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ABSTRACT

This paper discusses methods for the elimination of dispersion
in a digital waveguide mesh. As in previous methods, a highly
isotropic waveguide mesh is chosen as a starting point, reducing
the problem to compensation of frequency-dependent dispersion.
For this purpose, as an alternative to Savioja and Välimäki’s tech-
nique of frequency-warping the input/output signals, we propose
(1) inhomogeneous allpass-warping of delay elements, which en-
ables use of allpass filters without introducing delay-free loops,
and (2) “mass loading” the mesh in such a way that high-frequency
propagation speed is increased to partially compensate dispersion
due to quantization over a grid.

1. INTRODUCTION

The digital waveguide mesh [?] has been used to numerically solve
the wave equation in membranes and acoustic volumes. As is well
known, the waveguide mesh gives excellent performance with re-
spect to dissipation, especially in the lossless case, but it has a
dispersion error which varies with propagation direction and fre-
quency [?]. This means waves at different frequencies and/or di-
rections travel at different speeds.

The need for a waveguide mesh without dispersion error arises,
e.g., in room acoustics simulations in which a 3D waveguide mesh
is used to simulate the behavior of traveling waves inside the room
[?]. Dispersion error is undesirable in this application since the
solution for the wave equation in air exhibits a uniform speed in
all directions and for all frequencies.

Choosing the triangular mesh in 2D helps to make the disper-
sion error much more uniform with respect to direction [?, ?], as
does the deinterpolated mesh [?, ?]. Most recently, a novel fre-
quency warping method has been proposed for greatly reducing
dispersion error as a function of frequency [?, ?]. This paper fo-
cuses on alternative techniques for reducing dispersion error as a
function of frequency.

We first consider how the delay elements in a waveguide mesh
can be warped and the problems that can thus be introduced, such
as delay-free loops. A novel structure is proposed which we call
the asymmetric warped waveguide mesh. This structure consists
of two different alternating single-junction cells, one which delays
waves in the usual way, and the other which warps the wave speed
so that it becomes more uniform.

A second method consists of adding a load to the junctions.
The natural dispersion in a waveguide mesh slows down high-
frequency propagation. “Mass loading” the mesh by means of a
mass connected to each node makes it “stiffer”, and this speeds up
high frequencies in a partially compensating way. More generally,

a higher order load impedance can be optimized to compensate
dispersion more completely.

By choosing to implement the first-order mass load in “wave
digital” form, the mass becomes a simple unit-delay “self-loop”
attached to each node via a single port. The “wave digital mass”
can be further adjusted by placing a first-order allpass in series
with the unit delay in the self-loop; this allows further tuning of
dispersion reduction over a restricted frequency range.

2. OVERVIEW OF RESULTS

The warping technique introduced in [3,4] requires frequency warp-
ing the input signal to the mesh, processing the warped signal in
a normal mesh, then finally unwarping the extracted output signal.
Since the frequency warping is carried out using an IIR filtering
process, it is limited to offline operation. It is therefore of inter-
est to find dispersion compensation methods which can be used in
real time. In general, we are looking for ways to warp the mesh
as opposed to its input/output signals. Warping the mesh structure
means that signals fed into it propagate at more or less the correct
speed without having to preprocess or postprocess the input/output
signals. A side benefit of compensating the mesh and not the sig-
nals is that waves may be more easily and accurately “visualized”
on the mesh during simulation.

First, we will review existing methods for frequency warp-
ing to compensate for dispersion, followed by a discussion of the
newly proposed techniques. We will only treat the case of the two
dimensional waveguide mesh, but the basic ideas readily general-
ize to three or more dimensions.

3. NEARLY ISOTROPIC WAVEGUIDE MESHES

The first step is to choose a waveguide mesh having negligible
dispersion error as a function of propagation direction. That is,
we need an isotropic waveguide mesh. We are aware of two ba-
sic contenders for this purpose: the triangular waveguide mesh [?],
and the deinterpolated waveguide mesh [?]. After this, the problem
is reduced to finding a means of frequency-warping the isotropic
waveguide mesh to compensate for dispersion as a function of fre-
quency.

3.1. Deinterpolated Waveguide Mesh

The deinterpolated mesh is a modification of the square waveguide
mesh which makes wave propagation more uniform in all direc-
tions. Starting from a square mesh we have the finite difference
scheme
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This structure can be made more uniform by adding diagonal
delay elements. Because these delay elements don’t end at actual
mesh nodes, an interpolation scheme has to be used. The finite
difference scheme for this structure is given by

We now sum over all the eight neighbors plus the node itself.
The weighting factors inside the sum are different between hori-
zontal directions, diagonal directions and the self loop. The values
of the weighting factors depend on the interpolation scheme used.
Optimal results are obtained when the weighting factors are opti-
mized with a minimization criterion for uniform dispersion.

First, the finite difference notation of the deinterpolated mesh
is transformed to a waveguide mesh. This will enable us later on
to use warping directly inside the mesh structure.

For the deinterpolated mesh, the junction velocities can be ex-
pressed in terms of the incoming wave variables as

where are the “deinterpolation coefficients”. The 9-port junc-
tions are connected by delay lines, and one of the delay lines is
simply a self-loop back to the original junction. This equation
makes the waveguide simulation largely isotropic. Note that the
physical structure equivalent to a junction in the deinterpolated
mesh is a 9-port junction with different impedances at each port
and with one port being equivalent to a wave digital mass.

Von Neumann Analysis [?] on the optimal deinterpolated mesh
gives the dispersion error shown in Fig. ??.

On the two horizontal axes, the spatial frequency is plotted.
The vertical axis gives the dispersion error as a multiplicative fac-
tor for the ideal wave speed with no dispersion. The dispersion
factor is 1 at dc (both spatial frequencies at 0). The dispersion er-
ror is almost uniform in all directions. This will be a good starting
point for using warping techniques later on.

3.2. Triangular Mesh

For the triangular mesh, the junction velocities are given by

The junctions are arranged in a triangular structure and again con-
nected by unit delay lines. Unlike the interpolated mesh, there is
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Figure 1: Dispersion versus spatial frequency in the deinterpolated
mesh.

no need for self loops in the triangular mesh. In Fig. ??, it can
be seen that the dispersion appears almost uniform over the entire
mesh. It appears more uniform than the square mesh, and using
von Neumann error analysis, it can be checked that the dispersion
error is indeed more uniform across all directions of the triangular
mesh.
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Figure 2: Dispersion versus spatial frequency in the triangular
waveguide mesh.

4. WARPING IN THE FINITE DIFFERENCE SCHEME

To reduce dispersion error in the waveguide mesh, the input signal
can be transformed using frequency warping. This transformed
signal can then be run through the the waveguide mesh. The sig-
nal is then picked up at a certain point in the mesh and inversely
frequency warped. The idea behind this is that the frequencies that
travel too slow are shifted to a lower frequency, which increases
their spatial wavelength. Such a wavelenth dilation can compen-
sate wavelength compression caused by a slowed propagation in
the waveguide mesh due to dispersion error.
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Frequency warping of a digital filter is typically achieved by
replacing each delay with an allpass filter. The most commonly
used allpass filter for this goal is the first-order allpass filter:

(1)

Unwarping is accomplished by replacing by . To frequency-
warp a time signal , a length
finite-impulse-response (FIR) filter is constructed having impulse
response . Such a filter is depicted in Fig. ??. Next,
each delay element of the FIR filter is replaced by a first-order all-
pass , and the filter is fed an impulse .
The output is then the desired frequency-warped signal. The
warped delay elements can be viewed as providing a differ-
ent sampling rate at each frequency. Since the filter is IIR,
must be post-windowed or truncated in some manner.

Figure 3: FIR filter structure used as a basis for signal frequency
warping.

This frequency warping technique is an off-line process since
the signal is preprocessed before running the simulation, and it is
necessary to know the entire signal before beginning the simula-
tion. (Since there is a delay-free path through the allpass filters

, depends on all input samples .) The technique
also becomes expensive when using multiple input signal and mul-
tiple pick-up points, since every signal has to be preprocessed and
postprocessed. Also, exciting the mesh with an object of a given
geometric shape, such as a mallet, is more difficult to work out
precisely.

We therefore conclude that a need exists for a frequency warp-
ing technique that works directly on the mesh instead of on the in-
put signal, thus eliminating the disadvantages outlined above. In
the next section, some novel structures will be proposed, and their
advantages and disadvantages will be discussed.

5. FREQUENCY WARPING THE WAVEGUIDE MESH

When frequency warping the mesh it can be noted that the mesh
is built up using two basic components: junctions and delay lines
connecting the junctions. Each can be used to warp the waveguide
mesh. We will treat both separately.

5.1. Warping Delay Elements in the Mesh

The “obvious” way to warp the mesh is to replace each delay ele-
ment with a first-order allpass filter

This seems obvious when we look at a single delay line. This
first-order allpass filter can speed up waves of higher frequencies
and slow down waves of lower frequencies. Thus the delay line
seems shorter for higher frequency waves. In other words, we have
introduced a delay line of variable length. However, since
has a delay-free path for , it introduces delay-free loops in
the mesh structure. The structure is therefore not realizable in a
straightforward manner.

The first-order allpass can be used in series with a sample of
pure delay, thus solving the delay-free loop problem, as shown in
Fig. ??.

Figure 4: Delay in series with allpass filter.

However, denoting the sampling rate by , the ex-
tra delays in the mesh reduce the useable bandwidth from

(for normal waveguide meshes) down to as low as
at frequencies for which the allpass filter provides close to a sam-
ple of delay .

5.2. Inhomogeneously Warped Delay Elements

Another way of warping the delay lines can be called the “asym-
metric warped waveguide mesh”. It consists of two sets of cell
types which alternate, as shown in Fig. ??. The first kind consists
of a single waveguide junction with delays coming in, and first-
order allpass filters going out; the second kind has allpass filters
coming in and delays going out. In this kind of mesh, the signals
passing through get alternately sped up and delayed. This effec-
tively eliminates delay-free loops. It is important to note that a
signal passing through is only warped every other junction, this
means that the warping factor has to be twice as large as it would
be in a mesh which would warp the sample at every node. This
structure has the disadvantage that it is geometry dependent and
can’t be easily transferred to structures other than the rectilinear
waveguide mesh.

Figure 5: Asymmetrically warped waveguide mesh.
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In an asymmetric structure the unit element in the mesh doesn’t
consist of just a single node but rather of four nodes intercon-
nected. This is shown in Fig. ??.

Figure 6: Unit cell in the asymmetrically warped waveguide mesh.

5.3. The Mass-Loaded Mesh

The next approach we consider is warping the propagation speed
on the mesh by adding a reactive load to each junction. A purely
reactive load will affect dispersion but not dissipation on the mesh.
It, in effect, creates a variable wave speed for different frequencies
and thus warps the mesh. The simplest load that warps propagation
speed in the right direction is a free mass attached to a waveguide
junction, as shown in Fig. ??.

Figure 7: Mass loaded mesh.

The motivation behind this is that adding such a mass to each
junction “stiffens” the mesh, and stiffness introduces dispersion in
a 2D membrane which speeds up high-frequency propagation, as
needed. The mass is chosen so that the dispersion introduced by
stiffness cancels as much as possible the dispersion due to quanti-
zation of direction in the 2D membrane. Adding a load to a junc-
tion can be done by adding an impedance to the junction. This
modifies the normal junction velocity to

(2)

where the are the impedances from the delay lines coming
into the junction. These all have the same value for an isotropic
mesh. is the junction impedance for which a mass impedance
will be taken. The driving-point impedance of an ideal physical
mass is given by

(3)

where is the weight of the mass and is the Laplace trans-
form variable. To adapt this impedance to a discrete-time simula-
tion, we have to transform it to the -domain. This can be done via
the bilinear transformation:

where is the discrete-time sampling interval. Now the -transform
of the mass impedance is

(4)

Using the -transform of the mass impedance and the formula
for the loaded junction velocity, we can derive the equation for the
junction velocity in the case of mass loading:

where is the weight for the load, the impedance of the
conected waveguides and N is the number of ports. Without loss
of generality we can assume . Using this structure, we can
see that for the deinterpolated mesh we need 10 extra additions and
two extra multiplications per waveguide mesh junction, and for the
triangular mesh we need 7 extra additions and two extra multiplies.
The warping can be made more ‘interesting’ by using a first-order
allpass warping on the mass impedance. The following equation
uses this allpass warping in the deinterpolated mesh:

Adjusting the mass or the warping parameter gives an-
other expression for the junction velocity.
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5.4. Wave Digital Mass Loading

Another way to implement a mass is as a wave digital filter [?, ?].
In this formulation the mass becomes an extra self-looped port.
If we use flow (as opposed to force) variables in the wave digital
mass, the relationship between input and output is ,
where is the output at time and is the input. The wave-
guide mesh with wave digital mass attached is shown in Fig. ??.

Figure 8: Mesh with wave digital mass added.

The self-loop associated with the mass load can be understood
to temporarily “store” passing wave energy, thereby delaying it
and slowing down wave propagation [?].

(5)

5.5. Equivalence between mass loading schemes

It can be shown that mass loading by adding a mass impedance to
each junction and wave digital mass loading are equivalent. Start-
ing from the expression for the loaded junction velocity with a
mass load,

Now is added to the left- and right-hand sides to get

Noting that ,

Since we have a mass load, the relationship between incoming
wave and reflected wave is , yielding

Dividing out gives

Making the substitution ,

which is the expression for a wave digital mass added to the junc-
tion. From we can derive the relation between the parameters in
the two schemes. We define

It is now shown that mass loading is the same as adding wave
digital masses into the system. We can therefore treat them in a
uniform way. This is not entirely unexpected, since wave digital
filters also use a particular bilinear transform.

5.6. Von Neumann Analysis of the Mass Loaded Mesh

We can use Von Neumann analysis to look at the dispersion error.
If we want to analyze this scheme, we first have to write down the
junction transfer function:

(6)

(7)

Taking the spatial Fourier transform gives

The spectral amplification factor is found to satisfy

where

In this formula are the multiplication factors along the hor-
izontal direction along the diagonal directions and the mul-
tiplication factor from the self loop. The dispersion on the mass-
warped mesh is therefore

(8)
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Figure 9: Warped waveguide mesh with different values.

In this simulation, the value for was taken to be while
was varied. The values for in this simulation were , and

. The mesh that has the most dispersion at DC is
and then going progressively down to . For going to 1 the
dispersion error becomes completely flat.

In section ?? it was seen that adding a self loop to a junction
slows down or speeds up the wave propagation. In the deinter-
polated mesh a wave digital mass is used. This can be used in
parallel with the wave digital mass we just developed to speed up
the waves a little. This speeding up is done by varying
which is the multiplication factor in the deinterpolated mesh. We
have to make sure, however, that the condition is
maintained [?].
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Figure 10: Sped up warped waveguide mesh.

This picture shows a simulation with , ,
, and . The dispersion has now be-

come almost completely flat within the region where the spatial
frequency is smaller than a quarter of the sampling frequency. (The

-axis now has a much smaller scale than in the other pictures).

5.7. Future work

To further compensate for mesh dispersion error, a variable delay
(allpass filter) may be introduced into the self-loop in cascade with
the unit delay (at least one sample of pure delay is needed for self-
loop realizability). The allpass filter coefficients may be optimized
to minimize dispersion error over a selected frequency range. Use
of such an allpass filter corresponds to using higher order reactive
loads on the mesh junctions.

Further optimization of all the parameters in the mass warped
mesh is required to obtain optimal results.

It would be of interest to see what can be accomplished using
springs instead of masses to warp the mesh.
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