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ABSTRACT

A method for the estimation of the multiple pitches of concurrent
musical sounds is described. Experimental data comprised sung
vowels and the whole pitch range of 26 musical instruments. Mul-
tipitch estimation was performed at the level of a single time
frame for random pitch and sound source combinations. Note
error rates for mixtures ranging from one to six simultaneous
sounds were 2.1 %, 2.4 %, 3.8 %, 8.1 %, 12 %, and 18 %, respec-
tively. In musical interval and chord identification tasks, the algo-
rithm outperformed the average of ten trained musicians.
Particular emphasis was laid on robustness in the presence of
other sounds and noise. The algorithm is based on an iterative
estimation and separation procedure and is able to resolve at least
a couple of most prominent pitches even in ten sound polypho-
nies. Sounds that exhibit inharmonicities can be handled without
problems, and the inharmonicity factor and spectral envelope of
each sound is estimated along with the pitch. Examples are given
of musical signal manipulations that become possible with the
proposed method.

1.  INTRODUCTION

Pitch perception plays an important part in human hearing and in
understanding acoustic complexes [1]. While listening to musical
signals, humans are able to resolve and perceive the fundamental
frequencies of several simultaneous sounds. Computational mod-
eling of this function has been relatively little explored compared
to the massive efforts in estimating the pitch of monophonic
speech signals for communication purposes [2]. It is generally
admitted that single pitch estimation methods are not appropriate
as such for multipitch estimation.

Until these days, computational multipitch estimation (MPE)
has fallen clearly behind humans in accuracy and flexibility. First
attempts were made in the field of automatic transcription of
music, but were severy limited in regard to the polyphony (i.e.,
the number of simultaneous sounds), pitch range, or variety of
sounds involved [3]. In recent years, further progress has taken
place. Martin proposed a system that utilized musical knowledge
in transcribing four voice piano compositions [4]. Kashino et al.
describe a model which was able to handle several different
instruments [5]. Goto’s system was particularly designed to
extract melody and bass lines from real-world musical recordings
[6]. Psychoacoustic knowledge has been succesfully utilized e.g.
in the models of Brown and Cooke [7], Godsmark et al. [8], and
de Cheveigne and Kawahara [9]. Also, some purely mathematical
approaches have been proposed [10].

The aim of this paper is to propose a general purpose MPE
algorithm which operates reliably in rich polyphonies, at a wide

pitch range, and for a variety of sound sources. Applications of
this are numerous, including the automatic transcription of music,
content based music indexing and retrieval, sound separation, and
timbre parameter estimation in polyphonic signals. The example
application here is sound separation and application of digital
audio effects to a musically meaningful part of incoming signals.

Organization of this paper is as follows. In Section 2, the
MPE algorithm is described. This is followed by validation exper-
iments and comparison to musicians’ performance in Section 3. A
database of sounds in diverse noise conditions was used for statis-
tical evaluation, and listening tests were conducted to make the
comparison to human performance. In Section 4, a sound separa-
tion mechanism is described, and this is used along with the MPE
algorithm to apply audio effects to polyphonic musical signals.

2.  MULTIPITCH ESTIMATION

The algorithm consists of two main parts that are applied in an
iterative succession, as illustrated in Fig. 1. The first part, predom-
inant pitch estimation, finds the pitch of the most prominent
sound in the interference of other harmonic and noisy sounds. In
the second part, the spectrum of the detected sound is estimated
and subtracted from the mixture. The estimation and subtraction
steps are then repeated for the residual signal. For a review and
discussion on the earlier iterative approaches, see [11,9].

2.1. Predominant pitch estimation

An overview of the predominant pitch estimation algorithm is to
calculate independent pitch estimates at separate frequency
bands, and then combine the results to yield a global estimate.
This approach was taken to handle sounds that exhibit inharmon-
icities and to provide robustness in the case of badly corrupted
signals where only a fragment of the whole frequency range is
good enough to be used. For the sake of computational efficiency,
bandwise processing is done in the frequency domain. A single
fast Fourier transform is needed, after which local regions of the
spectrum are separately processed.

Figure 2 illustrates the processing sequence of the predomi-
nant pitch estimation algorithm. First, a discrete Fourier transform
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Figure 1: The iterative estimation and separation approach to
multipitch estimation.



X(k) is calculated for a Hamming-windowed time domain signal
x(k). Before passing the spectrum to pitch analysis, a certain
amount of preprocessing takes place in order to eliminate noise
and to provide robustness for sounds with irregural spectra.
Enhanced spectrum Xe(k) is obtained by taking a logarithm of the
magnitude spectrum and highpass liftering the result.

The enhanced spectrum Xe(k) is processed in 18 logarithmi-
cally distributed bands that extend from 50 Hz to 6 kHz, as illus-
trated in Fig. 2. Each band comprises a 2/3-octave region of the
spectrum that is subject to weighting with a triangular window. In
a logarithmic amplitude scale, this approximates roughly the criti-
cal band response of human hearing. The overlap of adjacent win-
dows is 50 %, making them sum to unity.

At each band , a fundamental frequency
likelihood vector LB(n) is calculated. The resolution of the vector
is the same as that of the enhanced spectrum, each frequency sam-
ple Xe(n) having a corresponding fundamental frequency likeli-
hood sample LB(n). The capital letter F is used to denote
fundamental frequency, and the lower case letter f to denote fre-
quency. Sample n corresponds to fundamental frequency value
F=fs(n/N), where N is the size of the time frame in samples and fs
is the sampling rate. Frequency samples Xe(k) at band B are
defined to be in the range , where is the
lowest sample and  is the number of samples at the band.

The bandwise fundamental frequency likelihoods LB(n) are
calculated by finding such a series of every nth spectrum samples
at band B that maximizes the likelihood

, (1)

where is the offset of the series of
partials. The value of m is varied to find the maximum value,
which is then stored into LB(n). Different offsets have to be tested
because the series of higher harmonic partials may have shifted
due to inharmonicity. is the number of har-
monic partials in the sum, and is used
as a normalization factor, because H varies for different n and m.
The coefficients in W(H) are important, and were found by train-
ing with musical samples in varying conditions.

In the final phase, the bandwise likelihoods are drawn
together to yield global pitch likelihoods L(n). Straightforward
summation across the likelihood vectors does not associate likeli-
hoods appropriately, since the fundamental frequencies at differ-
ent bands do not match for inharmonic sounds. Inharmonicity
appears as a rising tendency in fundamental frequency as a func-
tion of the center frequency of the bands. To overcome this, the
inharmonicity factor must be estimated and taken into account
[12]. Also, it was found useful to raise the likelihoods to a second
power prior to summing in order to provide robustness in strong
interference, where the pitch may be observable only at a limited
frequency range.

The maximum global likelihood L(n) is used to determine the
true fundamental frequency. The output of the algorithm consists
of the fundamental frequency F, inharmonicity factor , and of
the frequencies and amplitudes of the harmonic series of the
sound. An optional further step is to use these three to calculate a
perceptually corrected pitch value according to psychoacoustic
measurements [13]. In general, inharmonicity causes a slight rise
to the perceived pitch.

2.2. Extension to multipitch estimation

The presented pitch model is capable of making robust predomi-
nant pitch detections in polyphonic signals. Provided that the time
frame is long enough, one of the correct pitches was found with
99 % certainty even in six-voice polyphonies. Moreover, the pre-
cise places of each individual harmonic can be calculated using
the fundamental frequency and inharmonicity factor of the
detected sound. A natural strategy towards extending the algo-
rithm to MPE is to remove the partials of the detected sound from
the mixture, and to apply the pitch algorithm iteratively to the
residual spectrum.

Detected sounds can be most efficiently separated in the fre-
quency domain. Two things are needed to remove a sinusoidal
partial from the mixture spectrum. First, good estimates of the
frequency, amplitude, and phase of the partial must be obtained.
Here it will be assumed that these parameters remain constant in
the analysis frame. Second, using the estimated parameters of the
partial, its spectrum is approximated in the vicinity of the partial,
and then linearly subtracted from the mixture spectrum.

Initial estimates for the amplitude as, angular frequency s,
and phase s of each sinusoidal partial
of a sound are produced by the predominant pitch estimation
algorithm. Efficient techniques for estimating more precise values
of the parameters have been proposed e.g. in [14]. A method
widely adopted to use is to apply Hamming windowing and zero
padding in the time domain, and then use quadratic interpolation
of the spectrum.

A continuous short-time Fourier transform of s(t) is defined as

, (2)

where w(t) performs temporal weighting by a window function,
defined as

, , (3)

and is zero elsewhere. This window model is expressive enough
to accommodate e.g. the Hamming window, standard sine win-
dow, and a rectangular window. The integral in Eq. (2) can be

Figure 2: Processing sequence of the predominant pitch esti-
mation algorithm and the frequency bands at which the calcu-
lations take place.
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solved analytically in a closed form using straightforward algebra.
After this, S( ) can be expressed as a function of and the
parameters of the sinusoid and the window.

It is then an easy matter to apply the solution in the discrete
domain to calculate efficiently the desired few Fourier transform
samples in the vicinity of a known sinusoid. The solution contains
twelve exp-operations, but is still significantly more efficient than
generating samples of s(t) in the time domain and calculating
their discrete Fourier transform. Parameter estimation, local mag-
nitude spectrum calculation, and subtraction is then repeated for
each partial of the sound to be removed from the mixture spec-
trum.

Simulations were run to evaluate the performance of the
described iterative estimation and separation approach. Distribu-
tion of remaining errors revealed one more problem to fix. In
cases where two sounds are in a rational number relation, a lot of
partials from the two sounds coincide, i.e., share the same fre-
quency. When the firstly detected sound is removed, the coincid-
ing harmonics of a remaining sound are also removed in the
subtraction procedure. In some cases, and particularly after sev-
eral iterations, the remaining sound gets too corrupted to be cor-
rectly analyzed in the coming iterations.

There is a solution to this problem that is both intuitive, effi-
cient, and psychoacoustically valid: the spectra of the detected
sounds must be smoothed before subtracting them from the mix-
ture. The idea is derived from psychoacoustics, since the human
auditory system prefers to associate a series of partials to a single
acoustic source if they have a smooth spectrum and decreasing
amplitude as a function of frequency [1,p.232]. Harmonics that
are raised in intensity will segregate more readily from others, and
will stand out as an independent sound.

Consider the enhanced spectrum Xe(k) of a two-sound mix-
ture in Fig. 3. The lower-pitched sound has been detected first,
and the coinciding partials tend to have higher magnitudes than
the other ones. However, when the sound spectrum is smoothed,
these partials rise above the smooth spectrum, and thus remain in
the residual after subtraction. The smoothing operation was
implemented by calculating a moving average over the ampli-
tudes of the harmonic partials. An octave wide hamming window
is centered at each harmonic, and a weighted mean is calculated
in this window. This smooth spectrum is illustrated by a thin hori-
zontal line in Fig. 3. Then a minimum among the original and the
averaged amplitudes is taken, as illustrated by the thick line in
Fig. 3. Using the smoothed amplitude values in the subtraction

stage made a drastic improvement in simulations, approximately
halving the error rate in all polyphonies.

3. SIMULATION RESULTS AND COMPARISON TO
HUMAN PERFORMANCE

3.1. Simulation results

A large amount of simulations was run to monitor the behaviour
of the proposed algorithm. Test material consisted of a database
of sung vowels plus 26 different musical instruments comprising
plucked and bowed string instruments, flutes, and brass and reed
instruments. These introduce several different sound pruduction
mechanisms, and a variety of spectra. Semirandom sound mix-
tures were generated by first allotting an instrument, and then a
random note from its whole playing range, however, restricting
the pitch over five octaves between 65 Hz and 2100 Hz. A desired
number of simultaneous sounds was allotted, and them mixed
with equal mean square levels. Acoustic input was fed to the MPE
algorithm that estimated the pitches in a single time frame.

Note error rate (NER) metric was taken into use to measure
the pitch estimation accuracy. A correct pitch is defined to deviate
less than half a semitone ( %) from the correct value, making it
“round” to a correct note in a western musical scale. NER is
defined as the sum of the pitches in error divided by the number of
pitches in the reference transcription. The errors are of three
types. Substitution and deletion errors together can be counted
from the number of pitches in the reference that could not be cor-
rectly estimated by the system. Insertion errors have occurred if
the number of detected pitches exceeds that in the reference.

Figure 4 shows the NERs for predominant pitch estimation in
different polyphonies. A predominant pitch estimate was defined
to be correct if it matched the true pitch of one of the component
sounds. Random mixtures of one to six sounds were generated,
five hundred instances of each. Pitch estimation was performed in
a single 190 ms time frame. This may seem very long from
speech processing point of view but is actually not that long for
musical chord identification tasks, where the frequency partial
density may be very high in mixtures of low pitches.

The NER of the predominant pitch detection stays around 1 %
even in six-note mixtures, showing significant robustness for pol-
yphonic signals. Surprisingly, increasing polyphony even helps to
detect at least one of the true pitches. This phenomenon was con-
sistently observed also in MPE, where e.g. the NER for the first
three pitch detections was smaller for four-note than for three-
note mixtures. The explanation seems to be that richer mixtures
are more probable to contain at least one clear sound with no
irregularities, which is then detected first, and the more difficult
cases remain to subsequent iterations.
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Figure 3: Illustration of the spectral smoothing principle. The
enhanced spectrum contains two sounds, from which the lower
has been detected first. See text for details.
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Figure 4: Note error rates for the predominant pitch estima-
tion in different polyphonies.



Results for multipitch estimation in different polyphonies are
shown in Fig. 5. Again, random mixtures were generated and the
estimator was then requested to find N pitches in a single 190 ms
time frame 100 ms after the onset of the sounds. Here the number
of sounds to extract, i.e., the number of iterations to run, was
given along with the acoustic mixture signal. In Figure 5, the bars
represent the overall NERs as a function of the polyphony, where
e.g. the NER for random four-voice polyphonies is 8.1 % on aver-
age. The different shades of grey in each bar indicate the error
cumulation in the iteration, errors occurred in the first iteration at
the bottom, and errors of the last iteration at the top.

As a general impression, the system works reliably and exhib-
its graceful degradation in increasing polyphony, with no abrupt
breakdown in any point. This is the strongest advantage of the
chosen iterative approach. Performance of the predominant pitch
detection can be observed in the bottom slices of each bar, and
was discussed above. Analysis of the error cumulation reveals
that the errors occurred in the last iteration account for approxi-
mately half of the errors in all polyphonies, and the probability of
error increases rapidly in the course of iteration. Besides indicat-
ing that the subtraction process does not work perfectly, the con-
ducted listening tests suggest that this is a feature of the problem
itself, rather than only a symptom of the algorithms used. In most
mixtures, there is a sound or two that are very difficult to hear out
because their spectrum is virtually buried under the other sounds.

Figure 6 illustrates the effect of different types and levels of
additive noise. Pink and white noise was generated in the band
between 50 Hz and 10 kHz. Percussion instrument interference
was generated by randomizing drum samples from Roland MK–II
drum machine. The test set comprised 33 bass drum, 41 snare, 17

hi-hat, and 10 cymbal sounds. Drum samples were set on at the
same time with the harmonic sounds. The mean square levels of
the harmonic sounds in each mixture were equalized, and the
noise level was set in relation to individual sounds in the analysis
frame. Thus the noise levels represent signal-to-noise ratios from
the viewpoint of each individual sound, not the mixture. A 190 ms
frame in 100 ms offset position was applied.

Experiments with different time frame lengths revealed that
shortening the frame from 190 ms and 93 ms approximately dou-
bles the error rate in all polyphonies. This is partly caused by the
fact that the applied technique was sometimes not able to resolve
the pitch with the required % accuracy. Also, irregularities in
the sounds themselves, such as vibrato, are more difficult to han-
dle in short frames. Despite these reservations, the fact remains
that reliable MPE seems to require significantly longer time
frames than single-pitch estimation.

3.2. Comparison to human performance

Listening tests were conducted to measure the human pitch identi-
fication ability, particularly the ability of trained musicians to
transcribe polyphonic sound mixtures. Detailed analysis of the
results is beyond the scope of this paper, and will be published
elsewhere by Holm and Klapuri. Only a summary of the main
findings can be reviewed here.

Test stimuli consisted of computer generated mixtures of
simultaneously onsetting sounds that were reproduced using sam-
pled Steinway grand piano sounds from McGill University Mas-
ter Samples collection. The number of co-occurring sounds varied
from two to five. The gap between the highest and the lowest
pitch in each individual mixture was never wider than 16 semi-
tones in order to make the task feasible for those subjects that did
not have absolute pitch, i.e., the rare ability to name the pitch of a
sound without a reference tone. Mixtures were generated from six
partly overlapping pitch ranges. Here results are reported for three
different ranges. The low register extended from 33 Hz to 130 Hz,
the middle register from 130 Hz to 520 Hz, and the high register
from 520 Hz to 2100 Hz. In total, the test comprised 200 stimuli
from 20 different categories.

The task was to write down the musical intervals, i.e., pitch
relations, of the presented sound mixtures. Absolute pitch values
were not asked, and the number of sounds in each mixture was
told in beforehand. Thus the test resembles the musical interval
and chord identification tests that are part of the basic musical
training in western countries.

A total of ten subjects participated the test. All of them were
trained musicians in the sense of having taken several years of
musical ear training. Seven subjects were students of musicology
at a university level. Two were more advanced musicians, pos-
sessing absolute pitch and distinguished pitch identification abili-
ties. One subject was an amateur musician of similar musical
ability as the seven students.

Figure 7 shows the results of the listening test. Chord error
rates (CER) are plotted for different stimulus categories. CER is
the percentage of sound mixtures where one or more pitch identi-
fication error occurred. The labels of the categories consist of a
number which signifies the polyphony, and of a letter which tells
the pitch register used. Letter “m” refers to the middle, “h” to the
high, and “l” for the low register. Performance curves are aver-
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Figure 5: Note error rates for multipitch estimation in differ-
ent polyphonies. Bars represent the overall NERs, and the
different shades of gray the error cumulation in iteration.
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Figure 6: The effect of additive noise and interfering percus-
sive sounds. Note error rates as a function of polyphony.
Three different noise levels are given for each noise type, -
15 dB, -5 dB, and 0 dB, reading from left to right.
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aged over three different groups. The lowest curve represents the
two most skilled subjects, the middle curve the average of all sub-
jects, and the highest curve two clearly weakest subjects.

The CERs cannot be directly compared to the NERs given in
Fig. 5. The CER metric is more demanding, accepting only sound
mixtures where all pitches are correctly identified. It had to be
taken into use because absolute pitch values were not asked. In
this case, there are several ways of matching pitch intervals with
the reference transcription, if the intervals are not all correct. As a
rule of thumb, however, about half of the erroneously identified
three-note mixtures were cases, where only one of the notes
remained undetected. In four-note mixtures, there were usually
several incorrect pitches, however, the most skilled subjects hav-
ing only one note in error, if any.

For the sake of comparison, the stimuli and performance cri-
teria used in the listening test were used to re-evaluate the pro-
posed computational model. Five hundred instances were
generated from each category included in Fig. 7, using exactly the
same software code that produced samples to the listening test.
These were fed to the described MPE system without tailoring its
code or parameters. The CER metric was used as a performance
measure.

The results are illustrated with bars in Fig. 7. As a general
impression, only the two most skilled subjects perform better than
the computational model. However, performance differences in
high and low registers are quite revealing. The devised algorithm
is able to resolve combinations of low sounds that are beyond
chance for human listeners. This seems to be due to the good fre-
quency resolution applied. On the other hand, human listeners
perform relatively well in the high register. This is likely to be due
to an efficient use of the temporal features, onset asynchrony and
different decay rates, of high piano tones. These were not availa-
ble in the single time frame given to the MPE system.

4.  APPLICATION TO SIGNAL MANIPULATION

MPE is intimately linked with auditory scene analysis [1,p.240].
The presented algorithm not only outputs the pitches of the mixed
sounds, but also indicates the spectrum components that belong to
each source. Motivated by this, a sound separation system was
developed that attempts to extracts the original time-domain
waveforms of each sound before mixing. A dedicated mechanism
had to be developed for this purpose, since the MPE system itself
operates only in the frequency spectrum of a single time frame.

4.1. Sound Separation

To enable the manipulation of selected parts of a signal, sinusoi-
dal modeling was chosen for signal representation. In a standard
sinusoidal model, the signal is analyzed in short frames. In each
frame, prominent spectral peaks are located, their frequencies,
amplitudes and phases are solved, and then connected to form
frame-to-frame trajectories. The output of the model is a set of
sinusoids with time-varying frequencies, amplitudes and phases.
These can be synthesized in time-domain to represent the har-
monic components of the signal as a sum of these trajectories.
Sinusoidal model allows the manipulation of signals in parametric
form by altering the sinusoidal parameters before resynthesis.
Also, the sinusoids can be regrouped to different sound sources in
order to synthesize the sounds separately, or make different
manipulations to different sounds.

The applied system differs from the stardand sinusoidal
model in a few ways. Since the MPE algorithm gives the frequen-
cies of the harmonic components, they do not need to be located
but only their time-varying amplitudes and phases are estimated.
Also, frame-to-frame tracking is not needed because the frequen-
cies of the harmonic components are assumed constant inside a
single MPE window, which is much longer than one sinusoidal
modeling frame. Unfortunately, this method fails to detect small
changes in the fundamental frequency, such as vibrato.

For a set of sinusoids with known frequencies, the amplitudes
and phases can be solved e.g. using the least-square solution pre-
sented in [15]. The method gives good results especially in the
case that the frequencies of the sinusoids are close to each other –
a situation where other methods like obtaining the amplitudes and
phases directly from the short-time amplitude spectrum perform
poorly. If the the frequencies of two or more sinusoids are too
close to each other, their amplitudes cannot be resolved directly.
Instead, the parameters or the resulting summary sinusoid are
stored, and the component sinusoids are later deduced using the
procedure described below.

The amplitudes and phases of the sinusoids are estimated in
each time frame. After doing this, the parameters of the coincid-
ing components that could not be directly resolved have to be
deduced from their sum. If the frequencies of two components are
not exactly the same, the amplitude envelope of the sum of the
components modulates at a rate which is the difference between
the frequencies of the components. Assuming that the original
amplitude envelopes were slowly-varying, we can solve the mixed
components as follows. The first amplitude envelope is obtained
by lowpass filtering the envelope of the mixed components, and
the other by subtracting the first from the original, and then half-
wave rectifying and lowpass filtering the difference. Association
of the two separated amplitude curves to their due sources of pro-
duction is done by comparing the curves to other, already solved
amplitude envelopes that were not overlapping. This comparison
can be done for example using perceptual distance measures pre-
sented in [16]. If more than two harmonic components are over-
lapping, their amplitudes are simply interpolated using the other,
already solved components of each sound.

4.2. Manipulation experiments

Further simulations were run to validate the separation procedure,
and to experiment with audio effects that process only a meaning-
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ful part of an incoming musical signal. Some audio examples are
available at http://www.cs.tut.fi/~klap/iiro/dafx2000.

The first experiment aimed at applying basic audio effects on
one of the concurrently playing notes in a musical performance.
The target sound was selected using varying criteria, separated,
and then subtracted from the mixture to obtain a residual signal.
Then the chosen sound was manipulated with the desired effect
and remixed with the residual signal. Enabled processings com-
prise basic effects like vibrato or chorus, and more complicated
ones, such as sliding between successive pitch values in a melody
or breaking chords into notes and playing them in arpeggio.

As a general observation, the separation mechanism is able to
extract sounds reliably from mixtures, but when the number of
concurrent sounds increases or several harmonics coincide, the
quality of the result decreases rapidly. A single misclassified sinu-
soid may have a very disturbing audible effect on the separated
sound when listened to in isolation. The problem is not that out-
standing when the separated and manipulated sound is played
along with the residual, but the problem still exists. However, if
the timbre (i.e. the instrument) of the detected sound is changed,
separation is needed only to produce the residual signal, whereas
the separated note can be reproduced using another, clean sound.

In the second set of experiments, the analyzed signals were
resynthesized using symbolic information only, i.e. the pitch val-
ues produced by the MPE system. Separation is not needed in this
case, since an acoustic database, instead of separated sounds, pro-
vides material to play the MIDI-like information. Enabled
processings include the inevitable change in timbre, transposition
to a higher or lower pitch register, and rule-based addition or
removal of supplementary “play along” parts. The main drawback
of this approach is that when the concept of an acoustical residual
is renounced, the detected pitches should include all the voices
present at each time, not only the most prominent ones for which
the effects were probably aimed to be applied. It turned out to be
very difficult to estimate the number of concurrent voices reliably
without utilizing the musical context. On the other hand, detection
of some of the weakest sounds is often difficult or impossible.

The third set of experiments aimed at extracting only expres-
sive control information from the original complex musical signal
in order to make the instrument changes sound more natural in
their original context. Most often when a sound cannot be com-
pletely separated from a mixture, some of its harmonics can still
be tracked without interference. These can be used to monitor the
loudness and pitch contour of e.g. brass and reed instruments, and
then to drive the same parameters of the resynthesis samples to
make them sound less mechanistic.

5.  CONCLUSIONS

Multipitch estimation can be performed quite accurately at the
level of a single time frame, with no temporal features available.
This applies both to the proposed computational method and to
human listeners at a wide pitch range. For a variety of musical
sounds, a priori knowledge of the involved sounds is not neces-
sary. The presented algorithm works rather reliably in rich poly-
phonies and in the presence of noisy sounds, such as drums. The
presented processing examples demonstrate that the system is
generic and reliable enough to enable some novel and more flexi-
ble ways of processing polyphonic musical mixtures. However,

more efficient utilization of musical predictions and the context is
needed to enhance the quality of separated sounds, and to detect
more reliably the weakest sounds in rich polyphonies.
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