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ABSTRACT

We propose an original technique for separating the spectrum of
the noisy residual component from that of the harmonic, quasi-
deterministic one, and to estimate the envelope of the residual, for
the spectrum modeling of musical sounds. The algorithm for spec-
trum separation relies on nonlinear transformations of the ampli-
tude spectrum of the sampled signal (obtained via FFT), which
allow to eliminate the dominant partials without the need for pre-
cisely tuned notch filters. The envelope estimation is performed by
calculating the energy of the signal in the frequency domain, over
a sliding time window. Eventually the residual can be obtained by
combining its spectrum and envelope, so that separate processing
can be performed on the two.

1. INTRODUCTION

In the digital synthesis of musical sound from time-frequency rep-
resentation, the harmonic, quasi deterministic component, and the
noisy, stochastic one are treated separately, due to their quite dif-
ferent features. In particular, in spectrum modeling techniques[1],
the deterministic component is usually modeled as a sum of stable
(with slow amplitude and frequency variations) sinusoids, whereas
the noisy component is modeled through time-varying filtering of
stationary white noise. Other different approaches for modeling
the noisy component were proposed in [2, 3].

Therefore, in the analysis of digitally sampled sound wave-
forms, the two components must be carefully separated in order
to extract the two sets of parameters that are needed for their syn-
thesis and processing, respectively. On the other hand, being the
energy of the sinusoidal component larger than that of the noisy
one by several orders of magnitude, the separation process is not
an easy task.

Methods for separation can follow two distinct approaches.
Time-domain methods rely on a precise estimate of the sinusoidal
component, then subtract it from samples of the original sound.
The main drawbacks of such a direct method are the sensitivity to
finite arithmetics effects and estimate errors depending on window
and hop sizes. This gives rise to an undesired and unstable “har-
monic residual”, the energy of which can be larger than that of the
non harmonic one. Such effects can result perceptually annoying
and prevent use of the results for further processing.

More complicated, frequency-domain methods perform a fil-
tering of the original sound, with a filter that exhibits deep notches
corresponding to the frequencies of its partials. They provide a
more realistic noise residual, especially since it preserves the am-
plitude envelope of the original noise, but if the notches are not
very selective, the resulting spectrum turns out more “anti-harmonic”

rather than stochastic. The complexity of the problem calls for
nonlinear and/or stochastic analysis methods.

2. OUTLINE OF THE PROPOSED METHOD

We propose an original nonlinear technique to estimate the spec-
trum of the noisy residual. Given the original sampled sound ,
we divide it into short time windows ( and calculate the ampli-
tude spectrum of the DFT for each windowed portion of the
signal. Due to the highly energetic sinusoidal components, we
can not obtain a smooth and reliable estimate of the noise spec-
trum through linear operations. Thus, after eliminating the (rare
and randomly distributed) zeros in the DFT by averaging the am-
plitude of each DFT bin with the adjacent ones, we calculate its
inverse so that the spectral lines of become zeros
of . The values of are then averaged within a sliding fre-
quency window of bins, and by inverting the result we obtain
an estimate of the stochastic component spectrum, which is even-
tually, furtherly smoothed through a logarithmic fitting operation
to yield the desired amplitude spectrum.

After performing spectral separation of the noisy component
we face the problem of estimating its amplitude envelope. In or-
der to do that, we make use of the stochastic spectrum samples
obtained as above. In a dual fashion with respect to the spectrum
smoothing operation previously described, we first perform a local
estimate of the time-varying noise power by averaging its spectral
energy within a sliding window. Then we take its square root as
an estimate of the noise envelope and smooth it by logarithmic
fitting.

The advantage of our method is to provide a spectrum model
in which the partials are removed without suppressing them below
the level of noise. Moreover, the model can accurately track slow
time evolution of the partial frequencies. The results do not ex-
hibit artifacts and can be useful for further processing such as time
stretching, pitch shifting and separate processing of sinusoidal and
noisy components.

As an example, the so obtained estimates of the spectrum and
envelope of the noisy component for a piano sound, have been
combined for its synthesis. Beside a possible common time stretch-
ing, the sinusoidal part is pitch shifted according to the desired in-
terval, while the noisy part (representing hitting of the keys, and
percussive noise) is reproduced unshifted.

By generating random, independent and uniform phases
for each frequency bin of the signal DFT and pairing them with
the corresponding amplitudes we obtain, via FFT, a stationary
colored noise, which is then modulated by the envelope estimate
sequence The synthesized sound results plausible and doesn’t
have any harmonic residual present.
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Figure 1: Block diagram of the spectrum separation procedure

3. SPECTRUM SEPARATION

In this section we describe the spectrum separation technique in
detail. Given the original sound signal , modeled as the sum of
partials and a wideband stochastic residual with a much lower
energy, we are faced with the task of finding a smooth function

, possibly updatable as we move our analysis window along
the sound sample, that approximates the time-varying spectrum
of the stochastic residual, by representing, in a sense, an average
spectrum of its realizations.

It is evident that, by performing a median filtering in frequency
of the signal spectrum, we would only obtain a spreading of the
narrowband partials, that are by orders of magnitude ampler than
the underlying stochastic spectrum. Also, if we removed the par-
tials with a comb filter before the median filtering, the effect of
the latter would be to spread the rather wide comb notches, unless
the comb filter is very precisely tuned and capable of tracking the
partial frequencies. As we said above, this would give rise to a
“complementary harmonic” spectrum.

On the other hand, if we consider the inverse amplitude spec-
trum , then in place of the highly energetic par-
tials in we will find deep and selective notches in ,
which can be eliminated through the median filter, whereas the
reciprocal of stochastic spectrum will play a prominent role in
the averaging performed by the filter. Once obtained the filtered
reciprocal spectrum, we must in turn take its reciprocal, to have
the required function approximating the stochastic residual
spectrum.

We note that when taking the reciprocal we might end
up with some very high accidental peaks, that correspond to zeros
of due to the particular realization we have chosen. Such
peaks would corrupt the result of filtering , in much the same
way that the partials would corrupt the result of filtering .
However, since the zeros are much more isolated and randomly
distributed than the partials, they can be canceled, without altering
much the spectrum shape, by passing through a very short
median filter with an arbitrarily small length , prior to taking
its reciprocal.

When performed numerically on the portion of that be-
longs to an analysis window of samples
the above technique requires the following steps, shown in Fig-
ure 1:

1. calculate the amplitude spectrum of by taking the ab-
solute value of its -points DFT with a suitable window

function (e.g. Hann, Hamming or Blackman)

(1)

2. remove accidental zeros in , by replacing it with

(2)

3. calculate the reciprocal spectrum

(3)

4. smooth by cyclic convolution with the -points me-
dian filter impulse response

(4)

5. calculate the reciprocal of that gives the samples re-
quired approximation for the residual spectrum

(5)

Observe that, as described, the algorithm has two adjustable pa-
rameters of analysis: the length of the analysis window in the
time domain, and the length of the median filter in the fre-
quency domain, and both must be set according to the time and
frequency variability of the stochastic residual spectrum. Typi-
cally they should be set to rather low values in order to be able to
track fast variations in time and frequency shaping.

We have thus obtained the function as frequency
samples. However, for further processing of the residuale spec-
trum, it is desirable to have a closed form expression of ,
depending on few parameters, so that it is possible to calculate it
for different frequencies. To this aim we can perform a logarith-
mic fitting of the samples, so that when expressed in dB is a
polynomial of order ,

(6)

and the coefficients are chosen to minimize the error
measure

(7)
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Figure 2: Spectra resulting from the consecutive steps in the sepa-
ration procedure

In this way, we have added a third degree of freedom, that is the
number of spectral parameters . The spectral shapes obtained
from each step of the procedure are plotted in Figure 2, for a flute
sound with pitch at 1780 Hz (A6).

4. ENVELOPE ESTIMATION

Consider the spectrum separation procedure performed on the por-
tion of the signal samples within the analysis window

. From the noise spectral samples obtained in step
5 we can derive a measure of the energy of the noise process
within the window. In fact, since windowing and DFT are linear
operations, we can expect to be a good approximation to the
amplitude spectrum of . Therefore we must have

(8)

Indeed, if we expect the noise to be nearly stationary within
the analysis window, the average noise envelope

(9)

can be assumed as the value of the envelope at the window mid-
point .

By progressively shifting the analysis window along the signal
sequence by small amounts, we can obtain a rather dense grid of
envelope values, which have to be interpolated to yield the required
envelope . Again, the interpolation is performed by piecewise
polynomial fitting of the logarithm of the amplitude. Piecewise
linear interpolation is sufficient for most cases, providing that the
length of single pieces matches the signal dynamics. Better results
are obtained with higher order polynomials or splines. Observe
that, if a single polynomial is used (e.g. for short sounds), it is
appropriate to fit an even order polynomial with a negative lead-
ing coefficient, since the envelope must vanish at both ends of the
signal sequence.

The steps of this procedure are implemented as follows

1. for the -th time window, starting at with length
samples, perform spectral separation of the noise com-

ponent and evaluate its energy as

(10)

2. calculate the envelope at the midpoint instant

(11)

3. fit a piecewise polynomial curve to the logarithm of
,

4. obtain the required envelope as

(12)

5. ANALYSIS EXAMPLES

We have applied the above procedure to some sound sample se-
quences, given by X. Serra in [5]. The results are shown in Fig-
ure 3, with reference to a flute sound with pitch 1780 Hz (A6) and
an oboe sound with pitch 522 Hz (C5), both sampled at 44.1 kHz.
The parameter values in both cases were:

window size: ;

window shift: ms;

window type: Hann ;

median filter length: Hz;

spectrum fitting order: ;

number of divisions for piecewise envelope interpolation:

envelope fitting order: :

The three plots indicate the time-varying amplitude spectrum of
the noisy component, the trajectories of the polynomial coeffi-
cients in time and the envelope. It can be observed that the noise
spectrum is nearly stationary throughout the sound duration, but,
while in the case of the flute sound so are the coefficients , this
is not the case with the oboe sound, showing that, probably are
not very significant parameters.
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Figure 3: Examples of sound analysis: on the left flute sound (A6), on the right oboe sound (C5); on top time-varying noise spectrum, on
the middle coefficient trajectories, on the bottom noise squared envelope
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