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ABSTRACT

In this work a glottal model loosely based on the Ishizaka and
Flanagan model is proposed, where the number of parameters is
drastically reduced. First, the glottal excitation waveform is esti-
mated, together with the vocal tract filter parameters, using inverse
filtering techniques. Then the estimated waveform is used in order
to identify the nonlinear glottal model, represented by a closed-
loop configuration of two blocks: a second order resonant filter,
tuned with respect to the signal pitch, and a regressor-based func-
tional, whose coefficients are estimated via nonlinear identification
techniques. The results show that an accurate identification of real
data can be achieved with less than 10 regressors of the nonlinear
functional, and that an intuitive control of fundamental features,
such as pitch and intensity, is allowed by acting on the physically
informed parameters of the model.

1. INTRODUCTION

Early research in analysis, synthesis and coding of voice has tra-
ditionally focused on the vocal tract filter, paying less attention to
the source signal. Especially in the last decade, however, more
emphasis has been given to the characteristics of the glottal source
waveform: the development of a good model for glottal excitation
has been recognized to be a key feature for obtaining high quality
synthesis of voice, and for characterizing voice quality (e.g. modal
voice, vocal fry, breathy voice) [1].

Among the different glottal models, both parametric and phys-
ical models are found. A very well known parametric model is the
LF model (see, for example, [2]): this characterizes one cycle of
the derivative glottal wave by using four parameters. The model
has been proved to be very flexible, and able to reproduce a va-
riety of voice qualities [3]. Among the physical models, the first
one has been developed by Ishizaka and Flanagan [4]. This accu-
rately reproduces subtle effects that are not taken into account by
a parametric model (e.g. interaction with the vocal tract), but as
a counterpart cannot be efficiently used for identification and cod-
ing, as a large number of physical parameters has to be estimated.

In this work we propose a glottal model loosely based on the
Ishizaka and Flanagan model, where the number of parameters
is drastically reduced. The model is exploited in an identifica-
tion scheme: first, the glottal excitation waveform is estimated,
together with the vocal tract filter parameters, using inverse fil-
tering techniques. Then the estimated waveform is used in order
to identify the nonlinear glottal model, represented by a closed-
loop configuration of two blocks: a second order resonant filter,
tuned with respect to the signal pitch, and a regressor-based func-
tional, whose coefficients are estimated via nonlinear identification

techniques. Results show that the system accurately identifies the
estimated waveform, and can be used in order to obtain a good nat-
uralness of the resynthesized voiced sounds. Moreover, the phys-
ical parameters of the model can be used to change voice quality
without affecting voice identity: for instance, by changing the res-
onance frequency of the second order oscillator in the model, the
pitch of the resynthesized sound can be controlled.

Physically informed models of the vocal emission can be im-
plied in a wide range of applications. Among these are speech
synthesis and transformation, voice quality enhancement, speaker
identification, voice pathology classification, speech coding and
transmission. In particular, the use of a physical model that learns
the individual characteristics of a given speaker (voice identity)
can be finalized to improve natural speech synthesis. In speech
coding, the enhancement of predictive coders by a nonlinear pre-
diction scheme of glottal pulse waveform could significantly im-
prove the speech compression rates.

Sec. 2 introduces the analysis-synthesis model used for the
vocal tract and the glottal source; Sec. 3 describes the identifica-
tion procedure used for estimating the nonlinear regressors in the
glottal model. Finally, results from the model are shown in Sec. 4.

2. ANALYSIS-SYNTHESIS MODEL

2.1. Vocal tract and glottal flow estimation

Voiced speech is produced by excitation of the vocal tract sys-
tem with the quasi-periodic vibrations of the vocal folds at the
glottis (voice source). In many speech analysis and modeling ap-
proaches, the accurate separation of the voice source from the vo-
cal tract effects is a fundamental task for a correct determination of
voice source features, such as the glottal flow waveform, the glot-
tis opening and closing instants, etc. The most common technique
relies on a linear prediction coding scheme (LPC), that estimates
the vocal tract filter, and on the determination of the source sig-
nal (or residual) by inverse filtering of the speech pressure signal
at mouth. However, since the vocal tract characteristics change
within a pitch period because of the opening and closing of the
glottis, the determination of the poles of the vocal tract system
is often carried on by a covariance LP analysis restricted to the
closed glottis period [5]. This method requires a first estimate of
the closing glottis instants (CGI), for example the peaks in the
residual error of a pitch-asynchronous autocorrelation LP analy-
sis. Then, a pitch-synchronous covariance LP analysis, starting
at time instant CGI+1 and limited to the closed-phase, is used to
estimate the all-poles vocal tract filter. This filter should model
the formant structure of the speech signal, but often the resulting
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polynomial exhibits poles in excess, that do not contribute to any
formant. For this reason, an improved all-poles filter is derived by
solving the roots of the original LP polynomial and by discarding
the roots corresponding to resonance frequencies below 250 Hz,
and the ones with bandwidth above 500 Hz. The inverse of this
improved filter is used in turn to obtain the derivative of the de-
sired glottal volume velocity waveform (note that the lip radiation
effect can be modeled with a differentiator filter). The estimate of
the desired glottal volume velocity waveform can thus be obtained
by integrating the residual waveform. Usually, since the first CGI
estimate is not always accurate, a small number of covariance LP
analysis centered around the CGI estimate is performed, and the
best result is selected on the basis of the residual characteristics
[6].

The procedure described above is used to build a time-varying
model of the vocal tract and to extract the glottal volume veloc-
ity waveform from a voiced pressure waveform. Fig. 1 shows a
typical glottal flow waveform obtained with this method. The re-
maining of the section will focus on the development of a suitable
glottis model to represent this excitation signal.
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Figure 1: Inverse filtering procedure for glottal flow waveform es-
timation. Plot a): speech waveform (pressure at lips); plot b):
differentiated glottal flow, derived from pressure waveform by in-
verse filtering; plot c): glottal flow

2.2. The glottis model

The glottis model here proposed is loosely based on the well known
model by Ishizaka and Flanagan (IF in the following), well de-
scribed in [4]. The IF model is made of two distinct functional
blocks. The first one is a quasi-linear block with memory, repre-
senting the mechanics of the vocal fold: it is made of two weakly
nonlinear oscillators, coupled with each other and driven by the
pressure drop at the glottis. The resonance frequencies of the os-
cillators determine some significant features of the glottal signal,
such as the pitch and the OP/CP (Open Phase-Closed Phase ra-
tio). The second block is highly nonlinear and models the fluid
dynamics at the glottis: the flow ug is assumed to depend on the
lung pressure ps and on the vocal fold displacement x, and the
analytical expression for the nonlinearity is derived from general

theory of fluid dynamics. The two blocks are therefore coupled in
a feedback loop.

Many refinements have been proposed to this model (see for
instance [7], where an 8-mass model for the vocal fold is used).
Here we choose to follow a different direction, in which the IF
model is taken as a reference for developing a physically informed
model rather than a true physical model: the decomposition in two
coupled functional blocks is kept as in IF , but internal structures
are drastically simplified. For the first block we take the simplest
oscillating system, i.e. a second order filter with transfer function

Hres(z) = �0=(1 + �1z
�1

+ �2z
�2

):

Therefore it is completely described by its resonance frequency
!0 and its 3-dB bandwidth �!. In this way we simplify the IF
model in the sense that we describe the vocal fold as a single mass-
spring system with damping; the output x1(k) of Hres is related
to vocal fold displacement, and the difference (x1(k)�x1(k�1))
is related to vocal fold velocity. The second block is a nonlinear
instantaneous map f that has ps and the state of Hres as inputs
and returns the flow ug; this is taken as a driving signal for the
oscillator Hres. Therefore the feedback from map f models the
interaction between fluid dynamics at the glottis and vocal fold
mechanics. The final structure of the model is the one depicted in
Fig. 2
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Figure 2: Physically informed model of the glottis. Here, Hres

is a second-order resonant filter, tuned on the pitch of the voiced
signal, f(x1; x2; ps) is a nonlinear function, ug is the glottal flow
signal, x1 and x2 are respectively the output and the first state
variable of the second-order filter, and ps is the lung pressure.

3. NONLINEAR IDENTIFICATION

3.1. The set of regressors

The nonlinear map f is modeled with a regressor-based functional
of the form

f(x1; x2; ps) = w0 +

MX
i=1

wi i(x1; x2; ps) (1)

where the wi are weights to be identified, and  i(x1; x2; ps) are
the regressors of the input data. The choice of the regressors can be
made in several ways. Often local models, such as gaussian func-
tions or any other radial basis function, are used. This approach
leads to a model called Radial Basis Function Network (RBFN)
[8], used in the field of time series analysis and modeling. The use
of a polynomial expansion of the input leads to a class of NAR-
MAX models [9], known in the fields of system identification and
control. Alternatively, the regressors can be derived on the basis
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of physical considerations. We will follow here this last approach,
and derive the definition of the regressors set from the (simplified)
relation between the sub-glottal pressure ps, the average glottal
volume velocity ug and the cross-sectional area of the glottis Ag

in a single-mass glottis model [10]:

ps =
k�

2A2
g

u
2
g +

12�l2d

A3
g

ug + Z0ug (2)

where � and � are the density and viscosity coefficient of air, l
and d are, respectively, the length and thickness of glottis, k is
an empirical constant, and Z0 is the input impedance of the vocal
tract. In the coupling with the mechanical system modeled with a
mass and a spring, the cross-sectional area is computed as Ag =

2d � x1, where x1 is the vocal fold displacement. The solution of
Eq. (2) is of the form

ug =
�b
2
�
p
b2 � 4c

2
(3)

with

b =
(12�l2d� Z0)(8d

2x21Z
2
0 )

8d3x31Z0k�
(4)

and

c =
�2ps4d

2x21Z
2
0

k�
(5)

As for single-reed models for wind instruments [11], an additional
contribute to the total flow is given by vocal fold velocity; this can
be expressed as Sr� _x1, where Sr is an effective surface. As already
mentioned in Sec. ??, taking into account _x1 corresponds, in dis-
crete time, to taking into account one past value of x1; therefore,
in Eq. (3) we add the term x1 � x2, where x2(k) = x1(k � 1)=�0
is the first state variable of Hres. The emphasis on this term is
justified by the fact that it has been experimentally observed to
noticeably improve the identification process. Qualitatively, this
term can be explained assuming that the effective surface Sr is not
constant during the vocal folds motion, but is instead proportional
to the displacement x1.

We now want to write ug in terms of the functional (1), that
is ug = f(x1; x2; ps). We use a Taylor expansion up to the sec-
ond order to write ug as a sum of regressors of x1 and x2 = _x1.
We then select the terms giving better results in the identification
process, that are:

 1(x1; x2; ps) = x1  5(x1; x2; ps) = 1=x1

 2(x1; x2; ps) = x21  6(x1; x2; ps) = 1=x31

 3(x1; x2; ps) = x31  7(x1; x2; ps) = x31ps

 4(x1; x2; ps) = x51  8(x1; x2; ps) = x1x2

(6)

3.2. Identification procedure

The identification procedure is finalized at computing the right
set of coefficients wi in order to let the system reproduce a de-
sired glottal flow signal (the target signal). We will show here the
method with respect to a periodic steady-state signal frame ug(k),
of length M , generated as the repetition of a selected period of
the desired waveform. This training sequence is especially suited

to find the coefficients wi that lead to a system able to maintain
a stable oscillatory motion with a waveform period of the desired
shape.

The identification procedure relies on two main steps. First,
the resonant filter Hres is estimated; to this end, the resonance
frequency !0 is chosen in order to match the Open Phase fre-
quency (this is qualitatively in agreement to what happens in the
IF model). The bandwidth �! is chosen so that the quality fac-
tor Q of Hres matches a reference value Q0 deduced from IF
parameters: this is found to be Q0 = 10.

Once Hres has been estimated, the second step is the determi-
nation of the input and output temporal sequences of the nonlinear
block f . From Fig. 2, it can be seen that the output sequence is just
ug(k), k = n+1; : : : ; n+M , whereas x1(k) = hres�ug(k�1),
k = n+1; : : : ; n+M , with n and M being respectively the start-
ing time and the length of the training data window. It can be seen
form Fig. 3 that n is taken large enough to skip the transient of the
filterHres, and M is chosen large enough to have a few periods in
the training set. Finally, if the implementation of the second order
IIR filter is a canonic direct form, then the second input sequence
is x2(k) = x1(k � 1)=�0 .

Let us now define  i(k) =  i(x1(k); x2(k); ps(k)), i.e.  i(k)
is the i-th regressor at the discrete time k. It is now straightforward
to build the training data sets Tug and Tx from the input and out-
put sequences:

Tug = [ug(n+ 1); ug(n+ 2); : : : ; ug(n+M)] (7)

Tx =

2
64
 1(n) � � �  1(n+M � 1)

...
. . .

...
 8(n) � � �  8(n +M � 1)

3
75 : (8)

The identification of the set of coefficientsw = [w0; w1; : : : ; w7],
requires the solution of the matrix system

w

�
1

Tx

�
= Tug ; (9)

where 1 = [1; : : : ; 1] is a row vector of lengthM . The LS solution
of problem (9) is known to be

w = Tug

�
1

Tx

�+
(10)

where the symbol + has the meaning of pseudo-inversion of a ma-
trix. In Fig. 3 the periodic waveform, the training sequences, and
the result of the identification are shown.

It has to be noticed that in order to let the model reproduce dif-
ferent behaviors, such as transition sequences, amplitude-varying
sequences, etc., the model has to be trained with target data sets
that present the desired behavior.

4. RESULTS AND DISCUSSION

Due to its limited number of parameters and regressors, and to its
structural simplicity, the proposed model can be efficiently used
for identification of target waveforms.

First of all, good results are found in the open loop configu-
ration: in this configuration the linear block Hres is forced by the
target signal ug and the identified glottal waveform is observed at
the nonlinear block output, as shown in Fig. 3. It can be seen
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Figure 3: Identification procedure. Upper plot: target periodic
glottal flow (solid line), output of the resonant filter from the target
periodic glottal flow (dashed line), and the training data window.
Lower plot: identified glottal waveform (dashed line) and target
training waveform (solid line).

that eight polynomial regressors (see Eq. (6)) allow to achieve an
accurate reconstruction of the target glottal flow waveform.

Even more interesting results are obtained in the closed loop
configuration, i.e. the configuration shown in Fig. 2; in this case
the feedback loop between the two functional blocks is closed af-
ter the oscillation has reached steady state, and then the system
evolves autonomously. In this configuration the system appears to
be stable and to maintain the target waveform, and can therefore be
used for resynthesis of the analyzed voiced sounds. The behavior
of the model in the closed loop configuration is shown in Fig. 4
(from sample 600 to sample 1500).

The physical information contained in the model can be ex-
ploited in order to introduce modifications in the resynthesized
sounds. An example is given by the resonance frequency !0 of
Hres. As already mentioned, in the IF model it is related to the
pitch of the glottal excitation signal; time simulations give evi-
dence that this characteristic is preserved in our model. The sec-
ond row of Fig. 4 shows the behavior of the system when !0 is
gradually increased from its initial value. It can be seen that the
pitch increases correspondingly, and that the glottal signal shape is
preserved with good accuracy.
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