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ABSTRACT

Interpolated and warped digital waveguide mesh algorithms have
been developed to overcome the problem caused by direction and
frequency-dependence of wave travel speed in digital waveguide
mesh simulations. This paper reviews the interpolation methods
applicable in the two-dimensional case. The bilinear interpolation
technique and two other approaches are briefly recapitulated. The
use of 2-D quadratic interpolation results in a mesh structure that
is efficiently implemented using only additions and binary shifts.
The optimized interpolated 2-D mesh is obtained by choosing the
free parameters of the interpolation method so that the difference
in wave travel speed in the axial and diagonal directions is mini-
mized. The output signal of any digital waveguide mesh can be
processed with a warped FIR filter to reduce the dispersion error
at all frequencies. The frequency-warping factor must be opti-
mized individually for each mesh structure. We introduce an
extended method called multiwarping, which can be used to fur-
ther decrease the dispersion error. The frequency range of digital
waveguide mesh simulations is also discussed.

1. INTRODUCTION

The digital waveguide mesh was introduced in 1993 by Van
Duyne and Smith [1, 2]. They showed that the method is suitable
for sound synthesis of percussion instruments although it suffers
from direction-dependent dispersion. In 1994, Savioja et al.
extended the use of the digital waveguide mesh to three dimen-
sions, and presented simulation results of wave propagation in
acoustic spaces [3]. The method has turned out to be useful in
acoustic design of listening rooms, for example. Recently, the
digital waveguide mesh has been used in the modeling of drums
[4] and the violin body [5].

The interpolated mesh was developed to overcome the direc-
tion-dependent wave propagation characteristics and dispersion
error [6]. However, it was only possible to reduce the direction-
dependence while the dispersion was not much affected—it was
merely rendered almost independent of direction. Luckily, the
remaining dispersion error can be made considerably smaller
using frequency warping [6-9]. It is implemented by postproc-
essing the output signal of the mesh using a warped FIR filter.
Fontana and Rocchesso have also shown that the frequency-
warping can be incorporated in the mesh structure [10]. The best
results so far have been obtained by using the triangular
waveguide mesh [11-13] together with a warped FIR filter [14,
6]. Also, the interpolated rectangular mesh can be improved con-
siderably using frequency warping [6].
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In Section 2 of this paper, we review the interpolation meth-
ods for the rectangular 2-D digital waveguide mesh. In Section 3
we discuss frequency-warping methods and introduce a novel
approach, multiwarping. Section 4 focuses on the frequency range
of digital waveguide simulations. It is suggested that the available
frequency range can be extended with the interpolation and
warping methods. In Section 5, it is shown by numerical examples
how much the different mesh algorithms can gain from the inter-
polation and frequency-warping techniques, when the warping
factor is optimized individually for each of them. Section 6 con-
cludes the paper and presents directions for future work.

2. DIGITAL WAVEGUIDE MESH ALGORITHMS

2.1. Original Digital Waveguide Mesh

The ‘original’ digital waveguide mesh [1, 2] consists of a rectan-
gular grid where the signal value at every node is updated at each
sampling interval according to the following formula:

4
e =LY pr(n=1)= pon-2) ()
2/(:1

where n is the discrete time index, p.(n) is the node to be updated,
pi(n — 1) are its four nearest neighbors, and p.(n — 2) is the value
of the center node two sample intervals ago. Thus, it is necessary
to store two complete meshes.

The first part of the update step (1) can also be formulated
using the following matrix (see also [6], Eq. (15))

. 010
horig = E 1 0 1 2)
010
This interpretation is equivalent to the notion of point-spreading
function used in image processing.

Figures 1(a) and 2(a) show two different views of the wave
propagation speed in the original mesh as a function of two fre-
quency variables. The wave travel speed is constant in diagonal
directions, while in other directions the speed decreases with fre-
quency, that is, the dispersion error increases. This is also seen in
Fig. 2(b) that shows the minimal (diagonal) and maximal (axial)
relative frequency error (RFE) caused by dispersion. For details
on computing the RFE curves, see [6].
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Figure 1. Equal wave travel speed contours for the (a) original, (b) bilinearly interpolated, and (c) optimally interpolated digital
waveguide mesh where contours descend from the center point in increments of 1%. The distance from the center gives the nor-
malized temporal frequency f = €, and Z(§,, §,) determines the propagation direction. The circle (thick line) indicates the highest
normalized temporal frequency of the rectangular waveguide mesh, which is 0.25.
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Figure 2. (a) Normalized wave travel speed in the original
digital waveguide mesh as a function of two normalized
frequency variables c&; and c&, and (b) the minimal
(dashed line) and maximal (solid line) RFE.

2.2. Bilinearly Interpolated Waveguide Mesh

The aim of the interpolated waveguide mesh was to suppress the
direction-dependence and dispersion of the original waveguide
mesh [6]. The motivation was that sample updates should occur in
more directions than just four as in the original mesh. The inter-
polation technique effectively inserts new nodes in the mesh—the
contribution of the hypothetical nodes is then spread on the

existing neighboring nodes to obtain a realizable structure. This is
a 2-D application of fractional delay filters [15]. The method of
superimposing signal samples onto a non-integer point of a digital
delay line was introduced in [16], where this operation was named
as ‘deinterpolation’. See also [17, pp. 128-135], where deinter-
polation is discussed in detail.

In the initial version of the interpolated mesh algorithm [6],
four hypothetical nodes were inserted in diagonal directions, and
we chose to use bilinear interpolation, which is a two-dimensional
extension of linear interpolation. In this case, the point-spreading
function is

|2 J2 | 01250 03536 0.1250
hgn = —| 2 6-4J2 /2 |=103536 0.08579 0.3536| (3)
v 2 | 01250 03536 0.1250

In the bilinearly interpolated mesh, the wave travel speed is
not constant in any direction, but the behavior is more homoge-
neous as a function of direction than in the original mesh, as seen
by comparing Figs. 1(a) and 1(b). The remaining dispersion
causes the mode frequencies of the acoustic system that is being
modeled to be lower than they should, as illustrated by the RFE
curve in Fig. 3(a). Fortunately, the error is practically independent
of direction, and hence a single correction function can be used to
reduce the frequency error.

2.3. Quadratic 2-D Interpolation

It is also possible to use higher-order interpolation to implement
the interpolated mesh. Here we present the use of second-order
Lagrange interpolation, or quadratic interpolation, which leads to
the following point-spreading function:

% % %

006250 03750 0.06250
hquaa = ¥ 1 ¥|=| 03750 02500 03750
Vi % Y| 006250 03750 0.06250

Note that convolution with this kernel can be realized without
multiplications, since all the elements in (4) are easily imple-
mented as binary shifts and additions.

@
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Figure 3. Maximal and minimal (dashed and solid lines)
relative frequency error in the (a) bilinearly, (c) quadrati-
cally, and (e) optimally interpolated, and (g) the triangu-
lar mesh. The corresponding RFEs after frequency warp-
ing are displayed on the right. The dotted line indicates
the zero error.

Figure 3(c) shows the RFE of the interpolated mesh when
quadratic interpolation is used. Perhaps surprisingly, the quadratic
interpolation does not yield as good results as the bilinear inter-
polation. The reason is that the quadratic interpolation has to
work outside its optimal range, which is —0.5 < d < 0.5 in each
direction, where d is the fractional delay from the node to be
updated (see [17, pp. 90-94] for a discussion on approximation
errors of Lagrange interpolation filters). The delay values required
in this interpolation problem are d = —0.7071 and d = 0.7071.

Note that it is impossible to use higher-order polynomial
interpolation with the 3-by-3 point-spreading function. For exam-
ple, the use of third-order Lagrange interpolation would lead to a
5-by-5 matrix.

2.4. Optimized 2-D Interpolation

There are only three free parameters in the 3-by-3 point-spreading
functions: the diagonal, axial, and central value. It is thus rela-
tively easy to optimize the values of these coefficients so that the
best possible characteristics are achieved. We have optimized the
coefficients of the 3-by-3 matrix so that the difference between the
minimal and maximal frequency error below the normalized fre-
quency 0.25 is minimized while the error at the zero frequency is
forced to zero [6]. The iteration yields the following point-
spreading function:

0.09398 03120 0.09398
hope =| 03120 03759 03120 (5)
0.09398 03120 0.09398

The resulting wave travel speed is shown in Fig. 1(c), and the cor-
responding RFE curves in axial and diagonal directions are in Fig.
3(e). It can be seen that the difference between the two extreme
cases of RFE curves is smaller than for the other interpolated
rectangular meshes.
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Figure 4. (a) Frequency warping can be implemented
using a chain of identical first-order allpass filters. (b)
Multiwarping is realized by alternating first-order fre-
quency-warping operations and sample rate conversions.

2.5. Triangular Digital Waveguide Mesh

Also other sampling lattices than the rectangular one have been
considered for digital waveguide mesh models. The triangular
mesh has been found to be a good choice [11-13]. Figure 3(g)
indicates that the RFE in the triangular mesh is smaller than in
any of the rectangular mesh structures discussed above. In addi-
tion, the difference between the smallest and largest error is small.
The main drawback of the triangular mesh is the triangular tes-
sellation of the plane, which may be more complicated than the
rectangular one in some cases.

3. FREQUENCY-WARPING TECHNIQUES

The dispersion error appearing in digital waveguide mesh simu-
lations can be reduced using frequency warping, when the error is
almost identical in all directions and the error function is mono-
tonic and relatively smooth [14, 6]. Then it is possible to design a
frequency-warping filter, which shifts the frequencies and reduces
the error when the output signal of the digital waveguide mesh
x(n) is processed with it.

3.1. How to Use Frequency Warping

Frequency warping can be implemented with a warped FIR filter,
which consists of a chain of first-order allpass filters A(z), as
shown in Fig. 4(a) [7, 6, 9]. The tap coefficients are set equal to
the signal samples x,,(n) to be warped, i.e., the output signal of the
digital waveguide mesh in this case. When a unit impulse is fed
into the filter, the warped signal y,(n) is obtained at the output.
The extent of warping is controlled by the allpass filter coefficient
A that we call the warping factor. In addition, a sampling rate con-
version is required, because all frequencies—not only the high
frequencies—are shifted as a consequence of frequency warping
(see [6] for details).

3.2. Reduction of Dispersion Error

We have optimized A for each case so that the maximal RFE in
the frequency band from O up to 25% of the sampling rate is
minimized. Figure 3(b) presents the RFE of the bilinearly inter-
polated mesh after its output signal has been frequency warped
using warping factor A = —0.19467. Note that the RFE has been
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considerably reduced at high frequencies, enabling accurate wide-
band simulations. Figure 3(d) corresponds to the warped quadrati-
cally interpolated mesh, which is not so successful because the
difference between the minimal and maximal error curves gets
large at middle and high frequencies.

The RFE of the warped optimally interpolated mesh shown in
Fig. 3(f) is superior over other interpolated rectangular mesh algo-
rithms. Its maximum RFE is 1.2%. However, the warped triangu-
lar mesh [14, 6] produces the smallest RFE (0.6%) of all possi-
bilities, see Fig. 3(h).

3.3. Multiwarping

For some time, our aim has been to find a new frequency-warping
method to augment the degrees of freedom. It would be desirable
to have a technique in which the accuracy could be enhanced at
will by selecting a higher order warping operation. Formerly, such
a technique has not been available. In theory, it would be possible
to use higher order allpass transfer functions A(z) instead of the
first-order one. However, replacing unit delays with second or
higher order allpass filters leads to both folding and warping in
the delay-line implementation [18], which is undesirable. Another
attractive solution would be to apply the first-order warping many
times successively, but this is a waste of effort since there will not
be more degrees of freedom in this procedure than in a single fre-
quency warping. This can be shown by noting that the frequency
warping obtained with two successive warping operations with A;
and A, is equivalent to warping with (A; + A,) / (1 + AA,).

We propose a new approach that we call ‘multiwarping’ [19],
where an arbitrary number of successive first-order frequency
warping and resampling operations are performed alternately as
illustrated in Fig. 4(b). The use of sampling rate conversions
facilitates the design of nonlinear frequency shifts that are impos-
sible to achieve with a single warping, since at a new sampling
rate, the frequency shifts occur at different frequencies. The sam-
pling rate conversions are done by factor D, such thatif 0 < D < 1
the process is upsampling (interpolation) and if D > 1 it is down-
sampling (decimation).

There are various strategies to find the optimal values for the
warping and resampling coefficients. It is a multivariable optimi-
zation task, which should be restricted so that the downsampling
operations do not cut the effective frequency band too much.
Another criterion to take into account is that if A is close to 1.0 the
output signal of frequency warping becomes long, since the pole
of the allpass filter is located close to the unit circle.

4. EXTENDING THE FREQUENCY RANGE

In this section, we discuss the question of the upper frequency
limit of the interpolated and warped waveguide mesh simulations.
It is known that the limiting frequency in the case of the original
waveguide mesh is 0.25, and above that frequency only mirror
images of lower frequencies occur [1]. However, when interpola-
tion and frequency-warping methods are used, it is no longer
obvious what the highest frequency is. In the following, we dem-
onstrate how it is possible to extend the frequency range of digital
waveguide mesh simulations. Fontana and Rocchesso have dis-
cussed earlier that the triangular mesh is superior over rectangular
or hexagonal tilings in terms of valid frequency band [20].

Figure 5 shows the mapping of the original normalized fre-
quencies to the frequencies occurring on the mesh in the case of
the original (Fig. 5(a)) and optimally interpolated meshes, when
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Figure 5. Mapping of frequencies in the (a) original, (b)
optimally interpolated (up to 0.25), and (c) another opti-
mally interpolated (up to 0.35) waveguide mesh (d)
together with warped mapping for case b. The axial
direction is shown with the solid and the diagonal direc-
tion with the dashed line. The dotted line indicates the
desired ideal mapping function (y = x).

the frequency limit has been set to 0.25 (in Fig. 5(b)) and 0.35 (in
Fig 5(c)). The maximum value of all axial mapping curves is
0.2500, and it occurs at normalized frequency 0.3536. This
appears to be the highest frequency that can be simulated using
the rectangular digital waveguide meshes. Frequency warping
could at its best shift the mesh frequencies so that 0.3536 would
again occur at the right frequency. Assuming ideal frequency
warping, the remaining error is caused by the differences between
different directions.

As an example, we display in Fig. 5(d) the frequency mapping
of the warped interpolated mesh optimized up to the normalized
frequency 0.25. The warping factor used is A = —0.32736. It can
be seen that both the axial and diagonal frequency mappings fol-
low the ideal mapping curve (dotted line in Fig. 5(d)) well until
about 0.25. Above this frequency, also the difference between the
diagonal and axial properties of the mesh begins to increase sub-
stantially, and it is impossible to extend the bandwidth much
higher. However, it would be possible to warp the interpolated
mesh that has been optimized up to 0.35 (see Fig. 5(c)), and then
it would be feasible to obtain a good accuracy up to 0.35.

5. NUMERICAL EXAMPLES

In the following we present numerical examples to illustrate the
properties of the methods discussed above. We have simulated a
square membrane with rigid boundaries (reflection coefficient —1)
using different digital waveguide mesh algorithms, and compared
the results. The mesh size was 16 X 16 nodes. For details of the
simulation, see [6]. Figure 6 shows the magnitude spectra of the
simulated membrane in three cases: (a) the original, (b) the
warped optimized interpolated, and (c) the warped triangular
digital waveguide mesh. The ideal magnitude spectrum is given
for comparison in each case.
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Figure 6. Magnitude spectrum of an ideal rectangular
membrane (dashed lines) together with the simulation
results (solid lines) obtained with the (a) original, (b) the
warped optimally interpolated, and (c) the warped trian-
gular mesh.
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Figure 7. Error in eigenmode frequencies of the simulated
rectangular membrane (squares = original mesh, hexa-
grams = warped interpolated mesh, triangles = warped
triangular mesh).

The errors in the frequencies of eigenmodes of the membrane,
as a difference from the ideal eigenfrequencies calculated by the
Rayleigh equation, are given in Fig. 7. The error behavior of the
original mesh reveals that some eigenmodes occur at nearly the
correct frequency while others are too low by several percent.
This is explained by the non-homogeneous nature of the original
mesh (see Figs. 1(a) and 2(a)).

The errors in the warped interpolated mesh are smaller—they
are within £1.2% in the frequency band from O to 25% of the
sampling rate (see Fig. 7). However, the warped triangular mesh is
still better: the maximum error on the same frequency band is only
0.60%. These results are in good agreement with the theoretical
RFE curves presented in Figs. 3(f) and 3(h), since the mode fre-
quency errors are found between the theoretical minimum and
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Figure 8. RFE in the optimally interpolated (a) warped
and (b) multiwarped waveguide mesh with (c¢) a compari-
son of the corresponding eigenmode frequency errors
obtained from a numerical simulation of a membrane
(squares = warped, circles = multiwarped).

maximum errors in all cases. It must be understood that if the RFE
is positive, the mode frequencies given by a simulation are shifted
up, and if the RFE is negative, the frequencies are shifted down-
wards.

To reduce the error further, multiwarping consisting of a chain
of two frequency-warping and resampling operations can be per-
formed, as illustrated in Fig. 4(b). Finding the optimal warping
and resampling factors is not trivial. In the case of performing
both warping and sampling rate conversion twice, there are four
variables. Of these only three are free, since the last resampling
must be performed such that there will be no shifts at the lowest
frequencies. In this case, we applied the Fmins function in Matlab
to search for the optimal values for the two warping factors and
one resampling coefficient. The resulting values A; = 0.919225,
D, = 0.998377, A, = -0.988548, and D, = 7.32022 give the
maximal RFE of 0.62% for the optimally interpolated rectangular
mesh, which is about one half of the error obtained with a single
warping (1.2%). The corresponding RFE curves are presented in
Fig. 8(a) and 8(b).

Figure 8(c) represents the RFE obtained by simulating the
square membrane with the warped and multiwarped interpolated
digital waveguide meshes. The line with squares in Fig. 8(c)
stands for the result with one frequency warping and is in good
agreement with the curves shown in Fig. 8(a). The curve with cir-
cles in Fig. 8(c) corresponds to the multiwarped case shown in
Fig. 8(b). This example demonstrates that the error in mode
frequencies can be halved using multiwarping.

Similar results have been obtained with the triangular digital
waveguide mesh, where the error can be reduced from 0.60% to
0.35% by using a two-stage multiwarping instead of one warping.

Adding more frequency-warping and resampling operations to
the multiwarping can further reduce the error. The difference be-
tween the maximal and minimal error, i.e., the direction-depend-
ence, will restrict the improvement that can be achieved using
multiwarping. As the number of cascaded warping and resampling
operations is increased, the computational load increases almost
linearly. Since multiwarping must be executed as an off-line
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method, such as postprocessing after a simulation run in our
application, the increase in computation time is not very critical.

6. CONCLUSIONS AND FUTURE WORK

This paper reviewed various interpolated and warped digital
waveguide mesh algorithms and discussed the frequency range of
digital waveguide mesh simulations. The rectangular mesh using
quadratic interpolation can be implemented without multiplica-
tions. The optimized interpolated mesh is better than other inter-
polated rectangular mesh structures having a 3-by-3 matrix as the
point-spreading function. The warped triangular mesh produces
simulation results with the smallest dispersion error.

The multiwarping technique was also discussed. The method
consists of successive frequency-warping and resampling opera-
tions. The maximal RFE of the interpolated or triangular digital
waveguide mesh is reduced by about 50% by using two cascaded
frequency-warping procedures and sampling rate conversions
instead of a single warping and resampling.

6.1. Directions for Future Research

Digital waveguide mesh methods are still not well understood.
There are many issues related to wave propagation that cannot be
implemented accurately yet. These include modeling of internal
losses of the medium and reflections at the boundaries. In the case
of wall reflections, it would be necessary to be able to model the
acoustical properties of materials as a function of frequency but
also as a function of incident angle. A straightforward implemen-
tation of a reflection that consists of inserting a filter behind the
wall, next to the last layer of nodes, yields a direction-dependent
behavior, which only works as planned for a plane wave arriving
along the diagonal axis of a rectangular mesh.

While this paper concentrated on the two-dimensional digital
waveguide mesh methods, the interpolation and frequency-warp-
ing methods are applicable to three-dimensional simulations as
well. Promising results have been published in [21], where the
interpolation technique was adapted to the 3-D rectangular digital
waveguide mesh.
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