otherwise forwarding packets unchanged as ECT(1). Necessary conditions for an L4S marking

treatment are defined in Section 5.2.

Under persistent overload, an L4S marking treatment  begin applying drop to L4S traffic

until the overload episode has subsided, as recommended for all AQM methods in 

, which follows the similar advice in . During overload, it 

apply the same drop probability to L4S traffic as it would to Classic traffic.

Where an L4S AQM is transport-aware, this requirement could be satisfied by using drop in only

the most overloaded individual per-flow AQMs. In a DualQ with flow-aware queue protection

(e.g., ), this could be achieved by redirecting packets in those flows contributing

most to the overload out of the L4S queue so that they are subjected to drop in the Classic queue.

For backward compatibility in uncontrolled environments, a network node that implements the

L4S treatment  also implement an AQM treatment for the Classic service as defined in 

Section 1.2. This Classic AQM treatment need not mark ECT(0) packets, but if it does, see Section

5.2 for the strengths of the markings relative to drop. It  classify arriving ECT(0) and Not-

ECT packets for treatment by this Classic AQM (for the DualQ Coupled AQM; see the extensive

discussion on classification in Sections 2.3 and 2.5.1.1 of ).

• MUST

• MUST

[RFC3168]

MUST NOT

MUST NOT

MUST

Section 4.2.1 of

[RFC7567] Section 7 of [RFC3168] MUST

[DOCSIS-QPROT]

MUST

MUST

[RFC9332]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 17

https://www.rfc-editor.org/rfc/rfc7567#section-4.2.1
https://www.rfc-editor.org/rfc/rfc3168#section-7
https://www.rfc-editor.org/rfc/rfc9332#section-2.3
https://www.rfc-editor.org/rfc/rfc9332#section-2.5.1.1


In case unforeseen problems arise with the L4S experiment, it  be possible to configure an

L4S implementation to disable the L4S treatment. Once disabled, ECT(1) packets  be treated

as if they were Not-ECT.

MUST

MUST

5.2. The Strength of L4S CE Marking Relative to Drop 

The relative strengths of L4S CE and drop are irrelevant where AQMs are implemented in

separate queues per application-flow, which are then explicitly scheduled (e.g., with an FQ

scheduler as in FQ-CoDel ). Nonetheless, the relationship between them needs to be

defined for the coupling between L4S and Classic congestion signals in a DualQ Coupled AQM 

, as indicated below.

Unless an AQM node schedules application flows explicitly, the likelihood that the AQM drops a

Not-ECT Classic packet (p_C)  be roughly proportional to the square of the likelihood that it

would have marked it if it had been an L4S packet (p_L). That is:

p_C ~= (p_L / k)
2

The constant of proportionality (k) does not have to be standardized for interoperability, but a

value of 2 is . The term 'likelihood' is used above to allow for marking and

dropping to be either probabilistic or deterministic.

This formula ensures that Scalable and Classic flows will converge to roughly equal congestion

windows, for the worst case of Reno congestion control. This is because the congestion windows

of Scalable and Classic congestion controls are inversely proportional to p_L and sqrt(p_C),

respectively. So squaring p_C in the above formula counterbalances the square root that

characterizes Reno-friendly flows.

Note that, contrary to , an AQM implementing the L4S and Classic

treatments does not mark an ECT(1) packet under the same conditions that it would

have dropped a Not-ECT packet, as allowed by , which updates .

However, if it marks ECT(0) packets, it does so under the same conditions that it

would have dropped a Not-ECT packet .

Also, in the L4S architecture , the sender, not the network, is responsible for smoothing

out variations in the queue. So an L4S AQM  signal congestion as soon as possible. Then, an

L4S sender generally interprets CE marking as an unsmoothed signal.

This requirement does not prevent an L4S AQM from mixing in additional congestion signals

that are smoothed, such as the signals from a Classic smoothed AQM that are coupled with

unsmoothed L4S signals in the coupled DualQ , but only as long as the onset of

congestion can be signalled immediately and can be interpreted by the sender as if it has been

signalled immediately, which is important for interoperability

[RFC8290]

[RFC9332]

MUST

RECOMMENDED

[RFC3168]

[RFC8311] [RFC3168]

[RFC3168]

[RFC9330]

MUST

[RFC9332]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 18



5.3. Exception for L4S Packet Identification by Network Nodes with

Transport-Layer Awareness 

To implement L4S packet classification, a network node does not need to identify transport-layer

flows. Nonetheless, if an L4S network node classifies packets by their transport-layer flow ID and

their ECN field, and if all the ECT packets in a flow have been ECT(0), the node  classify any

CE packets in the same flow as if they were Classic ECT(0) packets. In all other cases, a network

node  classify all CE packets as if they were ECT(1) packets. Examples of such other cases

are: i) if no ECT packets have yet been identified in a flow; ii) if it is not desirable for a network

node to identify transport-layer flows; or iii) if some ECT packets in a flow have been ECT(1) (this

advice will need to be verified as part of L4S experiments).

MAY

MUST

5.4. Interaction of the L4S Identifier with Other Identifiers 

The examples in this section concern how additional identifiers might complement the L4S

identifier to classify packets between class-based queues. Firstly, Section 5.4.1 considers two

queues, L4S and Classic, as in the DualQ Coupled AQM , either alone (Section 5.4.1.1) or

within a larger queuing hierarchy (Section 5.4.1.2). Then, Section 5.4.2 considers schemes that

might combine per-flow 5-tuples with other identifiers.

[RFC9332]

5.4.1. DualQ Examples of Other Identifiers Complementing L4S Identifiers 

5.4.1.1. Inclusion of Additional Traffic with L4S 

In a typical case for the public Internet, a network element that implements L4S in a shared

queue might want to classify some low-rate but unresponsive traffic (e.g., DNS, LDAP, NTP, voice,

and game sync packets) into the low-latency queue to mix with L4S traffic. In this case, it would

not be appropriate to call the queue an L4S queue, because it is shared by L4S and non-L4S

traffic. Instead, it will be called the low-latency or L queue. The L queue then offers two different

treatments:

the L4S treatment, which is a combination of the L4S AQM treatment and a priority

scheduling treatment, and 

the low-latency treatment, which is solely the priority scheduling treatment, without ECN

marking by the AQM. 

To identify packets for just the scheduling treatment, it would be inappropriate to use the L4S

ECT(1) identifier, because such traffic is unresponsive to ECN marking. Examples of relevant non-

ECN identifiers are:

address ranges of specific applications or hosts configured to be, or known to be, safe, e.g.,

hard-coded Internet of Things (IoT) devices sending low-intensity traffic; 

certain low data-volume applications or protocols (e.g., ARP and DNS); and 

specific Diffserv codepoints that indicate traffic with limited burstiness such as the EF 

, VOICE-ADMIT , or proposed Non-Queue-Building (NQB) 

service classes or equivalent Local-use DSCPs (see ). 

• 

• 

• 

• 

• 

[RFC3246] [RFC5865] [NQB-PHB]

[L4S-DIFFSERV]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 19



To be clear, classifying into the L queue based on application-layer identification (e.g., DNS) is an

example of a local optimization, not a recommendation. Applications will not be able to rely on

such unsolicited optimization. A more reliable approach would be for the sender to set an

appropriate IP-layer identifier, such as one of the above Diffserv codepoints.

In summary, a network element that implements L4S in a shared queue  classify additional

types of packets into the L queue based on identifiers other than the IP-ECN field, but the types 

 be 'safe' to mix with L4S traffic, where 'safe' is explained in Section 5.4.1.1.1.

A packet that carries one of these non-ECN identifiers to classify it into the L queue would not be

subject to the L4S ECN-marking treatment, unless it also carried an ECT(1) or CE codepoint. The

specification of an L4S AQM  define the behaviour for packets with unexpected

combinations of codepoints, e.g., a non-ECN-based classifier for the L queue but with ECT(0) in

the IP-ECN field (for examples with appropriate behaviours, see Section 2.5.1.1 of the DualQ spec 

).

For clarity, non-ECN identifiers, such as the examples itemized above, might be used by some

network operators who believe they identify non-L4S traffic that would be safe to mix with L4S

traffic. They are not alternative ways for a host to indicate that it is sending L4S packets. Only the

ECT(1) ECN codepoint indicates to a network element that a host is sending L4S packets (and CE

indicates that it could have originated as ECT(1)). Specifically, ECT(1) indicates that the host

claims its behaviour satisfies the prerequisite transport requirements in Section 4.

In order to include non-L4S packets in the L queue, a network node  change Not-ECT or

ECT(0) in the IP-ECN field into an L4S identifier. This ensures that these codepoints survive for

any potential use later on the network path. If a non-compliant or malicious network node did

swap ECT(0) to ECT(1), the packet could subsequently be ECN-marked by a downstream L4S

AQM, but the sender would respond to congestion indications thinking it had sent a Classic

packet. This could result in the flow yielding excessively to other L4S flows sharing the

downstream bottleneck.

MAY

SHOULD

MUST

[RFC9332]

MUST NOT

5.4.1.1.1. 'Safe' Unresponsive Traffic 

The above section requires unresponsive traffic to be 'safe' to mix with L4S traffic. Ideally, this

means that the sender never sends any sequence of packets at a rate that exceeds the available

capacity of the bottleneck link. However, typically an unresponsive transport does not even

know the bottleneck capacity of the path, let alone its available capacity. Nonetheless, an

application can be considered safe enough if it paces packets out (not necessarily with absolute

regularity) such that its maximum instantaneous rate from packet to packet stays well below a

typical broadband access rate.

This is a vague but useful definition, because many low-latency applications of interest, such as

DNS, voice, game sync packets, RPC, ACKs, and keep-alives, could match this description.

Low-rate streams, such as voice and game sync packets, might not use continuously adapting

ECN-based congestion control, but they ought to at least use a 'circuit-breaker' style of congestion

response . If the volume of traffic from unresponsive applications is high enough to

overload the link, this will at least protect the capacity available to responsive applications.

[RFC8083]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 20

https://www.rfc-editor.org/rfc/rfc9332#section-2.5.1.1


5.4.1.3. Generalized Combination of L4S and Other Identifiers 

L4S concerns low latency, which it can provide for all traffic without differentiation and without 

necessarily affecting bandwidth allocation. Diffserv provides for differentiation of both

bandwidth and low latency, but its control of latency depends on its control of bandwidth. L4S

and Diffserv can be combined if a network operator wants to control bandwidth allocation but

also wants to provide low latency, i.e., for any amount of traffic within one of these allocations of

bandwidth (rather than only providing low latency by limiting bandwidth) .

The DualQ examples so far have been framed in the context of providing the default Best Effort

Per-Hop Behaviour (PHB) using two queues -- a low-latency (L) queue and a Classic (C) queue.

This single DualQ structure is expected to be the most common and useful arrangement. But,

more generally, an operator might choose to control bandwidth allocation through a hierarchy of

Diffserv PHBs at a node and to offer one (or more) of these PHBs using a pair of queues for a low

latency and a Classic variant of the PHB.

However, queuing delay in the L queue would probably then rise to the typically higher level

targeted by a Classic (drop-based) AQM. If a network operator considers that such self-restraint is

not enough, it might want to police the L queue (see Section 8.2 of the L4S architecture 

).[RFC9330]

5.4.1.2. Exclusion of Traffic from L4S Treatment 

To extend the above example, an operator might want to exclude some traffic from the L4S

treatment for a policy reason, e.g., security (traffic from malicious sources) or commercial (e.g.,

the operator may wish to initially confine the benefits of L4S to business customers).

In this exclusion case, the classifier  classify on the relevant locally used identifiers (e.g.,

source addresses) before classifying the non-matching traffic on the end-to-end L4S ECN

identifier.

A network node  alter the end-to-end L4S ECN identifier from L4S to Classic, because

an operator decision to exclude certain traffic from L4S treatment is local-only. The end-to-end

L4S identifier then survives for other operators to use, or indeed, they can apply their own

policy, independently based on their own choice of locally used identifiers. This approach also

allows any operator to remove its locally applied exclusions in future, e.g., if it wishes to widen

the benefit of the L4S treatment to all its customers. If a non-compliant or malicious network

node did swap ECT(1) to ECT(0), the packet could subsequently be ECN-marked by a downstream

Classic ECN AQM. L4S senders are required to detect and handle such treatment (see Item 3 in 

Section 4.3), but that does not make this swap OK, because such detection is not known to be

perfect or immediate.

A network node that supports L4S but excludes certain packets carrying the L4S identifier from

L4S treatment  still apply marking or dropping that is compatible with an L4S congestion

response. For instance, it could either drop such packets with the same likelihood as Classic

packets or ECN-mark them with a likelihood appropriate to L4S traffic (e.g., the coupled

probability in a DualQ Coupled AQM) but aiming for the Classic delay target. It  ECN-

mark such packets with a Classic marking probability, which could confuse the sender.

MUST

MUST NOT

MUST

MUST NOT

[L4S-DIFFSERV]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 21

https://www.rfc-editor.org/rfc/rfc9330#section-8.2


In the first case, if we assume that a network element provides no PHBs except the DualQ, if a

packet carries ECT(1) or CE, the network element would classify it for the L4S treatment

irrespective of its DSCP. And, if a packet carried (for example) the EF DSCP, the network element

could classify it into the L queue irrespective of its ECN codepoint. However, where the DualQ is

in a hierarchy of other PHBs, the classifier would classify some traffic into other PHBs based on

DSCP before classifying between the low-latency and Classic queues (based on ECT(1), CE, and

perhaps also the EF DSCP or other identifiers as in the above example).  gives a

number of examples of such arrangements to address various requirements.

 describes how an operator might use L4S to offer low latency as well as Diffserv

for bandwidth differentiation. It identifies two main types of approach, which can be combined:

the operator might split certain Diffserv PHBs between L4S and a corresponding Classic service.

Or it might split the L4S and/or the Classic service into multiple Diffserv PHBs. In either of these

cases, a packet would have to be classified on its Diffserv and ECN codepoints.

In summary, there are numerous ways in which the L4S ECN identifier (ECT(1) and CE) could be

combined with other identifiers to achieve particular objectives. The following categorization

articulates those that are valid, but it is not necessarily exhaustive. Those tagged as

'Recommended-standard-use' could be set by the sending host or a network. Those tagged as

'Local-use' would only be set by a network:

Identifiers Complementing the L4S Identifier

Including More Traffic in the L Queue

(could use Recommended-standard-use or Local-use identifiers)

Excluding Certain Traffic from the L Queue

(Local-use only)

Identifiers to Place L4S Classification in a PHB Hierarchy

(could use Recommended-standard-use or Local-use identifiers)

PHBs before L4S ECN Classification 

PHBs after L4S ECN Classification 

[L4S-DIFFSERV]

[L4S-DIFFSERV]

1. 

a. 

b. 

2. 

a. 

b. 

5.4.2. Per-flow Queuing Examples of Other Identifiers Complementing L4S Identifiers 

At a node with per-flow queuing (e.g., FQ-CoDel ), the L4S identifier could complement

the transport-layer flow ID as a further level of flow granularity (i.e., Not-ECT and ECT(0) queued

separately from ECT(1) and CE packets). In Appendix B, the "Risk of reordering Classic CE packets

within a flow" discusses the resulting ambiguity if packets originally set to ECT(0) are marked CE

by an upstream AQM before they arrive at a node that classifies CE as L4S. It argues that the risk

of reordering is vanishingly small, and the consequence of such a low level of reordering is

minimal.

[RFC8290]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 22



Alternatively, it could be assumed that it is not in a flow's own interest to mix Classic and L4S

identifiers. Then, the AQM could use the IP-ECN field to switch itself between a Classic and an L4S

AQM behaviour within one per-flow queue. For instance, for ECN-capable packets, the AQM

might consist of a simple marking threshold, and an L4S ECN identifier might simply select a

shallower threshold than a Classic ECN identifier would.

5.5. Limiting Packet Bursts from Links 

As well as senders needing to limit packet bursts (Section 4.3), links need to limit the degree of

burstiness they introduce. In both cases (senders and links), this is a trade-off, because batch-

handling of packets is done for good reason, e.g., for processing efficiency or to make efficient use

of medium acquisition delay. Some take the attitude that there is no point reducing burst delay at

the sender below that introduced by links (or vice versa). However, delay reduction proceeds by

cutting down 'the longest pole in the tent', which turns the spotlight on the next longest, and so

on.

This document does not set any quantified requirements for links to limit burst delay, primarily

because link technologies are outside the remit of L4S specifications. Nonetheless, the following

two subsections outline opportunities for addressing bursty links in the process of L4S

implementation and deployment.

5.5.1. Limiting Packet Bursts from Links Fed by an L4S AQM 

It would not make sense to implement an L4S AQM that feeds into a particular link technology

without also reviewing opportunities to reduce any form of burst delay introduced by that link

technology. This would at least limit the bursts that the link would otherwise introduce into the

onward traffic, which would cause jumpy feedback to the sender as well as potential extra

queuing delay downstream. This document does not presume to even give guidance on an

appropriate target for such burst delay until there is more industry experience of L4S. However,

as suggested in Section 4.3, it would not seem necessary to limit bursts lower than roughly 10% of

the minimum base RTT expected in the typical deployment scenario (e.g., 250 us burst duration

for links within the public Internet).

5.5.2. Limiting Packet Bursts from Links Upstream of an L4S AQM 

The initial scope of the L4S experiment is to deploy L4S AQMs at bottlenecks and L4S congestion

controls at senders. This is expected to highlight interactions with the most bursty upstream links

and lead operators to tune down the burstiness of those links in their networks that are

configurable or, failing that, to have to compromise on the delay target of some L4S AQMs. It

might also require specific redesign work relevant to the most problematic link types. Such

knock-on effects of initial L4S deployment would all be a part of the learning from the L4S

experiment.

The details of such link changes are beyond the scope of the present document. Nonetheless,

where L4S technology is being implemented on an outgoing interface of a device, it would make

sense to consider opportunities for reducing bursts arriving at other incoming interfaces. For

instance, where an L4S AQM is implemented to feed into the upstream WAN interface of a home

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 23



gateway, there would be opportunities to alter the Wi-Fi profiles sent out of any Wi-Fi interfaces

from the same device, in order to mitigate incoming bursts of aggregated Wi-Fi frames from

other Wi-Fi stations.

6. Behaviour of Tunnels and Encapsulations 

6.1. No Change to ECN Tunnels and Encapsulations in General 

The L4S identifier is expected to work through and within any tunnel without modification, as

long as the tunnel propagates the ECN field in any of the ways that have been defined since the

first variant in the year 2001 . L4S will also work with (but does not rely on) any of the

more recent updates to ECN propagation in , , or . However, it is

likely that some tunnels still do not implement ECN propagation at all. In these cases, L4S will

work through such tunnels, but within them the outer header of L4S traffic will appear as Classic.

AQMs are typically implemented where an IP-layer buffer feeds into a lower layer, so they are

agnostic to link-layer encapsulations. Where a bottleneck link is not IP-aware, the L4S identifier

is still expected to work within any lower-layer encapsulation without modification, as long it

propagates the IP-ECN field as defined for the link technology, for example, for MPLS 

or Transparent Interconnection of Lots of Links (TRILL) . In some of these

cases, e.g., Layer 3 Ethernet switches, the AQM accesses the IP-layer header within the outer

encapsulation, so again the L4S identifier is expected to work without modification. Nonetheless,

the programme to define ECN for other lower layers is still in progress .

[RFC3168]

[RFC4301] [RFC6040] [ECN-SHIM]

[RFC5129]

[TRILL-ECN-SUPPORT]

[ECN-ENCAP]

6.2. VPN Behaviour to Avoid Limitations of Anti-Replay 

If a mix of L4S and Classic packets is sent into the same security association (SA) of a VPN, and if

the VPN egress is employing the optional anti-replay feature, it could inappropriately discard

Classic packets (or discard the records in Classic packets) by mistaking their greater queuing

delay for a replay attack (see "Dropped Packets for Tunnels with Replay Protection Enabled" in 

 for the potential performance impact). This known problem is common to both IPsec 

 and DTLS  VPNs, given they use similar anti-replay window mechanisms.

The mechanism used can only check for replay within its window, so if the window is smaller

than the degree of reordering, it can only assume there might be a replay attack and discard all

the packets behind the trailing edge of the window. The specifications of IPsec Authentication

Header (AH)  and Encapsulating Security Payload (ESP)  suggest that an

implementer scales the size of the anti-replay window with interface speed, and DTLS v1.3 

 states that "The receiver  pick a window large enough to handle any plausible

reordering, which depends on the data rate." However, in practice, the size of a VPN's anti-replay

window is not always scaled appropriately.

If a VPN carrying traffic participating in the L4S experiment experiences inappropriate replay

detection, the foremost remedy would be to ensure that the egress is configured to comply with

the above window-sizing requirements.

[Heist21]

[RFC4301] [RFC9147]

[RFC4302] [RFC4303]

[RFC9147] SHOULD

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 24



If an implementation of a VPN egress does not support a sufficiently large anti-replay window,

e.g., due to hardware limitations, one of the temporary alternatives listed in order of preference

below might be feasible instead:

If the VPN can be configured to classify packets into different SAs indexed by DSCP, apply the

appropriate locally defined DSCPs to Classic and L4S packets. The DSCPs could be applied by

the network (based on the least-significant bit of the IP-ECN field), or by the sending host.

Such DSCPs would only need to survive as far as the VPN ingress. 

If the above is not possible and it is necessary to use L4S, either of the following might be

appropriate as a last resort:

disable anti-replay protection at the VPN egress, after considering the security implications

(it is mandatory to allow the anti-replay facility to be disabled in both IPsec and DTLS), or 

configure the tunnel ingress not to propagate ECN to the outer, which would lose the

benefits of L4S and Classic ECN over the VPN. 

Modification to VPN implementations is outside the present scope, which is why this section has

so far focused on reconfiguration. Although this document does not define any requirements for

VPN implementations, determining whether there is a need for such requirements could be one

aspect of L4S experimentation.

• 

• 

◦ 

◦ 

7. L4S Experiments 

This section describes open questions that L4S experiments ought to focus on. This section also

documents outstanding open issues that will need to be investigated as part of L4S

experimentation, given they could not be fully resolved during the working group phase. It also

lists metrics that will need to be monitored during experiments (summarizing text elsewhere in

L4S documents) and finally lists some potential future directions that researchers might wish to

investigate.

In addition to this section, i) the DualQ spec  sets operational and management

requirements for experiments with DualQ Coupled AQMs, and ii) general operational and

management requirements for experiments with L4S congestion controls are given in Sections 4

and 5 above, e.g., coexistence and scaling requirements and incremental deployment

arrangements.

The specification of each Scalable congestion control will need to include protocol-specific

requirements for configuration and monitoring performance during experiments. 

 provides a helpful checklist.

7.1. Open Questions 

L4S experiments would be expected to answer the following questions:

Have all the parts of L4S been deployed, and if so, what proportion of paths support it?

What types of L4S AQMs were deployed, e.g., FQ, coupled DualQ, uncoupled DualQ, other?

And how prevalent was each? 

[RFC9332]

Appendix A of

[RFC5706]

• 

◦ 

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 25

https://www.rfc-editor.org/rfc/rfc5706#appendix-A


Are the signalling patterns emitted by the deployed AQMs in any way different from those

expected when the Prague requirements for endpoints were written? 

Does use of L4S over the Internet result in a significantly improved user experience? 

Has L4S enabled novel interactive applications? 

Did use of L4S over the Internet result in improvements to the following metrics:

queue delay (mean and 99th percentile) under various loads; 

utilization; 

starvation / fairness; and 

scaling range of flow rates and RTTs? 

How dependent was the performance of L4S service on the bottleneck bandwidth or the path

RTT? 

How much do bursty links in the Internet affect L4S performance (see "Underutilization with

Bursty Links" in ) and how prevalent are they? How much limitation of burstiness

from upstream links was needed and/or was realized -- both at senders and at links,

especially radio links -- or how much did L4S target delay have to be increased to

accommodate the bursts (see Item 7 in Section 4.3 and see Section 5.5.2)? 

Is the initial experiment with mis-identified bursty traffic at high RTT (see "Underutilization

with Bursty Traffic" in ) indicative of similar problems at lower RTTs, and if so, how

effective is the suggested remedy in  (or possible

other remedies)? 

Was per-flow queue protection typically (un)necessary?

How well did overload protection or queue protection work? 

How well did L4S flows coexist with Classic flows when sharing a bottleneck?

How frequently did problems arise? 

What caused any coexistence problems, and were any problems due to single-queue

Classic ECN AQMs (this assumes single-queue Classic ECN AQMs can be distinguished from

FQ ones)? 

How prevalent were problems with the L4S service due to tunnels/encapsulations that do not

support ECN decapsulation? 

How easy was it to implement a fully compliant L4S congestion control, over various

different transport protocols (TCP, QUIC, RMCAT, etc.)? 

Monitoring for harm to other traffic, specifically bandwidth starvation or excess queuing delay,

will need to be conducted alongside all early L4S experiments. It is hard, if not impossible, for an

individual flow to measure its impact on other traffic. So such monitoring will need to be

conducted using bespoke monitoring across flows and/or across classes of traffic.

◦ 

• 

• 

• 

◦ 

◦ 

◦ 

◦ 

• 

• 

[Heist21]

• 

[Heist21]

Appendix A.1 of the DualQ spec [RFC9332]

• 

◦ 

• 

◦ 

◦ 

• 

• 

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 26

https://www.rfc-editor.org/rfc/rfc9332#appendix-A.1


7.2. Open Issues 

What is the best way forward to deal with L4S over single-queue Classic ECN AQM

bottlenecks, given current problems with misdetecting L4S AQMs as Classic ECN AQMs? See

the L4S operational guidance . 

Fixing the poor interaction between current L4S congestion controls and CoDel with only

Classic ECN support during flow startup. Originally, this was due to a bug in the initialization

of the congestion average in the Linux implementation of TCP Prague. That was quickly

fixed, which removed the main performance impact, but further improvement would be

useful (by modifying either CoDel or Scalable congestion controls, or both). 

7.3. Future Potential 

Researchers might find that L4S opens up the following interesting areas for investigation:

potential for faster convergence time and tracking of available capacity; 

potential for improvements to particular link technologies and cross-layer interactions with

them; 

potential for using virtual queues, e.g., to further reduce latency jitter or to leave headroom

for capacity variation in radio networks; 

development and specification of reverse path congestion control using L4S building blocks

(e.g., AccECN or QUIC); 

once queuing delay is cut down, what becomes the 'second-longest pole in the tent' (other

than the speed of light)? 

novel alternatives to the existing set of L4S AQMs; and 

novel applications enabled by L4S. 

• 

[L4SOPS]

• 

• 

• 

• 

• 

• 

• 

• 

8. IANA Considerations 

The semantics of the 01 codepoint of the ECN field of the IP header are specified by this

Experimental RFC. The process for an Experimental RFC to assign this codepoint in the IP header

(v4 and v6) is documented in Proposed Standard , which updates the Proposed

Standard .

IANA has updated the 01 entry in the "ECN Field (Bits 6-7)" registry (see 

) as follows:

Binary Keyword Reference

01 ECT(1) (ECN-Capable Transport(1))[1]  [RFC Errata 5399] RFC 9331

Table 1: ECN Field (Bits 6-7) Registry 

[1] ECT(1) is for experimental use only 

[RFC8311]

[RFC3168]

<https://www.iana.org/

assignments/dscp-registry/>

[RFC8311]

[RFC8311], Section 4.2

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 27

https://www.iana.org/assignments/dscp-registry/
https://www.iana.org/assignments/dscp-registry/
https://www.rfc-editor.org/rfc/rfc8311#section-4.2


[RFC2119]

[RFC3168]

10. References 

10.1. Normative References 

, , , 

, , March 1997, 

. 

, , and , 

, , , September 2001, 

. 

9. Security Considerations 

Approaches to assure the integrity of signals using the new identifier are introduced in Appendix

C.1. See the security considerations in the L4S architecture  for further discussion of

misuse of the identifier, as well as extensive discussion of policing rate and latency in regard to

L4S.

Defining ECT(1) as the L4S identifier introduces a difference between the effects of ECT(0) and

ECT(1) that  previously defined as distinct but with equivalent effect. For L4S ECN, a

network node is still required not to swap one to the other, even if the network operator chooses

to locally apply the treatment associated with the opposite codepoint (see Sections 5.4.1.1 and 

5.4.1.2). These sections also describe the potential effects if a non-compliant or malicious network

node does swap one to the other. The present specification does not change the effects of other

unexpected transitions of the IP-ECN field, which are still as described in .

If the anti-replay window of a VPN egress is too small, it will mistake deliberate delay differences

as a replay attack and discard higher-delay packets (e.g., Classic) carried within the same security

association (SA) as low-delay packets (e.g., L4S). Section 6.2 recommends that VPNs used in L4S

experiments are configured with a sufficiently large anti-replay window, as required by the

relevant specifications. It also discusses other alternatives.

If a user taking part in the L4S experiment sets up a VPN without being aware of the above

advice, and if the user allows anyone to send traffic into their VPN, they would open up a DoS

vulnerability in which an attacker could induce the VPN's anti-replay mechanism to discard

enough of the user's Classic (C) traffic (if they are receiving any) to cause a significant rate

reduction. While the user is actively downloading C traffic, the attacker sends C traffic into the

VPN to fill the remainder of the bottleneck link, then sends intermittent L4S packets to maximize

the chance of exceeding the VPN's replay window. The user can prevent this attack by following

the recommendations in Section 6.2.

The recommendation to detect loss in time units prevents the ACK-splitting attacks described in 

.

[RFC9330]

[RFC3168]

Section 18 of [RFC3168]

[Savage-TCP]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Ramakrishnan, K. Floyd, S. D. Black "The Addition of Explicit Congestion

Notification (ECN) to IP" RFC 3168 DOI 10.17487/RFC3168

<https://www.rfc-editor.org/info/rfc3168>

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 28

https://www.rfc-editor.org/rfc/rfc3168#section-18
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3168


[RFC4774]

[RFC6679]

[A2DTCP]

[ACCECN]

[Ahmed19]

[Alizadeh-stability]

[ARED01]

[BBR-CC]

[BBRv2]

[Bufferbloat]

[COBALT]

, 

, , , , November

2006, . 

, , , , and , 

, , 

, August 2012, . 

10.2. Informative References 

, , , , , and , 

, 

, , June 2015, 

. 

, , and , 

, , , 9

November 2022, 

. 

, , 

, August 2019, . 

, , and , 

, 

, , June 2011, 

. 

, , and , 

, 

, August 2001, . 

, , , , and , 

, , 

, 7 March 2022, 

. 

, , June 2022, 

. 

, , . 

, , , , , , and 

, , 

, 

, July 2019, 

. 

Floyd, S. "Specifying Alternate Semantics for the Explicit Congestion

Notification (ECN) Field" BCP 124 RFC 4774 DOI 10.17487/RFC4774

<https://www.rfc-editor.org/info/rfc4774>

Westerlund, M. Johansson, I. Perkins, C. O'Hanlon, P. K. Carlberg "Explicit

Congestion Notification (ECN) for RTP over UDP" RFC 6679 DOI 10.17487/

RFC6679 <https://www.rfc-editor.org/info/rfc6679>

Zhang, T. Wang, J. Huang, J. Huang, Y. Chen, J. Y. Pan "Adaptive-

Acceleration Data Center TCP" IEEE Transactions on Computers, Volume 64,

Issue 6, pp. 1522-1533 DOI 10.1109/TC.2014.2345393 <https://

ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6871352>

Briscoe, B. Kühlewind, M. R. Scheffenegger "More Accurate ECN Feedback

in TCP" Work in Progress Internet-Draft, draft-ietf-tcpm-accurate-ecn-22

<https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-

ecn-22>

Ahmed, A.S. "Extending TCP for Low Round Trip Delay" Master's Thesis,

University of Oslo <https://www.duo.uio.no/handle/10852/70966>

Alizadeh, M. Javanmard, A. B. Prabhakar "Analysis of DCTCP:

Stability, Convergence, and Fairness" SIGMETRICS '11: Proceedings of the ACM

SIGMETRICS Joint International Conference on Measurement and Modeling of

Computer Systems, pp. 73-84 DOI 10.1145/1993744.1993753 <https://

dl.acm.org/doi/10.1145/1993744.1993753>

Floyd, S. Gummadi, R. S. Shenker "Adaptive RED: An Algorithm for

Increasing the Robustness of RED's Active Queue Management" ACIRI Technical

Report 301 <https://www.icsi.berkeley.edu/icsi/node/2032>

Cardwell, N. Cheng, Y. Hassas Yeganeh, S. Swett, I. V. Jacobson "BBR

Congestion Control" Work in Progress Internet-Draft, draft-cardwell-iccrg-bbr-

congestion-control-02 <https://datatracker.ietf.org/doc/html/draft-

cardwell-iccrg-bbr-congestion-control-02>

"TCP BBR v2 Alpha/Preview Release" commit 17700ca <https://

github.com/google/bbr>

The Bufferbloat community "Bufferbloat" <https://bufferbloat.net/>

Palmei, J. Gupta, S. Imputato, P. Morton, J. Tahiliani, M. P. Avallone, S. D.

Täht "Design and Evaluation of COBALT Queue Discipline" IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN) DOI 10.1109/

LANMAN.2019.8847054 <https://ieeexplore.ieee.org/abstract/

document/8847054>

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 29

https://www.rfc-editor.org/info/rfc4774
https://www.rfc-editor.org/info/rfc6679
https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6871352
https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6871352
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-22
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-22
https://www.duo.uio.no/handle/10852/70966
https://dl.acm.org/doi/10.1145/1993744.1993753
https://dl.acm.org/doi/10.1145/1993744.1993753
https://www.icsi.berkeley.edu/icsi/node/2032
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://github.com/google/bbr
https://github.com/google/bbr
https://bufferbloat.net/
https://ieeexplore.ieee.org/abstract/document/8847054
https://ieeexplore.ieee.org/abstract/document/8847054


[CTCP]

[DCttH19]

[DOCSIS-QPROT]

[DualPI2Linux]

[Dukkipati06]

[ECN++]

[ECN-ENCAP]

[ecn-fallback]

[ECN-SHIM]

[Heist21]

[L4S-DIFFSERV]

, , , and , 

, 

, , 3 November 2008, 

. 

, , , and , 

, , July

2019, . 

 and , 

, , 

, 13 May 2022, 

. 

, , , , and , 

, 

, March 2019, 

. 

 and , 

, 

, , January 2006, 

. 

 and , 

, , 

, 27 July 2022, 

. 

 and , 

, , 

, 11 July 2022, 

. 

 and , 

, , , 

February 2021, . 

, 

, , 

, 11 July 2022, 

. 

, , August 2021, . 

, 

, , 

, 1 November 2018, 

. 

Sridharan, M. Tan, K. Bansal, D. D. Thaler "Compound TCP: A New TCP

Congestion Control for High-Speed and Long Distance Networks" Work in

Progress Internet-Draft, draft-sridharan-tcpm-ctcp-02

<https://datatracker.ietf.org/doc/html/draft-sridharan-tcpm-ctcp-02>

De Schepper, K. Bondarenko, O. Tilmans, O. B. Briscoe "'Data Centre to the

Home': Ultra-Low Latency for All" Updated RITE project Technical Report

<https://bobbriscoe.net/projects/latency/dctth_journal_draft20190726.pdf>

Briscoe, B., Ed. G. White "The DOCSIS® Queue Protection Algorithm to

Preserve Low Latency" Work in Progress Internet-Draft, draft-briscoe-docsis-q-

protection-06 <https://datatracker.ietf.org/doc/html/draft-briscoe-

docsis-q-protection-06>

Albisser, O. De Schepper, K. Briscoe, B. Tilmans, O. H. Steen "DUALPI2 -

Low Latency, Low Loss and Scalable (L4S) AQM" Proceedings of Linux Netdev

0x13 <https://www.netdevconf.org/0x13/session.html?talk-

DUALPI2-AQM>

Dukkipati, N. N. McKeown "Why Flow-Completion Time is the Right Metric

for Congestion Control" ACM SIGCOMM Computer Communication Review,

Volume 36, Issue 1, pp. 59-62 DOI 10.1145/1111322.1111336

<https://dl.acm.org/doi/10.1145/1111322.1111336>

Bagnulo, M. B. Briscoe "ECN++: Adding Explicit Congestion Notification

(ECN) to TCP Control Packets" Work in Progress Internet-Draft, draft-ietf-tcpm-

generalized-ecn-10 <https://datatracker.ietf.org/doc/html/draft-ietf-

tcpm-generalized-ecn-10>

Briscoe, B. J. Kaippallimalil "Guidelines for Adding Congestion Notification

to Protocols that Encapsulate IP" Work in Progress Internet-Draft, draft-ietf-

tsvwg-ecn-encap-guidelines-17 <https://datatracker.ietf.org/doc/

html/draft-ietf-tsvwg-ecn-encap-guidelines-17>

Briscoe, B. A. Ahmed "TCP Prague Fall-back on Detection of a Classic ECN

AQM" Technical Report: TR-BB-2019-002 DOI 10.48550/arXiv.1911.00710

<https://arxiv.org/abs/1911.00710>

Briscoe, B. "Propagating Explicit Congestion Notification Across IP Tunnel

Headers Separated by a Shim" Work in Progress Internet-Draft, draft-ietf-tsvwg-

rfc6040update-shim-15 <https://datatracker.ietf.org/doc/html/draft-

ietf-tsvwg-rfc6040update-shim-15>

"L4S Tests" commit e21cd91 <https://github.com/heistp/l4s-tests>

Briscoe, B. "Interactions between Low Latency, Low Loss, Scalable

Throughput (L4S) and Differentiated Services" Work in Progress Internet-Draft,

draft-briscoe-tsvwg-l4s-diffserv-02 <https://

datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-diffserv-02>

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 30

https://datatracker.ietf.org/doc/html/draft-sridharan-tcpm-ctcp-02
https://bobbriscoe.net/projects/latency/dctth_journal_draft20190726.pdf
https://datatracker.ietf.org/doc/html/draft-briscoe-docsis-q-protection-06
https://datatracker.ietf.org/doc/html/draft-briscoe-docsis-q-protection-06
https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM
https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM
https://dl.acm.org/doi/10.1145/1111322.1111336
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-generalized-ecn-10
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-generalized-ecn-10
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-encap-guidelines-17
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-encap-guidelines-17
https://arxiv.org/abs/1911.00710
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rfc6040update-shim-15
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rfc6040update-shim-15
https://github.com/heistp/l4s-tests
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-diffserv-02
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-diffserv-02


[L4Seval22]

[L4SOPS]

[LinuxPacedChirping]

[NQB-PHB]

[PI2]

[PRAGUE-CC]

[PragueLinux]

[QV]

[RELENTLESS]

[RFC2474]

[RFC3246]

, , , and , 

, 

, , September

2022, . 

, , 

, , 28 April 2022, 

. 

 and , , 

, March 2019, 

. 

 and , 

, , 

, 11 January 2023, 

. 

, , , and , 

, 

, , December 2016, 

. 

, , and , , 

, 

, 11 July 2022, 

. 

, , , , , ,

and , , 

, March 2019, 

. 

 and , 

, 

, September 2015, 

. 

, , , 

, 4 March 2009, 

. 

, , , and , 

, , 

, December 1998, . 

, , , , , , 

, , and , 

, , , March 2002, 

. 

De Schepper, K. Albisser, O. Tilmans, O. B. Briscoe "Dual Queue Coupled

AQM: Deployable Very Low Queuing Delay for All" Preprint submitted to IEEE/

ACM Transactions on Networking DOI 10.48550/arXiv.2209.01078

<https://arxiv.org/abs/2209.01078>

White, G., Ed. "Operational Guidance for Deployment of L4S in the Internet"

Work in Progress Internet-Draft, draft-ietf-tsvwg-l4sops-03

<https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4sops-03>

Misund, J. B. Briscoe "Paced Chirping - Rethinking TCP start-up"

Proceedings of Linux Netdev 0x13 <https://legacy.netdevconf.info/

0x13/session.html?talk-chirp>

White, G. T. Fossati "A Non-Queue-Building Per-Hop Behavior (NQB PHB)

for Differentiated Services" Work in Progress Internet-Draft, draft-ietf-tsvwg-

nqb-15 <https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-

nqb-15>

De Schepper, K. Bondarenko, O. Tsang, I. B. Briscoe "PI^2: A Linearized

AQM for both Classic and Scalable TCP" Proceedings of ACM CoNEXT 2016, pp.

105-119 DOI 10.1145/2999572.2999578 <https://dl.acm.org/

citation.cfm?doid=2999572.2999578>

De Schepper, K. Tilmans, O. B. Briscoe, Ed. "Prague Congestion Control"

Work in Progress Internet-Draft, draft-briscoe-iccrg-prague-congestion-

control-01 <https://datatracker.ietf.org/doc/html/draft-briscoe-

iccrg-prague-congestion-control-01>

Briscoe, B. De Schepper, K. Albisser, O. Misund, J. Tilmans, O. Kühlewind, M.

A. Ahmed "Implementing the 'TCP Prague' Requirements for L4S"

Proceedings of Linux Netdev 0x13 <https://www.netdevconf.org/

0x13/session.html?talk-tcp-prague-l4s>

Briscoe, B. P. Hurtig "Report on Prototype Development and Evaluation of

Network and Interaction Techniques" RITE Technical Report, Deliverable 2.3,

Appendix C.2: "Up to Speed with Queue View" <https://

riteproject.files.wordpress.com/2015/12/rite-deliverable-2-3.pdf>

Mathis, M. "Relentless Congestion Control" Work in Progress Internet-Draft,

draft-mathis-iccrg-relentless-tcp-00 <https://datatracker.ietf.org/

doc/html/draft-mathis-iccrg-relentless-tcp-00>

Nichols, K. Blake, S. Baker, F. D. Black "Definition of the Differentiated

Services Field (DS Field) in the IPv4 and IPv6 Headers" RFC 2474 DOI 10.17487/

RFC2474 <https://www.rfc-editor.org/info/rfc2474>

Davie, B. Charny, A. Bennet, J.C.R. Benson, K. Le Boudec, J.Y. Courtney, W.

Davari, S. Firoiu, V. D. Stiliadis "An Expedited Forwarding PHB (Per-Hop

Behavior)" RFC 3246 DOI 10.17487/RFC3246 <https://www.rfc-

editor.org/info/rfc3246>

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 31

https://arxiv.org/abs/2209.01078
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4sops-03
https://legacy.netdevconf.info/0x13/session.html?talk-chirp
https://legacy.netdevconf.info/0x13/session.html?talk-chirp
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-nqb-15
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-nqb-15
https://dl.acm.org/citation.cfm?doid=2999572.2999578
https://dl.acm.org/citation.cfm?doid=2999572.2999578
https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-prague-congestion-control-01
https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-prague-congestion-control-01
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://riteproject.files.wordpress.com/2015/12/rite-deliverable-2-3.pdf
https://riteproject.files.wordpress.com/2015/12/rite-deliverable-2-3.pdf
https://datatracker.ietf.org/doc/html/draft-mathis-iccrg-relentless-tcp-00
https://datatracker.ietf.org/doc/html/draft-mathis-iccrg-relentless-tcp-00
https://www.rfc-editor.org/info/rfc2474
https://www.rfc-editor.org/info/rfc3246
https://www.rfc-editor.org/info/rfc3246


[RFC3540]

[RFC3649]

[RFC4301]

[RFC4302]

[RFC4303]

[RFC4340]

[RFC4341]

[RFC4342]

[RFC4960]

[RFC5033]

[RFC5129]

[RFC5348]

[RFC5562]

, , and , 

, , , June 2003, 

. 

, , , 

, December 2003, . 

 and , , , 

, December 2005, 

. 

, , , , December

2005, . 

, , , 

, December 2005, . 

, , and , 

, , , March 2006, 

. 

 and , 

, , 

, March 2006, . 

, , and , 

, 

, , March 2006, 

. 

, , , 

, September 2007, . 

 and , , 

, , , August 2007, 

. 

, , and , , 

, , January 2008, 

. 

, , , and , 

, , , September

2008, . 

, , , and , 

, , 

, June 2009, . 

Spring, N. Wetherall, D. D. Ely "Robust Explicit Congestion Notification

(ECN) Signaling with Nonces" RFC 3540 DOI 10.17487/RFC3540

<https://www.rfc-editor.org/info/rfc3540>

Floyd, S. "HighSpeed TCP for Large Congestion Windows" RFC 3649 DOI

10.17487/RFC3649 <https://www.rfc-editor.org/info/rfc3649>

Kent, S. K. Seo "Security Architecture for the Internet Protocol" RFC 4301

DOI 10.17487/RFC4301 <https://www.rfc-editor.org/info/

rfc4301>

Kent, S. "IP Authentication Header" RFC 4302 DOI 10.17487/RFC4302

<https://www.rfc-editor.org/info/rfc4302>

Kent, S. "IP Encapsulating Security Payload (ESP)" RFC 4303 DOI 10.17487/

RFC4303 <https://www.rfc-editor.org/info/rfc4303>

Kohler, E. Handley, M. S. Floyd "Datagram Congestion Control Protocol

(DCCP)" RFC 4340 DOI 10.17487/RFC4340 <https://www.rfc-

editor.org/info/rfc4340>

Floyd, S. E. Kohler "Profile for Datagram Congestion Control Protocol

(DCCP) Congestion Control ID 2: TCP-like Congestion Control" RFC 4341 DOI

10.17487/RFC4341 <https://www.rfc-editor.org/info/rfc4341>

Floyd, S. Kohler, E. J. Padhye "Profile for Datagram Congestion Control

Protocol (DCCP) Congestion Control ID 3: TCP-Friendly Rate Control (TFRC)" RFC

4342 DOI 10.17487/RFC4342 <https://www.rfc-editor.org/info/

rfc4342>

Stewart, R., Ed. "Stream Control Transmission Protocol" RFC 4960 DOI

10.17487/RFC4960 <https://www.rfc-editor.org/info/rfc4960>

Floyd, S. M. Allman "Specifying New Congestion Control Algorithms" BCP

133 RFC 5033 DOI 10.17487/RFC5033 <https://www.rfc-editor.org/

info/rfc5033>

Davie, B. Briscoe, B. J. Tay "Explicit Congestion Marking in MPLS" RFC

5129 DOI 10.17487/RFC5129 <https://www.rfc-editor.org/info/

rfc5129>

Floyd, S. Handley, M. Padhye, J. J. Widmer "TCP Friendly Rate Control

(TFRC): Protocol Specification" RFC 5348 DOI 10.17487/RFC5348

<https://www.rfc-editor.org/info/rfc5348>

Kuzmanovic, A. Mondal, A. Floyd, S. K. Ramakrishnan "Adding Explicit

Congestion Notification (ECN) Capability to TCP's SYN/ACK Packets" RFC 5562

DOI 10.17487/RFC5562 <https://www.rfc-editor.org/info/rfc5562>

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 32

https://www.rfc-editor.org/info/rfc3540
https://www.rfc-editor.org/info/rfc3649
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4302
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4341
https://www.rfc-editor.org/info/rfc4342
https://www.rfc-editor.org/info/rfc4342
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc5033
https://www.rfc-editor.org/info/rfc5033
https://www.rfc-editor.org/info/rfc5129
https://www.rfc-editor.org/info/rfc5129
https://www.rfc-editor.org/info/rfc5348
https://www.rfc-editor.org/info/rfc5562


[RFC5622]

[RFC5681]

[RFC5706]

[RFC5865]

[RFC5925]

[RFC6040]

[RFC6077]

[RFC6660]

[RFC6675]

[RFC7560]

[RFC7567]

[RFC7713]

 and , 

, 

, , August 2009, 

. 

, , and , , , 

, September 2009, . 

, 

, , , November

2009, . 

, , and , 

, , , May 2010, 

. 

, , and , , , 

, June 2010, . 

, , , 

, November 2010, . 

, , , and , 

, , , 

February 2011, . 

, , and , 

, , , July 2012, 

. 

, , , , , and , 

, , , August 2012, 

. 

, , and , 

, , , August 2015, 

. 

 and , 

, , , , July 2015, 

. 

 and , 

, , , December

2015, . 

Floyd, S. E. Kohler "Profile for Datagram Congestion Control Protocol

(DCCP) Congestion ID 4: TCP-Friendly Rate Control for Small Packets (TFRC-SP)"

RFC 5622 DOI 10.17487/RFC5622 <https://www.rfc-editor.org/info/

rfc5622>

Allman, M. Paxson, V. E. Blanton "TCP Congestion Control" RFC 5681 DOI

10.17487/RFC5681 <https://www.rfc-editor.org/info/rfc5681>

Harrington, D. "Guidelines for Considering Operations and Management of New

Protocols and Protocol Extensions" RFC 5706 DOI 10.17487/RFC5706

<https://www.rfc-editor.org/info/rfc5706>

Baker, F. Polk, J. M. Dolly "A Differentiated Services Code Point (DSCP) for

Capacity-Admitted Traffic" RFC 5865 DOI 10.17487/RFC5865 <https://

www.rfc-editor.org/info/rfc5865>

Touch, J. Mankin, A. R. Bonica "The TCP Authentication Option" RFC 5925

DOI 10.17487/RFC5925 <https://www.rfc-editor.org/info/rfc5925>

Briscoe, B. "Tunnelling of Explicit Congestion Notification" RFC 6040 DOI

10.17487/RFC6040 <https://www.rfc-editor.org/info/rfc6040>

Papadimitriou, D., Ed. Welzl, M. Scharf, M. B. Briscoe "Open Research

Issues in Internet Congestion Control" RFC 6077 DOI 10.17487/RFC6077

<https://www.rfc-editor.org/info/rfc6077>

Briscoe, B. Moncaster, T. M. Menth "Encoding Three Pre-Congestion

Notification (PCN) States in the IP Header Using a Single Diffserv Codepoint

(DSCP)" RFC 6660 DOI 10.17487/RFC6660 <https://www.rfc-editor.org/

info/rfc6660>

Blanton, E. Allman, M. Wang, L. Jarvinen, I. Kojo, M. Y. Nishida "A

Conservative Loss Recovery Algorithm Based on Selective Acknowledgment

(SACK) for TCP" RFC 6675 DOI 10.17487/RFC6675 <https://

www.rfc-editor.org/info/rfc6675>

Kuehlewind, M., Ed. Scheffenegger, R. B. Briscoe "Problem Statement and

Requirements for Increased Accuracy in Explicit Congestion Notification (ECN)

Feedback" RFC 7560 DOI 10.17487/RFC7560 <https://www.rfc-

editor.org/info/rfc7560>

Baker, F., Ed. G. Fairhurst, Ed. "IETF Recommendations Regarding Active

Queue Management" BCP 197 RFC 7567 DOI 10.17487/RFC7567

<https://www.rfc-editor.org/info/rfc7567>

Mathis, M. B. Briscoe "Congestion Exposure (ConEx) Concepts, Abstract

Mechanism, and Requirements" RFC 7713 DOI 10.17487/RFC7713

<https://www.rfc-editor.org/info/rfc7713>

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 33

https://www.rfc-editor.org/info/rfc5622
https://www.rfc-editor.org/info/rfc5622
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc5706
https://www.rfc-editor.org/info/rfc5865
https://www.rfc-editor.org/info/rfc5865
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc6040
https://www.rfc-editor.org/info/rfc6077
https://www.rfc-editor.org/info/rfc6660
https://www.rfc-editor.org/info/rfc6660
https://www.rfc-editor.org/info/rfc6675
https://www.rfc-editor.org/info/rfc6675
https://www.rfc-editor.org/info/rfc7560
https://www.rfc-editor.org/info/rfc7560
https://www.rfc-editor.org/info/rfc7567
https://www.rfc-editor.org/info/rfc7713


[RFC8033]

[RFC8083]

[RFC8085]

[RFC8174]

[RFC8257]

[RFC8290]

[RFC8298]

[RFC8311]

[RFC8312]

[RFC8511]

[RFC8888]

[RFC8985]

, , , and , 

, , , February 2017, 

. 

 and , 

, , , March 2017, 

. 

, , and , , , 

, , March 2017, 

. 

, , 

, , , May 2017, 

. 

, , , , and , 

, , 

, October 2017, . 

, , , , and , 

, 

, , January 2018, 

. 

 and , , 

, , December 2017, 

. 

, 

, , , January 2018, 

. 

, , , , , and , 

, , , February

2018, . 

, , , and , 

, , , December 2018, 

. 

, , , and , 

, , , January

2021, . 

, , , and , 

, , , February 2021, 

. 

Pan, R. Natarajan, P. Baker, F. G. White "Proportional Integral Controller

Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat

Problem" RFC 8033 DOI 10.17487/RFC8033 <https://www.rfc-

editor.org/info/rfc8033>

Perkins, C. V. Singh "Multimedia Congestion Control: Circuit Breakers for

Unicast RTP Sessions" RFC 8083 DOI 10.17487/RFC8083 <https://

www.rfc-editor.org/info/rfc8083>

Eggert, L. Fairhurst, G. G. Shepherd "UDP Usage Guidelines" BCP 145 RFC

8085 DOI 10.17487/RFC8085 <https://www.rfc-editor.org/info/

rfc8085>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Bensley, S. Thaler, D. Balasubramanian, P. Eggert, L. G. Judd "Data Center

TCP (DCTCP): TCP Congestion Control for Data Centers" RFC 8257 DOI 10.17487/

RFC8257 <https://www.rfc-editor.org/info/rfc8257>

Hoeiland-Joergensen, T. McKenney, P. Taht, D. Gettys, J. E. Dumazet "The

Flow Queue CoDel Packet Scheduler and Active Queue Management Algorithm"

RFC 8290 DOI 10.17487/RFC8290 <https://www.rfc-editor.org/info/

rfc8290>

Johansson, I. Z. Sarker "Self-Clocked Rate Adaptation for Multimedia" RFC

8298 DOI 10.17487/RFC8298 <https://www.rfc-editor.org/info/

rfc8298>

Black, D. "Relaxing Restrictions on Explicit Congestion Notification (ECN)

Experimentation" RFC 8311 DOI 10.17487/RFC8311 <https://

www.rfc-editor.org/info/rfc8311>

Rhee, I. Xu, L. Ha, S. Zimmermann, A. Eggert, L. R. Scheffenegger "CUBIC

for Fast Long-Distance Networks" RFC 8312 DOI 10.17487/RFC8312

<https://www.rfc-editor.org/info/rfc8312>

Khademi, N. Welzl, M. Armitage, G. G. Fairhurst "TCP Alternative Backoff

with ECN (ABE)" RFC 8511 DOI 10.17487/RFC8511 <https://

www.rfc-editor.org/info/rfc8511>

Sarker, Z. Perkins, C. Singh, V. M. Ramalho "RTP Control Protocol (RTCP)

Feedback for Congestion Control" RFC 8888 DOI 10.17487/RFC8888

<https://www.rfc-editor.org/info/rfc8888>

Cheng, Y. Cardwell, N. Dukkipati, N. P. Jha "The RACK-TLP Loss Detection

Algorithm for TCP" RFC 8985 DOI 10.17487/RFC8985 <https://

www.rfc-editor.org/info/rfc8985>

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 34

https://www.rfc-editor.org/info/rfc8033
https://www.rfc-editor.org/info/rfc8033
https://www.rfc-editor.org/info/rfc8083
https://www.rfc-editor.org/info/rfc8083
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8257
https://www.rfc-editor.org/info/rfc8290
https://www.rfc-editor.org/info/rfc8290
https://www.rfc-editor.org/info/rfc8298
https://www.rfc-editor.org/info/rfc8298
https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc8312
https://www.rfc-editor.org/info/rfc8511
https://www.rfc-editor.org/info/rfc8511
https://www.rfc-editor.org/info/rfc8888
https://www.rfc-editor.org/info/rfc8985
https://www.rfc-editor.org/info/rfc8985


[RFC9000]

[RFC9001]

[RFC9147]

[RFC9330]

[RFC9332]

[Savage-TCP]

[SCReAM-L4S]

[SCTP-ECN]

[sub-mss-prob]

[TCP-CA]

[TCPPrague]

[TRILL-ECN-SUPPORT]

 and , 

, , , May 2021, 

. 

 and , , , 

, May 2021, . 

, , and , 

, , , April

2022, . 

, , , and , 

, , 

, January 2023, . 

, , and , 

, , , January 2023, 

. 

, , , and , 

, 

, , October 1999,

. 

, , November 2022, 

. 

, , and , 

, , 

, 15 January 2014, 

. 

 and , 

, , 

, May 2015, . 

 and , , 

, November 1988, 

. 

, , 

, July 2015, 

. 

 and , 

, 

, , 25 February 2018, 

. 

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and

Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://

www.rfc-editor.org/info/rfc9000>

Thomson, M., Ed. S. Turner, Ed. "Using TLS to Secure QUIC" RFC 9001 DOI

10.17487/RFC9001 <https://www.rfc-editor.org/info/rfc9001>

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer

Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Briscoe, B., Ed. De Schepper, K. Bagnulo, M. G. White "Low Latency, Low

Loss, and Scalable Throughput (L4S) Internet Service: Architecture" RFC 9330

DOI 10.17487/RFC9330 <https://www.rfc-editor.org/info/rfc9330>

De Schepper, K. Briscoe, B., Ed. G. White "Dual-Queue Coupled Active

Queue Management (AQM) for Low Latency, Low Loss, and Scalable Throughput

(L4S)" RFC 9332 DOI 10.17487/RFC9332 <https://www.rfc-

editor.org/info/rfc9332>

Savage, S. Cardwell, N. Wetherall, D. T. Anderson "TCP Congestion Control

with a Misbehaving Receiver" ACM SIGCOMM Computer Communication

Review, Volume 29, Issue 5, pp. 71–78 DOI 10.1145/505696.505704

<https://dl.acm.org/doi/abs/10.1145/505696.505704>

"SCReAM" commit 140e292 <https://github.com/

EricssonResearch/scream>

Stewart, R. Tüxen, M. X. Dong "ECN for Stream Control Transmission

Protocol (SCTP)" Work in Progress Internet-Draft, draft-stewart-tsvwg-

sctpecn-05 <https://datatracker.ietf.org/doc/html/draft-stewart-

tsvwg-sctpecn-05>

Briscoe, B. K. De Schepper "Scaling TCP's Congestion Window for Small

Round Trip Times" BT Technical Report: TR-TUB8-2015-002 DOI 10.48550/arXiv.

1904.07598 <https://arxiv.org/abs/1904.07598>

Jacobson, V. M. J. Karels "Congestion Avoidance and Control" Laurence

Berkeley Labs Technical Report <https://ee.lbl.gov/papers/

congavoid.pdf>

Briscoe, B. "Notes: DCTCP evolution 'bar BoF': Tue 21 Jul 2015, 17:40, Prague"

message to the tcpPrague mailing list <https://www.ietf.org/mail-

archive/web/tcpprague/current/msg00001.html>

Eastlake 3rd, D. B. Briscoe "TRILL (TRansparent Interconnection of

Lots of Links): ECN (Explicit Congestion Notification) Support" Work in

Progress Internet-Draft, draft-ietf-trill-ecn-support-07

<https://datatracker.ietf.org/doc/html/draft-ietf-trill-ecn-support-07>

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 35

https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9330
https://www.rfc-editor.org/info/rfc9332
https://www.rfc-editor.org/info/rfc9332
https://dl.acm.org/doi/abs/10.1145/505696.505704
https://github.com/EricssonResearch/scream
https://github.com/EricssonResearch/scream
https://datatracker.ietf.org/doc/html/draft-stewart-tsvwg-sctpecn-05
https://datatracker.ietf.org/doc/html/draft-stewart-tsvwg-sctpecn-05
https://arxiv.org/abs/1904.07598
https://ee.lbl.gov/papers/congavoid.pdf
https://ee.lbl.gov/papers/congavoid.pdf
https://www.ietf.org/mail-archive/web/tcpprague/current/msg00001.html
https://www.ietf.org/mail-archive/web/tcpprague/current/msg00001.html
https://datatracker.ietf.org/doc/html/draft-ietf-trill-ecn-support-07


[VCP] , , , and , 

, 

, , August 2005, 

. 

Xia, Y. Subramanian, L. Stoica, I. S. Kalyanaraman "One more bit is

enough" SIGCOMM '05: Proceedings of the 2005 conference on Applications,

technologies, architectures, and protocols for computer communications, pp.

37-48 DOI 10.1145/1080091.1080098 <https://doi.acm.org/

10.1145/1080091.1080098>

Appendix A. Rationale for the 'Prague L4S Requirements' 

This appendix is informative, not normative. It gives a list of modifications to current Scalable

congestion controls so that they can be deployed over the public Internet and coexist safely with

existing traffic. The list complements the normative requirements in Section 4 that a sender has

to comply with before it can set the L4S identifier in packets it sends into the Internet. As well as

rationale for safety improvements (the requirements in Section 4), this appendix also includes

preferable performance improvements (optimizations).

The requirements and recommendations in Section 4 have become known as the 'Prague L4S

Requirements', because they were originally identified at an ad hoc meeting during IETF 94 in

Prague . They were originally called the 'TCP Prague Requirements', but they are not

solely applicable to TCP, so the name and wording has been generalized for all transport

protocols, and the name 'TCP Prague' is now used for a specific implementation of the

requirements.

At the time of writing, DCTCP  is the most widely used Scalable transport protocol. In

its current form, DCTCP is specified to be deployable only in controlled environments. Deploying

it in the public Internet would lead to a number of issues, from both the safety and the

performance perspective. The modifications and additional mechanisms listed in this section will

be necessary for its deployment over the global Internet. Where an example is needed, DCTCP is

used as a base, but the requirements in Section 4 apply equally to other Scalable congestion

controls, covering adaptive real-time media, etc., not just capacity-seeking behaviours.

A.1. Rationale for the Requirements for Scalable Transport Protocols 

A.1.1. Use of L4S Packet Identifier 

Description: A Scalable congestion control needs to distinguish the packets it sends from those

sent by Classic congestion controls (see the precise normative requirement wording in Section

4.1).

Motivation: It needs to be possible for a network node to classify L4S packets without flow state

into a queue that applies an L4S ECN-marking behaviour and isolates L4S packets from the

queuing delay of Classic packets.

A.1.2. Accurate ECN Feedback 

Description: The transport protocol for a Scalable congestion control needs to provide timely,

accurate feedback about the extent of ECN marking experienced by all packets (see the precise

normative requirement wording in Section 4.2).

[TCPPrague]

[RFC8257]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 36

https://doi.acm.org/10.1145/1080091.1080098
https://doi.acm.org/10.1145/1080091.1080098


Motivation: Classic congestion controls only need feedback about the existence of a congestion

episode within a round trip, not precisely how many packets were ECN-marked or dropped.

Therefore, in 2001, when ECN feedback was added to TCP , it could not inform the

sender of more than one ECN mark per RTT. Since then, requirements for more accurate ECN

feedback in TCP have been defined in , and  specifies a change to the TCP

protocol to satisfy these requirements. Most other transport protocols already satisfy this

requirement (see Section 4.2).

[RFC3168]

[RFC7560] [ACCECN]

A.1.3. Capable of Replacement by Classic Congestion Control 

Description: It needs to be possible to replace the implementation of a Scalable congestion

control with a Classic control (see the precise normative requirement wording in Section 4.3,

Paragraph 8, Item 1).

Motivation: L4S is an experimental protocol; therefore, it seems prudent to be able to disable it at

source in case of insurmountable problems, perhaps due to some unexpected interaction on a

particular sender; over a particular path or network; or with a particular receiver, or even

ultimately an insurmountable problem with the experiment as a whole.

A.1.4. Fall Back to Classic Congestion Control on Packet Loss 

Description: As well as responding to ECN markings in a scalable way, a Scalable congestion

control needs to react to packet loss in a way that will coexist safely with a Reno congestion

control  (see the precise normative requirement wording in Section 4.3, Paragraph 8,

Item 2).

Motivation: Part of the safety conditions for deploying a Scalable congestion control on the public

Internet is to make sure that it behaves properly when it builds a queue at a network bottleneck

that has not been upgraded to support L4S. Packet loss can have many causes, but it usually has

to be conservatively assumed that it is a sign of congestion. Therefore, on detecting packet loss, a

Scalable congestion control will need to fall back to Classic congestion control behaviour. If it

does not comply, it could starve Classic traffic.

A Scalable congestion control can be used for different types of transport, e.g., for real-time

media or for reliable transport like TCP. Therefore, the particular Classic congestion control

behaviour to fall back on will need to be dependent on the specific congestion control

implementation. In the particular case of DCTCP, the DCTCP specification  states that "A

DCTCP sender  react to loss episodes in the same way as conventional TCP,...". To ensure any

Scalable congestion control is safe to deploy over the public Internet, Item 2 of Section 4.3 in the

present spec does not require precisely the same response as Reno TCP, but it does require a

response that will coexist safely with Classic congestion controls like Reno.

Even though a bottleneck is L4S capable, it might still become overloaded and have to drop

packets. In this case, the sender may receive a high proportion of packets marked with the CE

codepoint and also experience loss. Current DCTCP implementations each react differently to this

situation. One approach is to react only to the drop signal (e.g., by halving the cwnd); another

approach is to react to both signals, which reduces cwnd by more than half. A compromise

between these two has been proposed where the loss response is adjusted to result in a halving

[RFC5681]

[RFC8257]

MUST

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 37



when combined with any ECN response earlier in the same round. We believe that further

experimentation is needed to understand what is the best behaviour for the public Internet,

which may or may not be one of these existing approaches.

Monitoring:

Detection:

Action:

A.1.5. Coexistence with Classic Congestion Control at Classic ECN Bottlenecks 

Description: Monitoring has to be in place so that a non-L4S but ECN-capable AQM can be

detected at path bottlenecks. This is in case such an AQM has been implemented in a shared

queue, in which case any long-running Scalable flow would predominate over any simultaneous

long-running Classic flow sharing the queue. The precise requirement wording in Section 4.3,

Paragraph 8, Item 3 is written so that such a problem could be resolved either in real time or via

administrative intervention.

Motivation: Similarly to the discussion in Appendix A.1.4, this requirement in Section 4.3 is a

safety condition to ensure an L4S congestion control coexists well with Classic flows when it

builds a queue at a shared network bottleneck that has not been upgraded to support L4S.

Nonetheless, if necessary, it is considered reasonable to resolve such problems over management

timescales (possibly involving human intervention) because:

although a Classic flow can considerably reduce its throughput in the face of a competing

Scalable flow, it still makes progress and does not starve; 

implementations of a Classic ECN AQM in a queue that is intended to be shared are believed

to be rare; and 

detection of such AQMs is not always clear-cut; so focused out-of-band testing (or even

contacting the relevant network operator) would improve certainty. 

The relevant normative requirement (Section 4.3) is therefore divided into three stages:

monitoring, detection, and action:

Monitoring involves collection of the measurement data to be analysed.

Monitoring is expressed as a " " for uncontrolled environments, although the placement

of the monitoring function is left open. Whether monitoring has to be applied in real time is

expressed as a " ". This allows for the possibility that the operator of an L4S sender

(e.g., a Content Distribution Network (CDN)) might prefer to test out-of-band for signs of

Classic ECN AQMs, perhaps to avoid continually consuming resources to monitor live traffic. 

Detection involves analysis of the monitored data to detect the likelihood of a Classic

ECN AQM. Detection can either directly detect actual coexistence problems between flows or

aim to identify AQM technologies that are likely to present coexistence problems, based on

knowledge of AQMs deployed at the time. The requirements recommend that detection occurs

live in real time. However, detection is allowed to be deferred (e.g., it might involve further

testing targeted at candidate AQMs). 

This involves the act of switching the sender to a Classic congestion control. This might

occur in real time within the congestion control for the subsequent duration of a flow, or it

might involve administrative action to switch to Classic congestion control for a specific

interface or for a certain set of destination addresses.

• 

• 

• 

MUST

SHOULD

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 38



Instead of the sender taking action itself, the operator of the sender (e.g., a CDN) might prefer

to ask the network operator to modify the Classic AQM's treatment of L4S packets; ensure L4S

packets bypass the AQM; or upgrade the AQM to support L4S (see the L4S operational

guidance ). If L4S flows then no longer shared the Classic ECN AQM, they would

obviously no longer detect it, and the requirement to act on it would no longer apply.

The whole set of normative requirements concerning Classic ECN AQMs in Section 4.3 is worded

so that it does not apply in controlled environments, such as private networks or data-centre

networks. CDN servers placed within an access ISP's network can be considered as a single

controlled environment, but any onward networks served by the access network, including all

the attached customer networks, would be unlikely to fall under the same degree of coordinated

control. Monitoring is expressed as a " " for these uncontrolled segments of paths (e.g.,

beyond the access ISP in a home network), because there is a possibility that there might be a

shared queue Classic ECN AQM in that segment. Nonetheless, the intent of the wording is to only

require occasional monitoring of these uncontrolled regions and not to burden CDN operators if

monitoring never uncovers any potential problems.

More detailed discussion of all the above options and alternatives can be found in the L4S

operational guidance .

Having said all the above, the approach recommended in Section 4.3 is to monitor, detect, and act

in real time on live traffic. A passive monitoring algorithm to detect a Classic ECN AQM at the

bottleneck and fall back to Classic congestion control is described in an extensive technical

report , which also provides a link to Linux source code and a large online

visualization of its evaluation results. Very briefly, the algorithm primarily monitors RTT

variation using the same algorithm that maintains the mean deviation of TCP's smoothed RTT,

but it smooths over a duration of the order of a Classic sawtooth. The outcome is also conditioned

on other metrics such as the presence of CE marking and congestion avoidance phase having

stabilized. The report also identifies further work to improve the approach, for instance,

improvements with low-capacity links and combining the measurements with a cache of what

had been learned about a path in previous connections. The report also suggests alternative

approaches.

Although using passive measurements within live traffic (as above) can detect a Classic ECN

AQM, it is much harder (perhaps impossible) to determine whether or not the AQM is in a shared

queue. Nonetheless, this is much easier using active test traffic out-of-band because two flows

can be used. Section 4 of the same report  describes a simple technique to detect a

Classic ECN AQM and determine whether it is in a shared queue, which is summarized here.

An L4S-enabled test server could be set up so that, when a test client accesses it, it serves a script

that gets the client to open two parallel long-running flows. It could serve one with a Classic

congestion control (C, that sets ECT(0)) and one with a Scalable CC (L, that sets ECT(1)). If neither

flow induces any ECN marks, it can be presumed that the path does not contain a Classic ECN

AQM. If either flow induces some ECN marks, the server could measure the relative flow rates

and round-trip times of the two flows. Table 2 shows the AQM that can be inferred for various

cases (presuming no more types of AQM behaviour than those known at the time of writing).

[L4SOPS]

MUST

[L4SOPS]

[ecn-fallback]

[ecn-fallback]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 39



Finally, we motivate the recommendation in Section 4.3 that a Scalable congestion control is not

expected to change to setting ECT(0) while it adapts its behaviour to coexist with Classic flows.

This is because the sender needs to continue to check whether it made the right decision and

switch back if it was wrong, or if a different link becomes the bottleneck:

If, as recommended, the sender changes only its behaviour but not its codepoint to Classic,

its codepoint will still be compatible with either an L4S or a Classic AQM. If the bottleneck

does actually support both, it will still classify ECT(1) into the same L4S queue, where the

sender can measure that switching to Classic behaviour was wrong so that it can switch

back. 

In contrast, if the sender changes both its behaviour and its codepoint to Classic, even if the

bottleneck supports both, it will classify ECT(0) into the Classic queue, reinforcing the

sender's incorrect decision so that it never switches back. 

Also, not changing its codepoint avoids the risk of being flipped to a different path by a load

balancer or multipath routing that hashes on the whole of the former Type-of-Service (ToS)

byte (which is unfortunately still a common pathology). 

Note that if a flow is configured to only use a Classic congestion control, it is then

entirely appropriate not to use ECT(1).

Rate RTT Inferred AQM

L > C L = C Classic ECN AQM (FIFO)

L = C L = C Classic ECN AQM (FQ)

L = C L < C FQ-L4S AQM

L ~= C L < C DualQ Coupled AQM

L = L4S; C = Classic

Table 2: Out-of-Band Testing with Two

Parallel Flows 

• 

• 

• 

A.1.6. Reduce RTT Dependence 

Description: A Scalable congestion control needs to reduce RTT bias as much as possible at least

over the low-to-typical range of RTTs that will interact in the intended deployment scenario (see

the precise normative requirement wording in Section 4.3, Paragraph 8, Item 4).

Motivation: The throughput of Classic congestion controls is known to be inversely proportional

to RTT, so one would expect flows over very low RTT paths to nearly starve flows over larger

RTTs. However, Classic congestion controls have never allowed a very low RTT path to exist

because they induce a large queue. For instance, consider two paths with base RTT 1 ms and 100

ms. If a Classic congestion control induces a 100 ms queue, it turns these RTTs into 101 ms and

200 ms, leading to a throughput ratio of about 2:1. Whereas if a Scalable congestion control

induces only a 1 ms queue, the ratio is 2:101, leading to a throughput ratio of about 50:1.

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 40



Therefore, with very small queues, long RTT flows will essentially starve, unless Scalable

congestion controls comply with the requirement in Section 4.3.

Over higher than typical RTTs, L4S flows can use the same RTT bias as in current Classic

congestion controls and still work satisfactorily. So there is no additional requirement in Section

4.3 for high RTT L4S flows to remove RTT bias -- they can, but they don't have to.

One way for a Scalable congestion control to satisfy these requirements is to make its additive

increase behave as if it were a standard Reno flow but over a larger RTT by using a virtual RTT

(rtt_virt) that is a function of the actual RTT (rtt). Example functions might be:

rtt_virt = max(rtt, 25 ms) 

rtt_virt = rtt + 10 ms 

These example functions are chosen so that, as the actual RTT reduces from high to low, the

virtual RTT reduces less (see  for details).

However, short RTT flows can more rapidly respond to changes in available capacity, whether

due to other flows arriving and departing or radio capacity varying. So it would be wrong to

require short RTT flows to be as sluggish as long RTT flows, which would unnecessarily

underutilize capacity and result in unnecessary overshoots and undershoots (instability).

Therefore, rather than requiring strict RTT independence, the wording in Item 4 of Section 4.3 is

"as independent of RTT as possible without compromising stability or utilization". This allows

shorter RTT flows to exploit their agility advantage.

[PRAGUE-CC]

A.1.7. Scaling Down to Fractional Congestion Windows 

Description: A Scalable congestion control needs to remain responsive to congestion when

typical RTTs over the public Internet are significantly smaller because they are no longer inflated

by queuing delay (see the precise normative requirement wording in Section 4.3, Paragraph 8,

Item 5).

Motivation: As currently specified, the minimum congestion window of ECN-capable TCP (and its

derivatives) is expected to be 2 sender maximum segment sizes (SMSS), or 1 SMSS after a

retransmission timeout. Once the congestion window reaches this minimum, if there is further

ECN marking, TCP is meant to wait for a retransmission timeout before sending another segment

(see ). In practice, most known window-based congestion

control algorithms become unresponsive to ECN congestion signals at this point. No matter how

much ECN marking, the congestion window no longer reduces. Instead, the sender's lack of any

further congestion response forces the queue to grow, overriding any AQM and increasing

queuing delay (making the window large enough to become responsive again). This can result in

a stable but deeper queue, or it might drive the queue to loss, in which case the retransmission

timeout mechanism acts as a backstop.

Most window-based congestion controls for other transport protocols have a similar minimum

window, albeit when measured in bytes for those that use smaller packets.

Section 6.1.2 of the ECN spec [RFC3168]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 41

https://www.rfc-editor.org/rfc/rfc3168#section-6.1.2


L4S mechanisms significantly reduce queuing delay so, over the same path, the RTT becomes

lower. Then, this problem becomes surprisingly common . This is because, for the

same link capacity, smaller RTT implies a smaller window. For instance, consider a residential

setting with an upstream broadband Internet access of 8 Mb/s, assuming a max segment size of

1500 B. Two upstream flows will each have the minimum window of 2 SMSS if the RTT is 6 ms or

less, which is quite common when accessing a nearby data centre. So any more than two such

parallel TCP flows will become unresponsive to ECN and increase queuing delay.

Unless Scalable congestion controls address the requirement in Section 4.3 from the start, they

will frequently become unresponsive to ECN, negating the low-latency benefit of L4S, for

themselves and for others.

That would seem to imply that Scalable congestion controllers ought to be required to be able

work with a congestion window less than 1 SMSS. For instance, if an ECN-capable TCP gets an

ECN mark when it is already sitting at a window of 1 SMSS,  requires it to defer

sending for a retransmission timeout. A less drastic but more complex mechanism can maintain

a congestion window less than 1 SMSS (significantly less if necessary), as described in 

. Other approaches are likely to be feasible.

However, the requirement in Section 4.3 is worded as a " " because it is believed that the

existence of a minimum window is not all bad. When competing with an unresponsive flow, a

minimum window naturally protects the flow from starvation by at least keeping some data

flowing.

By stating the requirement to go lower than 1 SMSS as a " ", while the requirement in 

 still stands as well, we shall be able to watch the choices of minimum window evolve

in different Scalable congestion controllers.

[sub-mss-prob]

[RFC3168]

[Ahmed19]

SHOULD

SHOULD

[RFC3168]

A.1.8. Measuring Reordering Tolerance in Time Units 

Description: When detecting loss, a Scalable congestion control needs to be tolerant to reordering

over an adaptive time interval, which scales with throughput, rather than counting only in fixed

units of packets, which does not scale (see the precise normative requirement wording in Section

4.3, Paragraph 8, Item 6).

Motivation: A primary purpose of L4S is scalable throughput (it's in the name). Scalability in all

dimensions is, of course, also a goal of all IETF technology. The inverse linear congestion

response in Section 4.3 is necessary, but not sufficient, to solve the congestion control scalability

problem identified in . As well as maintaining frequent ECN signals as rate scales, it is

also important to ensure that a potentially false perception of loss does not limit throughput

scaling.

End systems cannot know whether a missing packet is due to loss or reordering, except in

hindsight -- if it appears later. So they can only deem that there has been a loss if a gap in the

sequence space has not been filled, either after a certain number of subsequent packets has

arrived (e.g., the 3 DupACK rule of standard TCP congestion control ) or after a certain

amount of time (e.g., the RACK approach ).

[RFC3649]

[RFC5681]

[RFC8985]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 42



As we attempt to scale packet rate over the years:

Even if only some sending hosts still deem that loss has occurred by counting reordered

packets, all networks will have to keep reducing the time over which they keep packets in

order. If some link technologies keep the time within which reordering occurs roughly

unchanged, then loss over these links, as perceived by these hosts, will appear to continually

rise over the years. 

In contrast, if all senders detect loss in units of time, the time over which the network has to

keep packets in order stays roughly invariant. 

Therefore, hosts have an incentive to detect loss in time units (so as not to fool themselves too

often into detecting losses when there are none). And for hosts that are changing their congestion

control implementation to L4S, there is no downside to including time-based loss detection code

in the change (loss recovery implemented in hardware is an exception, which is covered later).

Therefore, requiring L4S hosts to detect loss in time-based units would not be a burden.

If the requirement in Section 4.3 were not placed on L4S hosts, even though it would be no

burden on hosts to comply, all networks would face unnecessary uncertainty over whether some

L4S hosts might be detecting loss by counting packets. Then, all link technologies would have to

unnecessarily keep reducing the time within which reordering occurs. That is not a problem for

some link technologies, but it becomes increasingly challenging for other link technologies to

continue to scale, particularly those relying on channel bonding for scaling, such as LTE, 5G, and

Data Over Cable Service Interface Specification (DOCSIS).

Given Internet paths traverse many link technologies, any scaling limit for these more

challenging access link technologies would become a scaling limit for the Internet as a whole.

It might be asked how it helps to place this loss detection requirement only on L4S hosts, because

networks will still face uncertainty over whether non-L4S flows are detecting loss by counting

DupACKs. The answer is that those link technologies for which it is challenging to keep squeezing

the reordering time will only need to do so for non-L4S traffic (which they can do because the

L4S identifier is visible at the IP layer). Therefore, they can focus their processing and memory

resources into scaling non-L4S (Classic) traffic. Then, the higher the proportion of L4S traffic, the

less of a scaling challenge they will have.

To summarize, there is no reason for L4S hosts not to be part of the solution instead of part of the

problem.

Requirement (" ") or recommendation (" ")? As explained above, this is a subtle

interoperability issue between hosts and networks, which seems to need a " ". Unless

networks can be certain that all L4S hosts follow the time-based approach, they still have to cater

for the worst case -- continually squeeze reordering into a smaller and smaller duration -- just for

hosts that might be using the counting approach. However, it was decided to express this as a

recommendation, using " ". The main justification was that networks can still be fairly

certain that L4S hosts will follow this recommendation, because following it offers only gain and

no pain.

• 

• 

MUST SHOULD

MUST

SHOULD

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 43



A.2. Scalable Transport Protocol Optimizations 

A.2.1. Setting ECT in Control Packets and Retransmissions 

Description: This item concerns TCP and its derivatives (e.g., SCTP) as well as RTP/RTCP 

. The original specification of ECN for TCP precluded the use of ECN on control packets

and retransmissions. Similarly,  precludes the use of ECT on RTCP datagrams, in case

the path changes after it has been checked for ECN traversal. To improve performance, Scalable

transport protocols ought to enable ECN at the IP layer in TCP control packets (SYN, SYN-ACK,

pure ACKs, etc.) and in retransmitted packets. The same is true for other transports, e.g., SCTP

and RTCP.

Motivation (TCP):  prohibits the use of ECN on these types of TCP packets, based on a

number of arguments. This means these packets are not protected from congestion loss by ECN,

which considerably harms performance, particularly for short flows. ECN++  proposes

experimental use of ECN on all types of TCP packets as long as AccECN feedback  is

available (which itself satisfies the accurate feedback requirement in Section 4.2 for using a

Scalable congestion control).

Motivation (RTCP): L4S experiments in general will need to observe the rule in the RTP ECN spec 

 that precludes ECT on RTCP datagrams. Nonetheless, as ECN usage becomes more

widespread, it would be useful to conduct specific experiments with ECN-capable RTCP to gather

data on whether such caution is necessary.

Details:

The time spent recovering a loss is much more significant for short flows than long; therefore, a

good compromise is to adapt the reordering window from a small fraction of the RTT at the start

of a flow to a larger fraction of the RTT for flows that continue for many round trips.

This is broadly the approach adopted by RACK . However, RACK starts with the 3

DupACK approach, because the RTT estimate is not necessarily stable. As long as the initial

window is paced, such initial use of 3 DupACK counting would amount to time-based loss

detection and therefore would satisfy the time-based loss detection recommendation of Section

4.3. This is because pacing of the initial window would ensure that 3 DupACKs early in the

connection would be spread over a small fraction of the round trip.

As mentioned above, hardware implementations of loss recovery using DupACK counting exist

(e.g., some implementations of Remote Direct Memory Access over Converged Ethernet version 2

(RoCEv2)). For low latency, these implementations can change their congestion control to

implement L4S, because the congestion control (as distinct from loss recovery) is implemented in

software. But they cannot easily satisfy this loss recovery requirement. However, it is believed

they do not need to, because such implementations are believed to solely exist in controlled

environments, where the network technology keeps reordering extremely low anyway. This is

why controlled environments with hardly any reordering are excluded from the scope of the

normative recommendation in Section 4.3.

Detecting loss in time units also prevents the ACK-splitting attacks described in .

[RFC8985]

[Savage-TCP]

[RFC6679]

[RFC6679]

[RFC3168]

[ECN++]

[ACCECN]

[RFC6679]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 44



A.2.2. Faster than Additive Increase 

Description: It would improve performance if Scalable congestion controls did not limit their

congestion window increase to the standard additive increase of 1 SMSS per round trip 

 during congestion avoidance. The same is true for derivatives of TCP congestion

control, including similar approaches used for real-time media.

Motivation: As currently defined , DCTCP uses the conventional Reno additive increase

in the congestion avoidance phase. When the available capacity suddenly increases (e.g., when

another flow finishes or if radio capacity increases) it can take very many round trips to take

advantage of the new capacity. TCP CUBIC  was designed to solve this problem, but as

flow rates have continued to increase, the delay accelerating into available capacity has become

prohibitive. See, for instance, the examples in Section 5.1 of the L4S architecture . Even

when out of its Reno-friendly mode, every 8 times scaling of CUBIC's flow rate leads to 2 times

more acceleration delay.

In the steady state, DCTCP induces about 2 ECN marks per round trip, so it is possible to quickly

detect when these signals have disappeared and seek available capacity more rapidly, while

minimizing the impact on other flows (Classic and Scalable) . Alternatively,

approaches such as Adaptive-Acceleration Data Center TCP (A2DTCP) ) have been

proposed to address this problem in data centres, which might be deployable over the public

Internet.

A.2.3. Faster Convergence at Flow Start 

Description: It would improve performance if Scalable congestion controls converged (reached

their steady-state share of the capacity) faster than Classic congestion controls or at least no

slower. This affects the flow start behaviour of any L4S congestion control derived from a Classic

transport that uses TCP slow start, including those for real-time media.

Motivation: As an example, a new DCTCP flow takes longer than a Classic congestion control to

obtain its share of the capacity of the bottleneck when there are already ongoing flows using the

bottleneck capacity. In a data-centre environment, DCTCP takes about 1.5 to 2 times longer to

converge due to the much higher typical level of ECN marking that DCTCP background traffic

induces, which causes new flows to exit slow start early . In testing for use

over the public Internet, the convergence time of DCTCP relative to a regular loss-based TCP slow

start is even less favourable  due to the shallow ECN-marking threshold

needed for L4S. It is exacerbated by the typically greater mismatch between the link rate of the

sending host and typical Internet access bottlenecks. This problem is detrimental in general but

would particularly harm the performance of short flows relative to Classic congestion controls.

[RFC5681]

[RFC8257]

[RFC8312]

[RFC9330]

[LinuxPacedChirping]

[A2DTCP]

[Alizadeh-stability]

[LinuxPacedChirping]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 45

https://www.rfc-editor.org/rfc/rfc9330#section-5.1


Consumes the last ECN codepoint:

ECN hard in some lower layers:

Risk of reordering Classic CE packets within a flow:

Appendix B. Compromises in the Choice of L4S Identifier 

This appendix is informative, not normative. As explained in Section 3, there is insufficient space

in the IP header (v4 or v6) to fully accommodate every requirement. So the choice of L4S

identifier involves trade-offs. This appendix records the pros and cons of the choice that was

made.

Non-normative recap of the chosen codepoint scheme:

Packets with ECT(1) and conditionally packets with CE signify L4S semantics as an

alternative to the semantics of Classic ECN , specifically:

The ECT(1) codepoint signifies that the packet was sent by an L4S-capable sender. 

Given the shortage of codepoints, both the L4S and Classic ECN sides of an AQM have to

use the same CE codepoint to indicate that a packet has experienced congestion. If a packet

that had already been marked CE in an upstream buffer arrived at a subsequent AQM, this

AQM would then have to guess whether to classify CE packets as L4S or Classic ECN.

Choosing the L4S treatment is a safer choice, because then a few Classic packets might

arrive early rather than a few L4S packets arriving late. 

Additional information might be available if the classifier were transport-aware. Then, it

could classify a CE packet for Classic ECN treatment if the most recent ECT packet in the

same flow had been set to ECT(0). However, the L4S service ought not need transport-layer

awareness. 

Cons:

The L4S service could potentially supersede the service

provided by Classic ECN; therefore, using ECT(1) to identify L4S packets could ultimately

mean that the ECT(0) codepoint was 'wasted' purely to distinguish one form of ECN from its

successor. 

It is not always possible to support the equivalent of an IP-ECN

field in an AQM acting in a buffer below the IP layer . Then, depending on the

lower-layer scheme, the L4S service might have to drop rather than mark frames even though

they might encapsulate an ECN-capable packet. 

[RFC3168]

◦ 

◦ 

◦ 

[ECN-ENCAP]

Classifying all CE packets into the L4S

queue risks any CE packets that were originally ECT(0) being incorrectly classified as L4S. If

there were delay in the Classic queue, these incorrectly classified CE packets would arrive

early, which is a form of reordering. Reordering within a microflow can cause TCP senders

(and senders of similar transports) to retransmit spuriously. However, the risk of spurious

retransmissions would be extremely low for the following reasons:

It is quite unusual to experience queuing at more than one bottleneck on the same path

(the available capacities have to be identical). 

1. 

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 46



Insufficient anti-replay window in some pre-existing VPNs: If delay is reduced for a subset of

the flows within a VPN, the anti-replay feature of some VPNs is known to potentially mistake

the difference in delay for a replay attack. Section 6.2 recommends that the anti-replay

window at the VPN egress is sufficiently sized, as required by the relevant specifications.

However, in some VPN implementations, the maximum anti-replay window is insufficient to

In only a subset of these unusual cases would the first bottleneck support Classic ECN

marking and the second L4S ECN marking. This would be the only scenario where some

ECT(0) packets could be CE marked by an AQM supporting Classic ECN while

subsequently the remaining ECT(0) packets would experience further delay through the

Classic side of a subsequent L4S DualQ AQM. 

Even then, when a few packets are delivered early, it takes very unusual conditions to

cause a spurious retransmission, in contrast to when some packets are delivered late. The

first bottleneck has to apply CE marks to at least N contiguous packets, and the second

bottleneck has to inject an uninterrupted sequence of at least N of these packets between

two packets earlier in the stream (where N is the reordering window that the transport

protocol allows before it considers a packet is lost).

For example, consider N=3, and consider the sequence of packets 100, 101, 102, 103,...

Imagine that packets 150, 151, 152 from later in the flow are injected as follows: 100,

150, 151, 101, 152, 102, 103,... If this were late reordering, even one packet arriving out

of sequence would trigger a spurious retransmission, but there is no spurious

retransmission here with early reordering, because packet 101 moves the cumulative

ACK counter forward before 3 packets have arrived out of order. Later, when packets

148, 149, 153,... arrive, even though there is a 3-packet hole, there will be no problem,

because the packets to fill the hole are already in the receive buffer. 

Even with the current TCP recommendation of N=3 , spurious retransmissions

will be unlikely for all the above reasons. As RACK  is becoming widely

deployed, it tends to adapt its reordering window to a larger value of N, which will make

the chance of a contiguous sequence of N early arrivals vanishingly small. 

Even a run of 2 CE marks within a Classic ECN flow is unlikely, given FQ-CoDel is the only

known widely deployed AQM that supports Classic ECN marking, and it takes great care

to separate out flows and to space any markings evenly along each flow. 

It is extremely unlikely that the above set of 5 eventualities that are each unusual in

themselves would all happen simultaneously. But, even if they did, the consequences would

hardly be dire: the odd spurious fast retransmission. Whenever the traffic source (a Classic

congestion control) mistakes the reordering of a string of CE marks for a loss, one might think

that it will reduce its congestion window as well as emitting a spurious retransmission.

However, it would have already reduced its congestion window when the CE markings

arrived early. If it is using ABE , it might reduce cwnd a little more for a loss than

for a CE mark. But it will revert that reduction once it detects that the retransmission was

spurious.

In conclusion, the impact of early reordering on spurious retransmissions due to CE being

ambiguous will generally be vanishingly small.

2. 

3. 

4. [RFC5681]

[RFC8985]

5. 

[RFC8511]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 47



Hard to distinguish Classic ECN AQM:

Non-L4S service for control packets:

Should work end to end:

cater for a large delay difference at prevailing packet rates. Section 6.2 suggests alternative

work-rounds for such cases, but end users using L4S over a VPN will need to be able to

recognize the symptoms of this problem, in order to seek out these work-rounds. 

With this scheme, when a source receives ECN feedback,

it is not explicitly clear which type of AQM generated the CE markings. This is not a problem

for Classic ECN sources that send ECT(0) packets, because an L4S AQM will recognize the

ECT(0) packets as Classic and apply the appropriate Classic ECN-marking behaviour.

However, in the absence of explicit disambiguation of the CE markings, an L4S source needs

to use heuristic techniques to work out which type of congestion response to apply (see 

Appendix A.1.5). Otherwise, if long-running Classic flows are sharing a Classic ECN AQM

bottleneck with long-running L4S flows, and the L4S flows apply an L4S response to the

Classic CE signals, they would then outcompete the Classic flows. Experiments have shown

that L4S flows can take about 20 times more capacity share than equivalent Classic flows.

Nonetheless, as link capacity reduces (e.g., to 4 Mb/s), the inequality reduces. So Classic flows

always make progress and are not starved.

When L4S was first proposed (in 2015, 14 years after the Classic ECN spec  was

published), it was believed that Classic ECN AQMs had failed to be deployed because research

measurements had found little or no evidence of CE marking. In subsequent years, Classic

ECN was included in FQ deployments; however, an FQ scheduler stops an L4S flow

outcompeting Classic, because it enforces equality between flow rates. It is not known

whether there have been any non-FQ deployments of Classic ECN AQMs in the subsequent

years or whether there will be any in future.

An algorithm for detecting a Classic ECN AQM as soon as a flow stabilizes after start-up has

been proposed  (see Appendix A.1.5 for a brief summary). Testbed evaluations of

v2 of the algorithm have shown detection is reasonably good for Classic ECN AQMs, in a wide

range of circumstances. However, although it can correctly detect an L4S ECN AQM in many

circumstances, it is often incorrect at low link capacities and/or high RTTs. Although this is the

safe way round, there is a danger that it will discourage use of the algorithm.

Solely for the case of TCP, the Classic ECN RFCs 

and  require a sender to clear the IP-ECN field to Not-ECT on retransmissions and on

certain control packets, specifically pure ACKs, window probes, and SYNs. When L4S packets

are classified by the IP-ECN field, these TCP control packets would not be classified into an L4S

queue and could therefore be delayed relative to the other packets in the flow. This would not

cause reordering (because retransmissions are already out of order, and these control packets

typically carry no data). However, it would make critical TCP control packets more vulnerable

to loss and delay. To address this problem, ECN++  proposes an experiment in which

all TCP control packets and retransmissions are ECN-capable as long as appropriate ECN

feedback is available in each case. 

Pros:

[RFC3168]

[ecn-fallback]

[RFC3168]

[RFC5562]

[ECN++]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 48



Appendix C. Potential Competing Uses for the ECT(1)

Codepoint 

The ECT(1) codepoint of the IP-ECN field has already been assigned once for the ECN nonce spec 

, which has now been categorized as Historic . ECN is probably the only

remaining field in the Internet Protocol that is common to IPv4 and IPv6 and still has potential to

work end to end, with tunnels and with lower layers. Therefore, ECT(1) should not be reassigned

to a different experimental use (L4S) without carefully assessing competing potential uses. These

fall into the categories described below.

Should work in tunnels:

Should work for many link technologies:

Could migrate to one codepoint:

L4 not required:

The IP-ECN field generally propagates end to end across the Internet without being wiped or

mangled, at least over fixed networks. Unlike the DSCP, the setting of the ECN field is at least

meant to be forwarded unchanged by networks that do not support ECN. 

The L4S identifiers work across and within any tunnel that propagates

the IP-ECN field in any of the variant ways it has been defined since ECN-tunneling was first

specified in the year 2001 . However, it is likely that some tunnels still do not

implement ECN propagation at all. 

At most, but not all, path bottlenecks there is IP

awareness, so that L4S AQMs can be located where the IP-ECN field can be manipulated.

Bottlenecks at lower-layer nodes without IP awareness have to either use drop to signal

congestion or have a specific congestion notification facility defined for that link technology,

including propagation to and from IP-ECN. The programme to define these is progressing, and

in each case so far, the scheme already defined for ECN inherently supports L4S as well (see 

Section 6.1). 

If all Classic ECN senders eventually evolve to use the L4S

service, the ECT(0) codepoint could be reused for some future purpose but only once use of

ECT(0) packets has reduced to zero, or near zero, which might never happen. 

Being based on the IP-ECN field, this scheme does not need the network to

access transport-layer flow IDs. Nonetheless, it does not preclude solutions that do. 

[RFC3168]

[RFC3540] [RFC8311]

C.1. Integrity of Congestion Feedback 

Receiving hosts can fool a sender into downloading faster by suppressing feedback of ECN marks

(or of losses if retransmissions are not necessary or available otherwise).

The Historic ECN nonce spec  proposed that a TCP sender could set either ECT(0) or

ECT(1) in each packet of a flow and remember the sequence it had set. If any packet was lost or

congestion marked, the receiver would miss that bit of the sequence. An ECN nonce receiver had

to feed back the least-significant bit of the sum, so it could not suppress feedback of a loss or

mark without a 50-50 chance of guessing the sum incorrectly.

[RFC3540]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 49



C.2. Notification of Less Severe Congestion than CE 

Various researchers have proposed to use ECT(1) as a less severe congestion notification than CE,

particularly to enable flows to fill available capacity more quickly after an idle period, when

another flow departs or when a flow starts, e.g., the Variable-structure congestion Control

Protocol (VCP)  and Queue View (QV) .

Before assigning ECT(1) as an identifier for L4S, we must carefully consider whether it might be

better to hold ECT(1) in reserve for future standardization of rapid flow acceleration, which is an

important and enduring problem .

It is highly unlikely that ECT(1) will be needed as a nonce for integrity protection of congestion

notifications in future. The ECN nonce spec  has been reclassified as Historic, partly

because other ways (that do not consume a codepoint in the IP header) have been developed to

protect feedback integrity of TCP and other transports . For instance:

The sender can test the integrity of a small random sample of the receiver's feedback by

occasionally setting the IP-ECN field to a value normally only set by the network. Then, it can

test whether the receiver's feedback faithfully reports what it expects (see Paragraph 2 of 

. This works for loss, and it will work for the accurate

ECN feedback  intended for L4S. Like the (Historic) ECN nonce spec, this technique

does not protect against a misbehaving sender. But it allows a well-behaved sender to check

that each receiver is correctly feeding back congestion notifications. 

A network can check that its ECN markings (or packet losses) have been passed correctly

around the full feedback loop by auditing Congestion Exposure (ConEx) . This

assures that the integrity of congestion notifications and feedback messages must have both

been preserved. ConEx information is also available anywhere along the network path, so it

can be used to enforce a congestion response. Whether the receiver or a downstream

network is suppressing congestion feedback or the sender is unresponsive to the feedback,

or both, ConEx is intended to neutralize any advantage that any of these three parties would

otherwise gain. 

Congestion feedback fields in transport-layer headers are immutable end to end and

therefore amenable to end-to-end integrity protection. This preserves the integrity of a

receiver's feedback messages to the sender, but it does not protect against misbehaving

receivers or misbehaving senders. The TCP Authentication Option (TCP-AO) ,

QUIC's end-to-end protection , or end-to-end IPsec integrity protection 

can be used to detect any tampering with congestion feedback (whether malicious or

accidental), respectively, in TCP, QUIC, or any transport. TCP-AO covers the main TCP header

and TCP options by default, but it is often too brittle to use on many end-to-end paths, where

middleboxes can make verification fail in their attempts to improve performance or security,

e.g., by resegmentation or shifting the sequence space. 

At the time of writing, it is becoming common to protect the integrity of transport feedback using

QUIC. However, it is still not common to protect the integrity of the wider congestion feedback

loop, whether based on loss or Classic ECN. If this position changes during the L4S experiment,

one or more of the above techniques might need to be developed and deployed.

[RFC3540]

[RFC8311]

• 

Section 20.2 of the ECN spec [RFC3168]

[RFC7560]

• 

[RFC7713]

• 

[RFC5925]

[RFC9001] [RFC4303]

[VCP] [QV]

[RFC6077]

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 50

https://www.rfc-editor.org/rfc/rfc3168#section-20.2


Pre-Congestion Notification (PCN) is another scheme that assigns alternative semantics to the IP-

ECN field. It uses ECT(1) to signify a less severe level of pre-congestion notification than CE 

. However, the IP-ECN field only takes on the PCN semantics if packets carry a Diffserv

codepoint defined to indicate PCN marking within a controlled environment. PCN is required to

be applied solely to the outer header of a tunnel across the controlled region in order not to

interfere with any end-to-end use of the ECN field. Therefore, a PCN region on the path would not

interfere with the L4S service identifier defined in Section 2.

Acknowledgements 

Thanks to , , , , , 

, , and  for the discussions that led to this

specification.  was a contributor to the early draft versions of this document.

Thanks to , , , , , 

, , , , , , 

, , , , , 

, , , , and  for providing help

and reviewing this document. And thanks to  for reviewing and providing

substantial text. Thanks also to the area reviewers: , , 

, , , and . Thanks to  for

identifying the interaction with VPN anti-replay and to  for identifying the

attack based on this. Particular thanks to tsvwg chairs , , and 

 for patiently helping this and the other L4S documents through the IETF process. Appendix

A, which lists the Prague L4S Requirements, is based on text authored by 

that was originally an appendix to . That text was in turn based on the collective

output of the attendees listed in the minutes of a 'bar BoF' on DCTCP Evolution during IETF 94 

.

The authors' contributions were partly funded by the European Community under its Seventh

Framework Programme through the Reducing Internet Transport Latency (RITE) project

(ICT-317700). The contribution of  was also partly funded by the 5Growth and

DAEMON EU H2020 projects.  was partly funded by the Research Council of Norway

through the TimeIn project, CableLabs, and the Comcast Innovation Fund. The views expressed

here are solely those of the authors.

[RFC6660]

Richard Scheffenegger John Leslie David Täht Jonathan Morton Gorry Fairhurst

Michael Welzl Mikael Abrahamsson Andrew McGregor

Ing-jyh (Inton) Tsang

Mikael Abrahamsson Lloyd Wood Nicolas Kuhn Greg White Tom Henderson David

Black Gorry Fairhurst Brian Carpenter Jake Holland Rod Grimes Richard Scheffenegger

Sebastian Moeller Neal Cardwell Praveen Balasubramanian Reza Marandian Hagh Pete Heist

Stuart Cheshire Vidhi Goel Mirja Kühlewind Ermin Sakic Martin Duke

Ingemar Johansson

Valery Smyslov Maria Ines Robles Bernard

Aboba Lars Eggert Roman Danyliw Éric Vyncke Sebastian Moeller

Jonathan Morton

Gorry Fairhurst David Black Wes

Eddy

Marcelo Bagnulo Braun

[RFC9330]

[TCPPrague]

Koen De Schepper

Bob Briscoe

Authors' Addresses 

Koen De Schepper

Nokia Bell Labs

Antwerp

Belgium

 koen.de_schepper@nokia.com Email:

 https://www.bell-labs.com/about/researcher-profiles/

koende_schepper/ 

URI:

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 51

mailto:koen.de_schepper@nokia.com
https://www.bell-labs.com/about/researcher-profiles/koende_schepper/
https://www.bell-labs.com/about/researcher-profiles/koende_schepper/


Bob Briscoe ( )editor

Independent

United Kingdom

 ietf@bobbriscoe.net Email:

 https://bobbriscoe.net/ URI:

RFC 9331 ECN Protocol for L4S January 2023

De Schepper & Briscoe Experimental Page 52

mailto:ietf@bobbriscoe.net
https://bobbriscoe.net/

	RFC 9331
	The Explicit Congestion Notification (ECN) Protocol for Low Latency, Low Loss, and Scalable Throughput (L4S)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Latency, Loss, and Scaling Problems
	1.2. Terminology
	1.3. Scope

	2. L4S Packet Identification: Document Roadmap
	3. Choice of L4S Packet Identifier: Requirements
	4. Transport-Layer Behaviour (the 'Prague L4S Requirements')
	4.1. Codepoint Setting
	4.2. Prerequisite Transport Feedback
	4.3. Prerequisite Congestion Response
	4.3.1. Guidance on Congestion Response in the RFC Series

	4.4. Filtering or Smoothing of ECN Feedback

	5. Network Node Behaviour
	5.1. Classification and Re-Marking Behaviour
	5.2. The Strength of L4S CE Marking Relative to Drop
	5.3. Exception for L4S Packet Identification by Network Nodes with Transport-Layer Awareness
	5.4. Interaction of the L4S Identifier with Other Identifiers
	5.4.1. DualQ Examples of Other Identifiers Complementing L4S Identifiers
	5.4.1.1. Inclusion of Additional Traffic with L4S
	5.4.1.1.1. 'Safe' Unresponsive Traffic

	5.4.1.2. Exclusion of Traffic from L4S Treatment
	5.4.1.3. Generalized Combination of L4S and Other Identifiers

	5.4.2. Per-flow Queuing Examples of Other Identifiers Complementing L4S Identifiers

	5.5. Limiting Packet Bursts from Links
	5.5.1. Limiting Packet Bursts from Links Fed by an L4S AQM
	5.5.2. Limiting Packet Bursts from Links Upstream of an L4S AQM


	6. Behaviour of Tunnels and Encapsulations
	6.1. No Change to ECN Tunnels and Encapsulations in General
	6.2. VPN Behaviour to Avoid Limitations of Anti-Replay

	7. L4S Experiments
	7.1. Open Questions
	7.2. Open Issues
	7.3. Future Potential

	8. IANA Considerations
	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Rationale for the 'Prague L4S Requirements'
	A.1. Rationale for the Requirements for Scalable Transport Protocols
	A.1.1. Use of L4S Packet Identifier
	A.1.2. Accurate ECN Feedback
	A.1.3. Capable of Replacement by Classic Congestion Control
	A.1.4. Fall Back to Classic Congestion Control on Packet Loss
	A.1.5. Coexistence with Classic Congestion Control at Classic ECN Bottlenecks
	A.1.6. Reduce RTT Dependence
	A.1.7. Scaling Down to Fractional Congestion Windows
	A.1.8. Measuring Reordering Tolerance in Time Units

	A.2. Scalable Transport Protocol Optimizations
	A.2.1. Setting ECT in Control Packets and Retransmissions
	A.2.2. Faster than Additive Increase
	A.2.3. Faster Convergence at Flow Start


	Appendix B. Compromises in the Choice of L4S Identifier
	Appendix C. Potential Competing Uses for the ECT(1) Codepoint
	C.1. Integrity of Congestion Feedback
	C.2. Notification of Less Severe Congestion than CE

	Acknowledgements
	Authors' Addresses



 
   
   
   
   
     The Explicit Congestion Notification (ECN) Protocol for Low Latency, Low Loss, and Scalable Throughput (L4S)
     
     
       Nokia Bell Labs
       
         
           
           Antwerp
           Belgium
        
         koen.de_schepper@nokia.com
         https://www.bell-labs.com/about/researcher-profiles/koende_schepper/
      
    
     
       Independent
       
         
           
           United Kingdom
        
         ietf@bobbriscoe.net
         https://bobbriscoe.net/
      
    
     
     tsv
     tsvwg
     Performance
     Queuing Delay
     One Way Delay
     Round-Trip Time
     RTT
     Jitter
     Congestion Control
     Congestion Avoidance
     Quality of Service
     QoS
     Quality of Experience
     QoE
     Active Queue Management
     AQM
     Explicit Congestion Notification
     ECN
     Burstiness
     
       This specification defines the protocol to be used for a new network
      service called Low Latency, Low Loss, and Scalable throughput (L4S). L4S
      uses an Explicit Congestion Notification (ECN) scheme at the IP layer
      that is similar to the original (or 'Classic') ECN approach, except as
      specified within. L4S uses 'Scalable' congestion control, which induces
      much more frequent control signals from the network, and it responds to
      them with much more fine-grained adjustments so that very low
      (typically sub-millisecond on average) and consistently low queuing
      delay becomes possible for L4S traffic without compromising link
      utilization. Thus, even capacity-seeking (TCP-like) traffic can have high
      bandwidth and very low delay at the same time, even during periods of
      high traffic load.
       The L4S identifier defined in this document distinguishes L4S from
      'Classic' (e.g., TCP-Reno-friendly) traffic. Then, network
      bottlenecks can be incrementally modified to distinguish and isolate
      existing traffic that still follows the Classic behaviour, to prevent it
      from degrading the low queuing delay and low loss of L4S traffic. This
      Experimental specification defines the rules that L4S transports
      and network elements need to follow, with the intention that L4S flows
      neither harm each other's performance nor that of Classic traffic. It
      also suggests open questions to be investigated during experimentation.
      Examples of new Active Queue Management (AQM) marking algorithms and
      new transports (whether TCP-like or real time) are specified
      separately.
    
     
       
         Status of This Memo
         
            This document is not an Internet Standards Track specification; it is
            published for examination, experimental implementation, and
            evaluation.
        
         
            This document defines an Experimental Protocol for the Internet
            community.  This document is a product of the Internet Engineering
            Task Force (IETF).  It represents the consensus of the IETF community.
            It has received public review and has been approved for publication
            by the Internet Engineering Steering Group (IESG).  Not all documents
            approved by the IESG are candidates for any level of Internet
            Standard; see Section 2 of RFC 7841. 
        
         
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
             .
        
      
       
         Copyright Notice
         
            Copyright (c) 2023 IETF Trust and the persons identified as the
            document authors. All rights reserved.
        
         
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            ( ) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Revised BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Revised BSD License.
        
      
    
     
       
         Table of Contents
         
           
              .   Introduction
             
               
                  .   Latency, Loss, and Scaling Problems
              
               
                  .   Terminology
              
               
                  .   Scope
              
            
          
           
              .   L4S Packet Identification: Document Roadmap
          
           
              .   Choice of L4S Packet Identifier: Requirements
          
           
              .   Transport-Layer Behaviour (the 'Prague L4S Requirements')
             
               
                  .   Codepoint Setting
              
               
                  .   Prerequisite Transport Feedback
              
               
                  .   Prerequisite Congestion Response
                 
                   
                      .   Guidance on Congestion Response in the RFC Series
                  
                
              
               
                  .   Filtering or Smoothing of ECN Feedback
              
            
          
           
              .   Network Node Behaviour
             
               
                  .   Classification and Re-Marking Behaviour
              
               
                  .   The Strength of L4S CE Marking Relative to Drop
              
               
                  .   Exception for L4S Packet Identification by Network Nodes with Transport-Layer Awareness
              
               
                  .   Interaction of the L4S Identifier with Other Identifiers
                 
                   
                      .   DualQ Examples of Other Identifiers Complementing L4S Identifiers
                     
                       
                          .   Inclusion of Additional Traffic with L4S
                      
                       
                          .   Exclusion of Traffic from L4S Treatment
                      
                       
                          .   Generalized Combination of L4S and Other Identifiers
                      
                    
                  
                   
                      .   Per-flow Queuing Examples of Other Identifiers Complementing L4S Identifiers
                  
                
              
               
                  .   Limiting Packet Bursts from Links
                 
                   
                      .   Limiting Packet Bursts from Links Fed by an L4S AQM
                  
                   
                      .   Limiting Packet Bursts from Links Upstream of an L4S AQM
                  
                
              
            
          
           
              .   Behaviour of Tunnels and Encapsulations
             
               
                  .   No Change to ECN Tunnels and Encapsulations in General
              
               
                  .   VPN Behaviour to Avoid Limitations of Anti-Replay
              
            
          
           
              .   L4S Experiments
             
               
                  .   Open Questions
              
               
                  .   Open Issues
              
               
                  .   Future Potential
              
            
          
           
              .   IANA Considerations
          
           
              .   Security Considerations
          
           
              .  References
             
               
                  .   Normative References
              
               
                  .   Informative References
              
            
          
           
              .   Rationale for the 'Prague L4S Requirements'
             
               
                  .   Rationale for the Requirements for Scalable Transport Protocols
                 
                   
                      .   Use of L4S Packet Identifier
                  
                   
                      .   Accurate ECN Feedback
                  
                   
                      .   Capable of Replacement by Classic Congestion Control
                  
                   
                      .   Fall Back to Classic Congestion Control on Packet Loss
                  
                   
                      .   Coexistence with Classic Congestion Control at Classic ECN Bottlenecks
                  
                   
                      .   Reduce RTT Dependence
                  
                   
                      .   Scaling Down to Fractional Congestion Windows
                  
                   
                      .   Measuring Reordering Tolerance in Time Units
                  
                
              
               
                  .   Scalable Transport Protocol Optimizations
                 
                   
                      .   Setting ECT in Control Packets and Retransmissions
                  
                   
                      .   Faster than Additive Increase
                  
                   
                      .   Faster Convergence at Flow Start
                  
                
              
            
          
           
              .   Compromises in the Choice of L4S Identifier
          
           
              .   Potential Competing Uses for the ECT(1) Codepoint
             
               
                  .   Integrity of Congestion Feedback
              
               
                  .   Notification of Less Severe Congestion than CE
              
            
          
           
               Acknowledgements
          
           
               Authors' Addresses
          
        
      
    
  
   
     
       Introduction
       This Experimental specification defines the protocol to be used
      for a new network service called Low Latency, Low Loss, and Scalable
      throughput (L4S). L4S uses an Explicit Congestion Notification (ECN)
      scheme at the IP layer with the same set of codepoint transitions as the
      original (or 'Classic') ECN  .   requires an ECN mark to be equivalent
      to a drop, both when applied in the network and when responded to by a
      transport. Unlike Classic ECN marking, i) the network applies L4S
      marking more immediately and more frequently than drop and ii) the
      transport response to each mark is reduced and smoothed relative to that
      for drop. The two changes counterbalance each other so that the
      throughput of an L4S flow will be roughly the same as a comparable
      non-L4S flow under the same conditions. Nonetheless, the much more
      frequent ECN control signals and the finer responses to these signals
      result in very low queuing delay without compromising link utilization,
      and this low delay can be maintained during high load. For instance,
      queuing delay under heavy and highly varying load with the example
      DCTCP/DualQ solution described below on a DSL or Ethernet link is  
      sub-millisecond on average and roughly 1 to 2 milliseconds at the 99th
      percentile without losing link utilization    .       
      Note that the queuing
      delay while waiting to acquire a shared medium such as wireless has to
      be added to the above. It is a different issue that needs to be
      addressed, but separately (see Section   of the L4S
      architecture  ).
       L4S relies on 'Scalable' congestion controls for these delay
      properties and for preserving low delay as flow rate scales, hence the
      name. The congestion control used in Data Center TCP (DCTCP) is an
      example of a Scalable congestion control, but DCTCP is applicable solely
      to controlled environments like data centres  , because it is too aggressive to coexist with
      existing TCP-Reno-friendly traffic. Dual-Queue Coupled AQM, which is
      defined in a complementary Experimental specification  , is an AQM framework that
      enables Scalable congestion controls derived from DCTCP to coexist with
      existing traffic, each getting roughly the same flow rate when they
      compete under similar conditions. Note that a Scalable congestion
      control is still not safe to deploy on the Internet unless it satisfies
      the requirements listed in  .
       L4S is not only for elastic (TCP-like) traffic -- there are Scalable
      congestion controls for real-time media, such as the L4S variant   of the SCReAM   RTP Media Congestion Avoidance Techniques (RMCAT). The factor that
      distinguishes L4S from Classic traffic is its behaviour in response to
      congestion. 
      The transport wire protocol, e.g., TCP, QUIC, the Stream Control Transmission Protocol (SCTP),
      the Datagram Congestion Control Protocol (DCCP), or RTP/RTCP, is orthogonal (and therefore not suitable for
      distinguishing L4S from Classic packets).
       The L4S identifier defined in this document is the key piece that
      distinguishes L4S from 'Classic' (e.g., Reno-friendly) traffic.
      Then, network bottlenecks can be incrementally modified to distinguish
      and isolate existing Classic traffic from L4S traffic, to prevent the
      former from degrading the very low queuing delay and loss of the new
      Scalable transports, without harming Classic performance at these
      bottlenecks. Although both sender and network deployment are required
      before any benefit, initial implementations of the separate parts of the
      system have been motivated by the potential performance benefits.
       
         Latency, Loss, and Scaling Problems
         Latency is becoming the critical performance factor for many
        (perhaps most) Internet applications, e.g., interactive web, web
        services, voice, conversational video, interactive video, interactive
        remote presence, instant messaging, online gaming, remote desktop,
        cloud-based applications & services, and remote control of
        machinery and industrial processes. In many parts of the world,
        further increases in access network bitrate offer diminishing returns
         , whereas latency is still a multi-faceted
        problem. As a result, much has been done to reduce propagation time by
        placing caches or servers closer to users. However, queuing remains a
        major, albeit intermittent, component of latency.
         The Diffserv architecture provides Expedited Forwarding (EF)   so that low-latency traffic can jump the queue of
        other traffic. If growth in latency-sensitive applications continues,
        periods with solely latency-sensitive traffic will become increasingly
        common on links where traffic aggregation is low. During these
        periods, if all the traffic were marked for the same treatment,
        Diffserv would make no difference. The links with low aggregation also
        tend to become the path bottleneck under load, for instance, the
        access links dedicated to individual sites (homes, small enterprises,
        or mobile devices). So, instead of differentiation, it becomes
        imperative to remove the underlying causes of any unnecessary
        delay.
         The Bufferbloat project has shown that excessively large buffering
        ('bufferbloat') has been introducing significantly more delay than the
        underlying propagation time  . These delays
        appear only intermittently -- only when a capacity-seeking
        (e.g., TCP) flow is long enough for the queue to fill the buffer,
        causing every packet in other flows sharing the buffer to have to work
        its way through the queue.
         AQM was originally developed to solve
        this problem (and others). Unlike Diffserv, which gives low latency to
        some traffic at the expense of others, AQM controls latency for  all traffic in a class. In general, AQM methods
        introduce an increasing level of discard from the buffer, the longer
        the queue persists above a shallow threshold. 
        This gives sufficient
        signals to capacity-seeking (a.k.a. greedy) flows to keep the
        buffer empty for its intended purpose: absorbing bursts.
	However, Random Early Detection (RED) and other algorithms from the 1990s
        were sensitive to their configuration and hard to set correctly  . So
        this form of AQM was not widely deployed.
         More recent state-of-the-art AQM methods, such
        as Flow Queue CoDel  , Proportional Integral controller Enhanced (PIE)  , or Adaptive RED  , are
        easier to configure, because they define the queuing threshold in time
        not bytes, so configuration is invariant whatever the link rate.
        However, the sawtoothing window of a Classic congestion control
        creates a dilemma for the operator: either i) configure a shallow AQM
        operating point so the tips of the sawteeth cause minimal queue
        delay, but then the troughs underutilize the link, or ii) configure the
        operating point deeper into the buffer so the troughs utilize the
        link better, but then the tips cause more delay variation. Even with a
        perfectly tuned AQM, the additional queuing delay at the tips of the
        sawteeth will be of the same order as the underlying base round-trip
        time (RTT), thereby roughly doubling the total RTT.
         If a sender's own behaviour is introducing queuing delay variation,
        no AQM in the network can 'un-vary' the delay without significantly
        compromising link utilization. Even flow queuing (e.g.,  ), which isolates one flow from another, cannot
        isolate a flow from the delay variations it inflicts on itself.
        Therefore, those applications that need to seek out high bandwidth but
        also need low latency will have to migrate to Scalable congestion
        control, which uses much smaller sawtooth variations.
         Altering host behaviour is not enough on its own though. Even if
        hosts adopt low-latency Scalable congestion controls, they need to be
        isolated from the large queue variations induced by existing Classic
        congestion controls. L4S AQMs provide that latency isolation in the
        network, and the L4S identifier enables the AQMs to distinguish the two
        types of packets that need to be isolated: L4S and Classic. L4S
        isolation can be achieved with a queue per flow (e.g.,  ), but a DualQ   is sufficient and
        actually gives better tail latency  . Both
        approaches are addressed in this document.
         The DualQ solution was developed to make very low latency available
        without requiring per-flow queues at every bottleneck. This was useful
        because per-flow queuing (FQ) has well-known downsides -- not least the
        need to inspect transport-layer headers in the network, which makes it
        incompatible with privacy approaches such as IPsec Virtual Private Network (VPN) tunnels and
        incompatible with link-layer queue management, where transport-layer
        headers can be hidden, e.g., 5G.
         Latency is not the only concern addressed by L4S. It was known when
        TCP congestion avoidance was first developed that it would not scale
        to high bandwidth-delay products (see footnote 6 of Jacobson and
        Karels  ).
        Given that Reno congestion control is already beyond its scaling range at 
        regular broadband bitrates over WAN distances  , 'less unscalable'
        CUBIC   and Compound   variants of TCP have been
        successfully deployed. However, these are now approaching their
        scaling limits. Unfortunately, fully Scalable congestion controls such
        as DCTCP   outcompete Classic ECN
        congestion controls sharing the same queue, which is why they have
        been confined to private data centres or research testbeds.
         It turns out that these Scalable congestion control algorithms that
        solve the latency problem can also solve the scalability problem of
        Classic congestion controls. The finer sawteeth in the congestion
        window (cwnd) have low amplitude, so they cause very little queuing delay
        variation, and the average time to recover from one congestion signal
        to the next (the average duration of each sawtooth) remains invariant,
        which maintains constant tight control as flow rate scales. A
        background paper   gives the full
        explanation of why the design solves both the latency and the scaling
        problems, both in plain English and in more precise mathematical form.
        The explanation is summarized without the mathematics in Section   of
        the L4S architecture  .
      
       
         Terminology
         
    The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
    " MAY", and " OPTIONAL" in this document are to be interpreted as
    described in BCP 14     
    when, and only when, they appear in all capitals, as shown here.
        
         
           Classic Congestion Control:
           A congestion control 
            behaviour that can coexist with standard Reno   without causing significantly negative impact
            on its flow rate  . With Classic
            congestion controls, such as Reno or CUBIC, because flow rate has
            scaled since TCP congestion control was first designed in 1988, it
            now takes hundreds of round trips (and growing) to recover after a
            congestion signal (whether a loss or an ECN mark) as shown in the
            examples in Section   of the L4S architecture   and in  . Therefore, control of queuing and utilization
            becomes very slack, and the slightest disturbances (e.g., from
            new flows starting) prevent a high rate from being attained.
           Scalable Congestion Control:
           A congestion control
            where the average time from one congestion signal to the next (the
            recovery time) remains invariant as flow rate scales, all
            other factors being equal. This maintains the same degree of
            control over queuing and utilization whatever the flow rate, as
            well as ensuring that high throughput is robust to disturbances.
            For instance, DCTCP averages 2 congestion signals per round trip,
            whatever the flow rate, as do other recently developed Scalable
            congestion controls, e.g., Relentless TCP  , Prague for TCP and QUIC    , the L4S ECN
   part of Bottleneck Bandwidth and Round-trip propagation time 
   (BBRv2)    , and the L4S
            variant of SCReAM for real-time media    . See   for more explanation.
           Classic Service:
           The Classic service is intended for
            all the congestion control behaviours
	    that coexist with Reno   (e.g., Reno itself,
            CUBIC  , Compound  , and TFRC  ). The term 'Classic queue' means a queue
            providing the Classic service.
           Low Latency, Low Loss, and Scalable throughput (L4S) service:
           
             The
            'L4S' service is intended for traffic from Scalable congestion
            control algorithms, such as the Prague congestion control  , which was
            derived from DCTCP  . 
            The L4S service
            is for more general traffic than just Prague -- it allows the
            set of congestion controls with similar scaling properties to
            Prague to evolve, such as the examples listed above (Relentless,
            SCReAM, etc.). The term 'L4S queue' means a queue providing the
            L4S service.
             The terms Classic or L4S can
            also qualify other nouns, such as 'queue', 'codepoint',
            'identifier', 'classification', 'packet', and 'flow'. For example, an
            L4S packet means a packet with an L4S identifier sent from an L4S
            congestion control.
             Both Classic and L4S
            services can cope with a proportion of unresponsive or
            less-responsive traffic as well but, in the L4S case, its rate has
            to be smooth enough or low enough to not build a queue
            (e.g., DNS, Voice over IP (VoIP), game sync datagrams, etc.).
          
           Reno-friendly:
           The subset of Classic traffic that is
            friendly to the standard Reno congestion control defined for TCP
            in  . The TFRC spec   indirectly implies that 'friendly' is defined
            as "generally within a factor of two of the sending rate of a TCP
            flow under the same conditions". Reno-friendly is used here in
            place of 'TCP-friendly', given the latter has become imprecise,
            because the TCP protocol is now used with so many different
            congestion control behaviours, and Reno is used in non-TCP
            transports, such as QUIC  .
           Classic ECN:
           
             The original Explicit Congestion Notification (ECN) protocol   that
            requires ECN signals to be treated as equivalent to drops, both when
            generated in the network and when responded to by the sender.
             For L4S, the names used for the
	    four codepoints of the 2-bit IP-ECN field are unchanged from those
	    defined in the ECN spec  , i.e., Not-ECT,
	    ECT(0), ECT(1), and CE, where ECT stands for ECN-Capable
	    Transport and CE stands for Congestion Experienced. A packet
	    marked with the CE codepoint is termed 'ECN-marked' or sometimes
	    just 'marked' where the context makes ECN obvious.
          
           Site:
           A home, mobile device, small enterprise, or
            campus where the network bottleneck is typically the access link
            to the site. Not all network arrangements fit this model, but it is
            a useful, widely applicable generalization.
        
      
       
         Scope
         The new L4S identifier defined in this specification is applicable
        for IPv4 and IPv6 packets (as is Classic ECN  ). It is applicable for the unicast, multicast, and
        anycast forwarding modes.
         The L4S identifier is an orthogonal packet classification to the
        Differentiated Services Code Point (DSCP)  .   explains what
        this means in practice.
         This document is Experimental, so it does not
        update any Standards Track RFCs. Therefore, it depends on  , which is a Standards Track specification
        that:
         
           updates the ECN Proposed Standard  
            to allow Experimental RFCs to relax the requirement that an
            ECN mark must be equivalent to a drop (when the network applies
            markings and/or when the sender responds to them). 
            For instance,
            in the Alternative Backoff with ECN (ABE) experiment  , this relaxation permits a
            sender to respond less to ECN marks than to drops;
           changes the status of the Experimental ECN nonce spec   to Historic; and
           
             makes consequent updates to the following additional Proposed
            Standard RFCs to reflect the above two bullets:
             
               ECN for RTP   and 
               the congestion control specifications of various DCCP
                Congestion Control Identifier (CCID) profiles      .
            
          
        
         This document is about identifiers that are used for interoperation
        between hosts and networks. So the audience is broad, covering
        developers of host transports and network AQMs, as well as covering
        how operators might wish to combine various identifiers, which would
        require flexibility from equipment developers.
      
    
     
       L4S Packet Identification: Document Roadmap
       The L4S ECN marking treatment is an experimental alternative 
      to the Classic ECN treatment in  ,
      which has been updated by   to allow experiments
      such as the one defined in the present specification.   discusses some of the issues and evaluation criteria
      when defining alternative ECN semantics, which are further discussed in
       .
       The L4S architecture  
      describes the three main components of L4S: the sending host behaviour,
      the marking behaviour in the network, and the L4S ECN protocol that
      identifies L4S packets as they flow between the two.
         of this document records the requirements that informed the choice
      of L4S identifier. Then, subsequent sections specify the L4S ECN
      protocol, which i) identifies packets that have been sent from hosts
      that are expected to comply with a broad type of sending behaviour and
      ii) identifies the marking treatment that network nodes are expected to
      apply to L4S packets.
       For a packet to receive L4S treatment as it is forwarded, the sender
      sets the ECN field in the IP header to the ECT(1) codepoint. See   for full transport-layer behaviour
      requirements, including feedback and congestion response.
       A network node that implements the L4S service always classifies
      arriving ECT(1) packets for L4S treatment and by default classifies CE
      packets for L4S treatment unless the heuristics described in   are employed. See   for full network element behaviour
      requirements, including classification, ECN marking, and interaction of
      the L4S identifier with other identifiers and per-hop behaviours.
       L4S ECN works with ECN tunnelling and encapsulation behaviour as is,
      except there is one known case where careful attention to configuration
      is required, which is detailed in  .
       This specification of L4S ECN currently has Experimental status. So   collects the general questions and
      issues that remain open for investigation during L4S experimentation.
      Open issues or questions specific to particular components are called
      out in the specifications of each component part, such as the DualQ
       .
       The IANA assignment of the L4S identifier is specified in  . And   covers security considerations
      specific to the L4S identifier. System security aspects, such as
      policing and privacy, are covered in the L4S architecture  .
    
     
       Choice of L4S Packet Identifier: Requirements
       This subsection briefly records the process that led to the chosen
      L4S identifier.
       The identifier for packets using the L4S service needs to meet the following requirements:
       
         it  SHOULD survive end to end between source and destination
          endpoints: across the boundary between host and network, between
          interconnected networks, and through middleboxes;
         it  SHOULD be visible at the IP layer;
         it  SHOULD be common to IPv4 and IPv6 and be transport-agnostic;
         it  SHOULD be incrementally deployable;
         it  SHOULD enable an AQM to classify packets encapsulated by outer
          IP or lower-layer headers;
         it  SHOULD consume minimal extra codepoints; and
         it  SHOULD be consistent on all the packets of a transport-layer
          flow, so that some packets of a flow are not served by a different
          queue to others.
      
       Whether the identifier would be recoverable if the experiment failed
      is a factor that could be taken into account. However, this has not been
      made a requirement, because that would favour schemes that would be
      easier to fail rather than more likely to succeed.
       It is recognized that any choice of identifier is unlikely to satisfy
      all these requirements, particularly given the limited space left in the
      IP header. Therefore, a compromise will always be necessary, which is
      why all the above requirements are expressed with the word " SHOULD" not
      " MUST".
       After extensive assessment of alternative schemes, "ECT(1) and CE
      codepoints" was chosen as the best compromise. Therefore, this scheme is
      defined in detail in the following sections, while   records its pros and cons against the above
      requirements.
    
     
       Transport-Layer Behaviour (the 'Prague L4S Requirements')
       This section defines L4S behaviour at the transport layer, also known
      as the 'Prague L4S Requirements' (see   for the origin of the name).
       
         Codepoint Setting
         A sender that wishes a packet to receive L4S treatment as it is
        forwarded  MUST set the ECN field in the IP header (v4 or v6) to the
        ECT(1) codepoint.
      
       
         Prerequisite Transport Feedback
         For a transport protocol to provide Scalable congestion control
        ( ), it  MUST provide feedback
        of the extent of CE marking on the forward path. When ECN was added to
        TCP  , the feedback method reported no
        more than one CE mark per round trip. Some transport protocols derived
        from TCP mimic this behaviour while others report the accurate extent
        of ECN marking. This means that some transport protocols will need to
        be updated as a prerequisite for Scalable congestion control. The
        position for a few well-known transport protocols is given below.
         
           TCP:
           Support for the accurate ECN feedback
            requirements   (such as that provided
            by AccECN  ) by
            both ends is a prerequisite for Scalable congestion control in
            TCP. Therefore, the presence of ECT(1) in the IP headers even in
            one direction of a TCP connection will imply that both ends
            support accurate ECN feedback. However, the converse does not
            apply.
	    So even if both ends support AccECN, either of the two ends
            can choose not to use a Scalable congestion control, whatever the
            other end's choice is.
           SCTP:
           A suitable ECN feedback mechanism for SCTP
            could add a chunk to report the number of received CE marks (as
            described in a long-expired document   or as sketched out in
            Appendix   of the now-obsolete second Standards Track
            specification of SCTP  ).
           RTP over UDP:
           A prerequisite for Scalable congestion
            control is for both (all) ends of one media-level hop to signal
            ECN support   and use the new generic
            RTCP feedback format of  . The presence of
            ECT(1) implies that both (all) ends of that media-level hop
            support ECN. However, the converse does not apply. So each end of
            a media-level hop can independently choose not to use a Scalable
            congestion control, even if both ends support ECN.
           QUIC:
           Support for sufficiently fine-grained ECN
            feedback is provided by IETF QUIC transport v1  .
           DCCP:
           The Acknowledgement (ACK) vector in DCCP   is already sufficient to report the extent of
            CE marking as needed by a Scalable congestion control.
        
      
       
         Prerequisite Congestion Response
         As a condition for a host to send packets with the L4S identifier
        (ECT(1)), it  SHOULD implement a congestion control behaviour that
        ensures that, in steady state, the average duration between induced
        ECN marks does not increase as flow rate scales up, all other factors
        being equal. This is termed a Scalable congestion control. This
        invariant duration ensures that, as flow rate scales, the average
        period with no feedback information about capacity does not become
        excessive. It also ensures that queue variations remain small, without
        having to sacrifice utilization.
         With a congestion control that sawtooths to probe capacity, this
        duration is called the recovery time, because each time the sawtooth
        yields, on average it takes this time to recover to its previous high
        point. A Scalable congestion control does not have to sawtooth, but it
        has to coexist with Scalable congestion controls that do.
         For instance, for DCTCP  , TCP Prague
           , and the L4S variant of SCReAM    , the average recovery
        time is always half a round trip (or half a reference round trip),
        whatever the flow rate.
         As with all transport behaviours, a detailed specification
        (probably an Experimental RFC) is expected for each congestion
        control, following the guidelines for specifying new congestion
        control algorithms in  . In addition, it
        is expected that these L4S-specific matters will be documented, specifically the
        timescale over which the proportionality is averaged and the control of
        burstiness. The recovery time requirement above is worded as a
        " SHOULD" rather than a " MUST" to allow reasonable flexibility for such
        implementations.
         The condition 'all other factors being equal' allows the recovery
        time to be different for different round-trip times, as long as it
        does not increase with flow rate for any particular RTT.
         Saying that the recovery time remains roughly invariant is
        equivalent to saying that the number of ECN CE marks per round trip
        remains invariant as flow rate scales, all other factors being equal.
        For instance, an average recovery time of half of 1 RTT is equivalent
        to 2 ECN marks per round trip. For those familiar with steady-state
        congestion response functions, it is also equivalent to say that the
        congestion window is inversely proportional to the proportion of bytes
        in packets marked with the CE codepoint (see Section 2 of  ).
         In order to coexist safely with other Internet traffic, a Scalable
        congestion control is not allowed to tag its packets with the ECT(1)
        codepoint unless it complies with the following numbered requirements
        and recommendations:
          A Scalable congestion control  MUST be capable of being replaced
            by a Classic congestion control (by application and/or by
            administrative control). If a Classic congestion control is
            activated, it will not tag its packets with the ECT(1) codepoint
            (see   for rationale).
           As well as responding to ECN markings, a Scalable congestion
            control  MUST react to packet loss in a way that will coexist
            safely with Classic congestion controls 
	    such as standard Reno  , as required by   (see   for rationale).
           
             In uncontrolled environments, monitoring  MUST be implemented to
            support detection of problems with an ECN-capable AQM at the path
            bottleneck that appears not to support L4S and that might be in a
            shared queue. Such monitoring  SHOULD be applied to live traffic
            that is using Scalable congestion control. Alternatively,
            monitoring need not be applied to live traffic, if monitoring with
            test traffic has been arranged to cover the paths that live
            traffic takes through uncontrolled environments. 
             A function to detect the above problems with an
            ECN-capable AQM  MUST also be implemented and used. The detection
            function  SHOULD be capable of making the congestion control adapt
            its ECN-marking response in real time to coexist safely with
            Classic congestion controls such as standard Reno  , as required by  . This
            could be complemented by more detailed offline detection of
            potential problems. If only offline detection is used and
            potential problems with such an AQM are detected on certain paths,
            the Scalable congestion control  MUST be replaced by a Classic
            congestion control, at least for the problem paths. 
             See  ,  , and the L4S
            operational guidance  
            for rationale and explanation.
             Note that a
            Scalable congestion control is not expected to change to setting
            ECT(0) while it transiently adapts to coexist with Classic
            congestion controls, whereas a replacement congestion control that
            solely behaves in the Classic way will set ECT(0).
          
           In the range between the minimum likely RTT and typical RTTs
            expected in the intended deployment scenario, a Scalable
            congestion control  MUST converge towards a rate that is as
            independent of RTT as is possible without compromising stability
            or utilization (see   for
            rationale).
           A Scalable congestion control  SHOULD remain responsive to
            congestion when typical RTTs over the public Internet are
            significantly smaller because they are no longer inflated by
            queuing delay. It would be preferable for the minimum window of a
            Scalable congestion control to be lower than 1 segment rather than
            use the timeout approach described for TCP in
             the ECN spec (or an equivalent for other
            transports). However, a lower minimum is not set as a formal
            requirement for L4S experiments (see   for rationale).
           A Scalable congestion control's loss detection  SHOULD be
            resilient to reordering over an adaptive time interval that scales
            with throughput and adapts to reordering (as in Recent ACK (RACK)  ), as opposed to counting only in fixed units of
            packets (as in the 3 Duplicate ACK (DupACK) rule of NewReno    , which is not
            scalable). As data rates increase (e.g., due to new and/or
            improved technology), congestion controls that detect loss by
            counting in units of packets become more likely to incorrectly
            treat reordering events as congestion-caused loss events (see
              for further
            rationale). This requirement does not apply to congestion controls
            that are solely used in controlled environments where the network
            introduces hardly any reordering.
           A Scalable congestion control is expected to limit the queue
            caused by bursts of packets. It would not seem necessary to set
            the limit any lower than 10% of the minimum RTT expected in a
            typical deployment (e.g., additional queuing of roughly 250 us
            for the public Internet). This would be converted to a number of
            packets by multiplying by the current average packet rate. Then,
            the queue caused by each burst at the bottleneck link would not
            exceed 250 us (under the worst-case assumption that the flow is
            filling the capacity). No normative requirement to limit bursts is
            given here, and until there is more industry experience from the
            L4S experiment, it is not even known whether one is needed -- it
            seems to be in an L4S sender's self-interest to limit bursts.
        
         Each sender in a session can use a Scalable congestion control
        independently of the congestion control used by the receiver(s) when
        they send data. Therefore, there might be ECT(1) packets in one
        direction and ECT(0) or Not-ECT in the other.
         Later, this document
        discusses the conditions for mixing other "'Safe' Unresponsive
        Traffic" (e.g., DNS, Lightweight Directory Access Protocol (LDAP), NTP, voice, and game sync packets) with L4S
        traffic; see  . To be clear, although such traffic can share the same queue
        as L4S traffic, it is not appropriate for the sender to tag it as
        ECT(1), except in the (unlikely) case that it satisfies the above
        conditions.
         
           Guidance on Congestion Response in the RFC Series
             requires the congestion responses to a CE-marked
          packet and a dropped packet to be the same.   is a
          Standards Track update to   that is intended to enable
          experimentation with ECN, including the L4S experiment.
            allows an experimental congestion control's response
          to a CE-marked packet to differ from the response to a dropped
          packet, provided that the differences are documented in an
          Experimental RFC, such as the present document.
           BCP 124   gives guidance
          to protocol designers, when specifying alternative semantics for the
          IP-ECN field.   explained that it did not need to update the
          best current practice in BCP 124 in order to relax the 'equivalence
          with drop' requirement because, although BCP 124 quotes the same
          requirement from  , the BCP does not impose requirements
          based on it.

	  BCP 124   describes three options for incremental
          deployment, with Option 3 (in  BCP 124) best matching the L4S
          case. Option 3's requirement for end-nodes is that they respond to
          CE marks "in a way that is friendly to flows using IETF-conformant
          congestion control." This echoes other general congestion control
          requirements in the RFC Series, for example,   states that "...congestion controllers that have
          a significantly negative impact on traffic using standard congestion
          control may be suspect" and  , which concerns UDP congestion control, states that
	 
          "Bulk-transfer applications that choose not to implement TFRC or
          TCP-like windowing  SHOULD implement a congestion
          control scheme that results in bandwidth (capacity) use that
          competes fairly with TCP within an order of magnitude."
           The normative Item   in   above (which concerns L4S
          response to congestion from a Classic ECN AQM) aims to ensure that
          these 'coexistence' requirements are satisfied, but it makes some
          compromises. This subsection highlights and justifies those
          compromises, and  
          and the L4S operational guidance   give detailed analysis, examples,
          and references (the normative text in that bullet takes precedence
          if any informative elaboration leads to ambiguity). The approach is
          based on an assessment of the risk of harm, which is a combination
          of the prevalence of the conditions necessary for harm to occur, and
          the potential severity of the harm if they do. 
           
             Prevalence:
             
               There are three cases:
               
                 Drop Tail: Coexistence between L4S and Classic flows is
                  not in doubt where the bottleneck does not support any form
                  of ECN, which has remained by far the most prevalent case
                  since the ECN spec   was published in 2001.
                 L4S: Coexistence is not in doubt if the bottleneck
                  supports L4S.
                 
                   Classic ECN: The
                  compromises centre around cases where the bottleneck
                  supports Classic ECN   but not L4S.
		  But it depends on which sub-case:
                   
                     Shared Queue with Classic ECN: At the time of
                      writing, the members of the Transport Working Group are
                      not aware of any current deployments of single-queue
                      Classic ECN bottlenecks in the Internet. Nonetheless, at
                      the scale of the Internet, rarity need not imply small
                      numbers nor that there will be rarity in the
                      future.
                     
                       Per-Flow Queues with Classic ECN: Most AQMs with
                      per-flow queuing deployed from 2012 onwards had
                      Classic ECN enabled by default, specifically
                      FQ-CoDel   and
                      COBALT  . But the compromises
                      only apply to the second of two further sub-cases:
                       
                         With per-flow queuing, coexistence between
                          Classic and L4S flows is not normally a problem,
                          because different flows are not meant to be in the
                          same queue (BCP 124   did not foresee the introduction
                          of per-flow queuing, which appeared as a potential
                          isolation technique some eight years after the BCP
                          was published).
                         However, the isolation between L4S and Classic
                          flows is not perfect in cases where the hashes of
                          flow identifiers (IDs) collide or where multiple flows within a
                          Layer 3 VPN are encapsulated within one flow ID.
                      
                    
                  
                
              
               To summarize, the coexistence problem is confined to
              cases of imperfect flow isolation in an FQ or in potential
              cases where a Classic ECN AQM has been deployed in a shared
              queue (see the L4S operational guidance   for further details including
              recent surveys attempting to quantify prevalence). Further, if
              one of these cases does occur, the coexistence problem does not
              arise unless sources of Classic and L4S flows are simultaneously
              sharing the same bottleneck queue (e.g., different
              applications in the same household), and flows of each type have
              to be large enough to coincide for long enough for any
              throughput imbalance to have developed. Therefore, how often the
              coexistence problem arises in practice is listed in   as an open question that L4S experiments
              will need to answer.
            
             Severity:
             Where long-running L4S and Classic flows
              coincide in a shared queue, testing of one L4S congestion
              control (TCP Prague) has found that the imbalance in average
              throughput between an L4S and a Classic flow can reach 25:1 in
              favour of L4S in the worst case  . However, when capacity is most scarce,
              the Classic flow gets a higher proportion of the link, for
              instance, over a 4 Mb/s link the throughput ratio is below ~10:1
              over paths with a base RTT below 100 ms, and it falls below ~5:1
              for base RTTs below 20 ms.
          
           These throughput ratios can clearly fall well outside current RFC
          guidance on coexistence. However, the tendency towards leaving a
          greater share for Classic flows at lower link rate and the very
          limited prevalence of the conditions necessary for harm to occur led
          to the possibility of allowing the RFC requirements to be
          compromised, albeit briefly:
           
             The recommended approach is still to detect and adapt to a
              Classic ECN AQM in real time, which is fully consistent with all
              the RFCs on coexistence. In other words, the " SHOULD"s in 
              Item   of   above
              expect the sender to implement something similar to the proof-of-concept
              code that detects the presence of a Classic ECN AQM and
              falls back to a Classic congestion response within a few round
              trips  . However, although this
              code reliably detects a Classic ECN AQM, the current code can
              also wrongly categorize an L4S AQM as Classic, most often in
              cases when link rate is low or RTT is high. Although this is the
              safe way round, and although implementers are expected to be
              able to improve on this proof of concept, concerns have been
              raised that implementers might lose faith in such detection and
              disable it.
             Item   in   above therefore allows a compromise
              where coexistence could briefly diverge from the requirements in the RFC
              Series, but mandatory monitoring is required in order
              to detect such cases and trigger remedial action. This approach
              tolerates a brief divergence from the RFCs given the likely low
              prevalence and given harm here means a flow progresses more
              slowly than it would otherwise, but it does progress. The L4S operational
              guidance   outlines a
              range of example remedial actions that include alterations to
              either the sender or the network. However, the final
              normative requirement in Item   of   above places ultimate
              responsibility for remedial action on the sender. If coexistence
              problems with a Classic ECN AQM are detected (implying they have
              not been resolved by the network), it states that the sender " MUST"
              revert to a Classic congestion control.
          
             also gives example
          ways in which L4S congestion controls can be rolled out initially in
          lower-risk scenarios.
        
      
       
         Filtering or Smoothing of ECN Feedback
           below specifies that an L4S AQM is
        expected to signal L4S ECN immediately, to avoid introducing delay due
        to filtering or smoothing. This contrasts with a Classic AQM, which
        filters out variations in the queue before signalling ECN marking or
        drop. In the L4S architecture  , responsibility for smoothing out
        these variations shifts to the sender's congestion control.
         This shift of responsibility has the advantage that each sender can
        smooth variations over a timescale proportionate to its own RTT.
        Whereas, in the Classic approach, the network doesn't know the RTTs of
        any of the flows, so it has to smooth out variations for a worst-case
        RTT to ensure stability. For all the typical flows with shorter RTTs
        than the worst-case, this makes congestion control unnecessarily
        sluggish.
         This also gives an L4S sender the choice not to smooth, depending
        on its context (start-up, congestion avoidance, etc.). Therefore, this
        document places no requirement on an L4S congestion control to smooth
        out variations in any particular way. Implementers are encouraged to
        openly publish the approach they take to smoothing as well as results
        and experience they gain during the L4S experiment.
      
    
     
       Network Node Behaviour
       
         Classification and Re-Marking Behaviour
         A network node that implements the L4S service:
         
           
             MUST classify arriving ECT(1) packets for L4S treatment, unless
            overridden by another classifier (e.g., see  ).
           
              MUST classify arriving CE packets for L4S treatment as well,
            unless overridden by another classifier or unless the exception
            referred to next applies.
             CE packets might
            have originated as ECT(1) or ECT(0), but the above rule to
            classify them as if they originated as ECT(1) is the safe choice
            (see   for rationale). The exception
            is where some flow-aware in-network mechanism happens to be
            available for distinguishing CE packets that originated as ECT(0),
            as described in  , but there is no
            implication that such a mechanism is necessary.
          
        
         An L4S AQM treatment follows similar codepoint transition rules to
        those in  . Specifically, the ECT(1) codepoint  MUST NOT be
        changed to any codepoint other than CE, and CE  MUST NOT be changed to
        any other codepoint. An ECT(1) packet is classified as 'ECN-capable',
        and if congestion increases, an L4S AQM algorithm will increasingly
        mark the IP-ECN field as CE, otherwise forwarding packets unchanged as
        ECT(1). Necessary conditions for an L4S marking treatment are defined
        in  .
         Under persistent overload, an L4S marking treatment
         MUST begin applying drop to L4S traffic until the
        overload episode has subsided, as recommended for all AQM methods in
         , which
        follows the similar advice in  .  During overload, it
         MUST apply the same drop probability to L4S traffic as
        it would to Classic traffic.
         Where an L4S AQM is transport-aware, this requirement could be
        satisfied by using drop in only the most overloaded individual
        per-flow AQMs. In a DualQ with flow-aware queue protection
        (e.g.,  ), this
        could be achieved by redirecting packets in those flows contributing
        most to the overload out of the L4S queue so that they are subjected
        to drop in the Classic queue.
         For backward compatibility in uncontrolled environments, a network
        node that implements the L4S treatment  MUST also implement an AQM
        treatment for the Classic service as defined in  . This Classic AQM treatment need not mark
        ECT(0) packets, but if it does, see  
        for the strengths of the markings relative to drop. It  MUST classify
        arriving ECT(0) and Not-ECT packets for treatment by this Classic AQM
        (for the DualQ Coupled AQM; see the extensive discussion on
        classification in Sections   and   of  ).
         In case unforeseen problems arise with the L4S experiment, it  MUST
        be possible to configure an L4S implementation to disable the L4S
        treatment. 
        Once disabled, ECT(1) packets  MUST be treated as if
        they were Not-ECT.
      
       
         The Strength of L4S CE Marking Relative to Drop
         The relative strengths of L4S CE and drop are irrelevant where AQMs
        are implemented in separate queues per application-flow, which are
        then explicitly scheduled (e.g., with an FQ scheduler as in
        FQ-CoDel  ). Nonetheless, the relationship
        between them needs to be defined for the coupling between L4S and
        Classic congestion signals in a DualQ Coupled AQM  , as indicated below.
         Unless an AQM node schedules application flows explicitly, the
        likelihood that the AQM drops a Not-ECT Classic packet (p_C)  MUST be
        roughly proportional to the square of the likelihood that it would
        have marked it if it had been an L4S packet (p_L). That is:
         p_C ~= (p_L / k) 2
         The constant of proportionality (k) does not have to be
        standardized for interoperability, but a value of 2 is  RECOMMENDED.
        The term 'likelihood' is used above to allow for marking and dropping
        to be either probabilistic or deterministic.
         This formula ensures that Scalable and Classic flows will converge
        to roughly equal congestion windows, for the worst case of Reno
        congestion control. This is because the congestion windows of Scalable
        and Classic congestion controls are inversely proportional to p_L and
        sqrt(p_C), respectively. So squaring p_C in the above formula
        counterbalances the square root that characterizes Reno-friendly
        flows.
         
           Note that, contrary to  , an AQM implementing the L4S
        and Classic treatments does not mark an ECT(1) packet under the same
        conditions that it would have dropped a Not-ECT packet, as allowed by
         , which updates  .
	However, if it
        marks ECT(0) packets, it does so under the same conditions that it would have dropped a
	Not-ECT packet  .
	
          
        
         Also, in the L4S architecture  , the sender, not the network, is
        responsible for smoothing out variations in the queue. So an L4S AQM
         MUST signal congestion as soon as possible. Then, an L4S sender
        generally interprets CE marking as an unsmoothed signal.
         This requirement does not prevent an L4S AQM from mixing in
        additional congestion signals that are smoothed, such as the signals
        from a Classic smoothed AQM that are coupled with unsmoothed L4S
        signals in the coupled DualQ  , but only as long as the
        onset of congestion can be signalled immediately and can be
        interpreted by the sender as if it has been signalled immediately,
        which is important for interoperability
      
       
         Exception for L4S Packet Identification by Network Nodes with Transport-Layer Awareness
         To implement L4S packet classification, a network node does not
        need to identify transport-layer flows. Nonetheless, if an L4S network
        node classifies packets by their transport-layer flow ID and their ECN
        field, and if all the ECT packets in a flow have been ECT(0), the node
         MAY classify any CE packets in the same flow as if they were Classic
        ECT(0) packets. In all other cases, a network node  MUST classify all
        CE packets as if they were ECT(1) packets. Examples of such other
        cases are: i) if no ECT packets have yet been identified in a flow;
        ii) if it is not desirable for a network node to identify
        transport-layer flows; or iii) if some ECT packets in a flow have been
        ECT(1) (this advice will need to be verified as part of L4S
        experiments).
      
       
         Interaction of the L4S Identifier with Other Identifiers
         The examples in this section concern how additional identifiers
        might complement the L4S identifier to classify packets between
        class-based queues. Firstly,  
        considers two queues, L4S and Classic, as in the DualQ Coupled
        AQM  , either
        alone ( ) or within a larger
        queuing hierarchy ( ). Then,   considers schemes that might combine
        per-flow 5-tuples with other identifiers.
         
           DualQ Examples of Other Identifiers Complementing L4S Identifiers
           
             Inclusion of Additional Traffic with L4S
             In a typical case for the public Internet, a network element
            that implements L4S in a shared queue might want to classify some
            low-rate but unresponsive traffic (e.g., DNS, LDAP, NTP,
            voice, and game sync packets) into the low-latency queue to mix with
            L4S traffic. In this case, it would not be appropriate to call the
            queue an L4S queue, because it is shared by L4S and non-L4S
            traffic. Instead, it will be called the low-latency or L queue.
            The L queue then offers two different treatments:
             
               the L4S treatment, which is a combination of the L4S AQM
                treatment and a priority scheduling treatment, and
               the low-latency treatment, which is solely the priority
                scheduling treatment, without ECN marking by the AQM.
            
             To identify packets for just the scheduling treatment, it would
            be inappropriate to use the L4S ECT(1) identifier, because such
            traffic is unresponsive to ECN marking. Examples of relevant
            non-ECN identifiers are:
             
               address ranges of specific applications or hosts configured
                to be, or known to be, safe, e.g., hard-coded Internet of Things (IoT) devices
                sending low-intensity traffic;
               certain low data-volume applications or protocols
              (e.g., ARP and DNS); and
               specific Diffserv codepoints that indicate traffic with
                limited burstiness such as the EF  ,
                VOICE-ADMIT  , or proposed
                Non-Queue-Building (NQB)  
                service classes or equivalent Local-use DSCPs (see  ).
            
             To be clear, classifying into the L queue based on application-layer
            identification (e.g., DNS) is an example of a local
            optimization, not a recommendation. Applications will not be able
            to rely on such unsolicited optimization. A more reliable approach
            would be for the sender to set an appropriate IP-layer identifier,
            such as one of the above Diffserv codepoints.
             In summary, a network element that implements L4S in a shared
            queue  MAY classify additional types of packets into the L queue
            based on identifiers other than the IP-ECN field, but the types
             SHOULD be 'safe' to mix with L4S traffic, where 'safe' is
            explained in  .
             A packet that carries one of these non-ECN identifiers to
            classify it into the L queue would not be subject to the L4S ECN-marking
            treatment, unless it also carried an ECT(1) or CE
            codepoint. 
            The specification of an L4S AQM  MUST define the
            behaviour for packets with unexpected combinations of codepoints,
            e.g., a non-ECN-based classifier for the L queue but with ECT(0)
            in the IP-ECN field (for examples with appropriate behaviours, see Section   of the DualQ
            spec  ).
             For clarity, non-ECN identifiers, such as the examples itemized
            above, might be used by some network operators who believe they
            identify non-L4S traffic that would be safe to mix with L4S
            traffic. They are not alternative ways for a host to indicate that
            it is sending L4S packets. 
            Only the ECT(1) ECN codepoint indicates
            to a network element that a host is sending L4S packets (and CE
            indicates that it could have originated as ECT(1)). Specifically,
            ECT(1) indicates that the host claims its behaviour satisfies the
            prerequisite transport requirements in  .
             In order to include non-L4S packets in the L queue, a network
            node  MUST NOT change Not-ECT or ECT(0) in the IP-ECN field into an
            L4S identifier. This ensures that these codepoints survive for any
            potential use later on the network path. If a non-compliant or
            malicious network node did swap ECT(0) to ECT(1), the packet could
            subsequently be ECN-marked by a downstream L4S AQM, but the sender
            would respond to congestion indications thinking it had sent a
            Classic packet. This could result in the flow yielding excessively
            to other L4S flows sharing the downstream bottleneck.
             
               'Safe' Unresponsive Traffic
               The above section requires unresponsive traffic to be 'safe'
              to mix with L4S traffic. Ideally, this means that the sender
              never sends any sequence of packets at a rate that exceeds the
              available capacity of the bottleneck link. However, typically an
              unresponsive transport does not even know the bottleneck
              capacity of the path, let alone its available capacity. 
              Nonetheless, an application can be considered safe enough if it
              paces packets out (not necessarily with absolute regularity) such
              that its maximum instantaneous rate from packet to packet stays
              well below a typical broadband access rate.
               This is a vague but useful definition, because many low-latency
              applications of interest, such as DNS, voice, game sync
              packets, RPC, ACKs, and keep-alives, could match this
              description.
               Low-rate streams, such as voice and game sync packets, might
              not use continuously adapting ECN-based congestion control, but
              they ought to at least use a 'circuit-breaker' style of
              congestion response  . If the volume
              of traffic from unresponsive applications is high enough to
              overload the link, this will at least protect the capacity
              available to responsive applications. However, queuing delay in
              the L queue would probably then rise to the typically higher level targeted by 
              a Classic (drop-based) AQM. If a network operator considers that such
              self-restraint is not enough, it might want to police the L
              queue (see Section   of the L4S architecture  ).
            
          
           
             Exclusion of Traffic from L4S Treatment
             To extend the above example, an operator might want to exclude
            some traffic from the L4S treatment for a policy reason,
            e.g., security (traffic from malicious sources) or commercial
            (e.g., the operator may wish to initially confine the benefits
            of L4S to business customers).
             In this exclusion case, the classifier  MUST classify on the
            relevant locally used identifiers (e.g., source addresses)
            before classifying the non-matching traffic on the end-to-end L4S
            ECN identifier.
             A network node  MUST NOT alter the end-to-end L4S ECN identifier
            from L4S to Classic, because an operator decision to exclude
            certain traffic from L4S treatment is local-only. The end-to-end
            L4S identifier then survives for other operators to use, or
            indeed, they can apply their own policy, independently based on
            their own choice of locally used identifiers. This approach also
            allows any operator to remove its locally applied exclusions in
            future, e.g., if it wishes to widen the benefit of the L4S
            treatment to all its customers. If a non-compliant or malicious
            network node did swap ECT(1) to ECT(0), the packet could
            subsequently be ECN-marked by a downstream Classic ECN AQM. L4S
            senders are required to detect and handle such treatment (see Item   in  ), but that does not
            make this swap OK, because such detection is not known to be
            perfect or immediate.
             A network node that supports L4S but excludes certain packets
            carrying the L4S identifier from L4S treatment  MUST still apply
            marking or dropping that is compatible with an L4S congestion
            response. 
            For instance, it could either drop such packets with the
            same likelihood as Classic packets or ECN-mark them with
            a likelihood appropriate to L4S traffic (e.g., the coupled
            probability in a DualQ Coupled AQM) but aiming for the Classic
            delay target. It  MUST NOT ECN-mark such packets with a Classic
            marking probability, which could confuse the sender.
          
           
             Generalized Combination of L4S and Other Identifiers
             L4S concerns low latency, which it can provide for all traffic
            without differentiation and without  necessarily
            affecting bandwidth allocation. Diffserv provides for
            differentiation of both bandwidth and low latency, but its control
            of latency depends on its control of bandwidth. 
            L4S and Diffserv can be
            combined if a network operator wants to control bandwidth
            allocation but also wants to provide low latency, i.e., for any
            amount of traffic within one of these allocations of bandwidth
            (rather than only providing low latency by limiting bandwidth)
             .
             The DualQ examples so far have been framed in the context of
            providing the default Best Effort Per-Hop Behaviour (PHB) using
            two queues -- a low-latency (L) queue and a Classic (C) queue. This
            single DualQ structure is expected to be the most common and
            useful arrangement. But, more generally, an operator might choose
            to control bandwidth allocation through a hierarchy of Diffserv
            PHBs at a node and to offer one (or more) of these PHBs using a
            pair of queues for a low latency and a Classic variant of the
            PHB.
             In the first case, if we assume that a network element provides
            no PHBs except the DualQ, if a packet carries ECT(1) or CE, the
            network element would classify it for the L4S treatment
            irrespective of its DSCP. And, if a packet carried (for example) the EF
            DSCP, the network element could classify it into the L queue
            irrespective of its ECN codepoint. However, where the DualQ is in
            a hierarchy of other PHBs, the classifier would classify some
            traffic into other PHBs based on DSCP before classifying between
            the low-latency and Classic queues (based on ECT(1), CE, and
            perhaps also the EF DSCP or other identifiers as in the above
            example).   gives a
            number of examples of such arrangements to address various
            requirements.
               describes how
            an operator might use L4S to offer low latency as well as
            Diffserv for bandwidth differentiation. It identifies two main
            types of approach, which can be combined: the operator might split
            certain Diffserv PHBs between L4S and a corresponding Classic
            service. Or it might split the L4S and/or the Classic service into
            multiple Diffserv PHBs. In either of these cases, a packet would
            have to be classified on its Diffserv and ECN codepoints.
             In summary, there are numerous ways in which the L4S ECN
            identifier (ECT(1) and CE) could be combined with other
            identifiers to achieve particular objectives. The following
            categorization articulates those that are valid, but it is not
            necessarily exhaustive. Those tagged as 'Recommended-standard-use'
            could be set by the sending host or a network. Those tagged
            as 'Local-use' would only be set by a network:
              
                 Identifiers Complementing the L4S Identifier
                  
                     Including More Traffic in the L Queue
                     (could use Recommended-standard-use or
                    Local-use identifiers)
                  
                   
                     Excluding Certain Traffic from the L Queue
                     (Local-use only)
                  
                
              
               
                 Identifiers to Place L4S Classification in a PHB
                Hierarchy
                 (could use
                Recommended-standard-use or Local-use identifiers)
                  PHBs before L4S ECN Classification
                   PHBs after L4S ECN Classification
                
              
            
          
        
         
           Per-flow Queuing Examples of Other Identifiers Complementing L4S Identifiers
           At a node with per-flow queuing (e.g., FQ-CoDel  ), the L4S identifier could complement the transport-layer
          flow ID as a further level of flow granularity (i.e., Not-ECT
          and ECT(0) queued separately from ECT(1) and CE packets).
          In  , the "Risk of
          reordering Classic CE packets within a flow" discusses the resulting 
          ambiguity if packets originally set to
          ECT(0) are marked CE by an upstream AQM before they arrive at a node
          that classifies CE as L4S. It argues that the risk of reordering is
          vanishingly small, and the consequence of such a low level of
          reordering is minimal.
           Alternatively, it could be assumed that it is not in a flow's own
          interest to mix Classic and L4S identifiers. Then, the AQM could use
          the IP-ECN field to switch itself between a Classic and an L4S AQM
          behaviour within one per-flow queue. For instance, for ECN-capable
          packets, the AQM might consist of a simple marking threshold, and an
          L4S ECN identifier might simply select a shallower threshold than a
          Classic ECN identifier would.
        
      
       
         Limiting Packet Bursts from Links
         As well as senders needing to limit packet bursts ( ), links need to limit the degree
        of burstiness they introduce. In both cases (senders and links), this
        is a trade-off, because batch-handling of packets is done for good
        reason, e.g., for processing efficiency or to make efficient use of
        medium acquisition delay. Some take the attitude that there is no
        point reducing burst delay at the sender below that introduced by
        links (or vice versa). However, delay reduction proceeds by cutting
        down 'the longest pole in the tent', which turns the spotlight on the
        next longest, and so on.
         This document does not set any quantified requirements for links to
        limit burst delay, primarily because link technologies are outside the
        remit of L4S specifications. Nonetheless, the following two
        subsections outline opportunities for addressing bursty links in the
        process of L4S implementation and deployment.
         
           Limiting Packet Bursts from Links Fed by an L4S AQM
           It would not make sense to implement an L4S AQM that feeds into a
          particular link technology without also reviewing opportunities to
          reduce any form of burst delay introduced by that link technology.
          This would at least limit the bursts that the link would otherwise
          introduce into the onward traffic, which would cause jumpy feedback
          to the sender as well as potential extra queuing delay downstream.
          This document does not presume to even give guidance on an
          appropriate target for such burst delay until there is more industry
          experience of L4S. However, as suggested in  , it would not seem necessary to
          limit bursts lower than roughly 10% of the minimum base RTT expected
          in the typical deployment scenario (e.g., 250 us burst duration
          for links within the public Internet).
        
         
           Limiting Packet Bursts from Links Upstream of an L4S AQM
           The initial scope of the L4S experiment is to deploy L4S AQMs at
          bottlenecks and L4S congestion controls at senders. This is expected
          to highlight interactions with the most bursty upstream links and
          lead operators to tune down the burstiness of those links in their
          networks that are configurable or, failing that, to have to
          compromise on the delay target of some L4S AQMs. It might also
          require specific redesign work relevant to the most problematic link
          types. Such knock-on effects of initial L4S deployment would all be a
          part of the learning from the L4S experiment.
           The details of such link changes are beyond the scope of the
          present document. 
          Nonetheless, where L4S technology is being
          implemented on an outgoing interface of a device, it would make
          sense to consider opportunities for reducing bursts arriving at
          other incoming interfaces. For instance, where an L4S AQM is
          implemented to feed into the upstream WAN interface of a home
          gateway, there would be opportunities to alter the Wi-Fi profiles
          sent out of any Wi-Fi interfaces from the same device, in order to
          mitigate incoming bursts of aggregated Wi-Fi frames from other Wi-Fi
          stations.
        
      
    
     
       Behaviour of Tunnels and Encapsulations
       
         No Change to ECN Tunnels and Encapsulations in General
         The L4S identifier is expected to work through and within any
        tunnel without modification, as long as the tunnel propagates the ECN
        field in any of the ways that have been defined since the first
        variant in the year 2001  . L4S will also
        work with (but does not rely on) any of the more recent updates to ECN
        propagation in  ,  , or
         . However, it is
        likely that some tunnels still do not implement ECN propagation at
        all. In these cases, L4S will work through such tunnels, but within
        them the outer header of L4S traffic will appear as Classic.
         AQMs are typically implemented where an IP-layer buffer feeds into
        a lower layer, so they are agnostic to link-layer encapsulations.
        Where a bottleneck link is not IP-aware, the L4S identifier is still
        expected to work within any lower-layer encapsulation without
        modification, as long it propagates the IP-ECN field as defined for the
        link technology, for example, for MPLS   or Transparent 
        Interconnection of Lots of Links (TRILL)  . In some of
        these cases, e.g., Layer 3 Ethernet switches, the AQM accesses the
        IP-layer header within the outer encapsulation, so again the L4S
        identifier is expected to work without modification. Nonetheless, the
        programme to define ECN for other lower layers is still in
        progress  .
      
       
         VPN Behaviour to Avoid Limitations of Anti-Replay
         If a mix of L4S and Classic packets is sent into the same security
        association (SA) of a VPN, and if the VPN
        egress is employing the optional anti-replay feature, it could
        inappropriately discard Classic packets (or discard the records in
        Classic packets) by mistaking their greater queuing delay for a replay
        attack (see "Dropped Packets for Tunnels with Replay Protection
        Enabled" in   for the potential performance
        impact). This known problem is common to both IPsec   and DTLS   VPNs, given
        they use similar anti-replay window mechanisms. The mechanism used can
        only check for replay within its window, so if the window is smaller
        than the degree of reordering, it can only assume there might be a
        replay attack and discard all the packets behind the trailing edge of
        the window. The specifications of IPsec Authentication Header (AH) 
          and Encapsulating Security Payload (ESP)   suggest that
        an implementer scales the size of the anti-replay window with
        interface speed, and DTLS v1.3   states that "The
        receiver  SHOULD pick a window large enough to handle any plausible
        reordering, which depends on the data rate." However, in practice, the
        size of a VPN's anti-replay window is not always scaled
        appropriately.
         If a VPN carrying traffic participating in the L4S experiment
        experiences inappropriate replay detection, the foremost remedy would
        be to ensure that the egress is configured to comply with the above
        window-sizing requirements.
         If an implementation of a VPN egress does not support a
        sufficiently large anti-replay window, e.g., due to hardware
        limitations, one of the temporary alternatives listed in order of
        preference below might be feasible instead:
         
           If the VPN can be configured to classify packets into different
            SAs indexed by DSCP, apply the appropriate locally defined DSCPs
            to Classic and L4S packets. The DSCPs could be applied by the
            network (based on the least-significant bit of the IP-ECN field), or
            by the sending host. Such DSCPs would only need to survive as far
            as the VPN ingress.
           
             If the above is not possible and it is necessary to use L4S,
            either of the following might be appropriate as a last
            resort:
             
               disable anti-replay protection at the VPN egress, after
                considering the security implications (it is mandatory to
                allow the anti-replay facility to be disabled in both IPsec
                and DTLS), or
               configure the tunnel ingress not to propagate ECN to the
                outer, which would lose the benefits of L4S and Classic ECN
                over the VPN.
            
          
        
         Modification to VPN implementations is outside the present scope,
        which is why this section has so far focused on reconfiguration.
        Although this document does not define any requirements for VPN
        implementations, determining whether there is a need for such
        requirements could be one aspect of L4S experimentation.
      
    
     
       L4S Experiments
       This section describes open questions that L4S experiments ought to
      focus on. This section also documents outstanding open issues that will
      need to be investigated as part of L4S experimentation, given they could
      not be fully resolved during the working group phase. It also lists metrics that
      will need to be monitored during experiments (summarizing text elsewhere
      in L4S documents) and finally lists some potential future directions
      that researchers might wish to investigate.
       In addition to this section, i) the DualQ spec   sets operational and
      management requirements for experiments with DualQ Coupled AQMs, and
      ii) general operational and management requirements for experiments with L4S
      congestion controls are given in Sections  
      and   above, e.g., coexistence and
      scaling requirements and incremental deployment arrangements.
       The specification of each Scalable congestion control will need to
      include protocol-specific requirements for configuration and monitoring
      performance during experiments. 

        provides a helpful checklist.
       
         Open Questions
         L4S experiments would be expected to answer the following
        questions:
         
           
             Have all the parts of L4S been deployed, and if so, what
            proportion of paths support it?
             
               What types of L4S AQMs were deployed, e.g., FQ, coupled
                DualQ, uncoupled DualQ, other? And how prevalent was each?
               Are the signalling patterns emitted by the deployed AQMs in
                any way different from those expected when the Prague
                requirements for endpoints were written?
            
          
           Does use of L4S over the Internet result in a significantly
            improved user experience?
           Has L4S enabled novel interactive applications?
           
             Did use of L4S over the Internet result in improvements to the
            following metrics:
             
               queue delay (mean and 99th percentile) under various
                loads;
               utilization;
               starvation / fairness; and
               scaling range of flow rates and RTTs?
            
          
           How dependent was the performance of L4S service on the
            bottleneck bandwidth or the path RTT?
           How much do bursty links in the Internet affect L4S performance
            (see "Underutilization with Bursty Links" in  ) and how prevalent are they? How much
            limitation of burstiness from upstream links was needed and/or was
            realized -- both at senders and at links, especially radio links -- or
            how much did L4S target delay have to be increased to accommodate
            the bursts (see Item   in   and see  )?
           Is the initial experiment with mis-identified bursty traffic at
            high RTT (see "Underutilization with Bursty Traffic" in  ) indicative of similar problems at lower RTTs,
            and if so, how effective is the suggested remedy in  the DualQ spec (or possible other
            remedies)?
           
             Was per-flow queue protection typically (un)necessary? 
             
               How well did overload protection or queue protection
                work?
            
          
           
             How well did L4S flows coexist with Classic flows when sharing
            a bottleneck?
             
               How frequently did problems arise?
               What caused any coexistence problems, and were any problems
                due to single-queue Classic ECN AQMs (this assumes
                single-queue Classic ECN AQMs can be distinguished from FQ
                ones)?
            
          
           How prevalent were problems with the L4S service due to tunnels/encapsulations
            that do not support ECN decapsulation?
           How easy was it to implement a fully compliant L4S congestion
            control, over various different transport protocols (TCP, QUIC,
            RMCAT, etc.)?
        
         Monitoring for harm to other traffic, specifically bandwidth
        starvation or excess queuing delay, will need to be conducted
        alongside all early L4S experiments. It is hard, if not impossible,
        for an individual flow to measure its impact on other traffic. So such
        monitoring will need to be conducted using bespoke monitoring across
        flows and/or across classes of traffic.
      
       
         Open Issues
         
           What is the best way forward to deal with L4S over single-queue
            Classic ECN AQM bottlenecks, given current problems with
            misdetecting L4S AQMs as Classic ECN AQMs? See the L4S operational
            guidance  .
           Fixing the poor interaction between current L4S congestion
            controls and CoDel with only Classic ECN support during flow
            startup.
            Originally, this was due to a bug in the initialization
            of the congestion average in the
	    Linux implementation of TCP Prague.
            That was quickly fixed, which removed the main performance impact,
            but further improvement would be useful (by modifying either
            CoDel or Scalable congestion controls, or both).
        
      
       
         Future Potential
         Researchers might find that L4S opens up the following interesting
        areas for investigation:
         
           potential for faster convergence time and tracking of available
            capacity;
           potential for improvements to particular link technologies and
            cross-layer interactions with them;
           potential for using virtual queues, e.g., to further reduce
            latency jitter or to leave headroom for capacity variation in
            radio networks;
           development and specification of reverse path congestion
            control using L4S building blocks (e.g., AccECN or QUIC);
           once queuing delay is cut down, what becomes the
            'second-longest pole in the tent' (other than the speed of
            light)?
           novel alternatives to the existing set of L4S AQMs; and
           novel applications enabled by L4S.
        
      
    
     
       IANA Considerations
       The semantics of the 01 codepoint of the ECN field of the IP header are specified by
      this Experimental RFC. The process for an Experimental RFC to
      assign this codepoint in the IP header (v4 and v6) is documented in
      Proposed Standard  , which updates the Proposed
      Standard  .
       IANA has updated the 01 entry in the "ECN Field (Bits 6-7)" registry (see  ) as
      follows:
       
         ECN Field (Bits 6-7) Registry
         
           
             Binary
             Keyword
             Reference
          
        
         
           
             01
             ECT(1) (ECN-Capable Transport(1))[1]
             
                [RFC Errata 5399]
        RFC 9331
          
        
      
       [1] 	ECT(1) is for experimental use only  
    
     
       Security Considerations
       Approaches to assure the integrity of signals using the new
      identifier are introduced in  . See the security considerations in
      the L4S architecture   for
      further discussion of misuse of the identifier, as well as extensive
      discussion of policing rate and latency in regard to L4S.
       Defining ECT(1) as the L4S identifier introduces a difference between
      the effects of ECT(0) and ECT(1) that   previously defined as
      distinct but with equivalent effect. For L4S ECN, a network node is
      still required not to swap one to the other, even if the network
      operator chooses to locally apply the treatment associated with the
      opposite codepoint (see Sections   and  ). These sections also describe the
      potential effects if a non-compliant or malicious network node does swap
      one to the other. The present specification does not change the effects
      of other unexpected transitions of the IP-ECN field, which are still as
      described in  .
       If the anti-replay window of a VPN egress is too small, it will
      mistake deliberate delay differences as a replay attack and discard
      higher-delay packets (e.g., Classic) carried within the same
      security association (SA) as low-delay packets (e.g., L4S).   recommends that VPNs used in L4S
      experiments are configured with a sufficiently large anti-replay window,
      as required by the relevant specifications. It also discusses other
      alternatives.
       If a user taking part in the L4S experiment sets up a VPN without
      being aware of the above advice, and if the user allows anyone to send
      traffic into their VPN, they would open up a DoS vulnerability in which
      an attacker could induce the VPN's anti-replay mechanism to discard
      enough of the user's Classic (C) traffic (if they are receiving any) to
      cause a significant rate reduction. While the user is actively
      downloading C traffic, the attacker sends C traffic into the VPN to fill
      the remainder of the bottleneck link, then sends intermittent L4S
      packets to maximize the chance of exceeding the VPN's replay window. The
      user can prevent this attack by following the recommendations in  .
      
       The recommendation to detect loss in time units prevents the
      ACK-splitting attacks described in  .
    
  
   
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
       References
       
         Normative References
         
           
             Key words for use in RFCs to Indicate Requirement Levels
             
             
             
               In many standards track documents several words are used to signify the requirements in the specification.  These words are often capitalized.  This document defines these words as they should be interpreted in IETF documents.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
            
          
           
           
           
           
        
         
           
             The Addition of Explicit Congestion Notification (ECN) to IP
             
             
             
             
             
               This memo specifies the incorporation of ECN (Explicit Congestion Notification) to TCP and IP, including ECN's use of two bits in the IP header. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Specifying Alternate Semantics for the Explicit Congestion Notification (ECN) Field
             
             
             
               There have been a number of proposals for alternate semantics for the Explicit Congestion Notification (ECN) field in the IP header RFC 3168.  This document discusses some of the issues in defining alternate semantics for the ECN field, and specifies requirements for a safe coexistence in an Internet that could include routers that do not understand the defined alternate semantics.  This document evolved as a result of discussions with the authors of one recent proposal for such alternate semantics.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
            
          
           
           
           
           
        
         
           
             Explicit Congestion Notification (ECN) for RTP over UDP
             
             
             
             
             
             
             
               This memo specifies how Explicit Congestion Notification (ECN) can be used with the Real-time Transport Protocol (RTP) running over UDP, using the RTP Control Protocol (RTCP) as a feedback mechanism.  It defines a new RTCP Extended Report (XR) block for periodic ECN feedback, a new RTCP transport feedback message for timely reporting of congestion events, and a Session Traversal Utilities for NAT (STUN) extension used in the optional initialisation method using Interactive Connectivity Establishment (ICE).  Signalling and procedures for negotiation of capabilities and initialisation methods are also defined. [STANDARDS-TRACK]
            
          
           
           
           
        
      
       
         Informative References
         
           
             Adaptive-Acceleration Data Center TCP
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
          
           
           IEEE Transactions on Computers, Volume 64, Issue 6, pp. 1522-1533
        
         
           
             More Accurate ECN Feedback in TCP
             
               Independent
            
             
               Ericsson
            
             
               NetApp
            
             
             
                  Explicit Congestion Notification (ECN) is a mechanism where network
   nodes can mark IP packets instead of dropping them to indicate
   incipient congestion to the end-points.  Receivers with an ECN-
   capable transport protocol feed back this information to the sender.
   ECN was originally specified for TCP in such a way that only one
   feedback signal can be transmitted per Round-Trip Time (RTT).  Recent
   new TCP mechanisms like Congestion Exposure (ConEx), Data Center TCP
   (DCTCP) or Low Latency Low Loss Scalable Throughput (L4S) need more
   accurate ECN feedback information whenever more than one marking is
   received in one RTT.  This document updates the original ECN
   specification to specify a scheme to provide more than one feedback
   signal per RTT in the TCP header.  Given TCP header space is scarce,
   it allocates a reserved header bit previously assigned to the ECN-
   Nonce.  It also overloads the two existing ECN flags in the TCP
   header.  The resulting extra space is exploited to feed back the IP-
   ECN field received during the 3-way handshake as well.  Supplementary
   feedback information can optionally be provided in a new TCP option,
   which is never used on the TCP SYN.  The document also specifies the
   treatment of this updated TCP wire protocol by middleboxes.

              
            
          
           
           
           Work in Progress
        
         
           
             Extending TCP for Low Round Trip Delay
             
               Simula and Uni Oslo
            
             
          
           Master's Thesis, University of Oslo
        
         
           
             Analysis of DCTCP: Stability, Convergence, and Fairness
             
             
             
             
          
           
           SIGMETRICS '11: Proceedings of the ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems, pp. 73-84
           
        
         
           
             Adaptive RED: An Algorithm for Increasing the Robustness of RED's Active Queue Management
             
               ACIRI
            
             
               ACIRI
            
             
               ACIRI
            
             
          
           ACIRI Technical Report 301
        
         
           
             BBR Congestion Control
             
               Google
            
             
               Google
            
             
               Google
            
             
               Google
            
             
               Google
            
             
          
           
           Work in Progress
        
         
           
             TCP BBR v2 Alpha/Preview Release
             
             
          
           commit 17700ca
        
         
           
             Bufferbloat
             
               The Bufferbloat community
            
             
          
        
         
           
             Design and Evaluation of COBALT Queue Discipline
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
          
           
           IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)
        
         
           
             Compound TCP: A New TCP Congestion Control for High-Speed and Long Distance Networks
             
               Microsoft
            
             
               Microsoft Research
            
             
               Microsoft
            
             
               Microsoft
            
             
          
           
           Work in Progress
        
         
           
             'Data Centre to the Home': Ultra-Low Latency for All
             
               Nokia Bell Labs
            
             
               Simula Research Lab
            
             
               Nokia Bell Labs
            
             
               Independent (bobbriscoe.net)
            
             
          
           Updated RITE project Technical Report
        
         
           
             The DOCSIS® Queue Protection Algorithm to Preserve Low Latency
             
               Independent
            
             
               CableLabs
            
             
          
           
           Work in Progress
        
         
           
             DUALPI2 - Low Latency, Low Loss and Scalable (L4S) AQM
             
               Simula Research Lab
            
             
               Nokia Bell Labs
            
             
               Independent
            
             
               Nokia Bell Labs
            
             
               Simula Research Lab
            
             
          
           Proceedings of Linux Netdev 0x13
           
        
         
           
             Why Flow-Completion Time is the Right Metric for Congestion Control
             
               Stanford University
            
             
               Stanford University
            
             
          
           
           ACM SIGCOMM Computer Communication Review, Volume 36, Issue 1, pp. 59-62
        
         
           
             ECN++: Adding Explicit Congestion Notification (ECN) to TCP Control Packets
             
               Universidad Carlos III de Madrid
            
             
               Independent
            
             
             
                  This document describes an experimental modification to ECN when used
   with TCP.  It allows the use of ECN on the following TCP packets:
   SYNs, pure ACKs, Window probes, FINs, RSTs and retransmissions.

              
            
          
           
           
           Work in Progress
        
         
           
             Guidelines for Adding Congestion Notification to Protocols that Encapsulate IP
             
               Independent
            
             
               Futurewei
            
             
             
                  The purpose of this document is to guide the design of congestion
   notification in any lower layer or tunnelling protocol that
   encapsulates IP.  The aim is for explicit congestion signals to
   propagate consistently from lower layer protocols into IP.  Then the
   IP internetwork layer can act as a portability layer to carry
   congestion notification from non-IP-aware congested nodes up to the
   transport layer (L4).  Following these guidelines should assure
   interworking among IP layer and lower layer congestion notification
   mechanisms, whether specified by the IETF or other standards bodies.
   This document updates the advice to subnetwork designers about ECN in
   RFC 3819.

              
            
          
           
           
           Work in Progress
        
         
           
             TCP Prague Fall-back on Detection of a Classic ECN AQM
             
               Independent
            
             
               Simula and Uni Oslo
            
             
          
           
           Technical Report: TR-BB-2019-002
        
         
           
             Propagating Explicit Congestion Notification Across IP Tunnel Headers Separated by a Shim
             
               Independent
            
             
             
                  RFC 6040 on "Tunnelling of Explicit Congestion Notification" made the
   rules for propagation of ECN consistent for all forms of IP in IP
   tunnel.  This specification updates RFC 6040 to clarify that its
   scope includes tunnels where two IP headers are separated by at least
   one shim header that is not sufficient on its own for wide area
   packet forwarding.  It surveys widely deployed IP tunnelling
   protocols that use such shim header(s) and updates the specifications
   of those that do not mention ECN propagation (L2TPv2, L2TPv3, GRE,
   Teredo and AMT).  This specification also updates RFC 6040 with
   configuration requirements needed to make any legacy tunnel ingress
   safe.

              
            
          
           
           
           Work in Progress
        
         
           
             L4S Tests
             
               
            
             
          
           commit e21cd91
        
         
           
             Interactions between Low Latency, Low Loss, Scalable Throughput (L4S) and Differentiated Services
             
               CableLabs
            
             
          
           
           Work in Progress
        
         
           
             Dual Queue Coupled AQM: Deployable Very Low Queuing Delay for All
             
               Nokia Bell Labs
            
             
               Simula Research Lab
            
             
               Nokia Bell Labs
            
             
               Independent (bobbriscoe.net)
            
             
          
           
           Preprint submitted to IEEE/ACM Transactions on Networking
        
         
           
             Operational Guidance for Deployment of L4S in the Internet
             
               CableLabs
            
             
          
           
           Work in Progress
        
         
           
             Paced Chirping - Rethinking TCP start-up
             
               University of Oslo
            
             
               Independent
            
             
          
           Proceedings of Linux Netdev 0x13
        
         
           
             A Non-Queue-Building Per-Hop Behavior (NQB PHB) for Differentiated Services
             
               CableLabs
            
             
               ARM
            
             
             
                  This document specifies properties and characteristics of a Non-
   Queue-Building Per-Hop Behavior (NQB PHB).  The purpose of this NQB
   PHB is to provide a separate queue that enables smooth, low-data-
   rate, application-limited traffic flows, which would ordinarily share
   a queue with bursty and capacity-seeking traffic, to avoid the
   latency, latency variation and loss caused by such traffic.  This PHB
   is implemented without prioritization and can be implemented without
   rate policing, making it suitable for environments where the use of
   these features is restricted.  The NQB PHB has been developed
   primarily for use by access network segments, where queuing delays
   and queuing loss caused by Queue-Building protocols are manifested,
   but its use is not limited to such segments.  In particular,
   applications to cable broadband links, Wi-Fi links, and mobile
   network radio and core segments are discussed.  This document
   recommends a specific Differentiated Services Code Point (DSCP) to
   identify Non-Queue-Building flows.

              
            
          
           
           
           Work in Progress
        
         
           
             PI^2: A Linearized AQM for both Classic and Scalable TCP
             
               Bell Labs
            
             
               Simula Research Lab
            
             
               Bell Labs
            
             
               BT
            
             
          
           
           Proceedings of ACM CoNEXT 2016, pp. 105-119
        
         
           
             Prague Congestion Control
             
               Nokia Bell Labs
            
             
               Nokia Bell Labs
            
             
               Independent
            
             
          
           
           Work in Progress
        
         
           
             Implementing the 'TCP Prague' Requirements for L4S
             
               Independent
            
             
               Nokia Bell Labs
            
             
               Simula
            
             
               University of Oslo
            
             
               Nokia Bell Labs
            
             
               ETHZ
            
             
               Simula
            
             
          
           Proceedings of Linux Netdev 0x13
           
        
         
           
             Report on Prototype Development and Evaluation of Network and Interaction Techniques
             
               BT
            
             
               Karlstad University
            
             
          
           RITE Technical Report, Deliverable 2.3, Appendix C.2: "Up to Speed with Queue View"
        
         
           
             Relentless Congestion Control
             
               Pittsburgh Supercomputing Center
            
             
             
               Relentless congestion control is a simple modification that can be
applied to almost any AIMD style congestion control: instead of
applying a multiplicative reduction to cwnd after a loss, cwnd is
reduced by the number of lost segments.  It can be modeled as a
strict implementation of van Jacobson's Packet Conservation
Principle.  During recovery, new segments are injected into the
network in exact accordance with the segments that are reported to
have been delivered to the receiver by the returning ACKs.

This algorithm offers a valuable new congestion control property: the
TCP portion of the control loop has exactly unity gain, which should
make it easier to implement simple controllers in network devices to
accurately control queue sizes across a huge range of scales.

Relentless Congestion Control conforms to neither the details nor the
philosophy of current congestion control standards.  These standards
are based on the idea that the Internet can attain sufficient
fairness by having relatively simple network devices send uniform
congestion signals to all flows, and mandating that all protocols
have equivalent responses to these congestion signals.

To function appropriately in a shared environment, Relentless
Congestion Control requires that the network allocates capacity
through some technique such as Fair Queuing, Approximate Fair
Dropping, etc.  The salient features of these algorithms are that
they segregate the traffic into distinct flows, and send different
congestion signals to each flow.  This alternative congestion control
paradigm is described in a separate document, also under
consideration by the ICCRG.

The goal of the document is to illustrate some new protocol features
and properties might be possible if we relax the "TCP-friendly"
mandate.  A secondary goal of Relentless TCP is to make a distinction
between the bottlenecks that belong to protocol itself, vs standard
congestion control and the "TCP-friendly" paradigm.
              
            
          
           
           
           Work in Progress
        
         
           
             Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers
             
             
             
             
             
             
               This document defines the IP header field, called the DS (for differentiated services) field. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             An Expedited Forwarding PHB (Per-Hop Behavior)
             
             
             
             
             
             
             
             
             
             
             
               This document defines a PHB (per-hop behavior) called Expedited Forwarding (EF).  The PHB is a basic building block in the Differentiated Services architecture.  EF is intended to provide a building block for low delay, low jitter and low loss services by ensuring that the EF aggregate is served at a certain configured rate.  This document obsoletes RFC 2598. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Robust Explicit Congestion Notification (ECN) Signaling with Nonces
             
             
             
             
             
               This note describes the Explicit Congestion Notification (ECN)-nonce, an optional addition to ECN that protects against accidental or malicious concealment of marked packets from the TCP sender.  It improves the robustness of congestion control by preventing receivers from exploiting ECN to gain an unfair share of network bandwidth.  The ECN-nonce uses the two ECN-Capable Transport (ECT)codepoints in the ECN field of the IP header, and requires a flag in the TCP header.  It is computationally efficient for both routers and hosts.  This memo defines an Experimental Protocol for the Internet community.
            
          
           
           
           
        
         
           
             HighSpeed TCP for Large Congestion Windows
             
             
             
               The proposals in this document are experimental.  While they may be deployed in the current Internet, they do not represent a consensus that this is the best method for high-speed congestion control.  In particular, we note that alternative experimental proposals are likely to be forthcoming, and it is not well understood how the proposals in this document will interact with such alternative proposals.  This document proposes HighSpeed TCP, a modification to TCP's congestion control mechanism for use with TCP connections with large congestion windows.  The congestion control mechanisms of the current Standard TCP constrains the congestion windows that can be achieved by TCP in realistic environments.  For example, for a Standard TCP connection with 1500-byte packets and a 100 ms round-trip time, achieving a steady-state throughput of 10 Gbps would require an average congestion window of 83,333 segments, and a packet drop rate of at most one congestion event every 5,000,000,000 packets (or equivalently, at most one congestion event every 1 2/3 hours).  This is widely acknowledged as an unrealistic constraint.  To address his limitation of TCP, this document proposes HighSpeed TCP, and solicits experimentation and feedback from the wider community.
            
          
           
           
           
        
         
           
             Security Architecture for the Internet Protocol
             
             
             
             
               This document describes an updated version of the "Security Architecture for IP", which is designed to provide security services for traffic at the IP layer.  This document obsoletes RFC 2401 (November 1998). [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             IP Authentication Header
             
             
             
               This document describes an updated version of the IP Authentication Header (AH), which is designed to provide authentication services in IPv4 and IPv6.  This document obsoletes RFC 2402 (November 1998). [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             IP Encapsulating Security Payload (ESP)
             
             
             
               This document describes an updated version of the Encapsulating Security Payload (ESP) protocol, which is designed to provide a mix of security services in IPv4 and IPv6.  ESP is used to provide confidentiality, data origin authentication, connectionless integrity, an anti-replay service (a form of partial sequence integrity), and limited traffic flow confidentiality.  This document obsoletes RFC 2406 (November 1998). [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Datagram Congestion Control Protocol (DCCP)
             
             
             
             
             
               The Datagram Congestion Control Protocol (DCCP) is a transport protocol that provides bidirectional unicast connections of congestion-controlled unreliable datagrams.  DCCP is suitable for applications that transfer fairly large amounts of data and that can benefit from control over the tradeoff between timeliness and reliability. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Profile for Datagram Congestion Control Protocol (DCCP) Congestion Control ID 2: TCP-like Congestion Control
             
             
             
             
               This document contains the profile for Congestion Control Identifier 2 (CCID 2), TCP-like Congestion Control, in the Datagram Congestion Control Protocol (DCCP).  CCID 2 should be used by senders who would like to take advantage of the available bandwidth in an environment with rapidly changing conditions, and who are able to adapt to the abrupt changes in the congestion window typical of TCP's Additive Increase Multiplicative Decrease (AIMD) congestion control. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Profile for Datagram Congestion Control Protocol (DCCP) Congestion Control ID 3: TCP-Friendly Rate Control (TFRC)
             
             
             
             
             
               This document contains the profile for Congestion Control Identifier 3, TCP-Friendly Rate Control (TFRC), in the Datagram Congestion Control Protocol (DCCP).  CCID 3 should be used by senders that want a TCP-friendly sending rate, possibly with Explicit Congestion Notification (ECN), while minimizing abrupt rate changes. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Stream Control Transmission Protocol
             
             
             
               This document obsoletes RFC 2960 and RFC 3309. It describes the Stream Control Transmission Protocol (SCTP). SCTP is designed to transport Public Switched Telephone Network (PSTN) signaling messages over IP networks, but is capable of broader applications.
               SCTP is a reliable transport protocol operating on top of a connectionless packet network such as IP. It offers the following services to its users:
               -- acknowledged error-free non-duplicated transfer of user data,
               -- data fragmentation to conform to discovered path MTU size,
               -- sequenced delivery of user messages within multiple streams, with an option for order-of-arrival delivery of individual user messages,
               -- optional bundling of multiple user messages into a single SCTP packet, and
               -- network-level fault tolerance through supporting of multi-homing at either or both ends of an association.
               The design of SCTP includes appropriate congestion avoidance behavior and resistance to flooding and masquerade attacks. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Specifying New Congestion Control Algorithms
             
             
             
             
               The IETF's standard congestion control schemes have been widely shown to be inadequate for various environments (e.g., high-speed networks).  Recent research has yielded many alternate congestion control schemes that significantly differ from the IETF's congestion control principles.  Using these new congestion control schemes in the global Internet has possible ramifications to both the traffic using the new congestion control and to traffic using the currently standardized congestion control.  Therefore, the IETF must proceed with caution when dealing with alternate congestion control proposals.  The goal of this document is to provide guidance for considering alternate congestion control algorithms within the IETF.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
            
          
           
           
           
           
        
         
           
             Explicit Congestion Marking in MPLS
             
             
             
             
             
               RFC 3270 defines how to support the Diffserv architecture in MPLS networks, including how to encode Diffserv Code Points (DSCPs) in an MPLS header.  DSCPs may be encoded in the EXP field, while other uses of that field are not precluded.  RFC 3270 makes no statement about how Explicit Congestion Notification (ECN) marking might be encoded in the MPLS header.  This document defines how an operator might define some of the EXP codepoints for explicit congestion notification, without precluding other uses. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             TCP Friendly Rate Control (TFRC): Protocol Specification
             
             
             
             
             
             
               This document specifies TCP Friendly Rate Control (TFRC). TFRC is a congestion control mechanism for unicast flows operating in a best-effort Internet environment. It is reasonably fair when competing for bandwidth with TCP flows, but has a much lower variation of throughput over time compared with TCP, making it more suitable for applications such as streaming media where a relatively smooth sending rate is of importance.
               This document obsoletes RFC 3448 and updates RFC 4342. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Adding Explicit Congestion Notification (ECN) Capability to TCP's SYN/ACK Packets
             
             
             
             
             
             
               The proposal in this document is Experimental. While it may be deployed in the current Internet, it does not represent a consensus that this is the best possible mechanism for the use of Explicit Congestion Notification (ECN) in TCP SYN/ACK packets.
               This document describes an optional, experimental modification to RFC 3168 to allow TCP SYN/ACK packets to be ECN-Capable. For TCP, RFC 3168 specifies setting an ECN-Capable codepoint on data packets, but not on SYN and SYN/ACK packets. However, because of the high cost to the TCP transfer of having a SYN/ACK packet dropped, with the resulting retransmission timeout, this document describes the use of ECN for the SYN/ACK packet itself, when sent in response to a SYN packet with the two ECN flags set in the TCP header, indicating a willingness to use ECN. Setting the initial TCP SYN/ACK packet as ECN-Capable can be of great benefit to the TCP connection, avoiding the severe penalty of a retransmission timeout for a connection that has not yet started placing a load on the network. The TCP responder (the sender of the SYN/ACK packet) must reply to a report of an ECN-marked SYN/ACK packet by resending a SYN/ACK packet that is not ECN-Capable. If the resent SYN/ACK packet is acknowledged, then the TCP responder reduces its initial congestion window from two, three, or four segments to one segment, thereby reducing the subsequent load from that connection on the network. If instead the SYN/ACK packet is dropped, or for some other reason the TCP responder does not receive an acknowledgement in the specified time, the TCP responder follows TCP standards for a dropped SYN/ACK packet (setting the retransmission timer). This memo defines an Experimental Protocol for the Internet community.
            
          
           
           
           
        
         
           
             Profile for Datagram Congestion Control Protocol (DCCP) Congestion ID 4: TCP-Friendly Rate Control for Small Packets (TFRC-SP)
             
             
             
             
               This document specifies a profile for Congestion Control Identifier 4, the small-packet variant of TCP-Friendly Rate Control (TFRC), in the Datagram Congestion Control Protocol (DCCP).  CCID 4 is for experimental use, and uses TFRC-SP (RFC 4828), a variant of TFRC designed for applications that send small packets.  CCID 4 is considered experimental because TFRC-SP is itself experimental, and is not proposed for widespread deployment in the global Internet at this time.  The goal for TFRC-SP is to achieve roughly the same bandwidth in bits per second (bps) as a TCP flow using packets of up to 1500 bytes but experiencing the same level of congestion.  CCID 4 is for use for senders that send small packets and would like a TCP- friendly sending rate, possibly with Explicit Congestion Notification (ECN), while minimizing abrupt rate changes.  This memo defines an Experimental Protocol for the Internet community.
            
          
           
           
           
        
         
           
             TCP Congestion Control
             
             
             
             
             
               This document defines TCP's four intertwined congestion control algorithms: slow start, congestion avoidance, fast retransmit, and fast recovery.  In addition, the document specifies how TCP should begin transmission after a relatively long idle period, as well as discussing various acknowledgment generation methods.  This document obsoletes RFC 2581. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Guidelines for Considering Operations and Management of New Protocols and Protocol Extensions
             
             
             
               New protocols or protocol extensions are best designed with due consideration of the functionality needed to operate and manage the protocols.  Retrofitting operations and management is sub-optimal.  The purpose of this document is to provide guidance to authors and reviewers of documents that define new protocols or protocol extensions regarding aspects of operations and management that should be considered.  This memo provides information for the Internet community.
            
          
           
           
           
        
         
           
             A Differentiated Services Code Point (DSCP) for Capacity-Admitted Traffic
             
             
             
             
             
               This document requests one Differentiated Services Code Point (DSCP) from the Internet Assigned Numbers Authority (IANA) for a class of real-time traffic.  This traffic class conforms to the Expedited Forwarding Per-Hop Behavior.  This traffic is also admitted by the network using a Call Admission Control (CAC) procedure involving authentication, authorization, and capacity admission.  This differs from a real-time traffic class that conforms to the Expedited Forwarding Per-Hop Behavior but is not subject to capacity admission or subject to very coarse capacity admission. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             The TCP Authentication Option
             
             
             
             
             
               This document specifies the TCP Authentication Option (TCP-AO), which obsoletes the TCP MD5 Signature option of RFC 2385 (TCP MD5).  TCP-AO specifies the use of stronger Message Authentication Codes (MACs), protects against replays even for long-lived TCP connections, and provides more details on the association of security with TCP connections than TCP MD5.  TCP-AO is compatible with either a static Master Key Tuple (MKT) configuration or an external, out-of-band MKT management mechanism; in either case, TCP-AO also protects connections when using the same MKT across repeated instances of a connection, using traffic keys derived from the MKT, and coordinates MKT changes between endpoints.  The result is intended to support current infrastructure uses of TCP MD5, such as to protect long-lived connections (as used, e.g., in BGP and LDP), and to support a larger set of MACs with minimal other system and operational changes.  TCP-AO uses a different option identifier than TCP MD5, even though TCP-AO and TCP MD5 are never permitted to be used simultaneously.  TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Tunnelling of Explicit Congestion Notification
             
             
             
               This document redefines how the explicit congestion notification (ECN) field of the IP header should be constructed on entry to and exit from any IP-in-IP tunnel.  On encapsulation, it updates RFC 3168 to bring all IP-in-IP tunnels (v4 or v6) into line with RFC 4301 IPsec ECN processing.  On decapsulation, it updates both RFC 3168 and RFC 4301 to add new behaviours for previously unused combinations of inner and outer headers.  The new rules ensure the ECN field is correctly propagated across a tunnel whether it is used to signal one or two severity levels of congestion; whereas before, only one severity level was supported.  Tunnel endpoints can be updated in any order without affecting pre-existing uses of the ECN field, thus ensuring backward compatibility.  Nonetheless, operators wanting to support two severity levels (e.g., for pre-congestion notification -- PCN) can require compliance with this new specification.  A thorough analysis of the reasoning for these changes and the implications is included.  In the unlikely event that the new rules do not meet a specific need, RFC 4774 gives guidance on designing alternate ECN semantics, and this document extends that to include tunnelling issues. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Open Research Issues in Internet Congestion Control
             
             
             
             
             
             
               This document describes some of the open problems in Internet congestion control that are known today.  This includes several new challenges that are becoming important as the network grows, as well as some issues that have been known for many years.  These challenges are generally considered to be open research topics that may require more study or application of innovative techniques before Internet-scale solutions can be confidently engineered and deployed.  This document is not an Internet Standards Track specification; it is published for informational purposes.
            
          
           
           
           
        
         
           
             Encoding Three Pre-Congestion Notification (PCN) States in the IP Header Using a Single Diffserv Codepoint (DSCP)
             
             
             
             
             
               The objective of Pre-Congestion Notification (PCN) is to protect the quality of service (QoS) of inelastic flows within a Diffserv domain. The overall rate of PCN-traffic is metered on every link in the PCN- domain, and PCN-packets are appropriately marked when certain configured rates are exceeded. Egress nodes pass information about these PCN-marks to Decision Points that then decide whether to admit or block new flow requests or to terminate some already admitted flows during serious pre-congestion.
               This document specifies how PCN-marks are to be encoded into the IP header by reusing the Explicit Congestion Notification (ECN) codepoints within a PCN-domain. The PCN wire protocol for non-IP protocol headers will need to be defined elsewhere. Nonetheless, this document clarifies the PCN encoding for MPLS in an informational appendix. The encoding for IP provides for up to three different PCN marking states using a single Diffserv codepoint (DSCP): not-marked (NM), threshold-marked (ThM), and excess-traffic-marked (ETM). Hence, it is called the 3-in-1 PCN encoding. This document obsoletes RFC 5696. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             A Conservative Loss Recovery Algorithm Based on Selective Acknowledgment (SACK) for TCP
             
             
             
             
             
             
             
             
               This document presents a conservative loss recovery algorithm for TCP that is based on the use of the selective acknowledgment (SACK) TCP option.  The algorithm presented in this document conforms to the spirit of the current congestion control specification (RFC 5681), but allows TCP senders to recover more effectively when multiple segments are lost from a single flight of data.  This document obsoletes RFC 3517 and describes changes from it. [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Problem Statement and Requirements for Increased Accuracy in Explicit Congestion Notification (ECN) Feedback
             
             
             
             
             
               Explicit Congestion Notification (ECN) is a mechanism where network nodes can mark IP packets, instead of dropping them, to indicate congestion to the endpoints.  An ECN-capable receiver will feed this information back to the sender.  ECN is specified for TCP in such a way that it can only feed back one congestion signal per Round-Trip Time (RTT).  In contrast, ECN for other transport protocols, such as RTP/UDP and SCTP, is specified with more accurate ECN feedback.  Recent new TCP mechanisms (like Congestion Exposure (ConEx) or Data Center TCP (DCTCP)) need more accurate ECN feedback in the case where more than one marking is received in one RTT.  This document specifies requirements for an update to the TCP protocol to provide more accurate ECN feedback.
            
          
           
           
           
        
         
           
             IETF Recommendations Regarding Active Queue Management
             
             
             
             
               This memo presents recommendations to the Internet community concerning measures to improve and preserve Internet performance. It presents a strong recommendation for testing, standardization, and widespread deployment of active queue management (AQM) in network devices to improve the performance of today's Internet. It also urges a concerted effort of research, measurement, and ultimate deployment of AQM mechanisms to protect the Internet from flows that are not sufficiently responsive to congestion notification.
               Based on 15 years of experience and new research, this document replaces the recommendations of RFC 2309.
            
          
           
           
           
           
        
         
           
             Congestion Exposure (ConEx) Concepts, Abstract Mechanism, and Requirements
             
             
             
             
               This document describes an abstract mechanism by which senders inform the network about the congestion recently encountered by packets in the same flow.  Today, network elements at any layer may signal congestion to the receiver by dropping packets or by Explicit Congestion Notification (ECN) markings, and the receiver passes this information back to the sender in transport-layer feedback.  The mechanism described here enables the sender to also relay this congestion information back into the network in-band at the IP layer, such that the total amount of congestion from all elements on the path is revealed to all IP elements along the path, where it could, for example, be used to provide input to traffic management.  This mechanism is called Congestion Exposure, or ConEx.  The companion document, "Congestion Exposure (ConEx) Concepts and Use Cases" (RFC 6789), provides the entry point to the set of ConEx documentation.
            
          
           
           
           
        
         
           
             Proportional Integral Controller Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat Problem
             
             
             
             
             
             
               Bufferbloat is a phenomenon in which excess buffers in the network cause high latency and latency variation. As more and more interactive applications (e.g., voice over IP, real-time video streaming, and financial transactions) run in the Internet, high latency and latency variation degrade application performance. There is a pressing need to design intelligent queue management schemes that can control latency and latency variation, and hence provide desirable quality of service to users.
               This document presents a lightweight active queue management design called "PIE" (Proportional Integral controller Enhanced) that can effectively control the average queuing latency to a target value. Simulation results, theoretical analysis, and Linux testbed results have shown that PIE can ensure low latency and achieve high link utilization under various congestion situations. The design does not require per-packet timestamps, so it incurs very little overhead and is simple enough to implement in both hardware and software.
            
          
           
           
           
        
         
           
             Multimedia Congestion Control: Circuit Breakers for Unicast RTP Sessions
             
             
             
             
               The Real-time Transport Protocol (RTP) is widely used in telephony, video conferencing, and telepresence applications. Such applications are often run on best-effort UDP/IP networks. If congestion control is not implemented in these applications, then network congestion can lead to uncontrolled packet loss and a resulting deterioration of the user's multimedia experience. The congestion control algorithm acts as a safety measure by stopping RTP flows from using excessive resources and protecting the network from overload. At the time of this writing, however, while there are several proprietary solutions, there is no standard algorithm for congestion control of interactive RTP flows.
               This document does not propose a congestion control algorithm. It instead defines a minimal set of RTP circuit breakers: conditions under which an RTP sender needs to stop transmitting media data to protect the network from excessive congestion. It is expected that, in the absence of long-lived excessive congestion, RTP applications running on best-effort IP networks will be able to operate without triggering these circuit breakers. To avoid triggering the RTP circuit breaker, any Standards Track congestion control algorithms defined for RTP will need to operate within the envelope set by these RTP circuit breaker algorithms.
            
          
           
           
           
        
         
           
             UDP Usage Guidelines
             
             
             
             
             
               The User Datagram Protocol (UDP) provides a minimal message-passing transport that has no inherent congestion control mechanisms. This document provides guidelines on the use of UDP for the designers of applications, tunnels, and other protocols that use UDP. Congestion control guidelines are a primary focus, but the document also provides guidance on other topics, including message sizes, reliability, checksums, middlebox traversal, the use of Explicit Congestion Notification (ECN), Differentiated Services Code Points (DSCPs), and ports.
               Because congestion control is critical to the stable operation of the Internet, applications and other protocols that choose to use UDP as an Internet transport must employ mechanisms to prevent congestion collapse and to establish some degree of fairness with concurrent traffic. They may also need to implement additional mechanisms, depending on how they use UDP.
               Some guidance is also applicable to the design of other protocols (e.g., protocols layered directly on IP or via IP-based tunnels), especially when these protocols do not themselves provide congestion control.
               This document obsoletes RFC 5405 and adds guidelines for multicast UDP usage.
            
          
           
           
           
           
        
         
           
             Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words
             
             
             
               RFC 2119 specifies common key words that may be used in protocol specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.
            
          
           
           
           
           
        
         
           
             Data Center TCP (DCTCP): TCP Congestion Control for Data Centers
             
             
             
             
             
             
             
               This Informational RFC describes Data Center TCP (DCTCP): a TCP congestion control scheme for data-center traffic.  DCTCP extends the Explicit Congestion Notification (ECN) processing to estimate the fraction of bytes that encounter congestion rather than simply detecting that some congestion has occurred.  DCTCP then scales the TCP congestion window based on this estimate.  This method achieves high-burst tolerance, low latency, and high throughput with shallow- buffered switches.  This memo also discusses deployment issues related to the coexistence of DCTCP and conventional TCP, discusses the lack of a negotiating mechanism between sender and receiver, and presents some possible mitigations.  This memo documents DCTCP as currently implemented by several major operating systems.  DCTCP, as described in this specification, is applicable to deployments in controlled environments like data centers, but it must not be deployed over the public Internet without additional measures.
            
          
           
           
           
        
         
           
             The Flow Queue CoDel Packet Scheduler and Active Queue Management Algorithm
             
             
             
             
             
             
             
               This memo presents the FQ-CoDel hybrid packet scheduler and Active Queue Management (AQM) algorithm, a powerful tool for fighting bufferbloat and reducing latency.
               FQ-CoDel mixes packets from multiple flows and reduces the impact of head-of-line blocking from bursty traffic. It provides isolation for low-rate traffic such as DNS, web, and videoconferencing traffic. It improves utilisation across the networking fabric, especially for bidirectional traffic, by keeping queue lengths short, and it can be implemented in a memory- and CPU-efficient fashion across a wide range of hardware.
            
          
           
           
           
        
         
           
             Self-Clocked Rate Adaptation for Multimedia
             
             
             
             
               This memo describes a rate adaptation algorithm for conversational media services such as interactive video.  The solution conforms to the packet conservation principle and uses a hybrid loss-and-delay- based congestion control algorithm.  The algorithm is evaluated over both simulated Internet bottleneck scenarios as well as in a Long Term Evolution (LTE) system simulator and is shown to achieve both low latency and high video throughput in these scenarios.
            
          
           
           
           
        
         
           
             Relaxing Restrictions on Explicit Congestion Notification (ECN) Experimentation
             
             
             
               This memo updates RFC 3168, which specifies Explicit Congestion Notification (ECN) as an alternative to packet drops for indicating network congestion to endpoints.  It relaxes restrictions in RFC 3168 that hinder experimentation towards benefits beyond just removal of loss.  This memo summarizes the anticipated areas of experimentation and updates RFC 3168 to enable experimentation in these areas.  An Experimental RFC in the IETF document stream is required to take advantage of any of these enabling updates.  In addition, this memo makes related updates to the ECN specifications for RTP in RFC 6679 and for the Datagram Congestion Control Protocol (DCCP) in RFCs 4341, 4342, and 5622.  This memo also records the conclusion of the ECN nonce experiment in RFC 3540 and provides the rationale for reclassification of RFC 3540 from Experimental to Historic; this reclassification enables new experimental use of the ECT(1) codepoint.
            
          
           
           
           
        
         
           
             CUBIC for Fast Long-Distance Networks
             
             
             
             
             
             
             
             
               CUBIC is an extension to the current TCP standards.  It differs from the current TCP standards only in the congestion control algorithm on the sender side.  In particular, it uses a cubic function instead of a linear window increase function of the current TCP standards to improve scalability and stability under fast and long-distance networks.  CUBIC and its predecessor algorithm have been adopted as defaults by Linux and have been used for many years.  This document provides a specification of CUBIC to enable third-party implementations and to solicit community feedback through experimentation on the performance of CUBIC.
            
          
           
           
           
        
         
           
             TCP Alternative Backoff with ECN (ABE)
             
             
             
             
             
             
               Active Queue Management (AQM) mechanisms allow for burst tolerance while enforcing short queues to minimise the time that packets spend enqueued at a bottleneck.  This can cause noticeable performance degradation for TCP connections traversing such a bottleneck, especially if there are only a few flows or their bandwidth-delay product (BDP) is large.  The reception of a Congestion Experienced (CE) Explicit Congestion Notification (ECN) mark indicates that an AQM mechanism is used at the bottleneck, and the bottleneck network queue is therefore likely to be short.  Feedback of this signal allows the TCP sender-side ECN reaction in congestion avoidance to reduce the Congestion Window (cwnd) by a smaller amount than the congestion control algorithm's reaction to inferred packet loss.  Therefore, this specification defines an experimental change to the TCP reaction specified in RFC 3168, as permitted by RFC 8311.
            
          
           
           
           
        
         
           
             RTP Control Protocol (RTCP) Feedback for Congestion Control
             
             
             
             
             
             
               An effective RTP congestion control algorithm requires more fine-grained feedback on packet loss, timing, and Explicit Congestion Notification (ECN) marks than is provided by the standard RTP Control Protocol (RTCP) Sender Report (SR) and Receiver Report (RR) packets.  This document describes an RTCP feedback message intended to enable congestion control for interactive real-time traffic using RTP.  The feedback message is designed for use with a sender-based congestion control algorithm, in which the receiver of an RTP flow sends back to the sender RTCP feedback packets containing the information the sender needs to perform congestion control.
            
          
           
           
           
        
         
           
             The RACK-TLP Loss Detection Algorithm for TCP
             
             
             
             
             
             
               This document presents the RACK-TLP loss detection algorithm for TCP.  RACK-TLP uses per-segment transmit timestamps and selective acknowledgments (SACKs) and has two parts.  Recent Acknowledgment (RACK) starts fast recovery quickly using time-based inferences derived from acknowledgment (ACK) feedback, and Tail Loss Probe (TLP) leverages RACK and sends a probe packet to trigger ACK feedback to avoid retransmission timeout (RTO) events.  Compared to the widely used duplicate acknowledgment (DupAck) threshold approach, RACK-TLP detects losses more efficiently when there are application-limited flights of data, lost retransmissions, or data packet reordering events.  It is intended to be an alternative to the DupAck threshold approach.
            
          
           
           
           
        
         
           
             QUIC: A UDP-Based Multiplexed and Secure Transport
             
             
             
             
               This document defines the core of the QUIC transport protocol.  QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration.  QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances.  Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.
            
          
           
           
           
        
         
           
             Using TLS to Secure QUIC
             
             
             
             
               This document describes how Transport Layer Security (TLS) is used to secure QUIC.
            
          
           
           
           
        
         
           
             The Datagram Transport Layer Security (DTLS) Protocol Version 1.3
             
             
             
             
             
               This document specifies version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
               The DTLS 1.3 protocol is based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection / non-replayability. Datagram semantics of the underlying transport are preserved by the DTLS protocol.
               This document obsoletes RFC 6347.
            
          
           
           
           
        
         
           
             Low Latency, Low Loss, and Scalable Throughput (L4S) Internet Service: Architecture
             
             
             
             
             
          
           
           
        
         
           
             Dual-Queue Coupled Active Queue Management (AQM) for Low Latency, Low Loss, and Scalable Throughput (L4S)
             
               
            
             
               
            
             
               
            
             
          
           
           
        
         
           
             TCP Congestion Control with a Misbehaving Receiver
             
               University of Washington
            
             
               University of Washington
            
             
               University of Washington
            
             
               University of Washington
            
             
          
           
           ACM SIGCOMM Computer Communication Review, Volume 29, Issue 5, pp. 71–78
        
         
           
             SCReAM
             
             
          
           commit 140e292
        
         
           
             ECN for Stream Control Transmission Protocol (SCTP)
             
               Adara Networks
            
             
               Muenster Univ. of Appl. Sciences
            
             
               Huawei
            
             
          
           
           Work in Progress
        
         
           
             Scaling TCP's Congestion Window for Small Round Trip Times
             
               BT
            
             
               Bell Labs
            
             
          
           
           BT Technical Report: TR-TUB8-2015-002
        
         
           
             Congestion Avoidance and Control
             
               
            
             
               
            
             
          
           Laurence Berkeley Labs Technical Report
        
         
           
             Notes: DCTCP evolution 'bar BoF': Tue 21 Jul 2015, 17:40, Prague
             
               Simula
            
             
          
           message to the tcpPrague mailing list
        
         
           
             TRILL (TRansparent Interconnection of Lots of Links): ECN (Explicit Congestion Notification) Support
             
               Huawei
            
             
               CableLabs
            
             
          
           
           Work in Progress
        
         
           
             One more bit is enough
             
               
            
             
               
            
             
               
            
             
               
            
             
          
           
           SIGCOMM '05: Proceedings of the 2005 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 37-48
        
      
    
     
       Rationale for the 'Prague L4S Requirements'
       This appendix is informative, not normative. It gives a list of
      modifications to current Scalable congestion controls so that they can
      be deployed over the public Internet and coexist safely with existing
      traffic. The list complements the normative requirements in   that a sender has to comply with before
      it can set the L4S identifier in packets it sends into the Internet. As
      well as rationale for safety improvements (the requirements in  ), this appendix also includes preferable
      performance improvements (optimizations).
       The requirements and recommendations in   have become known as the 'Prague L4S
      Requirements', because they were originally identified at an ad hoc
      meeting during IETF 94 in Prague  . They
      were originally called the 'TCP Prague Requirements', but they are not
      solely applicable to TCP, so the name and wording has been generalized
      for all transport protocols, and the name 'TCP Prague' is now used for a
      specific implementation of the requirements.
       At the time of writing, DCTCP   is the
      most widely used Scalable transport protocol. In its current form, DCTCP
      is specified to be deployable only in controlled environments. Deploying
      it in the public Internet would lead to a number of issues, from both
      the safety and the performance perspective. The modifications and
      additional mechanisms listed in this section will be necessary for its
      deployment over the global Internet. Where an example is needed, DCTCP
      is used as a base, but the requirements in   apply equally to other Scalable
      congestion controls, covering adaptive real-time media, etc., not just
      capacity-seeking behaviours.
       
         Rationale for the Requirements for Scalable Transport Protocols
         
           Use of L4S Packet Identifier
           Description: A Scalable congestion control needs to distinguish
          the packets it sends from those sent by Classic congestion controls
          (see the precise normative requirement wording in  ).
           Motivation: It needs to be possible for a network node to
          classify L4S packets without flow state into a queue that applies an
          L4S ECN-marking behaviour and isolates L4S packets from the queuing
          delay of Classic packets.
        
         
           Accurate ECN Feedback
           Description: The transport protocol for a Scalable congestion
          control needs to provide timely, accurate feedback about the extent
          of ECN marking experienced by all packets (see the precise normative
          requirement wording in  ).
           Motivation: Classic congestion controls only need feedback about
          the existence of a congestion episode within a round trip, not
          precisely how many packets were ECN-marked or dropped.
          Therefore, in 2001, when ECN feedback was added to TCP  , it could not inform the sender of more than one
          ECN mark per RTT. 
          Since then, requirements for more accurate ECN
          feedback in TCP have been defined in  , and
            specifies a change to
          the TCP protocol to satisfy these requirements. Most other transport
          protocols already satisfy this requirement (see  ).
        
         
           Capable of Replacement by Classic Congestion Control
           Description: It needs to be possible to replace the
          implementation of a Scalable congestion control with a Classic
          control (see the precise normative requirement wording in  ).
           Motivation: L4S is an experimental protocol; therefore, it seems
          prudent to be able to disable it at source in case of insurmountable
          problems, perhaps due to some unexpected interaction on a particular
          sender; over a particular path or network; or with a particular
          receiver, or even ultimately an insurmountable problem with the
          experiment as a whole.
        
         
           Fall Back to Classic Congestion Control on Packet Loss
           Description: As well as responding to ECN markings in a scalable
          way, a Scalable congestion control needs to react to packet loss in
          a way that will coexist safely with a Reno congestion
          control   (see the precise normative
          requirement wording in  ).
           Motivation: Part of the safety conditions for deploying a
          Scalable congestion control on the public Internet is to make sure
          that it behaves properly when it builds a queue at a network
          bottleneck that has not been upgraded to support L4S. Packet loss
          can have many causes, but it usually has to be conservatively
          assumed that it is a sign of congestion. Therefore, on detecting
          packet loss, a Scalable congestion control will need to fall back to
          Classic congestion control behaviour. If it does not comply, it
          could starve Classic traffic.
           A Scalable congestion control can be used for different types of
          transport, e.g., for real-time media or for reliable transport
          like TCP. Therefore, the particular Classic congestion control
          behaviour to fall back on will need to be dependent on the specific
          congestion control implementation.
	  In the particular case of DCTCP,
          the DCTCP specification   states that
          "A DCTCP sender  MUST react to loss episodes in 
          the same way as conventional TCP,...".  To ensure any Scalable congestion control is safe to deploy over the public Internet, Item
            of   in the present spec 
          does not require precisely the same response as Reno TCP, but it does 
          require a response that will coexist safely with Classic congestion controls 
          like Reno.
           Even though a bottleneck is L4S capable, it might still become
          overloaded and have to drop packets. In this case, the sender may
          receive a high proportion of packets marked with the CE codepoint and
          also experience loss. Current DCTCP implementations each react
          differently to this situation. One approach is to react only to the drop 
          signal (e.g., by halving the cwnd); another approach is to react to both 
          signals, which reduces cwnd by more than half. A compromise 
          between these two has been proposed where the loss response is adjusted to
          result in a halving when combined with any ECN response earlier in the same 
          round. We believe
          that further experimentation is needed to understand what is the
          best behaviour for the public Internet, which may or may not be one of
          these existing approaches.
        
         
           Coexistence with Classic Congestion Control at Classic ECN Bottlenecks
           Description: Monitoring has to be in place so that a non-L4S but
          ECN-capable AQM can be detected at path bottlenecks. This is in case
          such an AQM has been implemented in a shared queue, in which case
          any long-running Scalable flow would predominate over any
          simultaneous long-running Classic flow sharing the queue. The
          precise requirement wording in   is written so that such a
          problem could be resolved either in real time or via administrative
          intervention.
           Motivation: Similarly to the discussion in  , this requirement in   is a safety condition to ensure
          an L4S congestion control coexists well with Classic flows when it
          builds a queue at a shared network bottleneck that has not been
          upgraded to support L4S. Nonetheless, if necessary, it is considered
          reasonable to resolve such problems over management timescales
          (possibly involving human intervention) because:
           
             although a Classic flow can considerably reduce its
              throughput in the face of a competing Scalable flow, it still
              makes progress and does not starve;
             implementations of a Classic ECN AQM in a queue that is
              intended to be shared are believed to be rare; and
             detection of such AQMs is not always clear-cut; so focused
              out-of-band testing (or even contacting the relevant network
              operator) would improve certainty.
          
           The relevant normative requirement ( ) is therefore divided into three stages:
          monitoring, detection, and action:
           
             Monitoring:
             Monitoring involves collection of the
              measurement data to be analysed. Monitoring is expressed as a
              " MUST" for uncontrolled environments, although the placement of
              the monitoring function is left open. Whether monitoring has to
              be applied in real time is expressed as a " SHOULD". 
              This allows
              for the possibility that the operator of an L4S sender
              (e.g., a Content Distribution Network (CDN)) might prefer to test out-of-band for signs of
              Classic ECN AQMs, perhaps to avoid continually consuming
              resources to monitor live traffic.
             Detection:
             Detection involves analysis of the
              monitored data to detect the likelihood of a Classic ECN AQM.
              Detection can either directly detect actual coexistence problems
              between flows or aim to identify AQM technologies that
              are likely to present coexistence problems, based on knowledge
              of AQMs deployed at the time. The requirements recommend that
              detection occurs live in real time. However, detection is
              allowed to be deferred (e.g., it might involve further
              testing targeted at candidate AQMs).
             Action:
             
               This involves the act of switching the
              sender to a Classic congestion control. This might occur in
              real time within the congestion control for the subsequent
              duration of a flow, or it might involve administrative action to
              switch to Classic congestion control for a specific interface or
              for a certain set of destination addresses.
               Instead of the sender taking action itself, the
              operator of the sender (e.g., a CDN) might prefer to ask the
              network operator to modify the Classic AQM's treatment of L4S
              packets; ensure L4S packets bypass the AQM; or upgrade
              the AQM to support L4S (see the L4S operational
              guidance  ). 
              If L4S
              flows then no longer shared the Classic ECN AQM, they would obviously
              no longer detect it, and the requirement to act on it would no
              longer apply.
            
          
           The whole set of normative requirements concerning Classic ECN
          AQMs in   is worded so that
          it does not apply in controlled environments, such as private
          networks or data-centre networks. CDN servers placed within an
          access ISP's network can be considered as a single controlled
          environment, but any onward networks served by the access network,
          including all the attached customer networks, would be unlikely to
          fall under the same degree of coordinated control. Monitoring is
          expressed as a " MUST" for these uncontrolled segments of paths
          (e.g., beyond the access ISP in a home network), because there
          is a possibility that there might be a shared queue Classic ECN AQM
          in that segment. Nonetheless, the intent of the wording is to only
          require occasional monitoring of these uncontrolled regions and not
          to burden CDN operators if monitoring never uncovers any potential
          problems.
           More detailed discussion of all the above options and
          alternatives can be found in the L4S operational guidance  .
           Having said all the above, the approach recommended in   is to monitor, detect, and act
          in real time on live traffic. A passive monitoring algorithm to
          detect a Classic ECN AQM at the bottleneck and fall back to Classic
          congestion control is described in an extensive technical
          report  , which also provides a
          link to Linux source code and a large online visualization of its
          evaluation results. Very briefly, the algorithm primarily monitors
          RTT variation using the same algorithm that maintains the mean
          deviation of TCP's smoothed RTT, but it smooths over a duration of
          the order of a Classic sawtooth.
          The outcome is also conditioned on
          other metrics such as the presence of CE marking and congestion
          avoidance phase having stabilized. The report also identifies
          further work to improve the approach, for instance, improvements with
          low-capacity links and combining the measurements with a cache of
          what had been learned about a path in previous connections. The
          report also suggests alternative approaches.
           Although using passive measurements within live traffic (as
          above) can detect a Classic ECN AQM, it is much harder (perhaps
          impossible) to determine whether or not the AQM is in a shared
          queue. Nonetheless, this is much easier using active test traffic
          out-of-band because two flows can be used. Section 4 of the same
          report   describes a simple
          technique to detect a Classic ECN AQM and determine whether it is in
          a shared queue, which is summarized here.
           An L4S-enabled test server could be set up so that, when a test
          client accesses it, it serves a script that gets the client to open
          two parallel long-running flows. It could serve one with a Classic
          congestion control (C, that sets ECT(0)) and one with a Scalable CC
          (L, that sets ECT(1)). If neither flow induces any ECN marks, it can
          be presumed that the path does not contain a Classic ECN AQM. If either
          flow induces some ECN marks, the server could measure the relative
          flow rates and round-trip times of the two flows. 
            shows the AQM that can be
          inferred for various cases (presuming no more types of AQM behaviour than those known at
          the time of writing).
           
             Out-of-Band Testing with Two Parallel Flows
             
               
                 Rate
                 RTT
                 Inferred AQM
              
            
             
               
                 L > C
                 L = C
                 Classic ECN AQM (FIFO)
              
               
                 L = C
                 L = C
                 Classic ECN AQM (FQ)
              
               
                 L = C
                 L < C
                 FQ-L4S AQM
              
               
                 L ~= C
                 L < C
                 DualQ Coupled AQM
              
            
             
               
                 L = L4S; C = Classic
              
            
          
           Finally, we motivate the recommendation in   that a Scalable congestion
          control is not expected to change to setting ECT(0) while it adapts
          its behaviour to coexist with Classic flows. This is because the
          sender needs to continue to check whether it made the right decision
          and switch back if it was wrong, or if a different link becomes
          the bottleneck:
           
             If, as recommended, the sender changes only its behaviour but
              not its codepoint to Classic, its codepoint will still be
              compatible with either an L4S or a Classic AQM. If the
              bottleneck does actually support both, it will still classify
              ECT(1) into the same L4S queue, where the sender can measure
              that switching to Classic behaviour was wrong so that it can
              switch back.
             In contrast, if the sender changes both its behaviour and its
              codepoint to Classic, even if the bottleneck supports both, it
              will classify ECT(0) into the Classic queue, reinforcing the
            sender's incorrect decision so that it never switches back.
             Also, not changing its codepoint avoids the risk of being flipped
              to a different path by a load balancer or multipath routing that
              hashes on the whole of the former Type-of-Service (ToS) byte (which is unfortunately still a
              common pathology).
          
           
             Note that if a flow is configured to  only
          use a Classic congestion control, it is then entirely appropriate
          not to use ECT(1).
          
        
         
           Reduce RTT Dependence
           Description: A Scalable congestion control needs to reduce RTT
          bias as much as possible at least over the low-to-typical range of
          RTTs that will interact in the intended deployment scenario (see the
          precise normative requirement wording in  ).
           Motivation: The throughput of Classic congestion controls is
          known to be inversely proportional to RTT, so one would expect flows
          over very low RTT paths to nearly starve flows over larger RTTs.
          However, Classic congestion controls have never allowed a very low
          RTT path to exist because they induce a large queue. For instance,
          consider two paths with base RTT 1 ms and 100 ms. If a
          Classic congestion control induces a 100 ms queue, it turns
          these RTTs into 101 ms and 200 ms, leading to a throughput
          ratio of about 2:1. Whereas if a Scalable congestion control induces
          only a 1 ms queue, the ratio is 2:101, leading to a throughput
          ratio of about 50:1.
           Therefore, with very small queues, long RTT flows will
          essentially starve, unless Scalable congestion controls comply with
          the requirement in  .
           Over higher than typical RTTs, L4S flows can use the same RTT
          bias as in current Classic congestion controls and still work
          satisfactorily. So there is no additional requirement in   for high RTT L4S flows to
          remove RTT bias -- they can, but they don't have to.
           One way for a Scalable congestion control to satisfy these
          requirements is to make its additive increase behave as if it were a
          standard Reno flow but over a larger RTT by using a virtual RTT
          (rtt_virt) that is a function of the actual RTT (rtt). Example
          functions might be:
           
             
               rtt_virt = max(rtt, 25 ms)
             
               rtt_virt = rtt + 10 ms
          
           These example functions are chosen so that, as the actual
          RTT reduces from high to low, the virtual RTT reduces less (see
            for
          details).
           However, short RTT flows can more rapidly respond to changes in
          available capacity, whether due to other flows arriving and
          departing or radio capacity varying. So it would be wrong to require
          short RTT flows to be as sluggish as long RTT flows, which would
          unnecessarily underutilize capacity and result in unnecessary
          overshoots and undershoots (instability). Therefore, rather than
          requiring strict RTT independence, the wording in Item   of   is "as independent
          of RTT as possible without compromising stability or utilization".
          This allows shorter RTT flows to exploit their agility
          advantage.
        
         
           Scaling Down to Fractional Congestion Windows
           Description: A Scalable congestion control needs to remain
          responsive to congestion when typical RTTs over the public Internet
          are significantly smaller because they are no longer inflated by
          queuing delay (see the precise normative requirement wording in
           ).
           Motivation: As currently specified, the minimum congestion window
          of ECN-capable TCP (and its derivatives) is expected to be 2 sender
          maximum segment sizes (SMSS), or 1 SMSS after a retransmission
          timeout. Once the congestion window reaches this minimum, if there
          is further ECN marking, TCP is meant to wait for a retransmission
          timeout before sending another segment (see  the ECN spec). In
          practice, most known window-based congestion control algorithms
          become unresponsive to ECN congestion signals at this point. No
          matter how much ECN marking, the congestion window no longer
          reduces. Instead, the sender's lack of any further congestion
          response forces the queue to grow, overriding any AQM and increasing
          queuing delay (making the window large enough to become responsive
          again). This can result in a stable but deeper queue, or it might
          drive the queue to loss, in which case the retransmission timeout mechanism
          acts as a backstop.
           Most window-based congestion controls for other transport
          protocols have a similar minimum window, albeit when measured in
          bytes for those that use smaller packets.
           L4S mechanisms significantly reduce queuing delay so, over the
          same path, the RTT becomes lower. Then, this problem becomes
          surprisingly common  . This is
          because, for the same link capacity, smaller RTT implies a smaller
          window. For instance, consider a residential setting with an
          upstream broadband Internet access of 8 Mb/s, assuming a max
          segment size of 1500 B. Two upstream flows will each have the
          minimum window of 2 SMSS if the RTT is 6 ms or less, which
          is quite common when accessing a nearby data centre. So any more
          than two such parallel TCP flows will become unresponsive to ECN and
          increase queuing delay.
           Unless Scalable congestion controls address the requirement in
            from the start, they will
          frequently become unresponsive to ECN, negating the low-latency
          benefit of L4S, for themselves and for others.
           That would seem to imply that Scalable congestion controllers
          ought to be required to be able work with a congestion window less
          than 1 SMSS. For instance, if an ECN-capable TCP gets an
          ECN mark when it is already sitting at a window of 1 SMSS,
            requires it to defer sending for a retransmission
          timeout. A less drastic but more complex mechanism can maintain a
          congestion window less than 1 SMSS (significantly less if
          necessary), as described in  . Other
          approaches are likely to be feasible.
           However, the requirement in   is worded as a " SHOULD" because
          it is believed that the existence of a minimum window is not all
          bad. When competing with an unresponsive flow, a minimum window
          naturally protects the flow from starvation by at least keeping some
          data flowing.
           By stating the requirement to go lower than 1 SMSS as a
          " SHOULD", while the requirement in   still stands as
          well, we shall be able to watch the choices of minimum window evolve
          in different Scalable congestion controllers.
        
         
           Measuring Reordering Tolerance in Time Units
           Description: When detecting loss, a Scalable congestion control
          needs to be tolerant to reordering over an adaptive time interval,
          which scales with throughput, rather than counting only in fixed
          units of packets, which does not scale (see the precise normative
          requirement wording in  ).
           Motivation: A primary purpose of L4S is scalable throughput (it's
          in the name). Scalability in all dimensions is, of course, also a
          goal of all IETF technology. The inverse linear congestion response
          in   is necessary, but not
          sufficient, to solve the congestion control scalability problem
          identified in  . As well as maintaining
          frequent ECN signals as rate scales, it is also important to ensure
          that a potentially false perception of loss does not limit
          throughput scaling.
           End systems cannot know whether a missing packet is due to loss
          or reordering, except in hindsight -- if it appears later. So they
          can only deem that there has been a loss if a gap in the sequence
          space has not been filled, either after a certain number of
          subsequent packets has arrived (e.g., the 3 DupACK rule of
          standard TCP congestion control  ) or
          after a certain amount of time (e.g., the RACK
          approach  ).
           As we attempt to scale packet rate over the years:
           
             Even if only  some sending hosts
              still deem that loss has occurred by counting reordered packets,
               all networks will have to keep
              reducing the time over which they keep packets in order. If some
              link technologies keep the time within which reordering occurs
              roughly unchanged, then loss over these links, as perceived by
              these hosts, will appear to continually rise over the years.
             In contrast, if all senders detect loss in units of time, the
              time over which the network has to keep packets in order stays
              roughly invariant.
          
           Therefore, hosts have an incentive to detect loss in time
          units (so as not to fool themselves too often into detecting losses
          when there are none). And for hosts that are changing their
          congestion control implementation to L4S, there is no downside to
          including time-based loss detection code in the change (loss
          recovery implemented in hardware is an exception, which is covered later).
          Therefore, requiring L4S hosts to detect loss in time-based units
          would not be a burden.
           If the requirement in  
          were not placed on L4S hosts, even though it would be no burden on
          hosts to comply, all networks would face unnecessary uncertainty
          over whether some L4S hosts might be detecting loss by counting
          packets. Then,  all link technologies would
          have to unnecessarily keep reducing the time within which reordering
          occurs. That is not a problem for some link technologies, but it
          becomes increasingly challenging for other link technologies to
          continue to scale, particularly those relying on channel bonding for
          scaling, such as LTE, 5G, and Data Over Cable Service Interface Specification (DOCSIS).
           Given Internet paths traverse many link technologies, any scaling
          limit for these more challenging access link technologies would
          become a scaling limit for the Internet as a whole.
           It might be asked how it helps to place this loss detection
          requirement only on L4S hosts, because networks will still face
          uncertainty over whether non-L4S flows are detecting loss by
          counting DupACKs. The answer is that those link technologies for
          which it is challenging to keep squeezing the reordering time will
          only need to do so for non-L4S traffic (which they can do because
          the L4S identifier is visible at the IP layer). Therefore, they can
          focus their processing and memory resources into scaling non-L4S
          (Classic) traffic. Then, the higher the proportion of L4S traffic,
          the less of a scaling challenge they will have.
           To summarize, there is no reason for L4S hosts not to be part of
          the solution instead of part of the problem.
           Requirement (" MUST") or recommendation (" SHOULD")? As explained
          above, this is a subtle interoperability issue between hosts and
          networks, which seems to need a " MUST". Unless networks can be
          certain that all L4S hosts follow the time-based approach, they
          still have to cater for the worst case -- continually squeeze
          reordering into a smaller and smaller duration -- just for hosts that
          might be using the counting approach. However, it was decided to
          express this as a recommendation, using " SHOULD". The main
          justification was that networks can still be fairly certain that L4S
          hosts will follow this recommendation, because following it offers
          only gain and no pain.
           Details:
           The time spent recovering a loss is much more significant for short
          flows than long; therefore, a good compromise is to adapt the
          reordering window from a small fraction of the RTT at the start of
          a flow to a larger fraction of the RTT for flows that continue for
          many round trips.
           This is broadly the approach adopted by RACK  . However, RACK
          starts with the 3 DupACK approach, because the RTT estimate is not
          necessarily stable. As long as the initial window is paced, such
          initial use of 3 DupACK counting would amount to time-based loss
          detection and therefore would satisfy the time-based loss detection
          recommendation of  . This
          is because pacing of the initial window would ensure that 3 DupACKs
          early in the connection would be spread over a small fraction of the
          round trip.
           As mentioned above, hardware implementations of loss recovery
          using DupACK counting exist (e.g., some implementations of
          Remote Direct Memory Access over Converged Ethernet version 2 (RoCEv2)).
	  For low latency, these implementations can change
          their congestion control to implement L4S, because the congestion
          control (as distinct from loss recovery) is implemented in software.
          But they cannot easily satisfy this loss recovery requirement.
          However, it is believed they do not need to, because such
          implementations are believed to solely exist in controlled
          environments, where the network technology keeps reordering
          extremely low anyway. This is why controlled environments with
          hardly any reordering are excluded from the scope of the normative
          recommendation in  .
           Detecting loss in time units also prevents the ACK-splitting
          attacks described in  .
        
      
       
         Scalable Transport Protocol Optimizations
         
           Setting ECT in Control Packets and Retransmissions
           Description: This item concerns TCP and its derivatives
          (e.g., SCTP) as well as RTP/RTCP  .
          The original specification of ECN for TCP precluded the use of ECN
          on control packets and retransmissions. Similarly,  
          precludes the use of ECT on RTCP datagrams, in case the path changes
          after it has been checked for ECN traversal. To improve performance,
          Scalable transport protocols ought to enable ECN at the IP layer in
          TCP control packets (SYN, SYN-ACK, pure ACKs, etc.) and in
          retransmitted packets. The same is true for other transports,
          e.g., SCTP and RTCP.
           Motivation (TCP):   prohibits the use of ECN on these
          types of TCP packets, based on a number of arguments. This means
          these packets are not protected from congestion loss by ECN, which
          considerably harms performance, particularly for short flows.
          ECN++   proposes
          experimental use of ECN on all types of TCP packets as long as AccECN
          feedback   is
          available (which itself satisfies the accurate feedback requirement
          in   for using a Scalable congestion
          control).
           Motivation (RTCP): L4S experiments in general will need to
          observe the rule in the RTP ECN spec  
          that precludes ECT on RTCP datagrams. Nonetheless, as ECN usage
          becomes more widespread, it would be useful to conduct specific
          experiments with ECN-capable RTCP to gather data on whether such
          caution is necessary.
        
         
           Faster than Additive Increase
           Description: It would improve performance if Scalable congestion
          controls did not limit their congestion window increase to the
          standard additive increase of 1 SMSS per round trip   during congestion avoidance. The same is true for
          derivatives of TCP congestion control, including similar approaches
          used for real-time media.
           Motivation: As currently defined  ,
          DCTCP uses the conventional Reno additive increase in the congestion
          avoidance phase. When the available capacity suddenly increases
          (e.g., when another flow finishes or if radio capacity
          increases) it can take very many round trips to take advantage of
          the new capacity. TCP CUBIC   was
          designed to solve this problem, but as flow rates have continued to
          increase, the delay accelerating into available capacity has become
          prohibitive. See, for instance, the examples in Section   of the
          L4S architecture  . Even
          when out of its Reno-friendly mode, every 8 times scaling of CUBIC's flow 
          rate leads to 2 times more acceleration delay.
           In the steady state, DCTCP induces about 2 ECN marks per round
          trip, so it is possible to quickly detect when these signals have
          disappeared and seek available capacity more rapidly, while
          minimizing the impact on other flows (Classic and
          Scalable)  . Alternatively,
          approaches such as Adaptive-Acceleration Data Center TCP (A2DTCP)  ) have been proposed to address this problem in
          data centres, which might be deployable over the public
          Internet.
        
         
           Faster Convergence at Flow Start
           Description: It would improve performance if Scalable congestion
          controls converged (reached their steady-state share of the
          capacity) faster than Classic congestion controls or at least no
          slower. This affects the flow start behaviour of any L4S congestion
          control derived from a Classic transport that uses TCP slow start,
          including those for real-time media.
           Motivation: As an example, a new DCTCP flow takes longer than a
          Classic congestion control to obtain its share of the capacity of
          the bottleneck when there are already ongoing flows using the
          bottleneck capacity. 
          In a data-centre environment, DCTCP takes about
          1.5 to 2 times longer to converge due to the much higher
          typical level of ECN marking that DCTCP background traffic induces,
          which causes new flows to exit slow start early  . In testing for use over the public
          Internet, the convergence time of DCTCP relative to a regular
          loss-based TCP slow start is even less favourable   due to the shallow ECN-marking threshold
          needed for L4S. It is exacerbated by the typically greater mismatch
          between the link rate of the sending host and typical Internet
          access bottlenecks. This problem is detrimental in general but
          would particularly harm the performance of short flows relative to
          Classic congestion controls.
        
      
    
     
       Compromises in the Choice of L4S Identifier
       This appendix is informative, not normative. As explained in  , there is insufficient space in the IP header (v4
      or v6) to fully accommodate every requirement. So the choice of L4S
      identifier involves trade-offs. This appendix records the pros and cons
      of the choice that was made.
       Non-normative recap of the chosen codepoint scheme:
       
         
           Packets with ECT(1) and conditionally packets with CE signify L4S
          semantics as an alternative to the semantics of Classic
          ECN  , specifically:
           
             The ECT(1) codepoint signifies that the packet was sent by an
              L4S-capable sender.
             Given the shortage of codepoints, both the L4S and Classic ECN sides
              of an AQM have to use the same CE codepoint to indicate that a
              packet has experienced congestion. If a packet that had already
              been marked CE in an upstream buffer arrived at a subsequent
              AQM, this AQM would then have to guess whether to classify CE
              packets as L4S or Classic ECN. 
              Choosing the L4S treatment is a
              safer choice, because then a few Classic packets might arrive
              early rather than a few L4S packets arriving late.
             Additional information might be available if the classifier
              were transport-aware. Then, it could classify a CE packet for
              Classic ECN treatment if the most recent ECT packet in the same
              flow had been set to ECT(0). However, the L4S service ought not
              need transport-layer awareness.
          
        
      
       Cons:
       
         Consumes the last ECN codepoint:
         The L4S service could
          potentially supersede the service provided by Classic ECN; therefore,
          using ECT(1) to identify L4S packets could ultimately mean that the
          ECT(0) codepoint was 'wasted' purely to distinguish one form of ECN
          from its successor.
         ECN hard in some lower layers:
         It is not always
          possible to support the equivalent of an IP-ECN field in an AQM
          acting in a buffer below the IP layer  . Then, depending on
          the lower-layer scheme, the L4S service might have to drop rather
          than mark frames even though they might encapsulate an ECN-capable
          packet.
         Risk of reordering Classic CE packets within a flow:
         
           Classifying
          all CE packets into the L4S queue risks any CE packets that were
          originally ECT(0) being incorrectly classified as L4S. If there were
          delay in the Classic queue, these incorrectly classified CE packets
          would arrive early, which is a form of reordering. Reordering within
          a microflow can cause TCP senders (and senders of similar
          transports) to retransmit spuriously. However, the risk of spurious
          retransmissions would be extremely low for the following
          reasons:
            It is quite unusual to experience queuing at more than one
              bottleneck on the same path (the available capacities have to be
              identical).
             In only a subset of these unusual cases would the first
              bottleneck support Classic ECN marking and the second
              L4S ECN marking. This would be the only scenario
              where some ECT(0) packets could be CE marked by an AQM
              supporting Classic ECN while subsequently the remaining ECT(0) packets would experience further
              delay through the Classic side of a subsequent L4S DualQ
              AQM.
             
               Even then, when a few packets are delivered early, it takes
              very unusual conditions to cause a spurious retransmission, in
              contrast to when some packets are delivered late. The first
              bottleneck has to apply CE marks to at least N contiguous
              packets, and the second bottleneck has to inject an uninterrupted
              sequence of at least N of these packets between two packets
              earlier in the stream (where N is the reordering window that the
              transport protocol allows before it considers a packet is
              lost).
               
                 For example, consider N=3, and consider the sequence of
                  packets 100, 101, 102, 103,... Imagine that packets
                  150, 151, 152 from later in the flow are injected as follows:
                  100, 150, 151, 101, 152, 102, 103,... If this were late
                  reordering, even one packet arriving out of sequence would
                  trigger a spurious retransmission, but there is no spurious
                  retransmission here with early reordering, because packet
                  101 moves the cumulative ACK counter forward before 3
                  packets have arrived out of order. 
                  Later, when packets 148,
                  149, 153,... arrive, even though there is a 3-packet hole,
                  there will be no problem, because the packets to fill the
                  hole are already in the receive buffer.
              
            
             Even with the current TCP recommendation of N=3  , spurious retransmissions will be unlikely for
              all the above reasons. As RACK   is
              becoming widely deployed, it tends to adapt its reordering
              window to a larger value of N, which will make the chance of a
              contiguous sequence of N early arrivals vanishingly small.
             Even a run of 2 CE marks within a Classic ECN flow is
              unlikely, given FQ-CoDel is the only known widely deployed AQM
              that supports Classic ECN marking, and it takes great care to
              separate out flows and to space any markings evenly along each
              flow.
          
           It is extremely unlikely that the above set of 5
          eventualities that are each unusual in themselves would all happen
          simultaneously. But, even if they did, the consequences would hardly
          be dire: the odd spurious fast retransmission. Whenever the traffic
          source (a Classic congestion control) mistakes the reordering of a
          string of CE marks for a loss, one might think that it will reduce
          its congestion window as well as emitting a spurious retransmission.
          However, it would have already reduced its congestion window when
          the CE markings arrived early. If it is using ABE  , it might reduce cwnd a little more for a loss
          than for a CE mark. But it will revert that reduction once it
          detects that the retransmission was spurious.
           In conclusion, the impact of early reordering on
          spurious retransmissions due to CE being ambiguous will generally be
          vanishingly small.
        
         Insufficient anti-replay window in some pre-existing VPNs:
         If
          delay is reduced for a subset of the flows within a VPN, the
          anti-replay feature of some VPNs is known to potentially mistake the
          difference in delay for a replay attack.   recommends that the anti-replay
          window at the VPN egress is sufficiently sized, as required by the
          relevant specifications.
	  However, in some VPN implementations, the
          maximum anti-replay window is insufficient to cater for a large
          delay difference at prevailing packet rates.   suggests alternative work-rounds
          for such cases, but end users using L4S over a VPN will need to be
          able to recognize the symptoms of this problem, in order to seek out
          these work-rounds.
         Hard to distinguish Classic ECN AQM:
         
           With this scheme,
          when a source receives ECN feedback, it is not explicitly clear
          which type of AQM generated the CE markings. This is not a problem
          for Classic ECN sources that send ECT(0) packets, because an L4S AQM
          will recognize the ECT(0) packets as Classic and apply the
          appropriate Classic ECN-marking behaviour.
           However, in the absence of explicit disambiguation
          of the CE markings, an L4S source needs to use heuristic techniques
          to work out which type of congestion response to apply (see  ). 
          Otherwise, if
          long-running Classic flows are sharing a Classic ECN AQM
          bottleneck with long-running L4S flows, and the L4S flows apply an L4S
          response to the Classic CE signals, they would then outcompete the
          Classic flows. Experiments have shown that L4S flows can take
          about 20 times more capacity share than equivalent Classic flows.
          Nonetheless, as link capacity reduces (e.g., to 4 Mb/s), the
          inequality reduces. So Classic flows always make progress and are
          not starved.
           When L4S was first proposed (in
          2015, 14 years after the Classic ECN spec   was published), it was believed that Classic ECN
          AQMs had failed to be deployed because research measurements had
          found little or no evidence of CE marking. 
          In subsequent years,
          Classic ECN was included in FQ deployments;
          however, an FQ scheduler stops an L4S flow outcompeting Classic,
          because it enforces equality between flow rates. It is not known
          whether there have been any non-FQ deployments of Classic ECN AQMs
          in the subsequent years or whether there will be any in future.
           An algorithm for detecting a Classic ECN AQM as soon
          as a flow stabilizes after start-up has been proposed   (see   for a brief summary).
          Testbed evaluations of v2 of the algorithm have shown detection is
          reasonably good for Classic ECN AQMs, in a wide range of
          circumstances. 
          However, although it can correctly detect an L4S ECN
          AQM in many circumstances, it is often incorrect at low link
          capacities and/or high RTTs. Although this is the safe way round,
          there is a danger that it will discourage use of the algorithm.
        
         Non-L4S service for control packets:
         Solely for the
          case of TCP, the Classic ECN RFCs   and
            require a sender to clear the IP-ECN field to
          Not-ECT on retransmissions and on certain control packets,
          specifically pure ACKs, window probes, and SYNs. When L4S packets are
          classified by the IP-ECN field, these TCP control packets would not be
          classified into an L4S queue and could therefore be delayed
          relative to the other packets in the flow. This would not cause
          reordering (because retransmissions are already out of order, and
          these control packets typically carry no data). However, it would
          make critical TCP control packets more vulnerable to loss and delay.
          To address this problem, ECN++   proposes an experiment in
          which all TCP control packets and retransmissions are ECN-capable as
          long as appropriate ECN feedback is available in each case.
      
       Pros:
       
         Should work end to end:
         The IP-ECN field generally propagates
          end to end across the Internet without being wiped or mangled, at
          least over fixed networks. Unlike the DSCP, the setting of the ECN
          field is at least meant to be forwarded unchanged by networks that
          do not support ECN.
         Should work in tunnels:
         The L4S identifiers work
          across and within any tunnel that propagates the IP-ECN field in any of
          the variant ways it has been defined since ECN-tunneling was first
          specified in the year 2001  . However,
          it is likely that some tunnels still do not implement ECN
          propagation at all.
         Should work for many link technologies:
         At most, but
          not all, path bottlenecks there is IP awareness, so that L4S AQMs
          can be located where the IP-ECN field can be manipulated.
          Bottlenecks at lower-layer nodes without IP awareness have to either use
          drop to signal congestion or have a specific congestion notification
          facility defined for that link technology, including
          propagation to and from IP-ECN. The programme to define these is
          progressing, and in each case so far, the scheme already defined for
          ECN inherently supports L4S as well (see  ).
         Could migrate to one codepoint:
         If all Classic ECN
          senders eventually evolve to use the L4S service, the ECT(0)
          codepoint could be reused for some future purpose but only once use
          of ECT(0) packets has reduced to zero, or near zero, which might
          never happen.
         L4 not required:
         Being based on the IP-ECN field, this
          scheme does not need the network to access transport-layer flow
          IDs. Nonetheless, it does not preclude solutions that
          do.
      
    
     
       Potential Competing Uses for the ECT(1) Codepoint
       The ECT(1) codepoint of the IP-ECN field has already been assigned once
      for the ECN nonce spec  , which has now been
      categorized as Historic  . ECN is probably
      the only remaining field in the Internet Protocol that is common to IPv4
      and IPv6 and still has potential to work end to end, with tunnels and
      with lower layers. Therefore, ECT(1) should not be reassigned to a
      different experimental use (L4S) without carefully assessing competing
      potential uses. 
      These fall into the categories described below.
       
         Integrity of Congestion Feedback
         Receiving hosts can fool a sender into downloading faster by
        suppressing feedback of ECN marks (or of losses if retransmissions are
        not necessary or available otherwise).
         The Historic ECN nonce spec  
        proposed that a TCP sender could set either ECT(0) or ECT(1) in
        each packet of a flow and remember the sequence it had set. If any
        packet was lost or congestion marked, the receiver would miss that bit
        of the sequence. An ECN nonce receiver had to feed back the least-significant
        bit of the sum, so it could not suppress feedback of a
        loss or mark without a 50-50 chance of guessing the sum
        incorrectly.
         It is highly unlikely that ECT(1) will be needed as a nonce for
        integrity protection of congestion notifications in future. The ECN
        nonce spec   has been reclassified as
        Historic, partly because other ways (that do not consume a codepoint
        in the IP header) have been developed to protect feedback integrity of
        TCP and other transports  . For
        instance:
         
           The sender can test the integrity of a small random sample of
            the receiver's feedback by occasionally setting the IP-ECN field
            to a value normally only set by the network. 
            Then, it can test
            whether the receiver's feedback faithfully reports what it expects
            (see Paragraph 2 of  the ECN spec. This works for loss, and it will work for the
            accurate ECN feedback   intended for
            L4S. Like the (Historic) ECN nonce spec, this technique does not
            protect against a misbehaving sender. But it allows a well-behaved
            sender to check that each receiver is correctly feeding back
            congestion notifications.
           A network can check that its ECN markings (or packet losses)
            have been passed correctly around the full feedback loop by
            auditing Congestion Exposure (ConEx)  . This assures that the integrity of congestion
            notifications and feedback messages must have both been preserved.
            ConEx information is also available anywhere along the network
            path, so it can be used to enforce a congestion response. Whether
            the receiver or a downstream network is suppressing congestion
            feedback or the sender is unresponsive to the feedback, or both,
            ConEx is intended to neutralize any advantage that any of these
            three parties would otherwise gain.
           Congestion feedback fields in transport-layer headers are
            immutable end to end and therefore amenable to end-to-end
            integrity protection. This preserves the integrity of a receiver's
            feedback messages to the sender, but it does not protect against
            misbehaving receivers or misbehaving senders. The TCP
            Authentication Option (TCP-AO)  ,
            QUIC's end-to-end protection  , or
            end-to-end IPsec integrity protection   can
            be used to detect any tampering with congestion feedback (whether
            malicious or accidental), respectively, in TCP, QUIC, or any
            transport. TCP-AO covers the main TCP header and TCP options by
            default, but it is often too brittle to use on many end-to-end
            paths, where middleboxes can make verification fail in their
            attempts to improve performance or security, e.g., by
            resegmentation or shifting the sequence space.
        
         At the time of writing, it is becoming common to protect the
        integrity of transport feedback using QUIC. However, it is still not
        common to protect the integrity of the wider congestion feedback loop,
        whether based on loss or Classic ECN. If this position changes during
        the L4S experiment, one or more of the above techniques might need to
        be developed and deployed.
      
       
         Notification of Less Severe Congestion than CE
         Various researchers have proposed to use ECT(1) as a less severe
        congestion notification than CE, particularly to enable flows to fill
        available capacity more quickly after an idle period, when another
        flow departs or when a flow starts, e.g., the Variable-structure congestion Control Protocol (VCP)   and Queue View (QV)  .
         Before assigning ECT(1) as an identifier for L4S, we must carefully
        consider whether it might be better to hold ECT(1) in reserve for
        future standardization of rapid flow acceleration, which is an
        important and enduring problem  .
         Pre-Congestion Notification (PCN) is another scheme that assigns
        alternative semantics to the IP-ECN field. It uses ECT(1) to signify a
        less severe level of pre-congestion notification than CE  . However, the IP-ECN field only takes on the PCN
        semantics if packets carry a Diffserv codepoint defined to indicate
        PCN marking within a controlled environment. PCN is required to be
        applied solely to the outer header of a tunnel across the controlled
        region in order not to interfere with any end-to-end use of the ECN
        field. Therefore, a PCN region on the path would not interfere with
        the L4S service identifier defined in  .
      
    
     
       Acknowledgements
       Thanks to  ,  ,  ,  ,  ,
     ,  , and   for the
    discussions that led to this specification.    was a contributor to the early draft versions of this
    document. Thanks to  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,
     ,  ,  ,  ,  ,
     ,  ,
     ,  ,
    and   for providing help and reviewing
    this document. And thanks to   for
    reviewing and providing substantial text. Thanks also to the area
    reviewers:  ,  ,  ,  ,  , and  .  Thanks to   for identifying the interaction with VPN anti-replay and to
      for identifying the attack based on
    this. Particular thanks to tsvwg chairs  ,  , and   for patiently helping this and the other L4S documents through the
    IETF process.  , which lists the Prague L4S Requirements, is based on text authored by   that was originally an appendix to
     .  That text was in turn based on
    the collective output of the attendees listed in the minutes of a 'bar
    BoF' on DCTCP Evolution during IETF 94  .
       The authors' contributions were partly funded by
    the European Community under its Seventh Framework Programme through the
    Reducing Internet Transport Latency (RITE) project (ICT-317700). The
    contribution of   was also
    partly funded by the 5Growth and DAEMON EU H2020 projects.   was partly funded by the Research Council of
    Norway through the TimeIn project, CableLabs, and the
    Comcast Innovation Fund. The views expressed here are solely those of the
    authors.
    
     
       Authors' Addresses
       
         Nokia Bell Labs
         
           
             
             Antwerp
             Belgium
          
           koen.de_schepper@nokia.com
           https://www.bell-labs.com/about/researcher-profiles/koende_schepper/
        
      
       
         Independent
         
           
             
             United Kingdom
          
           ietf@bobbriscoe.net
           https://bobbriscoe.net/
        
      
    
  


