Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

REALTIME-STRETCHING OF SPEECH SIGNALS

Francesco Pesce

Dipartimento di Elettronica e Informatica
Universita degli Studi di Padova
amadeus@dei.unipd.it

ABSTRACT

With this work we present a new time-stretching algorithm, capa-
ble of processing high-quality digital speech signals under realtime
constraints. Considering the temporally altered signal’s synthesis
process, the proposed method is based on a variant of SOLA, opti-
mized for voice, with several important improvements. With these
improvements we can at the same time avoid SOLA’s typical arti-
facts and gain a reduction in computational cost of about a tenfold
in the average case, which permits an efficient implementation in
common PC systems.

1. INTRODUCTION

A large number of time-stretching algorithms have been proposed
in recent years, either in frequency or in time domain, but only
a scarce number of these are capable of running in realtime on
actual Personal Computers. In realtime applications, in fact, we
need a method capable of producing a temporally altered version
of the input signal after a perceptually negligible delay: for this
to be actually feasible, the used algorithm must have very low la-
tency times and low computational complexity so that a signal of
duration T can be elaborated in ¢, < T'.

It is possible to enumerate a very large number of suitable ap-
plications for such a method, but this work was born to give a
powerful tool in language-impaired children’s training. LLI (Low
Level Impaired) children, in fact, cannot understand rapid verbal
stimula because of a low level auditive deficit: in these cases, inter-
action with temporally altered speech is useful to solve the impair-
ment cause. In this specific context we must satisfy strict realtime
constraints to permit an efficient doctor/patient interaction and at
the same time guarantee an high quality synthesis for stretching
factors in the range 1 < a < 3, largely sufficient for most appli-
cations.

This work is organized as follows: in section 2 classic SOLA
algorithm is presented as the starting point of our method, then
in 2.1 its fundamental parameters are optimized using a spectral
consistency measure; the proposed method presentation follows
(in section 3), capable of overcoming SOLA’s limits, in particu-
lar the artifacts that SOLA introduces when processing percussive
sounds; in the final section, then, results obtained with the pro-
posed method are compared with some of the most known digital
audio processing software tools.

2. SOLA ALGORITHM

For the most part, commercial time-stretching software products
used by PC users adopt the SOLA (Synchronous Overlap and

Add) algorithm, which bases the synthesis phase on the sum of
windowed segments of the given signal. SOLA is part of a par-
ticular class of algorithms, called time-domain methods, that work
only with the digital waveform temporal representation. This im-
plies that they do not need to obtain (with DFTs or time-consuming
cross-correlation methods) the spectral representation of the input
signal, so they synthesize the output waveform only copying and
mixing, in the appropriate way, packet of samples taken from the
input waveform.

From an abstract point of view, we can express the time-stretching
problem as the realization of a specific zime-warping function 7(m),
which permits, when given as an input to the algorithm, to obtain
a synthesized waveform y(n), locally maximally similar to z(m),
where locally is intended in the immediate neighboring of the cor-
respondent temporal indexes n = 7(m). This concept can be
matematically expressed as:

Vm: y(r(m)+ k)w(k) = z(m + k)w(k) (D)

where w(k) is a window function and the symbol '=" has the ab-
stract meaning of “the most possible similar to”. If we assume
the “maximum similarity relation” invariant to the Fourier trans-
form, and if we remember the definition of the Short Time Fourier
Transform X, (w) calculated over the windowed sequence z(m):

+oo
X(w,m)= Y z(m+kwk)e " @)

k=—o0
we can rewrite relation (1) in the frequency domain:
Y(w,7(m)) = X (w,m) 3

The concept so far expressed is important to understand the
conceptual basis from which the SOLA method starts (in the time
domain) and how to check if a given synthesized signal y(n) is a
”good” time-stretched replica of the input waveform transformed
by the algorithm being tested (in the frequency domain).

The SOLA method, (fig. 1), considers the input signal z(n)
divided in fixed-length frames of N samples each, taken every S,
samples (a quantity called analysis hop size); the output signal
y(n), on the contrary, is logically divided in frames of the same
length (N samples), but synthesized with a different step (S, syn-
thesis hop size): in this way the stretching factor is given by the
ratio between the synthesis process speed (S, samples per step)
and the analysis process speed (S, samples per step), & = Ss/Sa.
We can notice that if S, and S, are kept constant during the elab-
oration of the whole z(n), the time-warping function 7(m) can be
expressed as:

‘m=am)

n=7'(m)=5,—a

DAFX-1

NSa-Sa NSa

NSa-N

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

2.5

N‘Ss
v

Ss

NSs-Ss

NSs-N

»10°

Figure 1: The generic SOLA algorithmic step. In this figure we
can graphically visualiza the algorithm’s work: the signal’s logical
division in N-sample frames is shown together with the values of
all the parameters involved in the stretching process. From the two
different time scales, expressed in sample numbers, we can also
notice that o = 2, S, & 220 samples = 5 ms.

In general, a can be time-varying (if the application requires this)
and 7(m) can be described with more complex equations.

After an initialization phase, where SOLA copies the first NV
samples from z(n) to y(n), to obtain a minimum set of samples
to work on,

y(0...N—-1)=g(0...N—1) 5)
NS,=N+8,, NS;=N~+§,

during the generic step the algorithm examines an N-samples frame
of z(n), from NS, — 1 towards the past of the signal, or (NS, —
N...NS, — 1), and the temporally correspondent frame of the
partially synthesized signal, y(NS; — N...NSs; — 1), where
the last S, samples are still to be reconstructed, because in the
previous step NS, was S, samples before the actual Ss. While
the synthesis frame is kept fixed, the analysis one is reposition-
able in a given range, and can be more precisely expressed as
(NS, —N+k...NS,—1+k), with —kpmee < k < kmaz. The
most important work for the algorithm is now to find the best over-
lap between the two frames to satisfy the (1). When this optimal
overlap if found, it copies the last Sy samples from the so best-
positioned input frame, £(NSg — N+ km ... NSg — 1+ kp), to
the end of the current output frame and mixes the (N — S;) pre-
ceding from each frame with a linear crossfade to obtain a gradual
transition to the new packet of samples:

y(NSs —Ss+3§) = x(NSs—Ss+kn+7j) (6)
0<j<8,—1
Yy(NSs = N+j) = (1-f(5y(NSs =N +j)+
+ f(j)z(NSa_N+km+j) (7)
0<j<N-S8,—-1

where f(j) (smoothing function) is a linear slope.

The final effect of this method is a local replication of the
waveform’s periods (more or less evident depending from the value
of parameter), located by a synchronization function, which finds
during each step, as stated, the optimal overlap between frames;
this local replication of waveform’s periods permits us to obtain a
synthesized waveform with the same spectral properties, but with
an altered temporal evolution.

Synchronization
To find the optimal value for &y, assuring the best match between
the two N-sample frames, we can use one of the three most dif-
fused techniques:

1. Computation of the minimum vectorial inter-frame distance
in L1 sense (cross-AMDF)

2. Computation of the maximum cross-correlation 5 (k)

3. Computation of the maximum normalized cross-correlation
rn(k), where every value taken from 7, (k) is normal-
ized dividing it by the product of the frame energies (one of
which is varying with k).

Even if the last technique is conceptually preferable, in this work,
for computational efficiency, we will use the second, which, under
appropriate conditions explained in next paragraph, allows us to
obtain results substantially similar to maximum 7 (k) calculation:

Lo
rey(k) =Y 2(NSo— N+k+i)y(NSy—N+i) (8
=0

_kma:c S k S kma:cy Lm = N - Ss

DAFX-2

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

Transient « TD
'
Detector '

y(m)

x(n) |- - x’(n) Vo=

=

Hipass elliptic filter ZeroXSOLA

Detector

Figure 2: Block-scheme of the proposed algorithm

2.1. Parameter optimization

In a recent work, ([1]), J. Laroche and M. Dolson proposed an use-
ful metric to measure time-stretching algorithms’ synthesis qual-

ity:

Do — Zump Do [V (ats,we)| — | X (2, wi)[]”
M= U-P-15~N-1 y 2
Eu:P k=0 | (ta7wk)|

&)

This value is an average spectral distance measure between the
Short Time Fourier Transform taken on input signal, X (t%,wy),
and the output signal’s STFT, Y (aty, wy,), centered on temporally
corresponding instants. As this value (expressed in dB) becomes
more negative, the distances between correspondent spectra de-
crease, and the synthesis quality consequently increases.

In this work we will adopt D s as a quality measure, following
the operative indications proposed in [1], trying to determine opti-
mal values for parameters S, and IV, under the following ipothe-
sis: (F, =44.1kHz, b+ 1 =16bit,1 < a < 3).

As far as S, is concerned, D s computation on different sam-

ple speech phrases allows us to find an all-purpose value S, = 5
ms. When « is near 1, optimal values tend to migrate towards
higher values (> 10 ms), but the 5 ms value is necessary for con-
sistent stretching factors (near = 3), where synthesis quality
becomes critical, and must be carefully regarded. To allow the use
of constant-length data structures, which are particularly efficient,
we have chosen to utilize the fixed value S, = 5 ms, indepen-
dently from the stretching factor a.
The value of N, on the contrary, depends from ¢, following the
law N = (20 + 5a) ms. To explain how we obtained this depen-
dency, is sufficient to observe how, during synchronization phase,
the algorithm really uses only (N — S,) samples taken from y(n)
to find the best match: a necessary condition to successfully find
the exact optimum is the presence of at least one pitch period in
this interval. We can imagine to satisfy this condition, even in
presence of very low male speech (fundamental frequencies near
70 Hz), imposing a 20 ms extension for such interval:

N-aS,=20ms = N=(20+5a)ms (10

This value, obtained in a teorical way, is largely confirmed by
spectral-consistency measures.

3. THE PROPOSED ALGORITHM

Now we present the proposed algorithm (TvdZeroXSOLA - Tran-
sient and Voice Detecting, Zero Crossing Synchronous Overlap
and Add), examining its block-scheme (fig. 2).

It is important to underline that this algorithm was obtained us-
ing several optimisations which assume a particular class of input
signals: the monophonic speech waveforms. This method, in fact,
was developed to obtain good results detecting and taking advan-
tage of some properties of the vocal signals, such as “’stable” har-
monic spectra during vowels, high-frequency spectral contents of
fricative consonants, sudden power increases on impulsive events
(occlusives), and so on. It can also be used with other classes
of input signals, but the results are worser if the signal is far from
having time and frequency caracteristic similar to the human voice.
These are the most important features the algorithm is expected to
present:

e Realtime-compatible computational cost (with common Per-
sonal Computers)

e High fidelity to consonantic articulations, avoiding to intro-
duce artifacts and transient smearing

e Preservation of occlusive transients, often echoed by SOLA
e High spectral stability of vowels

Keeping in mind these features, we present TvdZeroXSOLA’s block
scheme, discussed together with the architectural and computa-
tional motivations of each block’s algorithmic solution.

Hipass filter

The input signal is first depurated of its spectral components falling
under the vocal band (< 80 Hz, microphonic rumbles and com-
mon mode noise) to carefully preserve the signal’s zero-crossings,
a fundamental caracteristic to ensure proper functioning of follow-
ing blocks. A first compromise is present in this module: it is
important to preserve the spectral content of very low frequency
components, such as dark vowels ("O”, ”U”) pronounced by a
very low-pitch male speaker, but there is an objective difficulty
in designing high-quality filters where the ratio between stop-band
and pass-band is sharply unbalanced (0.0038 in our case, using
fiow = 80Hz). We cannot use linear-phase FIR filters, because
even with 1000 coefficients the frequency response is far from the
required shape, so the best choice is to use a fifth-order elliptic
IIR filter, with stop-band 0Hz < fstop < 85Hz, attenuation
Ayp > 50dB and dB ripple < 0.1dB:

1 1 -2 -1 -2 -1
H(z) =G +b1,127 " + b1,22 + 02,127 + b2,22 + b3z

1+a1,127 +a1,2272 1+a2,127 ' +ag2272 1+ azz~?!

with gain G=0.982 and the following coefficients:

cell 1=1 1=2 1=3
bi1 | -1.99994743995 | -1.99998255906 | -0.99999753613
bs 2 1.00000000000 1.00000000000
as1 | -1.99714732809 | -1.98555631403 | -0.98000158149
Qi 0.99728179642 0.98576624951

The poles/zeros configuration of this filter is particularly crit-
ical concerning the noise arising from the use of finite-precision
arithmetic; this noise is infact greatly magnified by the contri-
bution of the poles, all near |z2| = 1. To avoid this potential
signal degradation, the filter is implemented using floating-point
arithmetic: this design decision permits to leave the arithmetical

DAFX-3

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

noise far from the 16-bit sampling boundary, but introduce an ad-
ditional cost of 0.35 MFLOPS. This additional cost is not an is-
sue with modern Floating Point Units, capable of performances at
least two orders of magnitude above this value, and in general is
not the bottleneck of these algorithms, which spend a consistent
part of their time in the sinchronization process, requiring above 3
M.operation/s.

The filtered signal is then sent to Transient Detector and (po-
tentially in parallel) to Voice Detector blocks, which, on the basis
of parameters extracted from each frame, influence the synthesis
process (ZeroXSOLA block).

Transient Detector

Individuation of occlusive transients plays a fundamental role dur-
ing speech analysis, because it allows to recognize and isolate
events of limited duration (approx. 10 ms for a ’t’, for example),
which contain a particular information, strongly time-dependent in
its perceptual meaning. This time-dependency must be preserved
in order to ensure the correct interpretation of the occlusive conso-
nant, so the segment of signal individuated by the “transient detec-
tor” cannot be time-stretched: it is simply copied into the output
signar, with no further modification. We can notice that this allows
us to overcome SOLA’s most dangerous artifact: the presence of
echoed transients in syntesized signal, caused by summation of
transient’s overlapped copies (this is the major drawback of each
OverlLapAdd method, caused by the basic method’s “engine” it-
self). Potentially there is also a little drawback when detecting and
copying transients: if the transient detector is not sufficiently selec-
tive and robust, it can circumscribe (as transients) a considerable
amount of the input signal, forcing the synthesis process to skip
large portions of signal, and so loosing much of the time-stretching
factor. In fact, if we call I1 the ratio between the transient part and
the total signal, we can see that, given an input stretching factor of
a, the effective output stretching factor is

Ir +a(l —1r)

Ir+(1-1Ir) =a-irfa—1) b

d =
if, for example, & = 3 and I = 25%, we obtain & = 2.5, with
an error of 17% on the desired value.

Observing equation 11, one can think to pre-correct the input
stretching factor of an appropriate quantity, in order to obtain the
right output o

_Oé—lT
= 'B_l—lT

a=a=8-Ir(B-1) (12)
so, if we want to expand with ¢ = 2 a signal covered by the 10%
of transients, we must impose 8 = 2.11 on the input. Clearly, this
correction process is applicable only if we know in advance the
amount of "transients” (I7), so only offline. Having to operate in
arealtime context, it is impossible to know in advance how to cor-
rect the input stretching factor in order to obtain the right output
expansion. With the proposed implementation of Transient Detec-
tor, which we now discuss, measurements conducted over a quite
large database of speech samples show that, when simply neglect-
ing this error, the difference between the desired stretching factor
and the effective one is on the average case below the 5%. As far as
realtime environment is concerned, we can neglect this problem.
The basic idea is to circumscribe regions where signal’s power
presents sudden increments, and let them untouched to preserve
the complete perceptual meaning of these particular events. The

Power increasing segment

e s

Figure 3: Individuation of an occlusive ’¢’

proposed algorithm operates in three steps (fig. 3): first it calcu-
lates input signal’s power profile, by means of integration over 25
ms frames, taken every 5 ms (S,), then it individuates transients
where signal’s power grows at least 20 dB in at most 30 ms; fi-
nally, transient’s estimation window is centered on the maximum-
pendence interval over the power-increasing region, and all the un-
derlying segment is simply copied into the output signal by ZeroX-
SOLA.

Voice Detector
The Voice Detector module is responsible of capturing fricative
unvoiced consonants, sounds consisting for the most part of high-
frequency noise, which can be synchronized with a simplified method,
as we will see, speaking of ZeroXSOLA. These sounds take their
origin for the most part from turbolencies of the air passing through
the vocal chords, the teeth and the lips; none of them is put in vi-
bration, so there is no pitch and no low-frequency resonances: the
resulting sound is very similar to high-frequency shaped random
noise.

A very straighforward method to detect sounds naturally con-
figured as high-frequency noise can be computing the ratio beetween
the signal’s energy over 3 kHz (which is a typical boundary for
human voice) and under 2 kHz on the given frame. If this ratio
is above an appropriate value (obtained in a sperimental way, for
example) the corresponding signal frame is classified as fricative
unvoiced "noise”. This method is clearly correct from a theoreti-
cal point of view, but it is also quite inefficient, because it requires
two parallel filters to separate the two frequency bands and two
integrators to compute the low and high-frequency energies.

An alternative and very efficient method is simply counting the
signal’s zero crossings in the given frame. If this value is above a
well-experimented value, the frame is classified as fricative un-
voiced, or as voiced in the opposite case. To understand why this
method is equally correct from a theoretical point of view, we can
simply remember that an high number of zero crossings is car-
acteristic of a signal with a considerable high-frequency energy
content: drastically simplifying, it is easy to verify that a simple
sinusoid presenting n > 5 crossings/ms (of both pendences) has a
periodicity Ts < 0.5 ms, and so frequency fs > 2 kHz.

The proposed algorithm operates dividing the input signal in 5
ms (S,) frames and counting all signal’s zero crossings, of both
pendences, into each frame: if the resulting value is above the
threshold of 5 crossings every millisecond, the frame currently
under estimation is considered part of a fricative sound, or vo-
calized in the opposite case. The proposed boundary value of 5

DAFX-4

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

fosso cieco

time (s)

N
]

=

=]
T
L

@
8
T
L

=

3
T
L

IS
S
T

M \(N\ :
W N AT SO I

I L
50 100 150 200 350 400
frame number

N
]
T

number of zero crossings in 5 ms.

o

]

Figure 4: The italian words *fosso cieco’ and the corresponding
curve describing the zero crossing density on 5 ms frames. It is
immediately evident the very well defined gap between fricative
consonants, where the crossing density gets very high values, and
wovels, where the curve goes below the traced boundary.

crossings/ms is, as already noted, the correspondent of the 2 kH z
frequency break” in the parallel filters method, and it is largely
confirmed from experimental results (see fig. 4).

Synthesis block - ZeroXSOLA
The synthesis block, ZeroXSOLA, heart of the whole algorithm,
receives the data stream to be processed from the hipass filter and
the informations about transients and fricative frames from the
Transient Detector and the Voice Detector modules, in order to
adapt its behavior on the basis of the signal’s analyzed characteris-
tics. This block is a strongly modified version of classical SOLA,
with a fast and accurate synchronization phase, which can save a
considerable amount of computational power (above a factor of
100 on vocalized sounds!) without loosing accuracy in finding the
best overlap between input and output frames.

The basic idea (fig. 5) is to perform synchronization only in
correspondence of the signal’s zero crossings: we avoid the com-
putation of 74, (k) for each —kmaz < k < Kmas firstly aligning
the synthesis frame towards the nearest crossing, and then, during
the maximum 7, (k) search phase, aligning the analysis frame on
subsequent zero crossings with the same sign, limiting the search
to the interval —Kpmaz < k < Kmaz, as usual; we then compute
T2,y (k) only for these values of k, adding at most the nearest ones
to improve the algorithm’s strength in presence of noise. In this
way, we compute only the most significative cross-correlations,
that is to say the cross-correlation values that have higher proba-
bilities to be optimal: as demonstrate the spectral consistency mea-
sures that are reported at the end of the next section, this method
has the great advantage of consistently lowering computational
costs (above a factor of 100 in highly vocalized frames) without
affecting the synthesized signal’s quality. In figure 5 is shown Ze-
roXSOLA’s behavior when synchronizing a male-speech vowel: in
this lucky situation we compute only two cross-correlations every
350 samples, one of which is the searched maximum.

The synthesis algorithm behavior depends on three conditions:

(1) If the current frame is part of a transient, the correspond-

B
]
078

0395
T
I
0775

039
T
I
oFF

0.385
T
I
0.765

0.3g
076

0375
tempo ()
0755
tempoa (s)

037
075

0.365
T
0.745

036
074

0355
T
0735

035

073

Figure 5: Synchronization of a vowel with ZeroXSOLA.

ing signal’s segment is simply copied, as we have already seen.
Note that Transient Detector detects a transient if there is a power
increase of at least 20 dB in at most 30 ms: given that we use
5 ms frames, ZeroXSOLA copies at most 6 frames leaving them
untouched, plus a margin of |a — 1], useful to avoid the risk of
having echoed copies of the transient near the last copied frames,
due to the subsequent mixes performed in the following synthesis
steps.

(2) If the current frame is part of a vocalized sound, we per-
form synchronization with ZeroXSOLA over a sufficiently extended
interval, imposing kmez = 6 ms, value needed in order to have at
least one pitch period in the search region. The proposed syn-
chronization phase implementation is divided in two steps: first
we compute a first approximation of the cross-correlation values
in the immediate neighboring of the zero crossing points:

Lm/p
rey(k) = Y 2(NSy = N+k+i*p)y(NS, — N +ixp)
=0

—kmaz <k £ kmaz, Kk € {crossings} £+ {1..v}

In this way we do not calculate the complete cross-correlation
values, but only a 1/p fraction: if p/N sufficiently small, the re-
sults obtained have sufficient significance for this first phase (with
values of p/N < 0.01, Dy, index changes are negligible). Then
the research is refined computing the complete cross-correlation
values in a restricted interval around the position of the maximum

DAFX-5

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

found during the first step:

Lo

rey(k) =D o(NSy — N +k+i)y(NS; — N +1)
=0

kg —8<k<kmi+0

where 4 and § values depend on the signal pendency in the cross-
ing point, on the input signal to noise ratio and on other contri-
butions, but with experimental measurements on D, we found a
good all-purpose couple of values: vy = 70us, § = 20us.

(3) Finally, if we are in presence of a fricative and unvoiced
frame, we can consistently reduce the search interval to kpmgz =
0.2 ms, thanks to the spectral caracteristics presented by fricative
sounds, or better we can also drastically simplify the synthesis
phase choosing casually as optimal one of the nearest zero cross-
ings, because high-frequency noise is completely aperiodic and
consequently scarcely cross-correlable. Measures of Djus con-
ducted over many sample speech phrases demonstrate that these
two different options produce fairly identical results.

4. RESULTS

We have measured both the synthesis quality and the computa-
tional time required to expand by different stretching factors in the
range 2 < a < 3 several vocal samples, some directly recorded
with a microphone, some extracted from commercial CDs and
some found on the Internet. Measurements on Djys were con-
ducted using the same settings described in [1]:

DFT frame length: 1024 samples (23.2 ms)

STFT step in y(n): 256 samples (5.8 ms)

STFT step in z(n): 258 samples (22 ms)

FFT Window function: Hamming=(0.54 — 0.46 cos(27 1g57))

We present now the results obtained expanding with @ = 2
two speech samples found on the Internet (fonts: www.enounce.com,
www.prosonig.com) using four different softwares: SMS 1.01 by
Xavier Serra, implementing the Sinusoidal Model of Sound, Wave-
lab 2.01 (© Steimberg 1998) and Cool Edit Pro 1.1 (© Syntril-
lium 1998), two SOLA’s implementations, and PPL 1.0, imple-
menting the proposed algorithm in two different versions, with or
without Transient Detector module, to underline the importance of
a differentiated processing of occlusive speech segments.

In fig. 6, we can appreciate the proposed method’s superiority,
both in synthesis quality and in computational timings terms.

5. CONCLUSIONS

With this work we have proposed a new time-stretching algorithm,
optimized for speech signals. Compared with other existent so-
lutions, ([6], [7]), our method uses a more refined approach in
recognizing transients, without requiring high computational re-
sources as other implementations do ([7]). Thanks to the zero-
crossing synchronization process, then, a significant reduction of
computational complexity was possible, obtaining an implemen-
tation capable of running in a real-time environment on economic
home-PCs.

DAFX-6

Spectral consistency measure

0 e N
female100.wav
% of CPU occupation (P111 @500 MHz)

glodedit.wav

350
3001
250 1
2001
1501
> 100

rescme g |

1]

%

femalel100.wayv (3,63s)
S Cool Edit Pro

glodedit.wav (8,55s)

SMS & WaveLab
PPL (Without TD) & PPL (With TD)

Figure 6: Results on sample phrases (o = 2).

6. REFERENCES

[1] J. Laroche, M. Dolson, "Improved Phase Vocoder Time-
Scale Modification of Audio”, IEEE Transactions on ASSP,
vol. 7, pp. 323-332, 1999

[2] S. Roucos, A. M. Wilgus, "High Quality Time-Scale Modi-
fication for Speech”, IEEE ICASSP 1985 pp. 493-496, 1985

[3] J. L. Wayman, D. L.. Wilson, ”Some Improvements on the
Synchronized-Overlap-Add Method of Time Scale Modifi-
cation for Use in Real-Time Speech Compression and Noise
Filtering”, IEEE Transactions on ASSP, vol. 1, pp.139-140,
1988

[4] E. Hardam, “High Quality Time-Scale Modification of
Speech Signals using Fast Synchronized-OverladAdd Algo-
rithms”, IEEE ICASSP 1990, vol. 1, pp. 409-412, 1990

[5] W. Werhelst, M. Roelands, ”"An Overlapp-Add Technique
based on Waveform Similarity (WSOLA) for High Quality
Time-Scale Modification of Speech”, IEEE ICASSP 1993,
vol 2, pp. 554-557, 1993

[6] R. Ren, “An Edge Detection Method for
Time-Scale Modification of Acoustic Signals”,
www.cs.ust.hk/~rren/sound_tech/ TSM_Paper_Long.htm,

1998 (Unpublished)

[7]1 S. Lee, H. D. Kim, H. S. Kim, “Variable Time-Scale
Modification of Speech using Transient Information”, IEEE
ICASSP 1997, vol. 2, pp. 1319-1322, 1997

