
RFC 9647
A YANG Data Model for Babel

Abstract
This document defines a data model for the Babel routing protocol. The data model is defined
using the YANG data modeling language.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9647
Standards Track
October 2024
2070-1721
M. Jethanandani
Kloud Services

B. Stark
AT&T

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9647

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Jethanandani & Stark Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9647
https://www.rfc-editor.org/info/rfc9647
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Requirements Language

1.2. Tree Diagram Annotations

2. Babel Module

2.1. Information Model

2.2. Tree Diagram

2.3. YANG Module

3. IANA Considerations

3.1. URI Registration

3.2. YANG Module Name Registration

4. Security Considerations

5. References

5.1. Normative References

5.2. Informative References

Appendix A. Tree Diagram and Example Configurations

A.1. Complete Tree Diagram

A.2. Statistics Gathering Enabled

A.3. Automatic Detection of Properties

A.4. Override Default Properties

A.5. Configuring Other Properties

Acknowledgements

Authors' Addresses

3

3

3

3

3

3

4

27

27

27

27

29

29

30

31

31

33

34

35

37

38

39

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 2

1. Introduction
This document defines a data model for the . The data model is
defined using and is compatible with

. It is based on the . The data
model only includes data nodes that are useful for managing Babel over IPv6.

1.1. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

1.2. Tree Diagram Annotations
For a reference to the annotations used in tree diagrams included in this document, please see
"YANG Tree Diagrams" .

2. Babel Module
This document defines a data model for the configuration and management
of Babel. The YANG module is based on the .

2.1. Information Model
It's worth noting a few differences between the Babel information model and this data module.
The information model mandates the definition of some of the attributes, e.g., "babel-
implementation-version" or the "babel-self-router-id". These attributes are marked as read-only
objects in the information module as well as in this data module. However, there is no way in the
data module to mandate that a read-only attribute be present. It is up to the implementation of
this data module to make sure that the attributes that are marked "read only" and are mandatory
are indeed present.

2.2. Tree Diagram
The following diagram illustrates a top-level hierarchy of the model. In addition to the version
implemented by this device, the model contains subtrees on "constants", "interfaces", "mac-key-
set", "dtls", and "routes".

Babel routing protocol [RFC8966]
YANG 1.1 [RFC7950] Network Management Datastore

Architecture (NMDA) [RFC8342] Babel information model [RFC9046]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8340]

YANG 1.1 [RFC7950]
Babel information model [RFC9046]

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 3

The "interfaces" subtree describes attributes such as the "interface" object that is being
referenced; the type of link, e.g., wired, wireless, or tunnel, as enumerated by "metric-algorithm"
and "split-horizon"; and whether the interface is enabled or not.

The "constants" subtree describes the UDP port used for sending and receiving Babel messages
and the multicast group used to send and receive announcements on IPv6.

The "routes" subtree describes objects such as the prefix for which the route is advertised, a
reference to the neighboring route, and the "next-hop" address.

Finally, for security, two subtrees are defined to contain Message Authentication Code (MAC) keys
and DTLS certificates. The "mac-key-set" subtree contains keys used with the MAC security
mechanism. The boolean flag "default-apply" indicates whether the set of MAC keys is
automatically applied to new interfaces. The "dtls" subtree contains certificates used with the
DTLS security mechanism. Similar to the MAC mechanism, the boolean flag "default-apply"
indicates whether the set of DTLS certificates is automatically applied to new interfaces.

2.3. YANG Module
This YANG module augments the YANG routing management module to provide a
common framework for all routing subsystems. By augmenting the module, it provides a
common building block for routes and Routing Information Bases (RIBs). It also has a reference
to an interface defined by "A YANG Data Model for Interface Management" .

A router running the Babel routing protocol can sometimes determine the parameters it needs to
use for an interface based on the interface name. For example, it can detect that eth0 is a wired
interface and that wlan0 is a wireless interface. This is not true for a tunnel interface, where the
link parameters need to be configured explicitly.

module: ietf-babel

 augment /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol:
 +--rw babel!
 +--ro version? string
 +--rw enable boolean
 +--ro router-id? binary
 +--ro seqno? uint16
 +--rw statistics-enabled? boolean
 +--rw constants
 | ...
 +--rw interfaces* [reference]
 | ...
 +--rw mac-key-set* [name]
 | ...
 +--rw dtls* [name]
 | ...
 +--ro routes* [prefix]
 ...

[RFC8349]

[RFC8343]

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 4

For a wired interface, it will assume "two-out-of-three" is set for "metric-algorithm" and "split-
horizon" is set to true. On the other hand, for a wireless interface, it will assume "etx" is set for
"metric-algorithm" and "split-horizon" is set to false. However, if the wired link is connected to a
wireless radio, the values can be overridden by setting "metric-algorithm" to "etx" and "split-
horizon" to false. Similarly, an interface that is a metered 3G link and is used for fallback
connectivity needs much higher default time constants, e.g., "mcast-hello-interval" and "update-
interval", in order to avoid carrying control traffic as much as possible.

In addition to the modules used above, this module imports definitions from "Common YANG
Data Types" and references "HMAC: Keyed-Hashing for Message Authentication"

, "Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec" ,
"Textual Encodings of PKIX, PKCS, and CMS Structures" , "The BLAKE2 Cryptographic
Hash and Message Authentication Code (MAC)" , "Network Configuration Access
Control Model" , "The Babel Routing Protocol" , "MAC Authentication for the
Babel Routing Protocol" , "Babel Information Model" , "The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3" , and "YANG Data Types and
Groupings for Cryptography" .

[RFC6991]
[RFC2104] [RFC4868]

[RFC7468]
[RFC7693]

[RFC8341] [RFC8966]
[RFC8967] [RFC9046]

[RFC9147]
[RFC9640]

<CODE BEGINS> file "ietf-babel@2024-10-10.yang"

module ietf-babel {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-babel";
 prefix babel;

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }
 import ietf-routing {
 prefix rt;
 reference
 "RFC 8349: A YANG Data Model for Routing Management (NMDA
 Version)";
 }
 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings
 for Cryptography";
 }
 import ietf-netconf-acm {

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 5

 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }

 organization
 "IETF Babel routing protocol Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/babel/
 WG List: babel@ietf.org

 Editor: Mahesh Jethanandani
 mjethanandani@gmail.com
 Editor: Barbara Stark
 bs7652@att.com";

 description
 "This YANG module defines a model for the Babel routing
 protocol.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9647
 (https://www.rfc-editor.org/info/rfc9647); see the RFC itself
 for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version.";
 reference
 "RFC 9647: A YANG Data Model for Babel";
 }

 /*
 * Features
 */

 feature two-out-of-three-supported {
 description
 "This implementation supports the '2-out-of-3'
 computation algorithm.";
 }

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 6

 feature etx-supported {
 description
 "This implementation supports the Expected Transmission Count
 (ETX) metric computation algorithm.";
 }

 feature mac-supported {
 description
 "This implementation supports MAC-based security.";
 reference
 "RFC 8967: MAC Authentication for the Babel Routing
 Protocol";
 }

 feature dtls-supported {
 description
 "This implementation supports DTLS-based security.";
 reference
 "RFC 8968: Babel Routing Protocol over Datagram
 Transport Layer Security";
 }

 feature hmac-sha256-supported {
 description
 "This implementation supports the HMAC-SHA256 MAC algorithm.";
 reference
 "RFC 8967: MAC Authentication for the Babel Routing
 Protocol";
 }

 feature blake2s-supported {
 description
 "This implementation supports BLAKE2s MAC algorithms.";
 reference
 "RFC 8967: MAC Authentication for the Babel Routing
 Protocol";
 }

 feature x-509-supported {
 description
 "This implementation supports the X.509 certificate type.";
 reference
 "RFC 8968: Babel Routing Protocol over Datagram
 Transport Layer Security";
 }

 feature raw-public-key-supported {
 description
 "This implementation supports the raw public key certificate
 type.";
 reference
 "RFC 8968: Babel Routing Protocol over Datagram
 Transport Layer Security";
 }

 /*
 * Identities
 */

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 7

 identity metric-comp-algorithms {
 description
 "Base identity from which all Babel metric computation
 algorithms MUST be derived.";
 }

 identity two-out-of-three {
 if-feature "two-out-of-three-supported";
 base metric-comp-algorithms;
 description
 "2-out-of-3 algorithm.";
 reference
 "RFC 8966: The Babel Routing Protocol, Section A.2.1";
 }

 identity etx {
 if-feature "etx-supported";
 base metric-comp-algorithms;
 description
 "Expected Transmission Count (ETX) metric computation
 algorithm.";
 reference
 "RFC 8966: The Babel Routing Protocol, Section A.2.2";
 }

 /*
 * Babel MAC algorithms identities.
 */

 identity mac-algorithms {
 description
 "Base identity for all Babel MAC algorithms.";
 }

 identity hmac-sha256 {
 if-feature "mac-supported";
 if-feature "hmac-sha256-supported";
 base mac-algorithms;
 description
 "HMAC-SHA256 algorithm supported.";
 reference
 "RFC 4868: Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512
 with IPsec";
 }

 identity blake2s {
 if-feature "mac-supported";
 if-feature "blake2s-supported";
 base mac-algorithms;
 description
 "BLAKE2s algorithms supported. Specifically, BLAKE2-128 is
 supported.";
 reference
 "RFC 7693: The BLAKE2 Cryptographic Hash and Message
 Authentication Code (MAC)";
 }

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 8

 /*
 * Babel Cert Types
 */

 identity dtls-cert-types {
 description
 "Base identity for Babel DTLS certificate types.";
 }

 identity x-509 {
 if-feature "dtls-supported";
 if-feature "x-509-supported";
 base dtls-cert-types;
 description
 "X.509 certificate type.";
 }

 identity raw-public-key {
 if-feature "dtls-supported";
 if-feature "raw-public-key-supported";
 base dtls-cert-types;
 description
 "Raw public key certificate type.";
 }

 /*
 * Babel routing protocol identity.
 */

 identity babel {
 base rt:routing-protocol;
 description
 "Babel routing protocol";
 }

 /*
 * Groupings
 */

 grouping routes {
 list routes {
 key "prefix";
 config false;

 leaf prefix {
 type inet:ip-prefix;
 description
 "Prefix (expressed in ip-address/prefix-length format) for
 which this route is advertised.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }

 leaf router-id {
 type binary {
 length "8";
 }
 description

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 9

 "router-id of the source router for which this route is
 advertised.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }

 leaf neighbor {
 type leafref {
 path "/rt:routing/rt:control-plane-protocols/"
 + "rt:control-plane-protocol/babel/interfaces/"
 + "neighbor-objects/neighbor-address";
 }
 description
 "Reference to the neighbor-objects entry for the neighbor
 that advertised this route.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }

 leaf received-metric {
 type union {
 type enumeration {
 enum null {
 description
 "Route was not received from a neighbor.";
 }
 }
 type uint16;
 }
 description
 "The metric with which this route was advertised by the
 neighbor, or maximum value (infinity) to indicate the
 route was recently retracted and is temporarily
 unreachable. This metric will be NULL if the
 route was not received from a neighbor but instead was
 injected through means external to the Babel routing
 protocol. At least one of calculated-metric or
 received-metric MUST be non-NULL.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6
 RFC 8966: The Babel Routing Protocol, Section 2.1";
 }

 leaf calculated-metric {
 type union {
 type enumeration {
 enum null {
 description
 "Route has not been calculated.";
 }
 }
 type uint16;
 }
 description
 "A calculated metric for this route. How the metric is
 calculated is implementation specific. Maximum value
 (infinity) indicates the route was recently retracted
 and is temporarily unreachable. At least one of

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 10

 calculated-metric or received-metric MUST be non-NULL.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6
 RFC 8966: The Babel Routing Protocol, Section 2.1";
 }

 leaf seqno {
 type uint16;
 description
 "The sequence number with which this route was
 advertised.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }

 leaf next-hop {
 type union {
 type enumeration {
 enum null {
 description
 "Route has no next-hop address.";
 }
 }
 type inet:ip-address;
 }
 description
 "The next-hop address of this route. This will be NULL
 if this route has no next-hop address.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }

 leaf feasible {
 type boolean;
 description
 "A boolean flag indicating whether this route is
 feasible.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6
 RFC 8966, The Babel Routing Protocol, Section 3.5.1";
 }

 leaf selected {
 type boolean;
 description
 "A boolean flag indicating whether this route is selected,
 i.e., whether it is currently being used for forwarding
 and is being advertised.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }
 description
 "A set of babel-route-obj objects. Contains routes known to
 this node.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }
 description

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 11

 "Common grouping for routing used in RIB.";
 }

 /*
 * Data model
 */

 augment "/rt:routing/rt:control-plane-protocols/"
 + "rt:control-plane-protocol" {
 when "derived-from-or-self(rt:type, 'babel')" {
 description
 "Augmentation is valid only when the instance of the routing
 type is of type 'babel'.";
 }
 description
 "Augments the routing module to support a common structure
 between routing protocols.";
 reference
 "RFC 8349: A YANG Data Model for Routing Management (NMDA
 Version)";

 container babel {
 presence "A Babel container.";
 description
 "Babel information objects.";
 reference
 "RFC 9046: Babel Information Model, Section 3";

 leaf version {
 type string;
 config false;
 description
 "The name and version of this implementation of the Babel
 protocol.";
 reference
 "RFC 9046: Babel Information Model, Section 3.1";
 }

 leaf enable {
 type boolean;
 mandatory true;
 description
 "When written, it configures whether the protocol should be
 enabled. A read from the <running> or <intended> datastore
 therefore indicates the configured administrative value of
 whether the protocol is enabled or not.

 A read from the <operational> datastore indicates whether
 the protocol is actually running or not, i.e., it
 indicates the operational state of the protocol.";
 reference
 "RFC 9046: Babel Information Model, Section 3.1";
 }

 leaf router-id {
 type binary;
 must '../enable = "true"';
 config false;

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 12

 description
 "Every Babel speaker is assigned a router-id, which is an
 arbitrary string of 8 octets that is assumed to be unique
 across the routing domain.

 The router-id is valid only if the protocol is enabled,
 at which time a non-zero value is assigned.";
 reference
 "RFC 9046: Babel Information Model, Section 3.1
 RFC 8966: The Babel Routing Protocol, Section 3";
 }

 leaf seqno {
 type uint16;
 config false;
 description
 "Sequence number included in route updates for routes
 originated by this node.";
 reference
 "RFC 9046: Babel Information Model, Section 3.1";
 }

 leaf statistics-enabled {
 type boolean;
 description
 "Indicates whether statistics collection is enabled
 ('true') or disabled ('false') on all interfaces.
 On transition to enabled, existing statistics
 values are not cleared and will be incremented as
 new packets are counted.";
 }

 container constants {
 description
 "Babel constants object.";
 reference
 "RFC 9046: Babel Information Model, Section 3.1";

 leaf udp-port {
 type inet:port-number;
 default "6696";
 description
 "UDP port for sending and receiving Babel messages. The
 default port is 6696.";
 reference
 "RFC 9046: Babel Information Model, Section 3.2";
 }

 leaf mcast-group {
 type inet:ip-address;
 default "ff02::1:6";
 description
 "Multicast group for sending and receiving multicast
 announcements on IPv6.";
 reference
 "RFC 9046: Babel Information Model, Section 3.2";
 }
 }

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 13

 list interfaces {
 key "reference";

 description
 "A set of Babel interface objects.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";

 leaf reference {
 type if:interface-ref;
 description
 "References the name of the interface over which Babel
 packets are sent and received.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf enable {
 type boolean;
 default "true";
 description
 "If 'true', Babel sends and receives messages on this
 interface. If 'false', Babel messages received on
 this interface are ignored and none are sent.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf metric-algorithm {
 type identityref {
 base metric-comp-algorithms;
 }
 mandatory true;
 description
 "Indicates the metric computation algorithm used on this
 interface. The value MUST be one of those identities
 based on 'metric-comp-algorithms'.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf split-horizon {
 type boolean;
 description
 "Indicates whether or not the split-horizon optimization
 is used when calculating metrics on this interface.
 A value of 'true' indicates the split-horizon
 optimization is used.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf mcast-hello-seqno {
 type uint16;
 config false;
 description
 "The current sequence number in use for multicast Hellos

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 14

 sent on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf mcast-hello-interval {
 type uint16;
 units "centiseconds";
 description
 "The current multicast Hello interval in use for Hellos
 sent on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf update-interval {
 type uint16;
 units "centiseconds";
 description
 "The current update interval in use for this interface.
 Units are centiseconds.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf mac-enable {
 type boolean;
 description
 "Indicates whether the MAC security mechanism is enabled
 ('true') or disabled ('false').";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf-list mac-key-sets {
 type leafref {
 path "../../mac-key-set/name";
 }
 description
 "List of references to the MAC entries that apply
 to this interface. When an interface instance is
 created, all MAC instances with default-apply 'true'
 will be included in this list.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf mac-verify {
 type boolean;
 description
 "A boolean flag indicating whether MACs in
 incoming Babel packets are required to be present and
 are verified. If this parameter is 'true', incoming
 packets are required to have a valid MAC.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 15

 leaf dtls-enable {
 type boolean;
 description
 "Indicates whether the DTLS security mechanism is enabled
 ('true') or disabled ('false').";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf-list dtls-certs {
 type leafref {
 path "../../dtls/name";
 }
 description
 "List of references to the dtls entries that apply to
 this interface. When an interface instance
 is created, all dtls instances with default-apply
 'true' will be included in this list.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf dtls-cached-info {
 type boolean;
 description
 "Indicates whether the cached_info extension is enabled.
 The extension is enabled for inclusion in ClientHello
 and ServerHello messages if the value is 'true'.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3
 RFC 8968: Babel Routing Protocol over
 Datagram Transport Layer Security, Appendix A";
 }

 leaf-list dtls-cert-prefer {
 type leafref {
 path "../../dtls/certs/type";
 }
 ordered-by user;
 description
 "List of supported certificate types, in order of
 preference. The values MUST be the 'type' attribute
 in the list 'certs' of the list 'dtls'
 (../../dtls/certs/type). This list is used to populate
 the server_certificate_type extension in a ClientHello.
 Values that are present in at least one instance in the
 certs object under dtls of a referenced dtls instance
 and that have a non-empty private key will be used to
 populate the client_certificate_type extension in a
 ClientHello.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3
 RFC 8968: Babel Routing Protocol over
 Datagram Transport Layer Security, Appendix A";
 }

 leaf packet-log-enable {
 type boolean;

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 16

 description
 "If 'true', logging of babel packets received on this
 interface is enabled; if 'false', babel packets are
 not logged.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf packet-log {
 type inet:uri;
 config false;
 description
 "A reference or url link to a file that contains a
 timestamped log of packets received and sent on
 udp-port on this interface. The [libpcap] file
 format with .pcap file extension SHOULD be supported for
 packet log files. Logging is enabled / disabled by
 packet-log-enable.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3
 libpcap: Libpcap File Format, Wireshark Foundation";
 }

 container statistics {
 config false;
 description
 "Statistics collection object for this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";

 leaf discontinuity-time {
 type yang:date-and-time;
 mandatory true;
 description
 "The time on the most recent occasion at which any one
 or more of counters suffered a discontinuity. If no
 such discontinuities have occurred since the last
 re-initialization of the local management subsystem,
 then this node contains the time the local management
 subsystem re-initialized itself.";
 }

 leaf sent-mcast-hello {
 type yang:counter32;
 description
 "A count of the number of multicast Hello packets sent
 on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 leaf sent-mcast-update {
 type yang:counter32;
 description
 "A count of the number of multicast update packets sent
 on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 17

 }

 leaf sent-ucast-hello {
 type yang:counter32;
 description
 "A count of the number of unicast Hello packets sent
 on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 leaf sent-ucast-update {
 type yang:counter32;
 description
 "A count of the number of unicast update packets sent
 on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 leaf sent-ihu {
 type yang:counter32;
 description
 "A count of the number of 'I Heard You' (IHU) packets
 sent on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 leaf received-packets {
 type yang:counter32;
 description
 "A count of the number of Babel packets received on
 this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 action reset {
 description
 "The information model (RFC 9046) defines reset
 action as a system-wide reset of Babel statistics.
 In YANG, the reset action is associated with the
 container where the action is defined. In this case,
 the action is associated with the statistics container
 inside an interface. The action will therefore
 reset statistics at an interface level.

 Implementations that want to support a system-wide
 reset of Babel statistics need to call this action
 for every instance of the interface.";
 reference
 "RFC 9046: Babel Information Model";

 input {
 leaf reset-at {
 type yang:date-and-time;
 description

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 18

 "The time when the reset was issued.";
 }
 }

 output {
 leaf reset-finished-at {
 type yang:date-and-time;
 description
 "The time when the reset finished.";
 }
 }
 }
 }

 list neighbor-objects {
 key "neighbor-address";
 config false;
 description
 "A set of babel neighbor objects.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";

 leaf neighbor-address {
 type inet:ip-address;
 description
 "The IPv4 or IPv6 address from which the neighbor sends
 packets.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf hello-mcast-history {
 type string;
 description
 "The multicast Hello history of whether or not the
 multicast Hello packets prior to exp-mcast-
 hello-seqno were received, with a '1' for the most
 recent Hello placed in the most significant bit and
 prior Hellos shifted right (with '0' bits placed
 between prior Hellos and the most recent Hello for any
 Hellos not received); represented as a string of
 hex digits encoded in utf-8. A bit that is set
 indicates that the corresponding Hello was received,
 and a bit that is cleared indicates that the
 corresponding Hello was not received.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf hello-ucast-history {
 type string;
 description
 "The unicast Hello history of whether or not the
 unicast Hello packets prior to exp-ucast-hello-seqno
 were received, with a '1' for the most
 recent Hello placed in the most significant bit and
 prior Hellos shifted right (with '0' bits placed
 between prior Hellos and the most recent Hello for any

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 19

 Hellos not received); represented as a string using
 hex digits encoded in utf-8 where a '1' bit = Hello
 received and a '0' bit = Hello not received.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf txcost {
 type int32;
 default "0";
 description
 "Transmission cost value from the last IHU packet
 received from this neighbor, or maximum value
 (infinity) to indicate the IHU hold timer for this
 neighbor has an expired description.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf exp-mcast-hello-seqno {
 type union {
 type enumeration {
 enum null {
 description
 "Multicast Hello packets are not expected, or
 processing of multicast packets is not
 enabled.";
 }
 }
 type uint16;
 }
 description
 "Expected multicast Hello sequence number of next Hello
 to be received from this neighbor; if multicast Hello
 packets are not expected, or processing of multicast
 packets is not enabled, this MUST be NULL.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf exp-ucast-hello-seqno {
 type union {
 type enumeration {
 enum null {
 description
 "Unicast Hello packets are not expected, or
 processing of unicast packets is not enabled.";
 }
 }
 type uint16;
 }
 default "null";
 description
 "Expected unicast Hello sequence number of next Hello
 to be received from this neighbor; if unicast Hello
 packets are not expected, or processing of unicast
 packets is not enabled, this MUST be NULL.";
 reference

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 20

 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf ucast-hello-seqno {
 type union {
 type enumeration {
 enum null {
 description
 "Unicast Hello packets are not being sent.";
 }
 }
 type uint16;
 }
 default "null";
 description
 "The current sequence number in use for unicast Hellos
 sent to this neighbor. If unicast Hellos are not being
 sent, this MUST be NULL.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf ucast-hello-interval {
 type uint16;
 units "centiseconds";
 description
 "The current interval in use for unicast Hellos sent to
 this neighbor. Units are centiseconds.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf rxcost {
 type uint16;
 description
 "Reception cost calculated for this neighbor. This
 value is usually derived from the Hello history, which
 may be combined with other data, such as statistics
 maintained by the link layer. The rxcost is sent to a
 neighbor in each IHU.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf cost {
 type int32;
 description
 "Link cost is computed from the values maintained in
 the neighbor table. The statistics are kept in the
 neighbor table about the reception of Hellos, and the
 txcost is computed from received IHU packets.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }
 }
 }

 list mac-key-set {

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 21

 key "name";

 description
 "A MAC key set object. If this object is implemented, it
 provides access to parameters related to the MAC security
 mechanism.";
 reference
 "RFC 9046: Babel Information Model, Section 3.7";

 leaf name {
 type string;
 description
 "A string that uniquely identifies the MAC object.";
 }

 leaf default-apply {
 type boolean;
 description
 "A boolean flag indicating whether this object
 instance is applied to all new interfaces, by default.
 If 'true', this instance is applied to new babel-
 interfaces instances at the time they are created
 by including it in the mac-key-sets list under
 the interface. If 'false', this instance is not applied
 to new interface instances when they are created.";
 reference
 "RFC 9046: Babel Information Model, Section 3.7";
 }

 list keys {
 key "name";
 min-elements 1;
 description
 "A set of keys objects.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";

 leaf name {
 type string;
 description
 "A unique name for this MAC key that can be used to
 identify the key in this object instance since the
 key value is not allowed to be read. This value can
 only be provided when this instance is created and is
 not subsequently writable.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }

 leaf use-send {
 type boolean;
 mandatory true;
 description
 "Indicates whether this key value is used to compute a
 MAC and include that MAC in the sent Babel packet. A
 MAC for sent packets is computed using this key if the
 value is 'true'. If the value is 'false', this key is
 not used to compute a MAC to include in sent Babel

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 22

 packets.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }

 leaf use-verify {
 type boolean;
 mandatory true;
 description
 "Indicates whether this key value is used to verify
 incoming Babel packets. This key is used to verify
 incoming packets if the value is 'true'. If the value
 is 'false', no MAC is computed from this key for
 comparing an incoming packet.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }

 leaf value {
 nacm:default-deny-all;
 type binary;
 mandatory true;
 description
 "The value of the MAC key.

 This value is of a length suitable for the associated
 babel-mac-key-algorithm. If the algorithm is based on
 the Hashed Message Authentication Code (HMAC)
 construction (RFC 2104), the length MUST be between 0
 and an upper limit that is at least the size of the
 output length (where the 'HMAC-SHA256' output length
 is 32 octets as described in RFC 4868). Longer lengths
 MAY be supported but are not necessary if the
 management system has the ability to generate a
 suitably random value (e.g., by randomly generating a
 value or by using a key derivation technique as
 recommended in the security considerations of RFC
 8967. If the algorithm is 'BLAKE2s-128', the length
 MUST be between 0 and 32 bytes inclusive as specified
 by RFC 7693.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8
 RFC 2104: HMAC: Keyed-Hashing for Message
 Authentication
 RFC 4868: Using HMAC-SHA-256, HMAC-SHA-384, and
 HMAC-SHA-512 with IPsec
 RFC 7693: The BLAKE2 Cryptographic Hash and Message
 Authentication Code (MAC)
 RFC 8967: MAC Authentication for Babel";
 }

 leaf algorithm {
 type identityref {
 base mac-algorithms;
 }
 mandatory true;
 description
 "The MAC algorithm used with this key. The

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 23

 value MUST be one of the identities
 listed with the base of 'mac-algorithms'.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }

 action test {
 description
 "An operation that allows the MAC key and MAC
 algorithm to be tested to see if they produce an
 expected outcome. Input to this operation is a
 binary string and a calculated MAC (also in the
 format of a binary string) for the binary string.
 The implementation is expected to create a MAC over
 the binary string using the value and algorithm.
 The output of this operation is a binary indication
 that the calculated MAC matched the input MAC
 ('true') or the MACs did not match ('false').";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";

 input {
 leaf test-string {
 type binary;
 mandatory true;
 description
 "Input to this operation is a binary string.
 The implementation is expected to create
 a MAC over this string using the value and
 the algorithm defined as part of the
 mac-key-set.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }

 leaf mac {
 type binary;
 mandatory true;
 description
 "Input to this operation includes a MAC.
 The implementation is expected to calculate a MAC
 over the string using the value and algorithm of
 this key object and compare its calculated MAC to
 this input MAC.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }
 }

 output {
 leaf indication {
 type boolean;
 mandatory true;
 description
 "The output of this operation is a binary
 indication that the calculated MAC matched the
 input MAC ('true') or the MACs did not match
 ('false').";

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 24

 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }
 }
 }
 }
 }

 list dtls {
 key "name";

 description
 "A dtls object. If this object is implemented,
 it provides access to parameters related to the DTLS
 security mechanism.";
 reference
 "RFC 9046: Babel Information Model, Section 3.9";

 leaf name {
 type string;
 description
 "A string that uniquely identifies a dtls object.";
 }

 leaf default-apply {
 type boolean;
 mandatory true;
 description
 "A boolean flag indicating whether this object
 instance is applied to all new interfaces, by default.
 If 'true', this instance is applied to new interface
 instances at the time they are created by including it
 in the dtls-certs list under the interface. If 'false',
 this instance is not applied to new interface
 instances when they are created.";
 reference
 "RFC 9046: Babel Information Model, Section 3.9";
 }

 list certs {
 key "name";

 min-elements 1;
 description
 "A set of cert objects. This contains
 both certificates for this implementation to present
 for authentication and to accept from others.
 Certificates with a non-empty private key
 can be presented by this implementation for
 authentication.";
 reference
 "RFC 9046: Babel Information Model, Section 3.10";

 leaf name {
 type string;
 description
 "A unique name for this certificate that can be
 used to identify the certificate in this object

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 25

 instance, since the value is too long to be useful
 for identification. This value MUST NOT be empty
 and can only be provided when this instance is created
 (i.e., it is not subsequently writable).";
 reference
 "RFC 9046: Babel Information Model, Section 3.10";
 }

 leaf value {
 nacm:default-deny-write;
 type string;
 mandatory true;
 description
 "The certificate in Privacy-Enhanced Mail (PEM) format
 (RFC 7468). This value can only be provided when this
 instance is created and is not subsequently
 writable.";
 reference
 "RFC 9046: Babel Information Model, Section 3.10
 RFC 7468: Textual Encodings of PKIX, PKCS, and CMS
 Structures";
 }

 leaf type {
 nacm:default-deny-write;
 type identityref {
 base dtls-cert-types;
 }
 mandatory true;
 description
 "The certificate type of this object instance.
 The value MUST be the same as one of the
 identities listed with the base 'dtls-cert-types'.
 This value can only be provided when this
 instance is created and is not subsequently
 writable.";
 reference
 "RFC 9046: Babel Information Model, Section 3.10";
 }

 leaf private-key {
 nacm:default-deny-all;
 type binary;
 mandatory true;
 description
 "The value of the private key. If this is non-empty,
 this certificate can be used by this implementation to
 provide a certificate during DTLS handshaking.";
 reference
 "RFC 9046: Babel Information Model, Section 3.10";
 }

 leaf algorithm {
 nacm:default-deny-write;
 type identityref {
 base ct:private-key-format;
 }
 mandatory true;

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 26

 description
 "Identifies the algorithm identity with which the
 private key has been encoded. This value can only be
 provided when this instance is created and is not
 subsequently writable.";
 }
 }
 }
 uses routes;
 }
 }
}

<CODE ENDS>

URI:
Registrant Contact:
XML:

Name:
Namespace:
Prefix:
Reference:

3. IANA Considerations

3.1. URI Registration
IANA has registered the following URI in the "ns" registry of the "IETF XML Registry" .

urn:ietf:params:xml:ns:yang:ietf-babel
The IESG

N/A; the requested URI is an XML namespace.

3.2. YANG Module Name Registration
IANA has registered the following in the "YANG Module Names" registry .

ietf-babel
urn:ietf:params:xml:ns:yang:ietf-babel

babel
RFC 9647

[RFC3688]

[RFC6020]

4. Security Considerations
This section is modeled after the template defined in .

The "ietf-babel" YANG module defines a data model that is designed to be accessed via YANG-
based management protocols, such as NETCONF and RESTCONF . These
protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH)

, TLS , and QUIC) and mandatory-to-implement mutual
authentication.

The provides the means to
restrict access for particular NETCONF users to a preconfigured subset of all available NETCONF
protocol operations and content.

Section 3.7.1 of [RFC8407]

[RFC6241] [RFC8040]

[RFC4252] [RFC8446] [RFC9000]

Network Configuration Access Control Model (NACM) [RFC8341]

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 27

https://rfc-editor.org/rfc/rfc8407#section-3.7.1

'babel':

'babel/constants':

'babel/interfaces':

'babel/hmac' and 'babel/dtls':

'babel':

'babel/hmac' and 'babel/dtls':

The security considerations outlined here are specific to the YANG data model and do not cover
security considerations of the Babel protocol or its security mechanisms in "The Babel Routing
Protocol" , "MAC Authentication for the Babel Routing Protocol" , and "Babel
Routing Protocol over Datagram Transport Layer Security" . Each of these has its own
Security Considerations section for considerations that are specific to it.

There are a number of data nodes defined in the YANG module that are writable/created/deleted
(i.e., config true, which is the default). These data nodes may be considered sensitive or
vulnerable in some network environments. Write operations (e.g., <edit-config>) to these data
nodes without proper protection can have a negative effect on network operations. These are the
subtrees and data nodes and their sensitivity/vulnerability from a config true perspective:

This container includes an 'enable' parameter that can be used to enable or disable use
of Babel on a router.

This container includes configuration parameters that can prevent
reachability if misconfigured.

This leaf-list has configuration parameters that can enable/disable security
mechanisms and change performance characteristics of the Babel protocol. For example,
enabling logging of packets and giving unintended access to the log files gives an attacker
detailed knowledge of the network and allows it to launch an attack on the traffic traversing
the network device.

These contain security credentials that influence whether
incoming packets are trusted and whether outgoing packets are produced in such a way that
the receiver will treat them as trusted.

Some of the readable data or config false nodes in this YANG module may be considered sensitive
or vulnerable in some network environments. It is thus important to control read access (e.g., via
get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and
their sensitivity/vulnerability from a config false perspective:

Access to the information in the various nodes can disclose the network topology.
Additionally, the routes used by a network device may be used to mount a subsequent attack
on traffic traversing the network device.

These contain security credentials, including private credentials
of the router; however, it is required that these values not be readable.

Some of the RPC operations in this YANG module may be considered sensitive or vulnerable in
some network environments. It is thus important to control access to these operations. These are
the operations and their sensitivity/vulnerability from an RPC operation perspective:

This model defines two actions. Resetting the statistics within an interface container would be
visible to any monitoring processes, which should be designed to account for the possibility of
such a reset. The "test" action allows for validation that a MAC key and MAC algorithm have been

[RFC8966] [RFC8967]
[RFC8968]

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 28

[RFC2119]

[RFC4252]

[RFC4868]

[RFC6241]

[RFC6991]

[RFC7693]

[RFC7950]

[RFC8040]

[RFC8174]

[RFC8341]

5. References

5.1. Normative References

, , ,
, , March 1997,
.

 and , ,
, , January 2006,
.

 and ,
, , , May 2007,

.

, , , and ,
, , ,

June 2011, .

, , ,
, July 2013, .

 and ,
, , ,

November 2015, .

, , ,
, August 2016, .

, , and , , ,
, January 2017, .

, ,
, , , May 2017,

.

 and , ,
, , , March 2018,

.

properly configured. The MAC key is a sensitive piece of information, and it is important to
prevent an attacker that does not know the MAC key from being able to determine the MAC value
by trying different input parameters. The "test" action has been designed to not reveal such
information directly. Such information might also be revealed indirectly due to side channels
such as the time it takes to produce a response to the action. Implementations use a
constant-time comparison between the input MAC and the locally generated MAC value for
comparison in order to avoid such side channel leakage.

SHOULD

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Authentication Protocol"
RFC 4252 DOI 10.17487/RFC4252 <https://www.rfc-editor.org/info/
rfc4252>

Kelly, S. S. Frankel "Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-
SHA-512 with IPsec" RFC 4868 DOI 10.17487/RFC4868 <https://
www.rfc-editor.org/info/rfc4868>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Schoenwaelder, J., Ed. "Common YANG Data Types" RFC 6991 DOI 10.17487/
RFC6991 <https://www.rfc-editor.org/info/rfc6991>

Saarinen, M., Ed. J. Aumasson "The BLAKE2 Cryptographic Hash and
Message Authentication Code (MAC)" RFC 7693 DOI 10.17487/RFC7693

<https://www.rfc-editor.org/info/rfc7693>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-
editor.org/info/rfc8341>

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 29

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4868
https://www.rfc-editor.org/info/rfc4868
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7693
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341

[RFC8343]

[RFC8349]

[RFC8446]

[RFC8966]

[RFC8967]

[RFC8968]

[RFC9000]

[RFC9046]

[RFC9147]

[RFC9640]

[RFC2104]

[RFC3688]

[RFC6020]

, , ,
, March 2018, .

, , and ,
, , , March 2018,

.

, , ,
, August 2018, .

 and , , ,
, January 2021, .

, , and ,
, , , January 2021,

.

, , and ,
, , , January

2021, .

 and ,
, , , May 2021,

.

 and , , ,
, June 2021, .

, , and ,
, , , April

2022, .

, , ,
, October 2024, .

5.2. Informative References

, , and ,
, , , February 1997,

.

, , , , ,
January 2004, .

,
, , , October

2010, .

Bjorklund, M. "A YANG Data Model for Interface Management" RFC 8343 DOI
10.17487/RFC8343 <https://www.rfc-editor.org/info/rfc8343>

Lhotka, L. Lindem, A. Y. Qu "A YANG Data Model for Routing Management
(NMDA Version)" RFC 8349 DOI 10.17487/RFC8349 <https://
www.rfc-editor.org/info/rfc8349>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Chroboczek, J. D. Schinazi "The Babel Routing Protocol" RFC 8966 DOI
10.17487/RFC8966 <https://www.rfc-editor.org/info/rfc8966>

Dô, C. Kolodziejak, W. J. Chroboczek "MAC Authentication for the Babel
Routing Protocol" RFC 8967 DOI 10.17487/RFC8967 <https://
www.rfc-editor.org/info/rfc8967>

Décimo, A. Schinazi, D. J. Chroboczek "Babel Routing Protocol over
Datagram Transport Layer Security" RFC 8968 DOI 10.17487/RFC8968

<https://www.rfc-editor.org/info/rfc8968>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

Stark, B. M. Jethanandani "Babel Information Model" RFC 9046 DOI
10.17487/RFC9046 <https://www.rfc-editor.org/info/rfc9046>

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Watsen, K. "YANG Data Types and Groupings for Cryptography" RFC 9640 DOI
10.17487/RFC9640 <https://www.rfc-editor.org/info/rfc9640>

Krawczyk, H. Bellare, M. R. Canetti "HMAC: Keyed-Hashing for Message
Authentication" RFC 2104 DOI 10.17487/RFC2104 <https://
www.rfc-editor.org/info/rfc2104>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 30

https://www.rfc-editor.org/info/rfc8343
https://www.rfc-editor.org/info/rfc8349
https://www.rfc-editor.org/info/rfc8349
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8966
https://www.rfc-editor.org/info/rfc8967
https://www.rfc-editor.org/info/rfc8967
https://www.rfc-editor.org/info/rfc8968
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9046
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9640
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6020

[RFC7468]

[RFC8340]

[RFC8342]

[RFC8407]

[W3C.REC-xml-20081126]

 and ,
, , , April 2015,

.

 and , , , ,
, March 2018, .

, , , , and ,
, , ,

March 2018, .

,
, , , , October 2018,

.

, , , , and ,
,

, November 2008, .

Josefsson, S. S. Leonard "Textual Encodings of PKIX, PKCS, and CMS
Structures" RFC 7468 DOI 10.17487/RFC7468 <https://www.rfc-
editor.org/info/rfc7468>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Bierman, A. "Guidelines for Authors and Reviewers of Documents Containing
YANG Data Models" BCP 216 RFC 8407 DOI 10.17487/RFC8407
<https://www.rfc-editor.org/info/rfc8407>

Bray, T. Paoli, J. Sperberg-McQueen, C. M. Maler, E. F. Yergeau
"Extensible Markup Language (XML) 1.0 (Fifth Edition)" W3C Recommendation
REC-xml-20081126 <https://www.w3.org/TR/xml/>

Appendix A. Tree Diagram and Example Configurations
This section is devoted to including a complete tree diagram and examples that demonstrate how
Babel can be configured.

Note that various examples are encoded using Extensible Markup Language (XML)
.

A.1. Complete Tree Diagram
This section includes the complete tree diagram for the Babel YANG module.

[W3C.REC-
xml-20081126]

module: ietf-babel

 augment /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol:
 +--rw babel!
 +--ro version? string
 +--rw enable boolean
 +--ro router-id? binary
 +--ro seqno? uint16
 +--rw statistics-enabled? boolean
 +--rw constants
 | +--rw udp-port? inet:port-number
 | +--rw mcast-group? inet:ip-address
 +--rw interfaces* [reference]
 | +--rw reference if:interface-ref
 | +--rw enable? boolean
 | +--rw metric-algorithm identityref
 | +--rw split-horizon? boolean
 | +--ro mcast-hello-seqno? uint16
 | +--rw mcast-hello-interval? uint16
 | +--rw update-interval? uint16

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 31

https://www.rfc-editor.org/info/rfc7468
https://www.rfc-editor.org/info/rfc7468
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8407
https://www.w3.org/TR/xml/

 | +--rw mac-enable? boolean
 | +--rw mac-key-sets* -> ../../mac-key-set/name
 | +--rw mac-verify? boolean
 | +--rw dtls-enable? boolean
 | +--rw dtls-certs* -> ../../dtls/name
 | +--rw dtls-cached-info? boolean
 | +--rw dtls-cert-prefer* -> ../../dtls/certs/type
 | +--rw packet-log-enable? boolean
 | +--ro packet-log? inet:uri
 | +--ro statistics
 | | +--ro discontinuity-time yang:date-and-time
 | | +--ro sent-mcast-hello? yang:counter32
 | | +--ro sent-mcast-update? yang:counter32
 | | +--ro sent-ucast-hello? yang:counter32
 | | +--ro sent-ucast-update? yang:counter32
 | | +--ro sent-ihu? yang:counter32
 | | +--ro received-packets? yang:counter32
 | | +---x reset
 | | +---w input
 | | | +---w reset-at? yang:date-and-time
 | | +--ro output
 | | +--ro reset-finished-at? yang:date-and-time
 | +--ro neighbor-objects* [neighbor-address]
 | +--ro neighbor-address inet:ip-address
 | +--ro hello-mcast-history? string
 | +--ro hello-ucast-history? string
 | +--ro txcost? int32
 | +--ro exp-mcast-hello-seqno? union
 | +--ro exp-ucast-hello-seqno? union
 | +--ro ucast-hello-seqno? union
 | +--ro ucast-hello-interval? uint16
 | +--ro rxcost? uint16
 | +--ro cost? int32
 +--rw mac-key-set* [name]
 | +--rw name string
 | +--rw default-apply? boolean
 | +--rw keys* [name]
 | +--rw name string
 | +--rw use-send boolean
 | +--rw use-verify boolean
 | +--rw value binary
 | +--rw algorithm identityref
 | +---x test
 | +---w input
 | | +---w test-string binary
 | | +---w mac binary
 | +--ro output
 | +--ro indication boolean
 +--rw dtls* [name]
 | +--rw name string
 | +--rw default-apply boolean
 | +--rw certs* [name]
 | +--rw name string
 | +--rw value string
 | +--rw type identityref
 | +--rw private-key binary
 | +--rw algorithm identityref
 +--ro routes* [prefix]

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 32

A.2. Statistics Gathering Enabled
In this example, interface eth0 is being configured for routing protocol Babel, and statistics
gathering is enabled. For security, HMAC-SHA256 is supported. Every sent Babel packet is signed
with the key value provided, and every received Babel packet is verified with the same key value.

 +--ro prefix inet:ip-prefix
 +--ro router-id? binary
 +--ro neighbor? leafref
 +--ro received-metric? union
 +--ro calculated-metric? union
 +--ro seqno? uint16
 +--ro next-hop? union
 +--ro feasible? boolean
 +--ro selected? boolean

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 33

A.3. Automatic Detection of Properties
In this example, babeld is configured on two interfaces:

interface eth0

interface wlan0

This says to run Babel on interfaces eth0 and wlan0. Babeld will automatically detect that eth0 is
wired and wlan0 is wireless and will configure the right parameters automatically.

<?xml version="1.0" encoding="UTF-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 </interface>
</interfaces>
<routing
 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">
 <control-plane-protocols>
 <control-plane-protocol>
 <type
 xmlns:babel=
 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>
 <name>name:babel</name>
 <babel
 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">
 <enable>true</enable>
 <statistics-enabled>true</statistics-enabled>
 <interfaces>
 <reference>eth0</reference>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 <split-horizon>true</split-horizon>
 </interfaces>
 <mac-key-set>
 <name>hmac-sha256</name>
 <keys>
 <name>hmac-sha256-keys</name>
 <use-send>true</use-send>
 <use-verify>true</use-verify>
 <value>base64encodedvalue==</value>
 <algorithm>hmac-sha256</algorithm>
 </keys>
 </mac-key-set>
 </babel>
 </control-plane-protocol>
 </control-plane-protocols>
</routing>

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 34

A.4. Override Default Properties
In this example, babeld is configured on three interfaces:

interface eth0

interface eth1 type wireless

interface tun0 type tunnel

Here, interface eth1 is an Ethernet bridged to a wireless radio, so babeld's autodetection fails,
and the interface type needs to be configured manually. Tunnels are not detected automatically,
so this needs to be specified.

<?xml version="1.0" encoding="UTF-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 </interface>
 <interface>
 <name>wlan0</name>
 <type>ianaift:ieee80211</type>
 <enabled>true</enabled>
 </interface>
</interfaces>
<routing
 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">
 <control-plane-protocols>
 <control-plane-protocol>
 <type
 xmlns:babel=
 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>
 <name>name:babel</name>
 <babel
 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">
 <enable>true</enable>
 <interfaces>
 <reference>eth0</reference>
 <enable>true</enable>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 <split-horizon>true</split-horizon>
 </interfaces>
 <interfaces>
 <reference>wlan0</reference>
 <enable>true</enable>
 <metric-algorithm>etx</metric-algorithm>
 <split-horizon>false</split-horizon>
 </interfaces>
 </babel>
 </control-plane-protocol>
 </control-plane-protocols>
</routing>

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 35

This is equivalent to the following:

interface eth0 metric-algorithm 2-out-of-3 split-horizon true

interface eth1 metric-algorithm etx split-horizon false

interface tun0 metric-algorithm 2-out-of-3 split-horizon true

<?xml version="1.0" encoding="UTF-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 </interface>
 <interface>
 <name>eth1</name>
 <type>ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 </interface>
 <interface>
 <name>tun0</name>
 <type>ianaift:tunnel</type>
 <enabled>true</enabled>
 </interface>
</interfaces>
<routing
 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">
 <control-plane-protocols>
 <control-plane-protocol>
 <type
 xmlns:babel=
 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>
 <name>name:babel</name>
 <babel
 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">
 <enable>true</enable>
 <interfaces>
 <reference>eth0</reference>
 <enable>true</enable>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 <split-horizon>true</split-horizon>
 </interfaces>
 <interfaces>
 <reference>eth1</reference>
 <enable>true</enable>
 <metric-algorithm>etx</metric-algorithm>
 <split-horizon>false</split-horizon>
 </interfaces>
 <interfaces>
 <reference>tun0</reference>
 <enable>true</enable>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 <split-horizon>true</split-horizon>
 </interfaces>
 </babel>

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 36

A.5. Configuring Other Properties
In this example, two interfaces are configured for babeld:

interface eth0

interface ppp0 hello-interval 30 update-interval 120

Here, ppp0 is a metered 3G link used for fallback connectivity. It runs with much higher than
default time constants in order to avoid control traffic as much as possible.

 </control-plane-protocol>
 </control-plane-protocols>
</routing>

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 37

<?xml version="1.0" encoding="UTF-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 </interface>
 <interface>
 <name>ppp0</name>
 <type>ianaift:ppp</type>
 <enabled>true</enabled>
 </interface>
</interfaces>
<routing
 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">
 <control-plane-protocols>
 <control-plane-protocol>
 <type
 xmlns:babel=
 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>
 <name>name:babel</name>
 <babel
 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">
 <enable>true</enable>
 <interfaces>
 <reference>eth0</reference>
 <enable>true</enable>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 <split-horizon>true</split-horizon>
 </interfaces>
 <interfaces>
 <reference>ppp0</reference>
 <enable>true</enable>
 <mcast-hello-interval>30</mcast-hello-interval>
 <update-interval>120</update-interval>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 </interfaces>
 </babel>
 </control-plane-protocol>
 </control-plane-protocols>
</routing>

Acknowledgements
 provided most of the example configurations for babel that are shown in

Appendix A.
Juliusz Chroboczek

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 38

Authors' Addresses
Mahesh Jethanandani
Kloud Services
California
United States of America

mjethanandani@gmail.comEmail:

Barbara Stark
AT&T

, Atlanta GA
United States of America

barbara.stark@att.comEmail:

RFC 9647 YANG Data Model for Babel October 2024

Jethanandani & Stark Standards Track Page 39

mailto:mjethanandani@gmail.com
mailto:barbara.stark@att.com

	RFC 9647
	A YANG Data Model for Babel
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Tree Diagram Annotations

	2. Babel Module
	2.1. Information Model
	2.2. Tree Diagram
	2.3. YANG Module

	3. IANA Considerations
	3.1. URI Registration
	3.2. YANG Module Name Registration

	4. Security Considerations
	5. References
	5.1. Normative References
	5.2. Informative References

	Appendix A. Tree Diagram and Example Configurations
	A.1. Complete Tree Diagram
	A.2. Statistics Gathering Enabled
	A.3. Automatic Detection of Properties
	A.4. Override Default Properties
	A.5. Configuring Other Properties

	Acknowledgements
	Authors' Addresses

 A YANG Data Model for Babel

 Kloud Services

 California
 United States of America

 mjethanandani@gmail.com

 AT&T

 Atlanta
 GA

 United States of America

 barbara.stark@att.com

 Routing
 Babel
 babel
 YANG

 This document defines a data model for the Babel routing protocol. The data model is defined using the YANG data modeling language.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Requirements Language

 . Tree Diagram Annotations

 . Babel Module

 . Information Model

 . Tree Diagram

 . YANG Module

 . IANA Considerations

 . URI Registration

 . YANG Module Name Registration

 . Security Considerations

 . References

 . Normative References

 . Informative References

 . Tree Diagram and Example Configurations

 . Complete Tree Diagram

 . Statistics Gathering Enabled

 . Automatic Detection of Properties

 . Override Default Properties

 . Configuring Other Properties

 Acknowledgements

 Authors' Addresses

 Introduction
 This document defines a data model for the Babel routing protocol. The data model is defined using YANG 1.1 and is compatible with Network Management Datastore Architecture (NMDA). It is based on the Babel information model. The data model only includes data nodes that are useful for managing Babel over IPv6.

 Requirements Language

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 Tree Diagram Annotations
 For a reference to the annotations used in tree diagrams included in this document, please see "YANG Tree Diagrams" .

 Babel Module
 This document defines a YANG 1.1 data model for the configuration and management of Babel. The YANG module is based on the Babel information model.

 Information Model
 It's worth noting a few differences between the Babel information model and this data module. The information model mandates the definition of some of the attributes, e.g.,
 "babel-implementation-version" or the "babel-self-router-id". These attributes are marked as read-only objects in the information module as well as in this data module. However, there is no way
 in the data module to mandate that a read-only attribute be present. It is up to the implementation of this data module to make sure that the attributes that are marked "read only" and are
 mandatory are indeed present.

 Tree Diagram
 The following diagram illustrates a top-level hierarchy of the model. In addition to the version implemented by this device, the model contains subtrees on
 "constants", "interfaces", "mac-key-set", "dtls", and "routes".

module: ietf-babel

 augment /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol:
 +--rw babel!
 +--ro version? string
 +--rw enable boolean
 +--ro router-id? binary
 +--ro seqno? uint16
 +--rw statistics-enabled? boolean
 +--rw constants
 | ...
 +--rw interfaces* [reference]
 | ...
 +--rw mac-key-set* [name]
 | ...
 +--rw dtls* [name]
 | ...
 +--ro routes* [prefix]
 ...

 The "interfaces" subtree describes attributes such as the "interface" object that is being referenced; the type of link, e.g., wired, wireless, or tunnel, as enumerated by "metric-algorithm" and
 "split-horizon"; and whether the interface is enabled or not.
 The "constants" subtree describes the UDP port used for sending and receiving Babel messages and the multicast group used to send and receive announcements on IPv6.
 The "routes" subtree describes objects such as the prefix for which the route is advertised, a reference to the neighboring route, and the "next-hop" address.
 Finally, for security, two subtrees are defined to contain Message Authentication Code (MAC) keys and DTLS certificates. The "mac-key-set" subtree contains keys used with the MAC security mechanism. The boolean flag
 "default-apply" indicates whether the set of MAC keys is automatically applied to new interfaces. The "dtls" subtree contains certificates used with the DTLS security mechanism. Similar to the MAC
 mechanism, the boolean flag "default-apply" indicates whether the set of DTLS certificates is automatically applied to new interfaces.

 YANG Module
 This YANG module augments the YANG routing management module to provide a common framework for all routing subsystems. By augmenting the module, it provides a
 common building block for routes and Routing Information Bases (RIBs). It also has a reference to an interface defined by "A YANG Data Model for Interface Management" .
 A router running the Babel routing protocol can sometimes determine the parameters it needs to use for an interface based on the interface name. For example, it can detect that eth0 is a wired interface
 and that wlan0 is a wireless interface. This is not true for a tunnel interface, where the link parameters need to be configured explicitly.
 For a wired interface, it will assume "two-out-of-three" is set for "metric-algorithm" and "split-horizon" is set to true. On the other hand, for a wireless interface, it will assume "etx" is set for
 "metric-algorithm" and "split-horizon" is set to false. However, if the wired link is connected to a wireless radio, the values can be overridden by setting "metric-algorithm" to "etx" and
 "split-horizon" to false. Similarly, an interface that is a metered 3G link and is used for fallback connectivity needs much higher default time constants, e.g., "mcast-hello-interval" and
 "update-interval", in order to avoid carrying control traffic as much as possible.
 In addition to the modules used above, this module imports
 definitions from "Common YANG Data Types" and references "HMAC:
 Keyed-Hashing for Message Authentication" , "Using HMAC-SHA-256,
 HMAC-SHA-384, and HMAC-SHA-512 with IPsec" , "Textual Encodings of
 PKIX, PKCS, and CMS Structures" , "The BLAKE2 Cryptographic Hash and Message
 Authentication Code (MAC)" , "Network Configuration
 Access Control Model" , "The Babel Routing
 Protocol" ,
 "MAC Authentication for the Babel
 Routing Protocol" , "Babel Information Model" , "The Datagram Transport
 Layer Security (DTLS) Protocol Version 1.3" , and "YANG
 Data Types and Groupings for Cryptography" .

module ietf-babel {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-babel";
 prefix babel;

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }
 import ietf-routing {
 prefix rt;
 reference
 "RFC 8349: A YANG Data Model for Routing Management (NMDA
 Version)";
 }
 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings
 for Cryptography";
 }
 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }

 organization
 "IETF Babel routing protocol Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/babel/
 WG List: babel@ietf.org

 Editor: Mahesh Jethanandani
 mjethanandani@gmail.com
 Editor: Barbara Stark
 bs7652@att.com";

 description
 "This YANG module defines a model for the Babel routing
 protocol.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9647
 (https://www.rfc-editor.org/info/rfc9647); see the RFC itself
 for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version.";
 reference
 "RFC 9647: A YANG Data Model for Babel";
 }

 /*
 * Features
 */

 feature two-out-of-three-supported {
 description
 "This implementation supports the '2-out-of-3'
 computation algorithm.";
 }

 feature etx-supported {
 description
 "This implementation supports the Expected Transmission Count
 (ETX) metric computation algorithm.";
 }

 feature mac-supported {
 description
 "This implementation supports MAC-based security.";
 reference
 "RFC 8967: MAC Authentication for the Babel Routing
 Protocol";
 }

 feature dtls-supported {
 description
 "This implementation supports DTLS-based security.";
 reference
 "RFC 8968: Babel Routing Protocol over Datagram
 Transport Layer Security";
 }

 feature hmac-sha256-supported {
 description
 "This implementation supports the HMAC-SHA256 MAC algorithm.";
 reference
 "RFC 8967: MAC Authentication for the Babel Routing
 Protocol";
 }

 feature blake2s-supported {
 description
 "This implementation supports BLAKE2s MAC algorithms.";
 reference
 "RFC 8967: MAC Authentication for the Babel Routing
 Protocol";
 }

 feature x-509-supported {
 description
 "This implementation supports the X.509 certificate type.";
 reference
 "RFC 8968: Babel Routing Protocol over Datagram
 Transport Layer Security";
 }

 feature raw-public-key-supported {
 description
 "This implementation supports the raw public key certificate
 type.";
 reference
 "RFC 8968: Babel Routing Protocol over Datagram
 Transport Layer Security";
 }

 /*
 * Identities
 */

 identity metric-comp-algorithms {
 description
 "Base identity from which all Babel metric computation
 algorithms MUST be derived.";
 }

 identity two-out-of-three {
 if-feature "two-out-of-three-supported";
 base metric-comp-algorithms;
 description
 "2-out-of-3 algorithm.";
 reference
 "RFC 8966: The Babel Routing Protocol, Section A.2.1";
 }

 identity etx {
 if-feature "etx-supported";
 base metric-comp-algorithms;
 description
 "Expected Transmission Count (ETX) metric computation
 algorithm.";
 reference
 "RFC 8966: The Babel Routing Protocol, Section A.2.2";
 }

 /*
 * Babel MAC algorithms identities.
 */

 identity mac-algorithms {
 description
 "Base identity for all Babel MAC algorithms.";
 }

 identity hmac-sha256 {
 if-feature "mac-supported";
 if-feature "hmac-sha256-supported";
 base mac-algorithms;
 description
 "HMAC-SHA256 algorithm supported.";
 reference
 "RFC 4868: Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512
 with IPsec";
 }

 identity blake2s {
 if-feature "mac-supported";
 if-feature "blake2s-supported";
 base mac-algorithms;
 description
 "BLAKE2s algorithms supported. Specifically, BLAKE2-128 is
 supported.";
 reference
 "RFC 7693: The BLAKE2 Cryptographic Hash and Message
 Authentication Code (MAC)";
 }

 /*
 * Babel Cert Types
 */

 identity dtls-cert-types {
 description
 "Base identity for Babel DTLS certificate types.";
 }

 identity x-509 {
 if-feature "dtls-supported";
 if-feature "x-509-supported";
 base dtls-cert-types;
 description
 "X.509 certificate type.";
 }

 identity raw-public-key {
 if-feature "dtls-supported";
 if-feature "raw-public-key-supported";
 base dtls-cert-types;
 description
 "Raw public key certificate type.";
 }

 /*
 * Babel routing protocol identity.
 */

 identity babel {
 base rt:routing-protocol;
 description
 "Babel routing protocol";
 }

 /*
 * Groupings
 */

 grouping routes {
 list routes {
 key "prefix";
 config false;

 leaf prefix {
 type inet:ip-prefix;
 description
 "Prefix (expressed in ip-address/prefix-length format) for
 which this route is advertised.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }

 leaf router-id {
 type binary {
 length "8";
 }
 description
 "router-id of the source router for which this route is
 advertised.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }

 leaf neighbor {
 type leafref {
 path "/rt:routing/rt:control-plane-protocols/"
 + "rt:control-plane-protocol/babel/interfaces/"
 + "neighbor-objects/neighbor-address";
 }
 description
 "Reference to the neighbor-objects entry for the neighbor
 that advertised this route.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }

 leaf received-metric {
 type union {
 type enumeration {
 enum null {
 description
 "Route was not received from a neighbor.";
 }
 }
 type uint16;
 }
 description
 "The metric with which this route was advertised by the
 neighbor, or maximum value (infinity) to indicate the
 route was recently retracted and is temporarily
 unreachable. This metric will be NULL if the
 route was not received from a neighbor but instead was
 injected through means external to the Babel routing
 protocol. At least one of calculated-metric or
 received-metric MUST be non-NULL.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6
 RFC 8966: The Babel Routing Protocol, Section 2.1";
 }

 leaf calculated-metric {
 type union {
 type enumeration {
 enum null {
 description
 "Route has not been calculated.";
 }
 }
 type uint16;
 }
 description
 "A calculated metric for this route. How the metric is
 calculated is implementation specific. Maximum value
 (infinity) indicates the route was recently retracted
 and is temporarily unreachable. At least one of
 calculated-metric or received-metric MUST be non-NULL.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6
 RFC 8966: The Babel Routing Protocol, Section 2.1";
 }

 leaf seqno {
 type uint16;
 description
 "The sequence number with which this route was
 advertised.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }

 leaf next-hop {
 type union {
 type enumeration {
 enum null {
 description
 "Route has no next-hop address.";
 }
 }
 type inet:ip-address;
 }
 description
 "The next-hop address of this route. This will be NULL
 if this route has no next-hop address.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }

 leaf feasible {
 type boolean;
 description
 "A boolean flag indicating whether this route is
 feasible.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6
 RFC 8966, The Babel Routing Protocol, Section 3.5.1";
 }

 leaf selected {
 type boolean;
 description
 "A boolean flag indicating whether this route is selected,
 i.e., whether it is currently being used for forwarding
 and is being advertised.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }
 description
 "A set of babel-route-obj objects. Contains routes known to
 this node.";
 reference
 "RFC 9046: Babel Information Model, Section 3.6";
 }
 description
 "Common grouping for routing used in RIB.";
 }

 /*
 * Data model
 */

 augment "/rt:routing/rt:control-plane-protocols/"
 + "rt:control-plane-protocol" {
 when "derived-from-or-self(rt:type, 'babel')" {
 description
 "Augmentation is valid only when the instance of the routing
 type is of type 'babel'.";
 }
 description
 "Augments the routing module to support a common structure
 between routing protocols.";
 reference
 "RFC 8349: A YANG Data Model for Routing Management (NMDA
 Version)";

 container babel {
 presence "A Babel container.";
 description
 "Babel information objects.";
 reference
 "RFC 9046: Babel Information Model, Section 3";

 leaf version {
 type string;
 config false;
 description
 "The name and version of this implementation of the Babel
 protocol.";
 reference
 "RFC 9046: Babel Information Model, Section 3.1";
 }

 leaf enable {
 type boolean;
 mandatory true;
 description
 "When written, it configures whether the protocol should be
 enabled. A read from the <running> or <intended> datastore
 therefore indicates the configured administrative value of
 whether the protocol is enabled or not.

 A read from the <operational> datastore indicates whether
 the protocol is actually running or not, i.e., it
 indicates the operational state of the protocol.";
 reference
 "RFC 9046: Babel Information Model, Section 3.1";
 }

 leaf router-id {
 type binary;
 must '../enable = "true"';
 config false;
 description
 "Every Babel speaker is assigned a router-id, which is an
 arbitrary string of 8 octets that is assumed to be unique
 across the routing domain.

 The router-id is valid only if the protocol is enabled,
 at which time a non-zero value is assigned.";
 reference
 "RFC 9046: Babel Information Model, Section 3.1
 RFC 8966: The Babel Routing Protocol, Section 3";
 }

 leaf seqno {
 type uint16;
 config false;
 description
 "Sequence number included in route updates for routes
 originated by this node.";
 reference
 "RFC 9046: Babel Information Model, Section 3.1";
 }

 leaf statistics-enabled {
 type boolean;
 description
 "Indicates whether statistics collection is enabled
 ('true') or disabled ('false') on all interfaces.
 On transition to enabled, existing statistics
 values are not cleared and will be incremented as
 new packets are counted.";
 }

 container constants {
 description
 "Babel constants object.";
 reference
 "RFC 9046: Babel Information Model, Section 3.1";

 leaf udp-port {
 type inet:port-number;
 default "6696";
 description
 "UDP port for sending and receiving Babel messages. The
 default port is 6696.";
 reference
 "RFC 9046: Babel Information Model, Section 3.2";
 }

 leaf mcast-group {
 type inet:ip-address;
 default "ff02::1:6";
 description
 "Multicast group for sending and receiving multicast
 announcements on IPv6.";
 reference
 "RFC 9046: Babel Information Model, Section 3.2";
 }
 }

 list interfaces {
 key "reference";

 description
 "A set of Babel interface objects.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";

 leaf reference {
 type if:interface-ref;
 description
 "References the name of the interface over which Babel
 packets are sent and received.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf enable {
 type boolean;
 default "true";
 description
 "If 'true', Babel sends and receives messages on this
 interface. If 'false', Babel messages received on
 this interface are ignored and none are sent.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf metric-algorithm {
 type identityref {
 base metric-comp-algorithms;
 }
 mandatory true;
 description
 "Indicates the metric computation algorithm used on this
 interface. The value MUST be one of those identities
 based on 'metric-comp-algorithms'.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf split-horizon {
 type boolean;
 description
 "Indicates whether or not the split-horizon optimization
 is used when calculating metrics on this interface.
 A value of 'true' indicates the split-horizon
 optimization is used.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf mcast-hello-seqno {
 type uint16;
 config false;
 description
 "The current sequence number in use for multicast Hellos
 sent on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf mcast-hello-interval {
 type uint16;
 units "centiseconds";
 description
 "The current multicast Hello interval in use for Hellos
 sent on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf update-interval {
 type uint16;
 units "centiseconds";
 description
 "The current update interval in use for this interface.
 Units are centiseconds.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf mac-enable {
 type boolean;
 description
 "Indicates whether the MAC security mechanism is enabled
 ('true') or disabled ('false').";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf-list mac-key-sets {
 type leafref {
 path "../../mac-key-set/name";
 }
 description
 "List of references to the MAC entries that apply
 to this interface. When an interface instance is
 created, all MAC instances with default-apply 'true'
 will be included in this list.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf mac-verify {
 type boolean;
 description
 "A boolean flag indicating whether MACs in
 incoming Babel packets are required to be present and
 are verified. If this parameter is 'true', incoming
 packets are required to have a valid MAC.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf dtls-enable {
 type boolean;
 description
 "Indicates whether the DTLS security mechanism is enabled
 ('true') or disabled ('false').";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf-list dtls-certs {
 type leafref {
 path "../../dtls/name";
 }
 description
 "List of references to the dtls entries that apply to
 this interface. When an interface instance
 is created, all dtls instances with default-apply
 'true' will be included in this list.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf dtls-cached-info {
 type boolean;
 description
 "Indicates whether the cached_info extension is enabled.
 The extension is enabled for inclusion in ClientHello
 and ServerHello messages if the value is 'true'.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3
 RFC 8968: Babel Routing Protocol over
 Datagram Transport Layer Security, Appendix A";
 }

 leaf-list dtls-cert-prefer {
 type leafref {
 path "../../dtls/certs/type";
 }
 ordered-by user;
 description
 "List of supported certificate types, in order of
 preference. The values MUST be the 'type' attribute
 in the list 'certs' of the list 'dtls'
 (../../dtls/certs/type). This list is used to populate
 the server_certificate_type extension in a ClientHello.
 Values that are present in at least one instance in the
 certs object under dtls of a referenced dtls instance
 and that have a non-empty private key will be used to
 populate the client_certificate_type extension in a
 ClientHello.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3
 RFC 8968: Babel Routing Protocol over
 Datagram Transport Layer Security, Appendix A";
 }

 leaf packet-log-enable {
 type boolean;
 description
 "If 'true', logging of babel packets received on this
 interface is enabled; if 'false', babel packets are
 not logged.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3";
 }

 leaf packet-log {
 type inet:uri;
 config false;
 description
 "A reference or url link to a file that contains a
 timestamped log of packets received and sent on
 udp-port on this interface. The [libpcap] file
 format with .pcap file extension SHOULD be supported for
 packet log files. Logging is enabled / disabled by
 packet-log-enable.";
 reference
 "RFC 9046: Babel Information Model, Section 3.3
 libpcap: Libpcap File Format, Wireshark Foundation";
 }

 container statistics {
 config false;
 description
 "Statistics collection object for this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";

 leaf discontinuity-time {
 type yang:date-and-time;
 mandatory true;
 description
 "The time on the most recent occasion at which any one
 or more of counters suffered a discontinuity. If no
 such discontinuities have occurred since the last
 re-initialization of the local management subsystem,
 then this node contains the time the local management
 subsystem re-initialized itself.";
 }

 leaf sent-mcast-hello {
 type yang:counter32;
 description
 "A count of the number of multicast Hello packets sent
 on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 leaf sent-mcast-update {
 type yang:counter32;
 description
 "A count of the number of multicast update packets sent
 on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 leaf sent-ucast-hello {
 type yang:counter32;
 description
 "A count of the number of unicast Hello packets sent
 on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 leaf sent-ucast-update {
 type yang:counter32;
 description
 "A count of the number of unicast update packets sent
 on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 leaf sent-ihu {
 type yang:counter32;
 description
 "A count of the number of 'I Heard You' (IHU) packets
 sent on this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 leaf received-packets {
 type yang:counter32;
 description
 "A count of the number of Babel packets received on
 this interface.";
 reference
 "RFC 9046: Babel Information Model, Section 3.4";
 }

 action reset {
 description
 "The information model (RFC 9046) defines reset
 action as a system-wide reset of Babel statistics.
 In YANG, the reset action is associated with the
 container where the action is defined. In this case,
 the action is associated with the statistics container
 inside an interface. The action will therefore
 reset statistics at an interface level.

 Implementations that want to support a system-wide
 reset of Babel statistics need to call this action
 for every instance of the interface.";
 reference
 "RFC 9046: Babel Information Model";

 input {
 leaf reset-at {
 type yang:date-and-time;
 description
 "The time when the reset was issued.";
 }
 }

 output {
 leaf reset-finished-at {
 type yang:date-and-time;
 description
 "The time when the reset finished.";
 }
 }
 }
 }

 list neighbor-objects {
 key "neighbor-address";
 config false;
 description
 "A set of babel neighbor objects.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";

 leaf neighbor-address {
 type inet:ip-address;
 description
 "The IPv4 or IPv6 address from which the neighbor sends
 packets.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf hello-mcast-history {
 type string;
 description
 "The multicast Hello history of whether or not the
 multicast Hello packets prior to exp-mcast-
 hello-seqno were received, with a '1' for the most
 recent Hello placed in the most significant bit and
 prior Hellos shifted right (with '0' bits placed
 between prior Hellos and the most recent Hello for any
 Hellos not received); represented as a string of
 hex digits encoded in utf-8. A bit that is set
 indicates that the corresponding Hello was received,
 and a bit that is cleared indicates that the
 corresponding Hello was not received.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf hello-ucast-history {
 type string;
 description
 "The unicast Hello history of whether or not the
 unicast Hello packets prior to exp-ucast-hello-seqno
 were received, with a '1' for the most
 recent Hello placed in the most significant bit and
 prior Hellos shifted right (with '0' bits placed
 between prior Hellos and the most recent Hello for any
 Hellos not received); represented as a string using
 hex digits encoded in utf-8 where a '1' bit = Hello
 received and a '0' bit = Hello not received.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf txcost {
 type int32;
 default "0";
 description
 "Transmission cost value from the last IHU packet
 received from this neighbor, or maximum value
 (infinity) to indicate the IHU hold timer for this
 neighbor has an expired description.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf exp-mcast-hello-seqno {
 type union {
 type enumeration {
 enum null {
 description
 "Multicast Hello packets are not expected, or
 processing of multicast packets is not
 enabled.";
 }
 }
 type uint16;
 }
 description
 "Expected multicast Hello sequence number of next Hello
 to be received from this neighbor; if multicast Hello
 packets are not expected, or processing of multicast
 packets is not enabled, this MUST be NULL.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf exp-ucast-hello-seqno {
 type union {
 type enumeration {
 enum null {
 description
 "Unicast Hello packets are not expected, or
 processing of unicast packets is not enabled.";
 }
 }
 type uint16;
 }
 default "null";
 description
 "Expected unicast Hello sequence number of next Hello
 to be received from this neighbor; if unicast Hello
 packets are not expected, or processing of unicast
 packets is not enabled, this MUST be NULL.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf ucast-hello-seqno {
 type union {
 type enumeration {
 enum null {
 description
 "Unicast Hello packets are not being sent.";
 }
 }
 type uint16;
 }
 default "null";
 description
 "The current sequence number in use for unicast Hellos
 sent to this neighbor. If unicast Hellos are not being
 sent, this MUST be NULL.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf ucast-hello-interval {
 type uint16;
 units "centiseconds";
 description
 "The current interval in use for unicast Hellos sent to
 this neighbor. Units are centiseconds.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf rxcost {
 type uint16;
 description
 "Reception cost calculated for this neighbor. This
 value is usually derived from the Hello history, which
 may be combined with other data, such as statistics
 maintained by the link layer. The rxcost is sent to a
 neighbor in each IHU.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }

 leaf cost {
 type int32;
 description
 "Link cost is computed from the values maintained in
 the neighbor table. The statistics are kept in the
 neighbor table about the reception of Hellos, and the
 txcost is computed from received IHU packets.";
 reference
 "RFC 9046: Babel Information Model, Section 3.5";
 }
 }
 }

 list mac-key-set {
 key "name";

 description
 "A MAC key set object. If this object is implemented, it
 provides access to parameters related to the MAC security
 mechanism.";
 reference
 "RFC 9046: Babel Information Model, Section 3.7";

 leaf name {
 type string;
 description
 "A string that uniquely identifies the MAC object.";
 }

 leaf default-apply {
 type boolean;
 description
 "A boolean flag indicating whether this object
 instance is applied to all new interfaces, by default.
 If 'true', this instance is applied to new babel-
 interfaces instances at the time they are created
 by including it in the mac-key-sets list under
 the interface. If 'false', this instance is not applied
 to new interface instances when they are created.";
 reference
 "RFC 9046: Babel Information Model, Section 3.7";
 }

 list keys {
 key "name";
 min-elements 1;
 description
 "A set of keys objects.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";

 leaf name {
 type string;
 description
 "A unique name for this MAC key that can be used to
 identify the key in this object instance since the
 key value is not allowed to be read. This value can
 only be provided when this instance is created and is
 not subsequently writable.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }

 leaf use-send {
 type boolean;
 mandatory true;
 description
 "Indicates whether this key value is used to compute a
 MAC and include that MAC in the sent Babel packet. A
 MAC for sent packets is computed using this key if the
 value is 'true'. If the value is 'false', this key is
 not used to compute a MAC to include in sent Babel
 packets.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }

 leaf use-verify {
 type boolean;
 mandatory true;
 description
 "Indicates whether this key value is used to verify
 incoming Babel packets. This key is used to verify
 incoming packets if the value is 'true'. If the value
 is 'false', no MAC is computed from this key for
 comparing an incoming packet.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }

 leaf value {
 nacm:default-deny-all;
 type binary;
 mandatory true;
 description
 "The value of the MAC key.

 This value is of a length suitable for the associated
 babel-mac-key-algorithm. If the algorithm is based on
 the Hashed Message Authentication Code (HMAC)
 construction (RFC 2104), the length MUST be between 0
 and an upper limit that is at least the size of the
 output length (where the 'HMAC-SHA256' output length
 is 32 octets as described in RFC 4868). Longer lengths
 MAY be supported but are not necessary if the
 management system has the ability to generate a
 suitably random value (e.g., by randomly generating a
 value or by using a key derivation technique as
 recommended in the security considerations of RFC
 8967. If the algorithm is 'BLAKE2s-128', the length
 MUST be between 0 and 32 bytes inclusive as specified
 by RFC 7693.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8
 RFC 2104: HMAC: Keyed-Hashing for Message
 Authentication
 RFC 4868: Using HMAC-SHA-256, HMAC-SHA-384, and
 HMAC-SHA-512 with IPsec
 RFC 7693: The BLAKE2 Cryptographic Hash and Message
 Authentication Code (MAC)
 RFC 8967: MAC Authentication for Babel";
 }

 leaf algorithm {
 type identityref {
 base mac-algorithms;
 }
 mandatory true;
 description
 "The MAC algorithm used with this key. The
 value MUST be one of the identities
 listed with the base of 'mac-algorithms'.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }

 action test {
 description
 "An operation that allows the MAC key and MAC
 algorithm to be tested to see if they produce an
 expected outcome. Input to this operation is a
 binary string and a calculated MAC (also in the
 format of a binary string) for the binary string.
 The implementation is expected to create a MAC over
 the binary string using the value and algorithm.
 The output of this operation is a binary indication
 that the calculated MAC matched the input MAC
 ('true') or the MACs did not match ('false').";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";

 input {
 leaf test-string {
 type binary;
 mandatory true;
 description
 "Input to this operation is a binary string.
 The implementation is expected to create
 a MAC over this string using the value and
 the algorithm defined as part of the
 mac-key-set.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }

 leaf mac {
 type binary;
 mandatory true;
 description
 "Input to this operation includes a MAC.
 The implementation is expected to calculate a MAC
 over the string using the value and algorithm of
 this key object and compare its calculated MAC to
 this input MAC.";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }
 }

 output {
 leaf indication {
 type boolean;
 mandatory true;
 description
 "The output of this operation is a binary
 indication that the calculated MAC matched the
 input MAC ('true') or the MACs did not match
 ('false').";
 reference
 "RFC 9046: Babel Information Model, Section 3.8";
 }
 }
 }
 }
 }

 list dtls {
 key "name";

 description
 "A dtls object. If this object is implemented,
 it provides access to parameters related to the DTLS
 security mechanism.";
 reference
 "RFC 9046: Babel Information Model, Section 3.9";

 leaf name {
 type string;
 description
 "A string that uniquely identifies a dtls object.";
 }

 leaf default-apply {
 type boolean;
 mandatory true;
 description
 "A boolean flag indicating whether this object
 instance is applied to all new interfaces, by default.
 If 'true', this instance is applied to new interface
 instances at the time they are created by including it
 in the dtls-certs list under the interface. If 'false',
 this instance is not applied to new interface
 instances when they are created.";
 reference
 "RFC 9046: Babel Information Model, Section 3.9";
 }

 list certs {
 key "name";

 min-elements 1;
 description
 "A set of cert objects. This contains
 both certificates for this implementation to present
 for authentication and to accept from others.
 Certificates with a non-empty private key
 can be presented by this implementation for
 authentication.";
 reference
 "RFC 9046: Babel Information Model, Section 3.10";

 leaf name {
 type string;
 description
 "A unique name for this certificate that can be
 used to identify the certificate in this object
 instance, since the value is too long to be useful
 for identification. This value MUST NOT be empty
 and can only be provided when this instance is created
 (i.e., it is not subsequently writable).";
 reference
 "RFC 9046: Babel Information Model, Section 3.10";
 }

 leaf value {
 nacm:default-deny-write;
 type string;
 mandatory true;
 description
 "The certificate in Privacy-Enhanced Mail (PEM) format
 (RFC 7468). This value can only be provided when this
 instance is created and is not subsequently
 writable.";
 reference
 "RFC 9046: Babel Information Model, Section 3.10
 RFC 7468: Textual Encodings of PKIX, PKCS, and CMS
 Structures";
 }

 leaf type {
 nacm:default-deny-write;
 type identityref {
 base dtls-cert-types;
 }
 mandatory true;
 description
 "The certificate type of this object instance.
 The value MUST be the same as one of the
 identities listed with the base 'dtls-cert-types'.
 This value can only be provided when this
 instance is created and is not subsequently
 writable.";
 reference
 "RFC 9046: Babel Information Model, Section 3.10";
 }

 leaf private-key {
 nacm:default-deny-all;
 type binary;
 mandatory true;
 description
 "The value of the private key. If this is non-empty,
 this certificate can be used by this implementation to
 provide a certificate during DTLS handshaking.";
 reference
 "RFC 9046: Babel Information Model, Section 3.10";
 }

 leaf algorithm {
 nacm:default-deny-write;
 type identityref {
 base ct:private-key-format;
 }
 mandatory true;
 description
 "Identifies the algorithm identity with which the
 private key has been encoded. This value can only be
 provided when this instance is created and is not
 subsequently writable.";
 }
 }
 }
 uses routes;
 }
 }
}

 IANA Considerations

 URI Registration
 IANA has registered the following URI in the "ns" registry
 of the "IETF XML Registry" .

 URI:
 urn:ietf:params:xml:ns:yang:ietf-babel
 Registrant Contact:
 The IESG
 XML:
 N/A; the requested URI is an XML namespace.

 YANG Module Name Registration
 IANA has registered the following in the "YANG Module Names" registry .

 Name:
 ietf-babel
 Namespace:
 urn:ietf:params:xml:ns:yang:ietf-babel
 Prefix:
 babel
 Reference:
 RFC 9647

 Security Considerations
 This section is modeled after the template defined in .
 The "ietf-babel" YANG module defines a data model that is designed to be accessed via YANG-based management
 protocols, such as NETCONF and RESTCONF
 . These
 protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH) , TLS , and QUIC) and mandatory-to-implement mutual authentication.

 The Network Configuration Access Control Model (NACM) provides the means to restrict access for particular NETCONF users to a preconfigured subset of all available NETCONF
 protocol operations and content.
 The security considerations outlined here are specific to the YANG data model and do not cover security considerations of the Babel protocol or its security mechanisms in "The Babel Routing Protocol" , "MAC Authentication for the Babel Routing Protocol" , and "Babel Routing Protocol over Datagram Transport Layer Security" . Each of these has its own Security Considerations section for considerations that are specific to it.
 There are a number of data nodes defined in the YANG module that are writable/created/deleted (i.e., config true, which is the default). These data nodes may be considered sensitive or
 vulnerable in some network environments. Write operations (e.g., <edit-config>) to these data nodes without proper protection can have a negative effect on network operations.
 These are
 the subtrees and data nodes and their sensitivity/vulnerability from a config true perspective:

 'babel':
 This container includes an 'enable' parameter that can be used to enable or disable use of Babel on a router.
 'babel/constants':
 This container includes configuration parameters that can prevent reachability if misconfigured.
 'babel/interfaces':
 This leaf-list has configuration parameters that can enable/disable security mechanisms and change performance characteristics of the Babel protocol. For example, enabling logging of packets and giving unintended access to the log files gives an attacker detailed knowledge of the network and allows it to launch an attack on the traffic traversing the network device.
 'babel/hmac' and 'babel/dtls':
 These contain security credentials that influence whether incoming packets are trusted and whether outgoing packets are produced in such a way that the receiver will treat them as trusted.

 Some of the readable data or config false nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g.,
 via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability from a config false perspective:

 'babel':
 Access to the information in the various nodes can disclose the network topology. Additionally, the routes used by a network device may be used to mount a subsequent attack on
 traffic traversing the network device.
 'babel/hmac' and 'babel/dtls':
 These contain security credentials, including private credentials of the router; however, it is required that these values not be readable.

 Some of the RPC operations in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control access to these operations. These are
 the operations and their sensitivity/vulnerability from an RPC operation perspective:
 This model defines two actions. Resetting the statistics within an interface container would be visible to any monitoring processes, which should be designed to account for the possibility of such a reset. The "test" action allows for validation that a MAC key and MAC algorithm have been properly configured.

 The MAC key is a sensitive piece of information, and it is important to prevent an attacker that does not know the MAC key from being able to determine the MAC value by trying different input parameters. The "test" action has been designed to not reveal such information directly. Such information might also be revealed indirectly due to side channels such as the time it takes to produce a response to the action. Implementations SHOULD use a constant-time comparison between the input MAC and the locally generated MAC value for comparison in order to avoid such side channel leakage.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The Secure Shell (SSH) Authentication Protocol

 The Secure Shell Protocol (SSH) is a protocol for secure remote login and other secure network services over an insecure network. This document describes the SSH authentication protocol framework and public key, password, and host-based client authentication methods. Additional authentication methods are described in separate documents. The SSH authentication protocol runs on top of the SSH transport layer protocol and provides a single authenticated tunnel for the SSH connection protocol. [STANDARDS-TRACK]

 Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec

 This specification describes the use of Hashed Message Authentication Mode (HMAC) in conjunction with the SHA-256, SHA-384, and SHA-512 algorithms in IPsec. These algorithms may be used as the basis for data origin authentication and integrity verification mechanisms for the Authentication Header (AH), Encapsulating Security Payload (ESP), Internet Key Exchange Protocol (IKE), and IKEv2 protocols, and also as Pseudo-Random Functions (PRFs) for IKE and IKEv2. Truncated output lengths are specified for the authentication-related variants, with the corresponding algorithms designated as HMAC-SHA-256-128, HMAC-SHA-384-192, and HMAC-SHA-512-256. The PRF variants are not truncated, and are called PRF-HMAC-SHA-256, PRF-HMAC-SHA-384, and PRF-HMAC-SHA-512. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 Common YANG Data Types

 This document introduces a collection of common data types to be used with the YANG data modeling language. This document obsoletes RFC 6021.

 The BLAKE2 Cryptographic Hash and Message Authentication Code (MAC)

 This document describes the cryptographic hash function BLAKE2 and makes the algorithm specification and C source code conveniently available to the Internet community. BLAKE2 comes in two main flavors: BLAKE2b is optimized for 64-bit platforms and BLAKE2s for smaller architectures. BLAKE2 can be directly keyed, making it functionally equivalent to a Message Authentication Code (MAC).

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Network Configuration Access Control Model

 The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
 This document obsoletes RFC 6536.

 A YANG Data Model for Interface Management

 This document defines a YANG data model for the management of network interfaces. It is expected that interface-type-specific data models augment the generic interfaces data model defined in this document. The data model includes definitions for configuration and system state (status information and counters for the collection of statistics).
 The YANG data model in this document conforms to the Network Management Datastore Architecture (NMDA) defined in RFC 8342.
 This document obsoletes RFC 7223.

 A YANG Data Model for Routing Management (NMDA Version)

 This document specifies three YANG modules and one submodule. Together, they form the core routing data model that serves as a framework for configuring and managing a routing subsystem. It is expected that these modules will be augmented by additional YANG modules defining data models for control-plane protocols, route filters, and other functions. The core routing data model provides common building blocks for such extensions -- routes, Routing Information Bases (RIBs), and control-plane protocols.
 The YANG modules in this document conform to the Network Management Datastore Architecture (NMDA). This document obsoletes RFC 8022.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 The Babel Routing Protocol

 Babel is a loop-avoiding, distance-vector routing protocol that is robust and efficient both in ordinary wired networks and in wireless mesh networks. This document describes the Babel routing protocol and obsoletes RFC 6126 and RFC 7557.

 MAC Authentication for the Babel Routing Protocol

 This document describes a cryptographic authentication mechanism for the Babel routing protocol that has provisions for replay avoidance. This document obsoletes RFC 7298.

 Babel Routing Protocol over Datagram Transport Layer Security

 The Babel Routing Protocol does not contain any means to authenticate neighbours or provide integrity or confidentiality for messages sent between them. This document specifies a mechanism to ensure these properties using Datagram Transport Layer Security (DTLS).

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.

 Babel Information Model

 The Babel information model provides structured data elements for a Babel implementation reporting its current state and may allow limited configuration of some such data elements. This information model can be used as a basis for creating data models under various data modeling regimes. This information model only includes parameters and parameter values useful for managing Babel over IPv6.

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

 This document specifies version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 The DTLS 1.3 protocol is based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection / non-replayability. Datagram semantics of the underlying transport are preserved by the DTLS protocol.
 This document obsoletes RFC 6347.

 YANG Data Types and Groupings for Cryptography

 Informative References

 HMAC: Keyed-Hashing for Message Authentication

 This document describes HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 Textual Encodings of PKIX, PKCS, and CMS Structures

 This document describes and discusses the textual encodings of the Public-Key Infrastructure X.509 (PKIX), Public-Key Cryptography Standards (PKCS), and Cryptographic Message Syntax (CMS). The textual encodings are well-known, are implemented by several applications and libraries, and are widely deployed. This document articulates the de facto rules by which existing implementations operate and defines them so that future implementations can interoperate.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 Network Management Datastore Architecture (NMDA)

 Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.

 Guidelines for Authors and Reviewers of Documents Containing YANG Data Models

 This memo provides guidelines for authors and reviewers of specifications containing YANG modules. Recommendations and procedures are defined, which are intended to increase interoperability and usability of Network Configuration Protocol (NETCONF) and RESTCONF protocol implementations that utilize YANG modules. This document obsoletes RFC 6087.

 Extensible Markup Language (XML) 1.0 (Fifth Edition)

 W3C Recommendation REC-xml-20081126

 Tree Diagram and Example Configurations
 This section is devoted to including a complete tree diagram and
 examples that demonstrate how Babel can be configured.

 Note that various examples are encoded using Extensible Markup
 Language (XML) .

 Complete Tree Diagram
 This section includes the complete tree diagram for
	the Babel YANG module.

module: ietf-babel

 augment /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol:
 +--rw babel!
 +--ro version? string
 +--rw enable boolean
 +--ro router-id? binary
 +--ro seqno? uint16
 +--rw statistics-enabled? boolean
 +--rw constants
 | +--rw udp-port? inet:port-number
 | +--rw mcast-group? inet:ip-address
 +--rw interfaces* [reference]
 | +--rw reference if:interface-ref
 | +--rw enable? boolean
 | +--rw metric-algorithm identityref
 | +--rw split-horizon? boolean
 | +--ro mcast-hello-seqno? uint16
 | +--rw mcast-hello-interval? uint16
 | +--rw update-interval? uint16
 | +--rw mac-enable? boolean
 | +--rw mac-key-sets* -> ../../mac-key-set/name
 | +--rw mac-verify? boolean
 | +--rw dtls-enable? boolean
 | +--rw dtls-certs* -> ../../dtls/name
 | +--rw dtls-cached-info? boolean
 | +--rw dtls-cert-prefer* -> ../../dtls/certs/type
 | +--rw packet-log-enable? boolean
 | +--ro packet-log? inet:uri
 | +--ro statistics
 | | +--ro discontinuity-time yang:date-and-time
 | | +--ro sent-mcast-hello? yang:counter32
 | | +--ro sent-mcast-update? yang:counter32
 | | +--ro sent-ucast-hello? yang:counter32
 | | +--ro sent-ucast-update? yang:counter32
 | | +--ro sent-ihu? yang:counter32
 | | +--ro received-packets? yang:counter32
 | | +---x reset
 | | +---w input
 | | | +---w reset-at? yang:date-and-time
 | | +--ro output
 | | +--ro reset-finished-at? yang:date-and-time
 | +--ro neighbor-objects* [neighbor-address]
 | +--ro neighbor-address inet:ip-address
 | +--ro hello-mcast-history? string
 | +--ro hello-ucast-history? string
 | +--ro txcost? int32
 | +--ro exp-mcast-hello-seqno? union
 | +--ro exp-ucast-hello-seqno? union
 | +--ro ucast-hello-seqno? union
 | +--ro ucast-hello-interval? uint16
 | +--ro rxcost? uint16
 | +--ro cost? int32
 +--rw mac-key-set* [name]
 | +--rw name string
 | +--rw default-apply? boolean
 | +--rw keys* [name]
 | +--rw name string
 | +--rw use-send boolean
 | +--rw use-verify boolean
 | +--rw value binary
 | +--rw algorithm identityref
 | +---x test
 | +---w input
 | | +---w test-string binary
 | | +---w mac binary
 | +--ro output
 | +--ro indication boolean
 +--rw dtls* [name]
 | +--rw name string
 | +--rw default-apply boolean
 | +--rw certs* [name]
 | +--rw name string
 | +--rw value string
 | +--rw type identityref
 | +--rw private-key binary
 | +--rw algorithm identityref
 +--ro routes* [prefix]
 +--ro prefix inet:ip-prefix
 +--ro router-id? binary
 +--ro neighbor? leafref
 +--ro received-metric? union
 +--ro calculated-metric? union
 +--ro seqno? uint16
 +--ro next-hop? union
 +--ro feasible? boolean
 +--ro selected? boolean

 Statistics Gathering Enabled
 In this example, interface eth0 is being configured for routing protocol Babel, and statistics gathering is enabled. For security, HMAC-SHA256 is supported. Every sent Babel packet is
 signed with the key value provided, and every received Babel packet is verified with the same key value.

<?xml version="1.0" encoding="UTF-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 </interface>
</interfaces>
<routing
 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">
 <control-plane-protocols>
 <control-plane-protocol>
 <type
 xmlns:babel=
 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>
 <name>name:babel</name>
 <babel
 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">
 <enable>true</enable>
 <statistics-enabled>true</statistics-enabled>
 <interfaces>
 <reference>eth0</reference>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 <split-horizon>true</split-horizon>
 </interfaces>
 <mac-key-set>
 <name>hmac-sha256</name>
 <keys>
 <name>hmac-sha256-keys</name>
 <use-send>true</use-send>
 <use-verify>true</use-verify>
 <value>base64encodedvalue==</value>
 <algorithm>hmac-sha256</algorithm>
 </keys>
 </mac-key-set>
 </babel>
 </control-plane-protocol>
 </control-plane-protocols>
</routing>

 Automatic Detection of Properties

 In this example, babeld is configured on two interfaces:

 interface eth0
 interface wlan0

 This says to run Babel on interfaces eth0 and wlan0. Babeld will
 automatically detect that eth0 is wired and wlan0 is wireless and
 will configure the right parameters automatically.

<?xml version="1.0" encoding="UTF-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 </interface>
 <interface>
 <name>wlan0</name>
 <type>ianaift:ieee80211</type>
 <enabled>true</enabled>
 </interface>
</interfaces>
<routing
 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">
 <control-plane-protocols>
 <control-plane-protocol>
 <type
 xmlns:babel=
 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>
 <name>name:babel</name>
 <babel
 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">
 <enable>true</enable>
 <interfaces>
 <reference>eth0</reference>
 <enable>true</enable>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 <split-horizon>true</split-horizon>
 </interfaces>
 <interfaces>
 <reference>wlan0</reference>
 <enable>true</enable>
 <metric-algorithm>etx</metric-algorithm>
 <split-horizon>false</split-horizon>
 </interfaces>
 </babel>
 </control-plane-protocol>
 </control-plane-protocols>
</routing>

 Override Default Properties
 In this example, babeld is configured on three interfaces:

 interface eth0
 interface eth1 type wireless
 interface tun0 type tunnel

 Here, interface eth1 is an Ethernet bridged to a wireless radio, so
 babeld's autodetection fails, and the interface type needs to be
 configured manually. Tunnels are not detected automatically,
 so this needs to be specified.

 This is equivalent to the following:

 interface eth0 metric-algorithm 2-out-of-3 split-horizon true
 interface eth1 metric-algorithm etx split-horizon false
 interface tun0 metric-algorithm 2-out-of-3 split-horizon true

<?xml version="1.0" encoding="UTF-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 </interface>
 <interface>
 <name>eth1</name>
 <type>ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 </interface>
 <interface>
 <name>tun0</name>
 <type>ianaift:tunnel</type>
 <enabled>true</enabled>
 </interface>
</interfaces>
<routing
 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">
 <control-plane-protocols>
 <control-plane-protocol>
 <type
 xmlns:babel=
 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>
 <name>name:babel</name>
 <babel
 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">
 <enable>true</enable>
 <interfaces>
 <reference>eth0</reference>
 <enable>true</enable>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 <split-horizon>true</split-horizon>
 </interfaces>
 <interfaces>
 <reference>eth1</reference>
 <enable>true</enable>
 <metric-algorithm>etx</metric-algorithm>
 <split-horizon>false</split-horizon>
 </interfaces>
 <interfaces>
 <reference>tun0</reference>
 <enable>true</enable>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 <split-horizon>true</split-horizon>
 </interfaces>
 </babel>
 </control-plane-protocol>
 </control-plane-protocols>
</routing>

 Configuring Other Properties

 In this example, two interfaces are configured for babeld:

 interface eth0
 interface ppp0 hello-interval 30 update-interval 120

 Here, ppp0 is a metered 3G link used for fallback connectivity.
 It runs with much higher than default time constants in order to
 avoid control traffic as much as possible.

<?xml version="1.0" encoding="UTF-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 </interface>
 <interface>
 <name>ppp0</name>
 <type>ianaift:ppp</type>
 <enabled>true</enabled>
 </interface>
</interfaces>
<routing
 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">
 <control-plane-protocols>
 <control-plane-protocol>
 <type
 xmlns:babel=
 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>
 <name>name:babel</name>
 <babel
 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">
 <enable>true</enable>
 <interfaces>
 <reference>eth0</reference>
 <enable>true</enable>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 <split-horizon>true</split-horizon>
 </interfaces>
 <interfaces>
 <reference>ppp0</reference>
 <enable>true</enable>
 <mcast-hello-interval>30</mcast-hello-interval>
 <update-interval>120</update-interval>
 <metric-algorithm>two-out-of-three</metric-algorithm>
 </interfaces>
 </babel>
 </control-plane-protocol>
 </control-plane-protocols>
</routing>

 Acknowledgements
 provided most of the example configurations for babel that are shown in .

 Authors' Addresses

 Kloud Services

 California
 United States of America

 mjethanandani@gmail.com

 AT&T

 Atlanta
 GA

 United States of America

 barbara.stark@att.com

