
D.Sc. Peter Råback
CSC – IT Center for Science

PATC course on parallel workflows

Stockholm, 4-6.12.2013

Parallel workflows in
computational engineering
with open source software

Outline of the presentation

Computational engineering

Open Source software

Parallel workflows

1Å 1nm 1um 1mm 1m

Electrons => Atoms => Grains => Continuum => Unit processes

ps

ns

us

 h

 s

QM

MD

Mesoscale

Dynamics

FEM, FVM

Process

Design

Hierarchy of computational models

(in material science)

We will in the following

limit the treatment mainly

to continuum modeling

in engineering

Computational Engineering

Mainly based on classical physics

– Continuum mechanics (fluids & solids)

– Maxwell’s equations for electromagnetic fields

– Statistical physics and thermodynamics
(with chemical reactions)

These models may be expressed by partial differential
equations (PDEs)

The closure of the equations require material laws

– conductivities, permeabilities, viscosity, diffusitivity,...

– Free energies, chemical rate constants,…

Historically the PDEs in the field of CE could only be solved
analytically in some simple cases

The computational approach has given the classical fields a
renessance

Space discretization methods

Finite Difference method (google: 1.25 M)
– Old timer, still a lot of use in basic physics

Finite Volume method (google: 1.29 M)
– The prevailing method in computational fluid dynamics

Finite element method (google: 4.10 M)
– Workhorse of computational engineering

Other basis: spectral, wavelet
– some special uses in simple geometries

Meshless method
– Pointless method? Still no field where it would rule

Particle based methods
– Shows promise in complex CFD

Note: Usually time discretization is done using finite
difference method

– Explicit and implicit timestepping

Finite Volume vs. Finite element

In computational engineering the two main methods are
FVM and FEM

– Both can deal with arbitrary shapes

Finite element method

– Naturally suited for elliptic PDEs in weak form

– Extended to parabolic PDEs by stabilization methods

– Most generic method: CEM, CSM, CFD,…

Finite volume method

– Naturally suited for parabolic PDEs in conservative form

– Extended to elliptic equations in the steady state limit

– Most popular methods for CFD

Mesh types

 Computational meshes in FEM and FVM can be either structured or

unstructured

 In a structured mesh each (inner) node has the same topology

(number of neighbouring nodes)

 Multiblock structured meshes may in principle utilize more efficient

data structures

 In practice, unstructured data formats are used CE

Unstructured meshes and matrix structure

PDEs on unstructured mesh result to linear systems, Ax=b,
with sparse matrix structure

– ”Sparse linear systems”

– Sparsity reflects the locality of PDEs & local support of basis

– E.g. for nodal elements all nodes i,j within element result to
entry (i,j) in the stiffness matrix

Standard sparse matrix formats results to indirect memory
adressing

– Fetching the data from memory becomes the bottle-neck

– Challenges for vectorization & multithreading

– Poorly suited for GPU architectures

Usually unstructured linear problems are solved in parallel
with MPI

Example: Sparse matrices

University of Florida sparse matrix collection
http://www.cise.ufl.edu/research/sparse/matrices/

Picture by Richard Vuduc

!--

!> Matrix vector product (v = Au) for a matrix given in CRS format.

!--

 SUBROUTINE CRS_MatrixVectorMultiply(A,u,v)

!--

 REAL(KIND=dp), DIMENSION(*), INTENT(IN) :: u !< Vector to be multiplied

 REAL(KIND=dp), DIMENSION(*), INTENT(OUT) :: v !< Result vector

 TYPE(Matrix_t), INTENT(IN) :: A !< Structure holding matrix

!--

 INTEGER, POINTER, CONTIGUOUS :: Cols(:),Rows(:)

 REAL(KIND=dp), POINTER, CONTIGUOUS :: Values(:)

 INTEGER :: i,j,n

 REAL(KIND=dp) :: rsum

!--

 n = A % NumberOfRows

 Rows => A % Rows

 Cols => A % Cols

 Values => A % Values

!$omp parallel do private(j,rsum)

 DO i=1,n

 rsum = 0.0d0

 DO j=Rows(i),Rows(i+1)-1

 rsum = rsum + u(Cols(j)) * Values(j)

 END DO

 v(i) = rsum

 END DO

!$omp end parallel do

!--

 END SUBROUTINE CRS_MatrixVectorMultiply

!--

Unstructured meshes and parallelization

It is natural to divide the computational mesh into
subdomains

– ”Mesh partitioning”

– Heuristic methods that try to minimize communication

Communication required mainly at the interfaces
where shared nodes are located

– Fraction of shared nodes in 3D scales as ~(P/N)^(1/3)

– Relative importance of communication increases with
number of partitions and decreases with size of
problem (typically 1e4-1e5 dofs for partition)

Problems in computational engineering require fast
connections between processors

– Suitable applications for true supercomputers

Partitioning in 2D

Partition by hierarchical 4 times 4
divisions in x- and y-directions

Partition to 16 domains by Metis algorithm

www-users.cs.umn.edu/~karypis/metis/

Open Source software solutions

Free / Open Source software

Definition of free software

– Software can be used, studied, and modified without
restrictions

– Software can be copied and redistributed in modified or
unmodified form either without restriction, or with
minimal restrictions only to ensure that further recipients
have the same possibility.

In English language the word free has two meanings

– Free as in ”free beer” (suom. Ilmainen)

– Free as in ”free speach” (suom. vapaa)

– Free software movement was idealogically rooted
whereas current concept of Open Source software is more
pragmatic

Main categories of licences

Restrictive licences

GNU, LGPL

Derived work must carry
the same license – if
published
(”viral effect”)

Also known as ”copyleft”
licenses

Permissive licences

BSD, MIT, Apache

Minimal requirements on
how software may be
redistributed

Some differences among
patent rights and author
integrity between the three

GPL (2.0 or 3.0)
45 %

LGPL
(2.1 or

3.0)
9 %

Apache
13 %

MIT
11 %

BSD 2.0
7 %

Artistic License
6 %

Others
9 %

License share

http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses

Open Source software for Computational Engineering

http://www.opencascade.org/
http://www.salome-platform.org/
http://www.vtk.org/
http://www.paraview.org/

CAD – OpenCASCADE

http://www.opencascade.com/

http://www.opencascade.org/

What is it?
– Open CASCADE is a powerful CAD/CAM/CAE

kernel and development platform for 3D
modeling applications.

– It consists of reusable C++ object libraries and
a set of development tools available under OS.

– Modular structure (see diagram)

Devolopment history
– EUCLID-IS CAD/CAM system 1987

– Published under Open Source in 1999 as
OpenCASCADE

– Curstomers CEA, BMW, SAMTECH, EADS,
RINA, Alcatel,…

The only proper CAD library under Open
Source?

http://www.opencascade.org/
http://www.opencascade.com/

CAD – SALOME

http://www.salome-platform.org/

What is it?
– Free software that provides a generic

platform for Pre and Post-Processing for
numerical simulation.

Based on a number of free software
libraries
– Qt, OpenCASCADE, Doxygen, Python, VTK

Main functions
– Create/modify, import/export (IGES,

STEP), repair/clean CAD models

– Mesh CAD elements, check mesh quality,
import/export mesh (MED, UNV, ASCII)

– Handle physical properties and quantities
attached to geometrical items

– Perform computation using one or more
external solvers (coupling)

– Display computation results

– Manage studies (creation, save, reload)

http://www.salome-platform.org/

Meshing - Netgen

http://www.hpfem.jku.at/netgen/

What is it?
– An automatic 2D/3D tetrahedral mesh

generator

– Developed mainly by Joachim
Schöberl

Key features
– Accepts input from constructive solid

geometry (CSG) or boundary
representation (BRep) from STL file
format

– Connection to OpenCASCADE deals
with IGES and STEP files

– Contains modules for mesh
optimization and hierarchical mesh
refinement

– LGPL library

Netgen library is utilized by a large
number of GUI projects

CFD - OpenFOAM

http://www.opencfd.co.uk/openfoam/

No 1 CFD software under open source

Features
– Based on C++ modules which are used to build number of solvers

– Uses finite volume numerics to solve systems of partial differential
equations ascribed on any 3D unstructured mesh of polyhedral
cells.

– Comes with models for fluid flows involving chemical reactions,
turbulence and heat transfer

– Includes some rude utilities for pre- and post-processing

– Fully parallelizable with iterative solvers

– License under GPL

OpenFOAM may be the best example of OS service in CE
– Started as a PhD project, now owned by ESI Group

– Many small consultancy companies and major R&D departments
base their operation on OpenFOAM

FEM – freefem++

http://www.freefem.org/ff++

What is it?

– One of the 1st free libraries
(traces back to MacFEM, 1985)

 Developed by O. Pironneau, F. Hecht et al.

– A language dedicated to the finite element method
that enables easy solution of Partial Differential
Equations (PDE)

– Idea has been copied and refined
(Comsol multiphysics, FEnics etc.)

– Mainly educational use nowadays

http://www.ann.jussieu.fr/~lehyaric/ffcs/screenshots/9.6-vista.jpg

FEM library – deal.II

What is it?
– A Finite Element Differential Equations Analysis

Library

– A program library rather than end-user program

– Computational solution of partial differential
equations using adaptive finite elements

– Uses state-of-the-art programming techniques
to offer you a modern interface to the complex
data structures and algorithms

– main aim is to enable rapid development of
modern finite element codes

– Good demonstration of a modern approach
taking use of the best available tools

http://www-dimat.unipv.it/heltai/wikideal/images/7/78/Gallery-buckling-cylinder-3.png

FEM library - libMesh

What is it

– Library for the numerical simulation of partial differential
equations using arbitrary unstructured discretizations on
serial and parallel platforms

– Provides adaptive mesh refinement computations in
parallel

– libMesh currently supports 1D, 2D, and 3D steady and
transient finite element simulations.

– Makes use of high-quality whenever possible:
PETSc, LASPack, SLEPc, Metis, Triangle, Tetgen

– Active development:
Univ. of Texas at Austin, Technische Universität Hamburg,
Sandia National Laboratories, NASA Lyndon B. Johnson
Space Center

FEM - Elmer

http://www.csc.fi/elmer

What is it

– Multiphysical finite element software under open source

– Primarily targeted for end-users, but also a library

– Development started 1995, GPL 2005, LGPL 2012

Features

– GUI, Solver & Postprocessor

– All basic element types (1D, 2D, 3D, nodal, edge, face, p, DG)

– Large number of different physical equations

Uses many open source libraries
– CAD: OpenCASCADE

– Meshing: Netgen, Tetgen

– Lin.Alg: Umfpack, MUMPS, Hypre, Lapack, Parpack

– Visualization: VTK

Numerics

This area in inherently part of academic developments
– Many of the best products are published under Open Source

Linear algebra for dense matrices
– Lapack

Direct sparse solvers
– Umfpack, Mumps, Spools, …

Eigenvalue solvers
– Arpack, Parpack

Ireative solvers, preconditioners
– Hypre

Graph partitioning
– Metis, Scotch, ParMetis, PT Scotch

Collections of different tools for parallel computing
– PETSc, Trilinos

Visualization - VTK

http://www.vtk.org/

What Is it?
– Software system for 3D computer graphics, image

processing, and visualization

Features
– Consists of a C++ class library and several interpreted

interface layers including Tcl/Tk, Java, and Python.

– VTK supports a wide variety of visualization algorithms
including scalar, vector, tensor, texture, and
volumetric methods

– Supports parallel processing

Professional support provided by Kitware Inc.
– Proper documentation not free

– Supported by a number of large institutions: Los
Alamos an Sandia nat.lab.

http://www.vtk.org/

Visualization - Paraview

http://www.paraview.org/

What Is it?
– An open-source, multi-platform data

analysis and visualization application

– Developed to analyze extremely large
datasets using parallel computing

Features
– Data exploration may be done

interactive or using batch processing

– Can be run on laptops and
supercomputers

– Based on VTK library

http://www.paraview.org/

Visualization - VisIT

http://wci.llnl.gov/visit/

What is it?

– Interactive parallel visualization
and graphical analysis tool for
viewing scientific data on Unix
and PC platforms

– Developed by Department of
Energy (DOE)

– Rather similar in features as
Paraview

Qt

http://qt.digia.com

Qt is a cross-platform complete development framework
written in C++

– High level of abstraction makes coding process very
efficient

Initially developed by Trolltech -> Nokia -> Digia

Used by number of software tools in CE

– SALOME, Paraview, ElmerGUI,…

Python

Python is a programming language that allows for quick
testing and prototyping

Python bindings available in many libraries:
Qt, SALOME, VTK, Paraview, PetSc, Trilinos,…

Open source software in CE

Academicly rooted stuff is top notch
– Linear algebra, solver libraries

– PetSc, Trilinos, OpenFOAM, LibMesh++, …

CAD and mesh generation not that competitive
– OpenCASCADE legacy software

– Mesh generators netgen, tetgen, Gmsh are somewhat limited

– Also for OpenFOAM there is development of commercial
preprocessing tools

Users may need to build their own workflows from the most
suitable tools
– Also in combination with commerial software

– Excellent libraries for software development (Qt, python,...)

Reasons to use open source software in CE
free as in ”beer” vs. free as in ”speech”

Open

Free

Parallelism

License costs

New algorithms

New equations Large scale

comp. science

Software

development

Collaboration

Benefits of the openness of the code

In collaboration all parties have access to the software
– Companies, universities, consultants,…

Open source software has more different roles
– May be used to attract a wider spectrum of actors

Also fundamental ideas may be tested with the software
– Algorithms, models,…

– Compatible with scientific method: falsification

More possibilities to built tailored solutions

– OS codes have usually good extendability & customizability

At least some control over the intellectual property
– Own model development does not become a hostage

to vendor lock in

– Sometimes rules GPL licence out of question

What kind of industry might utilize OS codes?

Small (consultancy) company for which commercial
prices may be unreasonable

Company with strong academic collaboration involving
new computational methods

Company doing in-house simulator development for their
technology

Company that needs to use HPC for their simulation
needs

Weaknesses of OS software in CE

CAD & Meshing
– There is no process that would bring the best software under open

source

Lack of standardization
– Bottom-up type (Bazaar) of open source projects seem fundamentally

incompatible with ISO 9001 standard

– One should perhaps not design buildings using OS software for the
computation…

Big business
– There are no global service organization for OS software (except

maybe for OpenFOAM)

– The information management of CAD and simulation data is becoming
an integral part of the work flow in large businesses and currently OS
does not have solutions for that (?)

How the software for the course was chosen

There is no generic solution for parallel mesh generation

There are many excellent numerical libraries

– Not directly usable for end-users

There are numerous scalable FEM and FVM software

– Fenics & Elmer are both popular FEM packages with
somewhat different approach

– Nek5000 presents extreme scalability

Two excellent parallel visualization software under open
source

– Paraview & Visit

For all the software presentations will be given by
dedicated experts & developers of the software

Workflows
for Computational Engineering

Basic workflow in computational engineering

Preprocessing

– Geometry definition

– Mesh generation

– Case definition

Solution

– Assembly of equations

– Solution of the linear systems (implicit methods)

Postprocessing

– Visualization

– Extracting information

SERIAL WORKFLOW: CAD IMPORT MESH GENERATION CASE SETUP SOLUTION VISUALIZATION

Serial workflow

All steps in the workflow are serial

Typically solution of the linear system is the main bottle-neck

SOLUTION

VISUALIZATION

ASSEMBLY

MESHING

Parallel workflow I

Solution is boosted by parallel solution only

– Easy to take into use by using suitable multithreaded libraries

Finite element assembly typically uses 5-30%

– Only moderate speed-up to be gained

SOLUTION

VISUALIZATION

ASSEMBLY

MESHING

Parallel workflow II

Both assembly and solution is done in parallel using MPI

Assembly is trivially parallel

This is the most common parallel workflow

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

Example: Parallel workflow of Alya FEM code

X. Saez, E. Casoni, G. Houseaux, M. Vasquez:
A parallel solid mechanics solver for
Multi-physics finite element problems,
PRACE white paper

Parallel workflow III

Partitioning may also be done in parallel

Partitioning is usually not the most severe bottle-neck

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

Parallel workflow IV

Large meshes may be finilized at the parallel level

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

MESH
MULTIPLICATION

Parallel workflow V

Bottle-necks in preprocessing resolved by parallel meshing

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

COARSE MESHING

FINE MESHING

Parallel workflow VI

The ultimate workflow could include integrated
geometry-accurate adaptive re-meshing and re-
partitioning with parallel on-the-fly visualization

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

Algorithmic scalability

Each algorithm has a characteristic scaling law that sets
the lower limit to how the solution time increases with
time

– E.g. average scaling for sorting:

Quicksort O(n log(n))

Insertion sort: O(n^2)

The parallel implementation cannot hope to beat this
limit

– Targeting large problems the starting point should be
nearly optimal algorithm!

CPU time for serial pre-processing and solution

CPU time for solution – one level vs. multilevel

T

Example: Scalability model

T(solution) > T(tet meshing) > T(partitioning) > T(hex meshing)

The solution is the first bottleneck even for simple equations, for
complex equations and transient problems even more so!

Motivation for using optimal linear solvers

Comparison of scaling in linear elasticity between
different preconditioners: ILU1 vs. block preconditioning
with multigrid

At smallest system performance about the same

Increasing size with 8^3=512 gives the block solver
 scalability of O(~1.03) while ILU1 fails to converge

 BiCGstab(4)+ILU1 GCR+BP(AMG)

#dofs T(s) #iters T(s) #iters

7,662 1.12 36 1.19 34

40,890 11.77 76 6.90 45

300,129 168.72 215 70.68 82

2,303,472 >21,244* >5000* 756.45 116

* No convergence was obtained
Simulation Peter Råback, CSC, 2012.

Weak vs. strong scaling

In parallel computing there are two common notions

strong scaling

– How the solution time varies with the number of processors
for a fixed total problem size.

– Optimal case: PT=const.

– A bad algorithm may have excellent strong scaling

– Typically 1e4-1e5 dofs needed in FEM/FVM for good scaling

weak scaling

– How the solution time varies with the number of processors
for a fixed problem size per processor.

– Optimal case: T=const.

– Weak scaling is limited by algorithmic scaling

Example: Strong scaling of Alya code

Speedup for implicit Navier-Stokes solver, 550M element mesh
Available on-line: https://wikiar2012.bsc.es

Example: Strong scaling of Code_Saturne
Optimization of Code_Saturna for Petascale simulations
C. Moulinec et al. , PRACE white paper, 2012

Example: Strong scaling of OpenFOAM

Current bottlenecks in the scalability of OpenFOAM
on massively parallel clusters , M. Culpo, PRACE white paper.

Example: Weak scaling of Elmer (FETI)

#Procs Dofs Time (s) Efficiency

8 0.8 47.80 -

64 6.3M 51.53 0.93

125 12.2M 51.98 0.92

343 33.7M 53.84 0.89

512 50.3M 53.90 0.89

1000 98.3M 54.54 0.88

1331 131M 55.32 0.87

1728 170M 55.87 0.86

2197 216M 56.43 0.85

2744 270M 56.38 0.85

3375 332M 57.24 0.84

Solution of Poisson equation with FETI method where local problem (of size
32^3=32,768 nodes) and coarse problem (distributed to 10 partitions) is solved with
MUMPS. Simulation with Cray XC (Sisu) by Juha Ruokolainen, CSC, 2013.

Example: Strong scaling of SnappyHexMesh

Performance anlalysis in fluid-structure interaction using OpenFOAM
M. Moylesa et al., PRACE white paper, 2012

Parallel mesh generation: performance

Y. Yılmaz et. al.: “Parallel Mesh Generation, Migration
and Partitioning for the Elmer Application”

Conclusions

FEM and FVM are the dominant methods in computational
engineering

The unstructured meshing & local PDEs result to sparse linear
systems that determine many aspects in the solution process

– Two of the ”seven dwarfs of HPC”

Many capable parallel software under Open Source

– Users may still need to build their own workflows

The state-of-art of parallelization varies between the steps

– Solution of linear systems has a great number of good solutions

– Preprocessing steps usually done at least partly in serial

– Excellent software for parallel visualization (next presentation)

One should pay careful attention to the algorithmic and
parallel scalability of the software

– Multilevel algorithms

