patch-2.3.16 linux/include/asm-sh/pgtable.h
Next file: linux/include/asm-sh/poll.h
Previous file: linux/include/asm-sh/param.h
Back to the patch index
Back to the overall index
- Lines: 495
- Date:
Mon Aug 30 18:12:59 1999
- Orig file:
v2.3.15/linux/include/asm-sh/pgtable.h
- Orig date:
Wed Dec 31 16:00:00 1969
diff -u --recursive --new-file v2.3.15/linux/include/asm-sh/pgtable.h linux/include/asm-sh/pgtable.h
@@ -0,0 +1,494 @@
+#ifndef __ASM_SH_PGTABLE_H
+#define __ASM_SH_PGTABLE_H
+
+/* Copyright (C) 1999 Niibe Yutaka */
+
+#include <linux/config.h>
+
+/*
+ * This file contains the functions and defines necessary to modify and use
+ * the SuperH page table tree.
+ */
+#ifndef __ASSEMBLY__
+#include <asm/processor.h>
+#include <linux/threads.h>
+
+extern pgd_t swapper_pg_dir[1024];
+
+#ifdef CONFIG_CPU_SH3
+/* Cache flushing:
+ *
+ * - flush_cache_all() flushes entire cache
+ * - flush_cache_mm(mm) flushes the specified mm context's cache lines
+ * - flush_cache_page(mm, vmaddr) flushes a single page
+ * - flush_cache_range(mm, start, end) flushes a range of pages
+ * - flush_page_to_ram(page) write back kernel page to ram
+ *
+ * Caches are indexed (effectively) by physical address on SH-3, so
+ * we don't need them.
+ */
+#define flush_cache_all() do { } while (0)
+#define flush_cache_mm(mm) do { } while (0)
+#define flush_cache_range(mm, start, end) do { } while (0)
+#define flush_cache_page(vma, vmaddr) do { } while (0)
+#define flush_page_to_ram(page) do { } while (0)
+#define flush_icache_range(start, end) do { } while (0)
+#elif CONFIG_CPU_SH4
+/*
+ * Caches are broken on SH-4, so we need them.
+ * You do bad job!
+ */
+flush_cache_all()
+flush_cache_mm(mm)
+flush_cache_range(mm, start, end)
+flush_cache_page(vma, vmaddr)
+flush_page_to_ram(page)
+flush_icache_range(start, end)
+#endif
+
+/* TLB flushing:
+ *
+ * - flush_tlb_all() flushes all processes TLB entries
+ * - flush_tlb_mm(mm) flushes the specified mm context TLB entries
+ * - flush_tlb_page(mm, vmaddr) flushes a single page
+ * - flush_tlb_range(mm, start, end) flushes a range of pages
+ */
+extern void flush_tlb_all(void);
+extern void flush_tlb_mm(struct mm_struct *mm);
+extern void flush_tlb_range(struct mm_struct *mm, unsigned long start,
+ unsigned long end);
+extern void flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
+
+/*
+ * Basically we have the same two-level (which is the logical three level
+ * Linux page table layout folded) page tables as the i386.
+ */
+
+#endif /* !__ASSEMBLY__ */
+
+/* PMD_SHIFT determines the size of the area a second-level page table can map */
+#define PMD_SHIFT 22
+#define PMD_SIZE (1UL << PMD_SHIFT)
+#define PMD_MASK (~(PMD_SIZE-1))
+
+/* PGDIR_SHIFT determines what a third-level page table entry can map */
+#define PGDIR_SHIFT 22
+#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
+
+/*
+ * Entries per page directory level: we use two-level, so
+ * we don't really have any PMD directory physically.
+ */
+#define PTRS_PER_PTE 1024
+#define PTRS_PER_PMD 1
+#define PTRS_PER_PGD 1024
+#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
+
+#ifndef __ASSEMBLY__
+#define VMALLOC_START 0xc0000000
+#define VMALLOC_VMADDR(x) ((unsigned long)(x))
+#define VMALLOC_END 0xe0000000
+
+#define _PAGE_READ 0x001 /* software: read access alowed */
+#define _PAGE_ACCESSED 0x002 /* software: page referenced */
+#define _PAGE_DIRTY 0x004 /* D-bit : page changed */
+/* 0x008 */
+/* 0x010 */
+#define _PAGE_RW 0x020 /* PR0-bit : write access allowed */
+#define _PAGE_USER 0x040 /* PR1-bit : user space access allowed */
+/* 0x080 */
+#define _PAGE_PRESENT 0x100 /* V-bit : page is valid */
+
+/* Mask which drop software flags */
+#define _PAGE_FLAGS_HARDWARE_MASK 0xfffff164
+/* Flags defalult: SZ=1 (4k-byte), C=1 (cachable), SH=0 (not shared) */
+#define _PAGE_FLAGS_HARDWARE_DEFAULT 0x00000018
+
+
+#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
+#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
+#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
+
+#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
+#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
+#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
+#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
+#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
+#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
+
+/*
+ * As i386 and MIPS, SuperH can't do page protection for execute, and
+ * considers that the same are read. Also, write permissions imply
+ * read permissions. This is the closest we can get..
+ */
+
+#define __P000 PAGE_NONE
+#define __P001 PAGE_READONLY
+#define __P010 PAGE_COPY
+#define __P011 PAGE_COPY
+#define __P100 PAGE_READONLY
+#define __P101 PAGE_READONLY
+#define __P110 PAGE_COPY
+#define __P111 PAGE_COPY
+
+#define __S000 PAGE_NONE
+#define __S001 PAGE_READONLY
+#define __S010 PAGE_SHARED
+#define __S011 PAGE_SHARED
+#define __S100 PAGE_READONLY
+#define __S101 PAGE_READONLY
+#define __S110 PAGE_SHARED
+#define __S111 PAGE_SHARED
+
+/*
+ * BAD_PAGETABLE is used when we need a bogus page-table, while
+ * BAD_PAGE is used for a bogus page.
+ *
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern pte_t __bad_page(void);
+extern pte_t * __bad_pagetable(void);
+
+extern unsigned long empty_zero_page[1024];
+
+#define BAD_PAGETABLE __bad_pagetable()
+#define BAD_PAGE __bad_page()
+#define ZERO_PAGE(vaddr) ((unsigned long) empty_zero_page)
+
+/* number of bits that fit into a memory pointer */
+#define BITS_PER_PTR (8*sizeof(unsigned long))
+
+/* to align the pointer to a pointer address */
+#define PTR_MASK (~(sizeof(void*)-1))
+
+/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
+/* 64-bit machines, beware! SRB. */
+#define SIZEOF_PTR_LOG2 2
+
+/* to find an entry in a page-table */
+#define PAGE_PTR(address) \
+((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
+
+/* Certain architectures need to do special things when pte's
+ * within a page table are directly modified. Thus, the following
+ * hook is made available.
+ */
+extern __inline__ void set_pte(pte_t *ptep, pte_t pteval)
+{
+ *ptep = pteval;
+}
+
+extern __inline__ int pte_none(pte_t pte)
+{
+ return !pte_val(pte);
+}
+
+extern __inline__ int pte_present(pte_t pte)
+{
+ return pte_val(pte) & _PAGE_PRESENT;
+}
+
+extern __inline__ void pte_clear(pte_t *ptep)
+{
+ pte_val(*ptep) = 0;
+}
+
+extern __inline__ int pmd_none(pmd_t pmd)
+{
+ return !pmd_val(pmd);
+}
+
+#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
+
+extern __inline__ int pmd_present(pmd_t pmd)
+{
+ return pmd_val(pmd) & _PAGE_PRESENT;
+}
+
+extern __inline__ void pmd_clear(pmd_t *pmdp)
+{
+ pmd_val(*pmdp) = 0;
+}
+
+/*
+ * The "pgd_xxx()" functions here are trivial for a folded two-level
+ * setup: the pgd is never bad, and a pmd always exists (as it's folded
+ * into the pgd entry)
+ */
+extern __inline__ int pgd_none(pgd_t pgd) { return 0; }
+extern __inline__ int pgd_bad(pgd_t pgd) { return 0; }
+extern __inline__ int pgd_present(pgd_t pgd) { return 1; }
+extern __inline__ void pgd_clear(pgd_t * pgdp) { }
+
+/*
+ * The following only work if pte_present() is true.
+ * Undefined behaviour if not..
+ */
+extern __inline__ int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
+extern __inline__ int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
+extern __inline__ int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
+extern __inline__ int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
+extern __inline__ int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_RW; }
+
+extern __inline__ pte_t pte_rdprotect(pte_t pte){ pte_val(pte) &= ~_PAGE_USER; return pte; }
+extern __inline__ pte_t pte_exprotect(pte_t pte){ pte_val(pte) &= ~_PAGE_USER; return pte; }
+extern __inline__ pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
+extern __inline__ pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
+extern __inline__ pte_t pte_wrprotect(pte_t pte){ pte_val(pte) &= ~_PAGE_RW; return pte; }
+extern __inline__ pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
+extern __inline__ pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
+extern __inline__ pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
+extern __inline__ pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
+extern __inline__ pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
+
+/*
+ * Conversion functions: convert a page and protection to a page entry,
+ * and a page entry and page directory to the page they refer to.
+ */
+extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot)
+{
+ return __pte(__pa(page) | pgprot_val(pgprot));
+}
+
+/* This takes a physical page address that is used by the remapping functions */
+extern __inline__ pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
+{
+ return __pte(physpage | pgprot_val(pgprot));
+}
+
+extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot)
+{
+ return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
+}
+
+extern __inline__ unsigned long pte_page(pte_t pte)
+{
+ return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
+}
+
+extern __inline__ unsigned long pmd_page(pmd_t pmd)
+{
+ return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK);
+}
+
+extern __inline__ void pmd_set(pmd_t * pmdp, pte_t * ptep)
+{
+ pmd_val(*pmdp) = __pa(((unsigned long) ptep) & PAGE_MASK) | _PAGE_TABLE;
+}
+
+/* to find an entry in a kernel page-table-directory */
+#define pgd_offset_k(address) pgd_offset(&init_mm, address)
+
+/* to find an entry in a page-table-directory */
+extern __inline__ pgd_t *pgd_offset(struct mm_struct *mm, unsigned long addr)
+{
+ return mm->pgd + (addr >> PGDIR_SHIFT);
+}
+
+/* Find an entry in the second-level page table.. */
+extern __inline__ pmd_t * pmd_offset(pgd_t * dir, unsigned long addr)
+{
+ return (pmd_t *) dir;
+}
+
+/* Find an entry in the third-level page table.. */
+extern __inline__ pte_t *pte_offset(pmd_t * dir, unsigned long addr)
+{
+ return (pte_t *) (pmd_page(*dir)) +
+ ((addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
+}
+
+/*
+ * Allocate and free page tables. The xxx_kernel() versions are
+ * used to allocate a kernel page table - this turns on ASN bits
+ * if any.
+ */
+
+#define pgd_quicklist (current_cpu_data.pgd_quick)
+#define pmd_quicklist ((unsigned long *)0)
+#define pte_quicklist (current_cpu_data.pte_quick)
+#define pgtable_cache_size (current_cpu_data.pgtable_cache_sz)
+
+extern __inline__ pgd_t *get_pgd_slow(void)
+{
+ pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL);
+
+ if (ret) {
+ memset(ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
+ memcpy(ret + USER_PTRS_PER_PGD, swapper_pg_dir + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
+ }
+ return ret;
+}
+
+extern __inline__ pgd_t *get_pgd_fast(void)
+{
+ unsigned long *ret;
+
+ if ((ret = pgd_quicklist) != NULL) {
+ pgd_quicklist = (unsigned long *)(*ret);
+ ret[0] = 0;
+ pgtable_cache_size--;
+ } else
+ ret = (unsigned long *)get_pgd_slow();
+ return (pgd_t *)ret;
+}
+
+extern __inline__ void free_pgd_fast(pgd_t *pgd)
+{
+ *(unsigned long *)pgd = (unsigned long) pgd_quicklist;
+ pgd_quicklist = (unsigned long *) pgd;
+ pgtable_cache_size++;
+}
+
+extern __inline__ void free_pgd_slow(pgd_t *pgd)
+{
+ free_page((unsigned long)pgd);
+}
+
+extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
+extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted);
+
+extern __inline__ pte_t *get_pte_fast(void)
+{
+ unsigned long *ret;
+
+ if((ret = (unsigned long *)pte_quicklist) != NULL) {
+ pte_quicklist = (unsigned long *)(*ret);
+ ret[0] = ret[1];
+ pgtable_cache_size--;
+ }
+ return (pte_t *)ret;
+}
+
+extern __inline__ void free_pte_fast(pte_t *pte)
+{
+ *(unsigned long *)pte = (unsigned long) pte_quicklist;
+ pte_quicklist = (unsigned long *) pte;
+ pgtable_cache_size++;
+}
+
+extern __inline__ void free_pte_slow(pte_t *pte)
+{
+ free_page((unsigned long)pte);
+}
+
+/* We don't use pmd cache, so these are dummy routines */
+extern __inline__ pmd_t *get_pmd_fast(void)
+{
+ return (pmd_t *)0;
+}
+
+extern __inline__ void free_pmd_fast(pmd_t *pmd)
+{
+}
+
+extern __inline__ void free_pmd_slow(pmd_t *pmd)
+{
+}
+
+extern void __bad_pte(pmd_t *pmd);
+extern void __bad_pte_kernel(pmd_t *pmd);
+
+#define pte_free_kernel(pte) free_pte_slow(pte)
+#define pte_free(pte) free_pte_slow(pte)
+#define pgd_free(pgd) free_pgd_slow(pgd)
+#define pgd_alloc() get_pgd_fast()
+
+extern __inline__ pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
+{
+ address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+ if (pmd_none(*pmd)) {
+ pte_t *page = get_pte_fast();
+
+ if (!page)
+ return get_pte_kernel_slow(pmd, address);
+ pmd_set(pmd, page);
+ return page + address;
+ }
+ if (pmd_bad(*pmd)) {
+ __bad_pte_kernel(pmd);
+ return NULL;
+ }
+ return (pte_t *) pmd_page(*pmd) + address;
+}
+
+extern __inline__ pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
+{
+ address = (address >> (PAGE_SHIFT-2)) & 4*(PTRS_PER_PTE - 1);
+
+ if (pmd_none(*pmd))
+ goto getnew;
+ if (pmd_bad(*pmd))
+ goto fix;
+ return (pte_t *) (pmd_page(*pmd) + address);
+getnew:
+{
+ unsigned long page = (unsigned long) get_pte_fast();
+
+ if (!page)
+ return get_pte_slow(pmd, address);
+ pmd_val(*pmd) = _PAGE_TABLE + __pa(page);
+ return (pte_t *) (page + address);
+}
+fix:
+ __bad_pte(pmd);
+ return NULL;
+}
+
+/*
+ * allocating and freeing a pmd is trivial: the 1-entry pmd is
+ * inside the pgd, so has no extra memory associated with it.
+ */
+extern inline void pmd_free(pmd_t * pmd)
+{
+}
+
+extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
+{
+ return (pmd_t *) pgd;
+}
+
+#define pmd_free_kernel pmd_free
+#define pmd_alloc_kernel pmd_alloc
+
+extern int do_check_pgt_cache(int, int);
+
+extern inline void set_pgdir(unsigned long address, pgd_t entry)
+{
+ struct task_struct * p;
+ pgd_t *pgd;
+
+ read_lock(&tasklist_lock);
+ for_each_task(p) {
+ if (!p->mm)
+ continue;
+ *pgd_offset(p->mm,address) = entry;
+ }
+ read_unlock(&tasklist_lock);
+ for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
+ pgd[address >> PGDIR_SHIFT] = entry;
+}
+
+extern pgd_t swapper_pg_dir[1024];
+
+extern void update_mmu_cache(struct vm_area_struct * vma,
+ unsigned long address, pte_t pte);
+
+#define SWP_TYPE(entry) (((entry) >> 1) & 0x3f)
+#define SWP_OFFSET(entry) ((entry) >> 8)
+#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
+
+#define module_map vmalloc
+#define module_unmap vfree
+
+#endif /* !__ASSEMBLY__ */
+
+/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
+#define PageSkip(page) (0)
+#define kern_addr_valid(addr) (1)
+
+#define io_remap_page_range remap_page_range
+
+#endif /* __ASM_SH_PAGE_H */
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)