
C S C

ElmerSolver Command File
Thomas Zwinger

thomas.zwinger[at]csc.fi

Computational Environment & Application

CSC–Scientific Computing Ltd.

The Finnish IT center for science

Espoo, Finland

Elmer UGM – p.1/24

C S C

Contents
The Solver Input File (SIF)

Header

Simulation

Solver

Body

Equation

Bodyforce

Material

Initial Conditions

Boundary Conditions

Bodies on Boundaries

Tables

MATC

User Defined Functions

User Defined Subroutine

Multiple Meshes

Element Types

Specialities

Elmer parallel version

Elmer UGM – p.2/24

C S C

The Solver Input File (SIF)

contains all the information for the solution step,
ElmerSolver mpi

can be exported by ElmerGUI (also ElmerFront) . . .

. . . but simply also composed using a text editor

The Rules:

comments start with !

Important: do not use tabulators for indents!

a section always ends with the keyword End

parameters (except from Elmer keyword database) need to be
casted by their types: Integer Real Logical String File

Parametername(n,m) indicates a n×m array

Elmer UGM – p.3/24

C S C

The Solver Input File (SIF)

contains all the information for the solution step,
ElmerSolver mpi

can be exported by ElmerGUI (also ElmerFront) . . .

. . . but simply also composed using a text editor

The Rules:

comments start with !

Important: do not use tabulators for indents!

a section always ends with the keyword End

parameters (except from Elmer keyword database) need to be
casted by their types: Integer Real Logical String File

Parametername(n,m) indicates a n×m array

Elmer UGM – p.3/24

C S C

The Solver Input File (SIF)

contains all the information for the solution step,
ElmerSolver mpi

can be exported by ElmerGUI (also ElmerFront) . . .

. . . but simply also composed using a text editor

The Rules:

comments start with !

Important: do not use tabulators for indents!

a section always ends with the keyword End

parameters (except from Elmer keyword database) need to be
casted by their types: Integer Real Logical String File

Parametername(n,m) indicates a n×m array

Elmer UGM – p.3/24

C S C

The Solver Input File (SIF)

contains all the information for the solution step,
ElmerSolver mpi

can be exported by ElmerGUI (also ElmerFront) . . .

. . . but simply also composed using a text editor

The Rules:

comments start with !

Important: do not use tabulators for indents!

a section always ends with the keyword End

parameters (except from Elmer keyword database) need to be
casted by their types: Integer Real Logical String File

Parametername(n,m) indicates a n×m array

Elmer UGM – p.3/24

C S C

The Solver Input File (SIF)

contains all the information for the solution step,
ElmerSolver mpi

can be exported by ElmerGUI (also ElmerFront) . . .

. . . but simply also composed using a text editor

The Rules:

comments start with !

Important: do not use tabulators for indents!

a section always ends with the keyword End

parameters (except from Elmer keyword database) need to be
casted by their types: Integer Real Logical String File

Parametername(n,m) indicates a n×m array

Elmer UGM – p.3/24

C S C

The Solver Input File (SIF)

contains all the information for the solution step,
ElmerSolver mpi

can be exported by ElmerGUI (also ElmerFront) . . .

. . . but simply also composed using a text editor

The Rules:

comments start with !

Important: do not use tabulators for indents!

a section always ends with the keyword End

parameters (except from Elmer keyword database) need to be
casted by their types: Integer Real Logical String File

Parametername(n,m) indicates a n×m array

Elmer UGM – p.3/24

C S C

The Solver Input File (SIF)

contains all the information for the solution step,
ElmerSolver mpi

can be exported by ElmerGUI (also ElmerFront) . . .

. . . but simply also composed using a text editor

The Rules:

comments start with !

Important: do not use tabulators for indents!

a section always ends with the keyword End

parameters (except from Elmer keyword database) need to be
casted by their types: Integer Real Logical String File

Parametername(n,m) indicates a n×m array

Elmer UGM – p.3/24

C S C

The Solver Input File (SIF)

contains all the information for the solution step,
ElmerSolver mpi

can be exported by ElmerGUI (also ElmerFront) . . .

. . . but simply also composed using a text editor

The Rules:

comments start with !

Important: do not use tabulators for indents!

a section always ends with the keyword End

parameters (except from Elmer keyword database) need to be
casted by their types: Integer Real Logical String File

Parametername(n,m) indicates a n×m array

Elmer UGM – p.3/24

C S C

The Solver Input File (SIF)

contains all the information for the solution step,
ElmerSolver mpi

can be exported by ElmerGUI (also ElmerFront) . . .

. . . but simply also composed using a text editor

The Rules:

comments start with !

Important: do not use tabulators for indents!

a section always ends with the keyword End

parameters (except from Elmer keyword database) need to be
casted by their types: Integer Real Logical String File

Parametername(n,m) indicates a n×m array

Elmer UGM – p.3/24

C S C

Header

The header declares where to search for the mesh database

Header

Mesh DB "." "dirname" preceding path + directory name of mesh database

End

Elmer UGM – p.4/24

C S C

Constants

Declaration of constant values that can be obtained from within every
solver and boundary condition subroutine or function, can be declared.

Constants

Gas Constant = Real 8.314E00 a scalar constant

Gravity (4) = 0 -1 0 9.81 Gravity vector, an array with a registered name

End

Elmer UGM – p.5/24

C S C

Simulation
Principle declarations for simulation
Simulation

Coordinate System = "Cartesian 2D" choices: Cartesian {1D,2D,3D},

Polar {2D,3D}, Cylindric,

Cylindric Symmetric, Axi

Symmetric

Coordinate Mapping(3) = Integer 1 2 3 permute, if you want to interchange directions

Simulation Type ="Steady" either Steady or Transient

Output Intervals = 1 how often you want to have results

Steady State Max Iterations = 10 maximum rounds on one time level

Steady State Min Iterations = 2 minimum rounds on one Timestep

Output File = "name.result" contains data to restart run

Post File = "name.ep" ElmerPost-file

max output level = n n=1 talkative like a Finnish lumberjack,

n=42 all and everything

End

Elmer UGM – p.6/24

C S C

Solver
Example: (Navier) Stokes solver
Solver 1

Equation = "Navier-Stokes" name of the solver

Linear System Solver = "Direct" alt. Iterative

Linear System Direct Method = "UMFPack"

Linear System Convergence Tolerance = 1.0E-06 not used

Linear System Abort Not Converged = True

Steady State Convergence Tolerance = 1.0E-03

Stabilization Method = Stabilized

Nonlinear System Convergence Tolerance = 1.0E-05

Nonlinear System Max Iterations = 40 a non-linear problem

Nonlinear System Min Iterations = 1

Nonlinear System Newton After Iterations = 30 Newton iter.

Nonlinear System Newton After Tolerance = 1.0E-05

End

Elmer UGM – p.7/24

C S C

Body

Here the different bodies (there can be more than one) get their
Equation, Material, Body Force and Initial
Condition assigned

Body 2 there can be more than one body

Name = "identifier" give the body a name

Equation = 1 one Equation/Material/

Material = 2 Body Force/Initial Condition

Body Force = 1 can serve several bodies

Initial Condition = 1

End

Elmer UGM – p.8/24

C S C

Equation

set active solvers

give keywords for the behaviour of different solvers

Equation 1

Active Solvers(2) = 1 2

Convection = Computed

Flow Solution Name = String "Flow Solution"

NS Convect = False

End

Elmer UGM – p.9/24

C S C

Bodyforce

declares the solver-specific f from A · Ψ = f for the body

body force can also be a dependent function (see later).

Here for the (Navier) Stokes solver
Body Force 1

Flow BodyForce 1 = 0.0

Flow BodyForce 2 = -9.81 ! good old gravity

End

Elmer UGM – p.10/24

C S C

Material

sets material properties for the body.

material properties can be scalars or tensors and also

can be given as dependent function/expression

Material 1

Density = 918.0

Heat Capacity = Variable Temperature dependence

MATC "2.1275D03 + 7.253D00*(tx - 273.16)" a MATC expression (see later)

My Variable = Real 1002.0 not in keyword DB!

End

Elmer UGM – p.11/24

C S C

Initial Conditions

initializes variable values

sets initial guess for steady state simulation

sets initial value for transient simulation

variable values can be functions/expressions

Initial Condition 1

Velocity 1 = 0.0

Velocity 2 = Variable Coordinate 1 dependence

MATC "initialvelocity(tx)" a MATC function (see later)

Pressure = 0.0

My Variable = Real 0.0 not in keyword DB

End

Elmer UGM – p.12/24

C S C

Boundary Conditions

Dirichlet: variablename = value

Neumann: often enabled with keyword (e.g., HTEqu. Heat Flux
BC = True) followed by the flux value

No BC ≡ Natural BC!

values can be given as functions

Example: (Navier) Stokes with no penetration (normal) and free slip
(tangential)
Boundary Condition 1

Name = "slip" name

Target Boundaries = 4 refers to boundary no. 4 in mesh

Normal-Tangential Velocity = Logical True components with respect to surface normal

Velocity 1 = Real 0.0 normal component

End

Elmer UGM – p.13/24

C S C

Bodies on Boundaries

need to solve (dimension-1) PDEs (e.g., kinematic BC on free
surface)

need to define the (dimension-1) entity as a separate body

in the corresponding Boundary-section:
Body ID = n with n > highest occurring body in the mesh

define Body Force, Material, Equation and Initial Condition for
that body

full dimensional metric is still valid on the BC body ⇒ has to be
taken into account in user supplied subroutines

Elmer UGM – p.14/24

C S C

Bodies on Boundaries

need to solve (dimension-1) PDEs (e.g., kinematic BC on free
surface)

need to define the (dimension-1) entity as a separate body

in the corresponding Boundary-section:
Body ID = n with n > highest occurring body in the mesh

define Body Force, Material, Equation and Initial Condition for
that body

full dimensional metric is still valid on the BC body ⇒ has to be
taken into account in user supplied subroutines

Elmer UGM – p.14/24

C S C

Bodies on Boundaries

need to solve (dimension-1) PDEs (e.g., kinematic BC on free
surface)

need to define the (dimension-1) entity as a separate body

in the corresponding Boundary-section:
Body ID = n with n > highest occurring body in the mesh

define Body Force, Material, Equation and Initial Condition for
that body

full dimensional metric is still valid on the BC body ⇒ has to be
taken into account in user supplied subroutines

Elmer UGM – p.14/24

C S C

Bodies on Boundaries

need to solve (dimension-1) PDEs (e.g., kinematic BC on free
surface)

need to define the (dimension-1) entity as a separate body

in the corresponding Boundary-section:
Body ID = n with n > highest occurring body in the mesh

define Body Force, Material, Equation and Initial Condition for
that body

full dimensional metric is still valid on the BC body ⇒ has to be
taken into account in user supplied subroutines

Elmer UGM – p.14/24

C S C

Bodies on Boundaries

need to solve (dimension-1) PDEs (e.g., kinematic BC on free
surface)

need to define the (dimension-1) entity as a separate body

in the corresponding Boundary-section:
Body ID = n with n > highest occurring body in the mesh

define Body Force, Material, Equation and Initial Condition for
that body

full dimensional metric is still valid on the BC body ⇒ has to be
taken into account in user supplied subroutines

Elmer UGM – p.14/24

C S C

Tables and Arrays

Tables may be used for piecewise linear dependency of a variable

Density = Variable Temperature

Real

0 900

273 1000

300 1020

400 1000

End

Arrays may be used to declare vector/tensor parameters

Target Boundaries(3) = 2 4 5

My Parameter Array(3,3) = Real 1 2 3 \

4 5 6 \

7 8 9

Elmer UGM – p.15/24

C S C

Tables and Arrays

Tables may be used for piecewise linear dependency of a variable

Density = Variable Temperature

Real

0 900

273 1000

300 1020

400 1000

End

Arrays may be used to declare vector/tensor parameters

Target Boundaries(3) = 2 4 5

My Parameter Array(3,3) = Real 1 2 3 \

4 5 6 \

7 8 9

Elmer UGM – p.15/24

C S C

Tables and Arrays

Tables may be used for piecewise linear dependency of a variable

Density = Variable Temperature

Real

0 900

273 1000

300 1020

400 1000

End

Arrays may be used to declare vector/tensor parameters

Target Boundaries(3) = 2 4 5

My Parameter Array(3,3) = Real 1 2 3 \

4 5 6 \

7 8 9

Elmer UGM – p.15/24

C S C

Tables and Arrays

Tables may be used for piecewise linear dependency of a variable

Density = Variable Temperature

Real

0 900

273 1000

300 1020

400 1000

End

Arrays may be used to declare vector/tensor parameters

Target Boundaries(3) = 2 4 5

My Parameter Array(3,3) = Real 1 2 3 \

4 5 6 \

7 8 9

Elmer UGM – p.15/24

C S C

MATC

library for the numerical evaluation of mathematical expressions

defined in SIF for use in ElmerSolver

or by ElmerPost as post-processing feature
e.g. K →

◦C: math Celsius = Temperature + 273.16

very close to C-syntax

also logical evaluations (if) and loops (for)

documentation on Funet (MATC Manual)

Elmer UGM – p.16/24

http://www.nic.funet.fi/pub/sci/physics/elmer/doc/MATCManual.pdf

C S C

MATC

library for the numerical evaluation of mathematical expressions

defined in SIF for use in ElmerSolver

or by ElmerPost as post-processing feature
e.g. K →

◦C: math Celsius = Temperature + 273.16

very close to C-syntax

also logical evaluations (if) and loops (for)

documentation on Funet (MATC Manual)

Elmer UGM – p.16/24

http://www.nic.funet.fi/pub/sci/physics/elmer/doc/MATCManual.pdf

C S C

MATC

library for the numerical evaluation of mathematical expressions

defined in SIF for use in ElmerSolver

or by ElmerPost as post-processing feature
e.g. K →

◦C: math Celsius = Temperature + 273.16

very close to C-syntax

also logical evaluations (if) and loops (for)

documentation on Funet (MATC Manual)

Elmer UGM – p.16/24

http://www.nic.funet.fi/pub/sci/physics/elmer/doc/MATCManual.pdf

C S C

MATC

library for the numerical evaluation of mathematical expressions

defined in SIF for use in ElmerSolver

or by ElmerPost as post-processing feature
e.g. K →

◦C: math Celsius = Temperature + 273.16

very close to C-syntax

also logical evaluations (if) and loops (for)

documentation on Funet (MATC Manual)

Elmer UGM – p.16/24

http://www.nic.funet.fi/pub/sci/physics/elmer/doc/MATCManual.pdf

C S C

MATC

library for the numerical evaluation of mathematical expressions

defined in SIF for use in ElmerSolver

or by ElmerPost as post-processing feature
e.g. K →

◦C: math Celsius = Temperature + 273.16

very close to C-syntax

also logical evaluations (if) and loops (for)

documentation on Funet (MATC Manual)

Elmer UGM – p.16/24

http://www.nic.funet.fi/pub/sci/physics/elmer/doc/MATCManual.pdf

C S C

MATC

library for the numerical evaluation of mathematical expressions

defined in SIF for use in ElmerSolver

or by ElmerPost as post-processing feature
e.g. K →

◦C: math Celsius = Temperature + 273.16

very close to C-syntax

also logical evaluations (if) and loops (for)

documentation on Funet (MATC Manual)

Elmer UGM – p.16/24

http://www.nic.funet.fi/pub/sci/physics/elmer/doc/MATCManual.pdf

C S C

MATC contd.
simple numerical evaluation:
Viscosity Exponent = Real MATC "1.0/3.0" or

Viscosity Exponent = Real $1.0/3.0

as an expression dependent on a variable:
Heat Capacity = Variable Temperature

Real MATC "2.1275D03 + 7.253D00*(tx - 273.16)"

as an expression of multiple variables:
Temp = Variable Latitude, Coordinate 3

Real MATC "49.13 + 273.16 - 0.7576 * tx(0) - 7.992E-03 * tx(1)"

as function defined at the top of SIF:
$ function stemp(X) { stemp = 49.13 + 273.16 - 0.7576*X(0)

- 7.992E-03*X(1) }

Temp = Variable Latitude, Coordinate 3

Real MATC "stemp(tx)"

Elmer UGM – p.17/24

C S C

MATC contd.
simple numerical evaluation:
Viscosity Exponent = Real MATC "1.0/3.0" or

Viscosity Exponent = Real $1.0/3.0

as an expression dependent on a variable:
Heat Capacity = Variable Temperature

Real MATC "2.1275D03 + 7.253D00*(tx - 273.16)"

as an expression of multiple variables:
Temp = Variable Latitude, Coordinate 3

Real MATC "49.13 + 273.16 - 0.7576 * tx(0) - 7.992E-03 * tx(1)"

as function defined at the top of SIF:
$ function stemp(X) { stemp = 49.13 + 273.16 - 0.7576*X(0)

- 7.992E-03*X(1) }

Temp = Variable Latitude, Coordinate 3

Real MATC "stemp(tx)"

Elmer UGM – p.17/24

C S C

MATC contd.
simple numerical evaluation:
Viscosity Exponent = Real MATC "1.0/3.0" or

Viscosity Exponent = Real $1.0/3.0

as an expression dependent on a variable:
Heat Capacity = Variable Temperature

Real MATC "2.1275D03 + 7.253D00*(tx - 273.16)"

as an expression of multiple variables:
Temp = Variable Latitude, Coordinate 3

Real MATC "49.13 + 273.16 - 0.7576 * tx(0) - 7.992E-03 * tx(1)"

as function defined at the top of SIF:
$ function stemp(X) { stemp = 49.13 + 273.16 - 0.7576*X(0)

- 7.992E-03*X(1) }

Temp = Variable Latitude, Coordinate 3

Real MATC "stemp(tx)"

Elmer UGM – p.17/24

C S C

MATC contd.
simple numerical evaluation:
Viscosity Exponent = Real MATC "1.0/3.0" or

Viscosity Exponent = Real $1.0/3.0

as an expression dependent on a variable:
Heat Capacity = Variable Temperature

Real MATC "2.1275D03 + 7.253D00*(tx - 273.16)"

as an expression of multiple variables:
Temp = Variable Latitude, Coordinate 3

Real MATC "49.13 + 273.16 - 0.7576 * tx(0) - 7.992E-03 * tx(1)"

as function defined at the top of SIF:
$ function stemp(X) { stemp = 49.13 + 273.16 - 0.7576*X(0)

- 7.992E-03*X(1) }

Temp = Variable Latitude, Coordinate 3

Real MATC "stemp(tx)"

Elmer UGM – p.17/24

C S C

User Defined Functions

Example: ρ(T (◦C)) = 1000 · [1 − 10−4 · (T − 273.0)]

FUNCTION getdensity(Model, n, T) RESULT(dens)

USE DefUtils

IMPLICIT None

TYPE(Model t) :: Model

INTEGER :: n

REAL(KIND=dp) :: T, dens

dens = 1000*(1-1.0d-4(T-273.0d0))

END FUNCTION getdensity

compile: elmerf90 mydensity.f90 -o mydensity

in SIF:
Density = Variable Temperature

Procedure "mydensity" "getdensity"

Elmer UGM – p.18/24

C S C

User Defined Functions

Example: ρ(T (◦C)) = 1000 · [1 − 10−4 · (T − 273.0)]

FUNCTION getdensity(Model, n, T) RESULT(dens)

USE DefUtils

IMPLICIT None

TYPE(Model t) :: Model

INTEGER :: n

REAL(KIND=dp) :: T, dens

dens = 1000*(1-1.0d-4(T-273.0d0))

END FUNCTION getdensity

compile: elmerf90 mydensity.f90 -o mydensity

in SIF:
Density = Variable Temperature

Procedure "mydensity" "getdensity"

Elmer UGM – p.18/24

C S C

User Defined Functions

Example: ρ(T (◦C)) = 1000 · [1 − 10−4 · (T − 273.0)]

FUNCTION getdensity(Model, n, T) RESULT(dens)

USE DefUtils

IMPLICIT None

TYPE(Model t) :: Model

INTEGER :: n

REAL(KIND=dp) :: T, dens

dens = 1000*(1-1.0d-4(T-273.0d0))

END FUNCTION getdensity

compile: elmerf90 mydensity.f90 -o mydensity

in SIF:
Density = Variable Temperature

Procedure "mydensity" "getdensity"

Elmer UGM – p.18/24

C S C

User Defined Functions

Example: ρ(T (◦C)) = 1000 · [1 − 10−4 · (T − 273.0)]

FUNCTION getdensity(Model, n, T) RESULT(dens)

USE DefUtils

IMPLICIT None

TYPE(Model t) :: Model

INTEGER :: n

REAL(KIND=dp) :: T, dens

dens = 1000*(1-1.0d-4(T-273.0d0))

END FUNCTION getdensity

compile: elmerf90 mydensity.f90 -o mydensity

in SIF:
Density = Variable Temperature

Procedure "mydensity" "getdensity"

Elmer UGM – p.18/24

C S C

User Defined Subroutines
RECURSIVE SUBROUTINE &

mysolver(Model,Solver,dt,TransientSimulation)

TYPE(Model t) :: Model

TYPE(Solver t) :: Solver

REAL(KIND=dp) :: dt

LOGICAL :: TransientSimulation

...

assembly, solution

...

END SUBROUTINE mysolver

Elmer UGM – p.19/24

C S C

User Defined Subroutines
RECURSIVE SUBROUTINE &

mysolver(Model,Solver,dt,TransientSimulation)

TYPE(Model t) :: Model

TYPE(Solver t) :: Solver

REAL(KIND=dp) :: dt

LOGICAL :: TransientSimulation

...

assembly, solution

...

END SUBROUTINE mysolver

Model pointer to the whole Model (solvers, variables)

Solver pointer to the particular solver

dt current time step size

TransientSimulation .TRUE. if transient simulation

Elmer UGM – p.19/24

C S C

User Defined Subroutines
RECURSIVE SUBROUTINE &

mysolver(Model,Solver,dt,TransientSimulation)

TYPE(Model t) :: Model

TYPE(Solver t) :: Solver

REAL(KIND=dp) :: dt

LOGICAL :: TransientSimulation

...

assembly, solution

...

END SUBROUTINE mysolver

Model pointer to the whole Model (solvers, variables)

Solver pointer to the particular solver

dt current time step size

TransientSimulation .TRUE. if transient simulation

compile:

elmerf90 mysolverfile.f90 -o mysolverexe

Elmer UGM – p.19/24

C S C

User Defined Subroutines
RECURSIVE SUBROUTINE &

mysolver(Model,Solver,dt,TransientSimulation)

TYPE(Model t) :: Model

TYPE(Solver t) :: Solver

REAL(KIND=dp) :: dt

LOGICAL :: TransientSimulation

...

assembly, solution

...

END SUBROUTINE mysolver

Model pointer to the whole Model (solvers, variables)

Solver pointer to the particular solver

dt current time step size

TransientSimulation .TRUE. if transient simulation

compile: elmerf90 mysolverfile.f90 -o mysolverexe SIF:

Procedure = "/path/to/mysolverexe" "mysolver"

Elmer UGM – p.19/24

C S C

User Defined Subroutines contd.

Pre-defined routines

CALL

DefaultInitialize()

CALL

DefaultUpdateEquations(

STIFF, FORCE)

CALL

DefaultFinishAssembly()

CALL

DefaultDirichletBCs()

Norm =

DefaultSolve()

subroutine inside
the solver routine

subroutine inside
the solver routine

often provided as

often provided as

ElmerSolver Main

until last timestep

relative change of norms < Steady State Tolerance

Timestepping loop

User Subroutine

Steady state iteration (coupled system)

Initialization

Nonlinear iteration loop

relative change of norms < Nonlinear Tolerance

Domain element loop

Matrix assembly for domain element

until last bulk element

Boundary element loop

Matrix assembly for von Neumann and
Newton conditions at boundary element

until last boundary element

set Dirichlet boundary conditions

solve the system

 or
nonlinear max. iterations exceeded

Elmer UGM – p.20/24

C S C

User Defined Subroutines contd.

Pre-defined routines

CALL

DefaultInitialize()

CALL

DefaultUpdateEquations(

STIFF, FORCE)

CALL

DefaultFinishAssembly()

CALL

DefaultDirichletBCs()

Norm =

DefaultSolve()

subroutine inside
the solver routine

subroutine inside
the solver routine

often provided as

often provided as

ElmerSolver Main

until last timestep

relative change of norms < Steady State Tolerance

Timestepping loop

User Subroutine

Steady state iteration (coupled system)

Initialization

Nonlinear iteration loop

relative change of norms < Nonlinear Tolerance

Domain element loop

Matrix assembly for domain element

until last bulk element

Boundary element loop

Matrix assembly for von Neumann and
Newton conditions at boundary element

until last boundary element

set Dirichlet boundary conditions

solve the system

 or
nonlinear max. iterations exceeded

Elmer UGM – p.20/24

C S C

Multiple Meshes

In the Header, declare the global mesh database
Mesh DB "." "dirname"

In the Solver, declare the local mesh the solver is run on:
Mesh = File "/path/to/" "mesh"

variable values will be interpolated

they will boldly be extrapolated, should your meshes not be
congruent!

Elmer UGM – p.21/24

C S C

Multiple Meshes

In the Header, declare the global mesh database
Mesh DB "." "dirname"

In the Solver, declare the local mesh the solver is run on:
Mesh = File "/path/to/" "mesh"

variable values will be interpolated

they will boldly be extrapolated, should your meshes not be
congruent!

Elmer UGM – p.21/24

C S C

Multiple Meshes

In the Header, declare the global mesh database
Mesh DB "." "dirname"

In the Solver, declare the local mesh the solver is run on:
Mesh = File "/path/to/" "mesh"

variable values will be interpolated

they will boldly be extrapolated, should your meshes not be
congruent!

Elmer UGM – p.21/24

C S C

Multiple Meshes

In the Header, declare the global mesh database
Mesh DB "." "dirname"

In the Solver, declare the local mesh the solver is run on:
Mesh = File "/path/to/" "mesh"

variable values will be interpolated

they will boldly be extrapolated, should your meshes not be
congruent!

Elmer UGM – p.21/24

C S C

Element Types

In section Equation:

Element = [n:#dofs d:#dofs p:#dofs b:#dofs e:#dofs f:#dofs]

n . . . nodal, d . . . DG element, p p-element, b . . . bubble, e . . . edge, f . . . face DOFs

Element = [d:0] . . . DG DOFs ≡ mesh element nodes

If Equation applies to more than one solver, Element = ...

applies for all solver.

selectively for each solver: Element[1] = ...

Element[2] = ...
...

Element[n] = ...

Elmer UGM – p.22/24

C S C

Element Types

In section Equation:

Element = [n:#dofs d:#dofs p:#dofs b:#dofs e:#dofs f:#dofs]

n . . . nodal, d . . . DG element, p p-element, b . . . bubble, e . . . edge, f . . . face DOFs

Element = [d:0] . . . DG DOFs ≡ mesh element nodes

If Equation applies to more than one solver, Element = ...

applies for all solver.

selectively for each solver: Element[1] = ...

Element[2] = ...
...

Element[n] = ...

Elmer UGM – p.22/24

C S C

Element Types

In section Equation:

Element = [n:#dofs d:#dofs p:#dofs b:#dofs e:#dofs f:#dofs]

n . . . nodal, d . . . DG element, p p-element, b . . . bubble, e . . . edge, f . . . face DOFs

Element = [d:0] . . . DG DOFs ≡ mesh element nodes

If Equation applies to more than one solver, Element = ...

applies for all solver.

selectively for each solver: Element[1] = ...

Element[2] = ...
...

Element[n] = ...

Elmer UGM – p.22/24

C S C

Element Types

In section Equation:

Element = [n:#dofs d:#dofs p:#dofs b:#dofs e:#dofs f:#dofs]

n . . . nodal, d . . . DG element, p p-element, b . . . bubble, e . . . edge, f . . . face DOFs

Element = [d:0] . . . DG DOFs ≡ mesh element nodes

If Equation applies to more than one solver, Element = ...

applies for all solver.

selectively for each solver: Element[1] = ...

Element[2] = ...
...

Element[n] = ...

Elmer UGM – p.22/24

C S C

Element Types

In section Equation:

Element = [n:#dofs d:#dofs p:#dofs b:#dofs e:#dofs f:#dofs]

n . . . nodal, d . . . DG element, p p-element, b . . . bubble, e . . . edge, f . . . face DOFs

Element = [d:0] . . . DG DOFs ≡ mesh element nodes

If Equation applies to more than one solver, Element = ...

applies for all solver.

selectively for each solver: Element[1] = ...

Element[2] = ...
...

Element[n] = ...

Elmer UGM – p.22/24

C S C

Specialities

given names for components of vector fields:
Variable = var name[cname 1:#dofs cname 2:#dofs ...]

”internal” Solver can be run as external Procedure (enabling
definition of variable names)
Procedure = "FlowSolve" "FlowSolver"

Variable = Flow[Veloc:3 Pres:1]

Residuals of solver variables (e.g., Navier Stokes):
Procedure = "FlowSolve" "FlowSolver"

Variable = Flow[Veloc:3 Pres:1]

Exported Variable 1 = Flow Loads[Stress Vector:3 CEQ Residual:1]

Solver execution:
Exec Solver = {Before Simulation, After Simulation, Never, Always}

Elmer UGM – p.23/24

C S C

Specialities

given names for components of vector fields:
Variable = var name[cname 1:#dofs cname 2:#dofs ...]

”internal” Solver can be run as external Procedure (enabling
definition of variable names)
Procedure = "FlowSolve" "FlowSolver"

Variable = Flow[Veloc:3 Pres:1]

Residuals of solver variables (e.g., Navier Stokes):
Procedure = "FlowSolve" "FlowSolver"

Variable = Flow[Veloc:3 Pres:1]

Exported Variable 1 = Flow Loads[Stress Vector:3 CEQ Residual:1]

Solver execution:
Exec Solver = {Before Simulation, After Simulation, Never, Always}

Elmer UGM – p.23/24

C S C

Specialities

given names for components of vector fields:
Variable = var name[cname 1:#dofs cname 2:#dofs ...]

”internal” Solver can be run as external Procedure (enabling
definition of variable names)
Procedure = "FlowSolve" "FlowSolver"

Variable = Flow[Veloc:3 Pres:1]

Residuals of solver variables (e.g., Navier Stokes):
Procedure = "FlowSolve" "FlowSolver"

Variable = Flow[Veloc:3 Pres:1]

Exported Variable 1 = Flow Loads[Stress Vector:3 CEQ Residual:1]

Solver execution:
Exec Solver = {Before Simulation, After Simulation, Never, Always}

Elmer UGM – p.23/24

C S C

Specialities

given names for components of vector fields:
Variable = var name[cname 1:#dofs cname 2:#dofs ...]

”internal” Solver can be run as external Procedure (enabling
definition of variable names)
Procedure = "FlowSolve" "FlowSolver"

Variable = Flow[Veloc:3 Pres:1]

Residuals of solver variables (e.g., Navier Stokes):
Procedure = "FlowSolve" "FlowSolver"

Variable = Flow[Veloc:3 Pres:1]

Exported Variable 1 = Flow Loads[Stress Vector:3 CEQ Residual:1]

Solver execution:
Exec Solver = {Before Simulation, After Simulation, Never, Always}

Elmer UGM – p.23/24

C S C

Elmer Parallel Version

Pre-processing: ElmerGrid with options:
Partition by direction:

-partition 2 2 1 0 First partition elements (default)

-partition 2 2 1 1 First partition nodes

2 × 2 × = 4

Partition using METIS:

-metis n 0 PartMeshNodal (default)

-metis n 1 PartGraphRecursive

-metis n 2 PartGraphKway

-metis n 3 PartGraphVKway

Execution: mpirun -np n ElmerSolver mpi

Combining parallel results: in mesh-database directory
ElmerGrid 15 3 name

Elmer UGM – p.24/24

C S C

Elmer Parallel Version

Pre-processing: ElmerGrid with options:
Partition by direction:

-partition 2 2 1 0 First partition elements (default)

-partition 2 2 1 1 First partition nodes

2 × 2 × = 4

Partition using METIS:

-metis n 0 PartMeshNodal (default)

-metis n 1 PartGraphRecursive

-metis n 2 PartGraphKway

-metis n 3 PartGraphVKway

Execution: mpirun -np n ElmerSolver mpi

Combining parallel results: in mesh-database directory
ElmerGrid 15 3 name

Elmer UGM – p.24/24

C S C

Elmer Parallel Version

Pre-processing: ElmerGrid with options:
Partition by direction:

-partition 2 2 1 0 First partition elements (default)

-partition 2 2 1 1 First partition nodes

2 × 2 × = 4

Partition using METIS:

-metis n 0 PartMeshNodal (default)

-metis n 1 PartGraphRecursive

-metis n 2 PartGraphKway

-metis n 3 PartGraphVKway

Execution: mpirun -np n ElmerSolver mpi

Combining parallel results: in mesh-database directory
ElmerGrid 15 3 name

Elmer UGM – p.24/24

	Contents
	The Solver Input File (SIF)
	Header
	Constants
	Simulation
	Solver
	Body
	Equation
	Bodyforce
	Material
	Initial Conditions
	Boundary Conditions
	Bodies on Boundaries
	Tables and Arrays
	MATC
	MATC contd.
	User Defined Functions
	User Defined Subroutines
	User Defined Subroutines contd.
	Multiple Meshes
	Element Types
	Specialities
	Elmer Parallel Version

