
RFC 9646
Conveying a Certificate Signing Request (CSR) in a
Secure Zero-Touch Provisioning (SZTP)
Bootstrapping Request

Abstract
This document extends the input to the "get-bootstrapping-data" RPC defined in RFC 8572 to
include an optional certificate signing request (CSR), enabling a bootstrapping device to
additionally obtain an identity certificate (e.g., a Local Device Identifier (LDevID) from IEEE
802.1AR) as part of the "onboarding information" response provided in the RPC-reply.

Stream:
RFC:
Updates:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9646
8572
Standards Track
October 2024
2070-1721
K. Watsen
Watsen Networks

R. Housley
Vigil Security

S. Turner
sn3rd

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9646

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Watsen, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9646
https://www.rfc-editor.org/rfc/rfc8572
https://www.rfc-editor.org/info/rfc9646
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Overview

1.2. Terminology

1.3. Requirements Language

1.4. Conventions

2. The "ietf-sztp-csr" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. The "ietf-ztp-types" Module

3.1. Data Model Overview

3.2. YANG Module

4. Security Considerations

4.1. SZTP-Client Considerations

4.1.1. Ensuring the Integrity of Asymmetric Private Keys

4.1.2. Reuse of a Manufacturer-Generated Private Key

4.1.3. Replay Attack Protection

4.1.4. Connecting to an Untrusted Bootstrap Server

4.1.5. Selecting the Best Origin Authentication Mechanism

4.1.6. Clearing the Private Key and Associated Certificate

4.2. SZTP-Server Considerations

4.2.1. Verifying Proof-of-Possession

4.2.2. Verifying Proof-of-Origin

4.2.3. Supporting SZTP-Clients That Don't Trust the SZTP-Server

4.3. Security Considerations for the "ietf-sztp-csr" YANG Module

4.4. Security Considerations for the "ietf-ztp-types" YANG Module

3

3

3

4

4

4

4

7

12

15

15

16

24

24

24

25

25

26

26

27

27

27

27

27

28

28

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 2

1. Introduction

1.1. Overview
This document extends the input to the "get-bootstrapping-data" RPC defined in to
include an optional certificate signing request (CSR) , enabling a bootstrapping device
to additionally obtain an identity certificate (e.g., an LDevID from) as part of
the "onboarding information" response provided in the RPC-reply.

The ability to provision an identity certificate that is purpose-built for a production environment
during the bootstrapping process removes reliance on the manufacturer Certification Authority
(CA), and it also enables the bootstrapped device to join the production environment with an
appropriate identity and other attributes in its identity certificate (e.g., an LDevID).

Two YANG modules are defined. The "ietf-ztp-types" module defines three YANG
groupings for the various messages defined in this document. The "ietf-sztp-csr" module
augments two groupings into the "get-bootstrapping-data" RPC and defines a YANG data structure

 around the third grouping.

5. IANA Considerations

5.1. The IETF XML Registry

5.2. The YANG Module Names Registry

6. References

6.1. Normative References

6.2. Informative References

Acknowledgements

Contributors

Authors' Addresses

28

28

28

29

29

30

31

31

31

[RFC8572]
[RFC2986]

[Std-802.1AR-2018]

[RFC7950]

[RFC8791]

1.2. Terminology
This document uses the following terms from :

Bootstrap Server
Bootstrapping Data
Conveyed Information
Device
Manufacturer
Onboarding Information

[RFC8572]

•
•
•
•
•
•

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 3

1.4. Conventions
Various examples in this document use "BASE64VALUE=" as a placeholder value for binary data
that has been base64 encoded (per). This placeholder value is used
because real base64-encoded structures are often many lines long and hence distracting to the
example being presented.

Various examples in this document contain long lines that may be folded, as described in
.

2. The "ietf-sztp-csr" Module
The "ietf-sztp-csr" module is a YANG 1.1 module that augments the "ietf-sztp-bootstrap-
server" module defined in and defines a YANG "structure" that is to be conveyed in the
"error-info" node defined in .

2.1. Data Model Overview
The following tree diagram illustrates the "ietf-sztp-csr" module.

SZTP-client:

SZTP-server:

Signed Data

This document defines the following new terms:

The term "SZTP-client" refers to a "device" that is using a "bootstrap server" as a
source of "bootstrapping data".

The term "SZTP-server" is an alternative term for "bootstrap server" that is
symmetric with the "SZTP-client" term.

•

1.3. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Section 9.8 of [RFC7950]

[RFC8792]

[RFC7950]
[RFC8572]

Section 7.1 of [RFC8040]

[RFC8340]

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 4

https://rfc-editor.org/rfc/rfc7950#section-9.8
https://rfc-editor.org/rfc/rfc8040#section-7.1

The augmentation defines two kinds of parameters that an SZTP-client can send to an SZTP-
server. The YANG structure defines one collection of parameters that an SZTP-server can send to
an SZTP-client.

In the order of their intended use:

The SZTP-client sends a "csr-support" node, encoded in a first "get-bootstrapping-data"
request to the SZTP-server, to indicate that it supports the ability to generate CSRs. This input
parameter conveys if the SZTP-client is able to generate a new asymmetric key and, if so,
which key algorithms it supports, as well as what kinds of CSR structures the SZTP-client is
able to generate.
The SZTP-server responds with an error, containing the "csr-request" structure, to request
the SZTP-client to generate a CSR. This structure is used to select the key algorithm the SZTP-
client should use to generate a new asymmetric key (if supported), the kind of CSR structure
the SZTP-client should generate, and optionally the content for the CSR itself.
The SZTP-client sends one of the "*-csr" nodes, encoded in a second "get-bootstrapping-data"
request to the SZTP-server. This node encodes the server-requested CSR.
The SZTP-server responds with onboarding information to communicate the signed
certificate to the SZTP-client. How to do this is discussed in Section 2.2.

module: ietf-sztp-csr

 augment /sztp-svr:get-bootstrapping-data/sztp-svr:input:
 +---w (msg-type)?
 +--:(csr-support)
 | +---w csr-support
 | +---w key-generation!
 | | +---w supported-algorithms
 | | +---w algorithm-identifier* binary
 | +---w csr-generation
 | +---w supported-formats
 | +---w format-identifier* identityref
 +--:(csr)
 +---w (csr-type)
 +--:(p10-csr)
 | +---w p10-csr? ct:csr
 +--:(cmc-csr)
 | +---w cmc-csr? binary
 +--:(cmp-csr)
 +---w cmp-csr? binary

 structure csr-request:
 +-- key-generation!
 | +-- selected-algorithm
 | +-- algorithm-identifier binary
 +-- csr-generation
 | +-- selected-format
 | +-- format-identifier identityref
 +-- cert-req-info? ct:csr-info

1.

2.

3.

4.

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 5

To further illustrate how the augmentation and structure defined by the "ietf-sztp-csr" module
are used, below are two additional tree diagrams showing these nodes placed where they are
used.

The following tree diagram illustrates SZTP's "get-bootstrapping-data" RPC with the
augmentation in place.

The following tree diagram illustrates RESTCONF's "errors" RPC-reply message with
the "csr-request" structure in place.

[RFC8340]

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ietf-sztp-bootstrap-server

 rpcs:
 +---x get-bootstrapping-data
 +---w input
 | +---w signed-data-preferred? empty
 | +---w hw-model? string
 | +---w os-name? string
 | +---w os-version? string
 | +---w nonce? binary
 | +---w (sztp-csr:msg-type)?
 | +--:(sztp-csr:csr-support)
 | | +---w sztp-csr:csr-support
 | | +---w sztp-csr:key-generation!
 | | | +---w sztp-csr:supported-algorithms
 | | | +---w sztp-csr:algorithm-identifier* bina\
ry
 | | +---w sztp-csr:csr-generation
 | | +---w sztp-csr:supported-formats
 | | +---w sztp-csr:format-identifier* identit\
yref
 | +--:(sztp-csr:csr)
 | +---w (sztp-csr:csr-type)
 | +--:(sztp-csr:p10-csr)
 | | +---w sztp-csr:p10-csr? ct:csr
 | +--:(sztp-csr:cmc-csr)
 | | +---w sztp-csr:cmc-csr? binary
 | +--:(sztp-csr:cmp-csr)
 | +---w sztp-csr:cmp-csr? binary
 +--ro output
 +--ro reporting-level? enumeration {onboarding-server}?
 +--ro conveyed-information cms
 +--ro owner-certificate? cms
 +--ro ownership-voucher? cms

[RFC8340]

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 6

module: ietf-restconf
 +--ro errors
 +--ro error* []
 +--ro error-type enumeration
 +--ro error-tag string
 +--ro error-app-tag? string
 +--ro error-path? instance-identifier
 +--ro error-message? string
 +--ro error-info
 +--ro sztp-csr:csr-request
 +--ro sztp-csr:key-generation!
 | +--ro sztp-csr:selected-algorithm
 | +--ro sztp-csr:algorithm-identifier binary
 +--ro sztp-csr:csr-generation
 | +--ro sztp-csr:selected-format
 | +--ro sztp-csr:format-identifier identityref
 +--ro sztp-csr:cert-req-info? ct:csr-info

2.2. Example Usage

NOTE: The examples below are encoded using JSON, but they could equally well be
encoded using XML, as is supported by SZTP.

An SZTP-client implementing this specification would signal to the bootstrap server its
willingness to generate a CSR by including the "csr-support" node in its "get-bootstrapping-data"
RPC. In the example below, the SZTP-client additionally indicates that it is able to generate keys
and provides a list of key algorithms it supports, as well as provide a list of certificate formats it
supports.

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 7

REQUEST

Assuming the SZTP-server wishes to prompt the SZTP-client to provide a CSR, then it would
respond with an HTTP 400 Bad Request error code. In the example below, the SZTP-server
specifies that it wishes the SZTP-client to generate a key using a specific algorithm and generate a
PKCS#10-based CSR containing specific content.

=============== NOTE: '\' line wrapping per RFC 8792 ================

POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
ng-data HTTP/1.1
HOST: example.com
Content-Type: application/yang-data+json

{
 "ietf-sztp-bootstrap-server:input" : {
 "hw-model": "model-x",
 "os-name": "vendor-os",
 "os-version": "17.3R2.1",
 "nonce": "extralongbase64encodedvalue=",
 "ietf-sztp-csr:csr-support": {
 "key-generation": {
 "supported-algorithms": {
 "algorithm-identifier": [
 "BASE64VALUE1",
 "BASE64VALUE2",
 "BASE64VALUE3"
]
 }
 },
 "csr-generation": {
 "supported-formats": {
 "format-identifier": [
 "ietf-ztp-types:p10-csr",
 "ietf-ztp-types:cmc-csr",
 "ietf-ztp-types:cmp-csr"
]
 }
 }
 }
 }
}

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 8

RESPONSE

Upon being prompted to provide a CSR, the SZTP-client would POST another "get-bootstrapping-
data" request but this time including one of the "csr" nodes to convey its CSR to the SZTP-server:

HTTP/1.1 400 Bad Request
Date: Sat, 31 Oct 2021 17:02:40 GMT
Server: example-server
Content-Type: application/yang-data+json

{
 "ietf-restconf:errors" : {
 "error" : [
 {
 "error-type": "application",
 "error-tag": "missing-attribute",
 "error-message": "Missing input parameter",
 "error-info": {
 "ietf-sztp-csr:csr-request": {
 "key-generation": {
 "selected-algorithm": {
 "algorithm-identifier": "BASE64VALUE="
 }
 },
 "csr-generation": {
 "selected-format": {
 "format-identifier": "ietf-ztp-types:p10-csr"
 }
 },
 "cert-req-info": "BASE64VALUE="
 }
 }
 }
]
 }
}

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 9

REQUEST

At this point, it is expected that the SZTP-server, perhaps in conjunction with other systems, such
as a backend CA or registration authority (RA), will validate the CSR's origin and proof-of-
possession and, assuming the CSR is approved, issue a signed certificate for the bootstrapping
device.

The SZTP-server responds with conveyed information (the "conveyed-information" node shown
below) that encodes "onboarding-information" (inside the base64 value) containing a signed
identity certificate for the CSR provided by the SZTP-client:

RESPONSE

How the signed certificate is conveyed inside the onboarding information is outside the scope of
this document. Some implementations may choose to convey it inside a script (e.g., SZTP's "pre-
configuration-script"), while other implementations may choose to convey it inside the SZTP
"configuration" node. SZTP onboarding information is described in .

Below are two examples of conveying the signed certificate inside the "configuration" node. Both
examples assume that the SZTP-client understands the "ietf-keystore" module defined in

.

=============== NOTE: '\' line wrapping per RFC 8792 ================

POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
ng-data HTTP/1.1
HOST: example.com
Content-Type: application/yang-data+json

{
 "ietf-sztp-bootstrap-server:input" : {
 "hw-model": "model-x",
 "os-name": "vendor-os",
 "os-version": "17.3R2.1",
 "nonce": "extralongbase64encodedvalue=",
 "ietf-sztp-csr:p10-csr": "BASE64VALUE="
 }
}

HTTP/1.1 200 OK
Date: Sat, 31 Oct 2021 17:02:40 GMT
Server: example-server
Content-Type: application/yang-data+json

{
 "ietf-sztp-bootstrap-server:output" : {
 "reporting-level": "verbose",
 "conveyed-information": "BASE64VALUE="
 }
}

Section 2.2 of [RFC8572]

[RFC9642]

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 10

https://rfc-editor.org/rfc/rfc8572#section-2.2

This first example illustrates the case where the signed certificate is for the same asymmetric key
used by the SZTP-client's manufacturer-generated identity certificate (e.g., an Initial Device
Identifier (IDevID) from). As such, the configuration needs to associate the
newly signed certificate with the existing asymmetric key:

This second example illustrates the case where the signed certificate is for a newly generated
asymmetric key. As such, the configuration needs to associate the newly signed certificate with
the newly generated asymmetric key:

[Std-802.1AR-2018]

=============== NOTE: '\' line wrapping per RFC 8792 ================

{
 "ietf-keystore:keystore": {
 "asymmetric-keys": {
 "asymmetric-key": [
 {
 "name": "Manufacturer-Generated Hidden Key",
 "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
 "public-key": "BASE64VALUE=",
 "hidden-private-key": [null],
 "certificates": {
 "certificate": [
 {
 "name": "Manufacturer-Generated IDevID Cert",
 "cert-data": "BASE64VALUE="
 },
 {
 "name": "Newly-Generated LDevID Cert",
 "cert-data": "BASE64VALUE="
 }
]
 }
 }
]
 }
 }
}

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 11

2.3. YANG Module
This module augments an RPC defined in . The module uses data types and groupings
defined in , , and . The module also has an informative reference to

.

In addition to configuring the signed certificate, it is often necessary to also configure the issuer's
signing certificate so that the device (i.e., STZP-client) can authenticate certificates presented by
peer devices signed by the same issuer as its own. While outside the scope of this document, one
way to do this would be to use the "ietf-truststore" module defined in .

=============== NOTE: '\' line wrapping per RFC 8792 ================

{
 "ietf-keystore:keystore": {
 "asymmetric-keys": {
 "asymmetric-key": [
 {
 "name": "Manufacturer-Generated Hidden Key",
 "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
 "public-key": "BASE64VALUE=",
 "hidden-private-key": [null],
 "certificates": {
 "certificate": [
 {
 "name": "Manufacturer-Generated IDevID Cert",
 "cert-data": "BASE64VALUE="
 }
]
 }
 },
 {
 "name": "Newly-Generated Hidden Key",
 "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
 "public-key": "BASE64VALUE=",
 "hidden-private-key": [null],
 "certificates": {
 "certificate": [
 {
 "name": "Newly-Generated LDevID Cert",
 "cert-data": "BASE64VALUE="
 }
]
 }
 }
]
 }
 }
}

[RFC9641]

[RFC8572]
[RFC8572] [RFC8791] [RFC9640]

[Std-802.1AR-2018]

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 12

<CODE BEGINS> file "ietf-sztp-csr@2024-10-10.yang"

module ietf-sztp-csr {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-sztp-csr";
 prefix sztp-csr;

 import ietf-sztp-bootstrap-server {
 prefix sztp-svr;
 reference
 "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
 }

 import ietf-yang-structure-ext {
 prefix sx;
 reference
 "RFC 8791: YANG Data Structure Extensions";
 }

 import ietf-ztp-types {
 prefix zt;
 reference
 "RFC 9646: Conveying a Certificate Signing Request (CSR)
 in a Secure Zero-Touch Provisioning (SZTP)
 Bootstrapping Request";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>
 Authors: Kent Watsen <mailto:kent+ietf@watsen.net>
 Russ Housley <mailto:housley@vigilsec.com>
 Sean Turner <mailto:sean@sn3rd.com>";

 description
 "This module augments the 'get-bootstrapping-data' RPC,
 defined in the 'ietf-sztp-bootstrap-server' module from
 SZTP (RFC 8572), enabling the SZTP-client to obtain a
 signed identity certificate (e.g., an LDevID from IEEE
 802.1AR) as part of the SZTP onboarding information
 response.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in BCP 14
 (RFC 2119) (RFC 8174) when, and only when, they appear
 in all capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 13

 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9646
 (https://www.rfc-editor.org/info/rfc9646); see the
 RFC itself for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version.";
 reference
 "RFC 9646: Conveying a Certificate Signing Request (CSR)
 in a Secure Zero-Touch Provisioning (SZTP)
 Bootstrapping Request";
 }

 // Protocol-accessible nodes

 augment "/sztp-svr:get-bootstrapping-data/sztp-svr:input" {
 description
 "This augmentation adds the 'csr-support' and 'csr' nodes to
 the SZTP (RFC 8572) 'get-bootstrapping-data' request message,
 enabling the SZTP-client to obtain an identity certificate
 (e.g., an LDevID from IEEE 802.1AR) as part of the onboarding
 information response provided by the SZTP-server.

 The 'csr-support' node enables the SZTP-client to indicate
 that it supports generating certificate signing requests
 (CSRs) and to provide details around the CSRs it is able
 to generate.

 The 'csr' node enables the SZTP-client to relay a CSR to
 the SZTP-server.";
 reference
 "IEEE 802.1AR: IEEE Standard for Local and Metropolitan
 Area Networks - Secure Device Identity
 RFC 8572: Secure Zero Touch Provisioning (SZTP)";
 choice msg-type {
 description
 "Messages are mutually exclusive.";
 case csr-support {
 description
 "Indicates how the SZTP-client supports generating CSRs.

 If present and a SZTP-server wishes to request the
 SZTP-client generate a CSR, the SZTP-server MUST
 respond with an HTTP 400 Bad Request error code with an
 'ietf-restconf:errors' message having the 'error-tag'
 value 'missing-attribute' and the 'error-info' node
 containing the 'csr-request' structure described
 in this module.";
 uses zt:csr-support-grouping;
 }
 case csr {
 description
 "Provides the CSR generated by the SZTP-client.

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 14

3. The "ietf-ztp-types" Module
This section defines a YANG 1.1 module that defines three YANG groupings, one for
each message sent between a ZTP-client and ZTP-server. This module is defined independently of
the "ietf-sztp-csr" module so that its groupings may be used by bootstrapping protocols other
than SZTP .

3.1. Data Model Overview
The following tree diagram illustrates the three groupings defined in the "ietf-ztp-
types" module.

 When present, the SZTP-server SHOULD respond with
 an SZTP onboarding information message containing
 a signed certificate for the conveyed CSR. The
 SZTP-server MAY alternatively respond with another
 HTTP error containing another 'csr-request'; in
 which case, the SZTP-client MUST delete any key
 generated for the previously generated CSR.";
 uses zt:csr-grouping;
 }
 }
 }

 sx:structure csr-request {
 description
 "A YANG data structure, per RFC 8791, that specifies
 details for the CSR that the ZTP-client is to generate.";
 reference
 "RFC 8791: YANG Data Structure Extensions";
 uses zt:csr-request-grouping;
 }

}

<CODE ENDS>

[RFC7950]

[RFC8572]

[RFC8340]

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 15

3.2. YANG Module
This module uses data types and groupings defined in and . The module has
additional normative references to , , , and and an
informative reference to .

module: ietf-ztp-types

 grouping csr-support-grouping
 +-- csr-support
 +-- key-generation!
 | +-- supported-algorithms
 | +-- algorithm-identifier* binary
 +-- csr-generation
 +-- supported-formats
 +-- format-identifier* identityref
 grouping csr-request-grouping
 +-- key-generation!
 | +-- selected-algorithm
 | +-- algorithm-identifier binary
 +-- csr-generation
 | +-- selected-format
 | +-- format-identifier identityref
 +-- cert-req-info? ct:csr-info
 grouping csr-grouping
 +-- (csr-type)
 +--:(p10-csr)
 | +-- p10-csr? ct:csr
 +--:(cmc-csr)
 | +-- cmc-csr? binary
 +--:(cmp-csr)
 +-- cmp-csr? binary

[RFC8791] [RFC9640]
[RFC2986] [RFC4210] [RFC5272] [ITU.X690.2021]

[Std-802.1AR-2018]

<CODE BEGINS> file "ietf-ztp-types@2024-10-10.yang"

module ietf-ztp-types {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-ztp-types";
 prefix zt;

 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>
 Authors: Kent Watsen <mailto:kent+ietf@watsen.net>
 Russ Housley <mailto:housley@vigilsec.com>

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 16

 Sean Turner <mailto:sean@sn3rd.com>";

 description
 "This module defines three groupings that enable
 bootstrapping devices to 1) indicate if and how they
 support generating CSRs, 2) obtain a request to
 generate a CSR, and 3) communicate the requested CSR.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in BCP 14
 (RFC 2119) (RFC 8174) when, and only when, they appear
 in all capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9646
 (https://www.rfc-editor.org/info/rfc9646); see the
 RFC itself for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version.";
 reference
 "RFC 9646: Conveying a Certificate Signing Request (CSR)
 in a Secure Zero-Touch Provisioning (SZTP)
 Bootstrapping Request";
 }

 identity certificate-request-format {
 description
 "A base identity for the request formats supported
 by the ZTP-client.

 Additional derived identities MAY be defined by
 future efforts.";
 }

 identity p10-csr {
 base certificate-request-format;
 description
 "Indicates that the ZTP-client supports generating
 requests using the 'CertificationRequest' structure
 defined in RFC 2986.";
 reference
 "RFC 2986: PKCS #10: Certification Request Syntax
 Specification Version 1.7";
 }

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 17

 identity cmp-csr {
 base certificate-request-format;
 description
 "Indicates that the ZTP-client supports generating
 requests using a profiled version of the PKIMessage
 that MUST contain a PKIHeader followed by a PKIBody
 containing only the ir, cr, kur, or p10cr structures
 defined in RFC 4210.";
 reference
 "RFC 4210: Internet X.509 Public Key Infrastructure
 Certificate Management Protocol (CMP)";
 }

 identity cmc-csr {
 base certificate-request-format;
 description
 "Indicates that the ZTP-client supports generating
 requests using a profiled version of the 'Full
 PKI Request' structure defined in RFC 5272.";
 reference
 "RFC 5272: Certificate Management over CMS (CMC)";
 }

 // Protocol-accessible nodes

 grouping csr-support-grouping {
 description
 "A grouping enabling use by other efforts.";
 container csr-support {
 description
 "Enables a ZTP-client to indicate that it supports
 generating certificate signing requests (CSRs) and
 provides details about the CSRs it is able to
 generate.";
 container key-generation {
 presence "Indicates that the ZTP-client is capable of
 generating a new asymmetric key pair.

 If this node is not present, the ZTP-server MAY
 request a CSR using the asymmetric key associated
 with the device's existing identity certificate
 (e.g., an IDevID from IEEE 802.1AR).";
 description
 "Specifies details for the ZTP-client's ability to
 generate a new asymmetric key pair.";
 container supported-algorithms {
 description
 "A list of public key algorithms supported by the
 ZTP-client for generating a new asymmetric key.";
 leaf-list algorithm-identifier {
 type binary;
 min-elements 1;
 description
 "An AlgorithmIdentifier, as defined in RFC 2986,
 encoded using ASN.1 Distinguished Encoding Rules
 (DER), as specified in ITU-T X.690.";
 reference
 "RFC 2986: PKCS #10: Certification Request Syntax

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 18

 Specification Version 1.7
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)";
 }
 }
 }
 container csr-generation {
 description
 "Specifies details for the ZTP-client's ability to
 generate certificate signing requests.";
 container supported-formats {
 description
 "A list of certificate request formats supported
 by the ZTP-client for generating a new key.";
 leaf-list format-identifier {
 type identityref {
 base zt:certificate-request-format;
 }
 min-elements 1;
 description
 "A certificate request format supported by the
 ZTP-client.";
 }
 }
 }
 }
 }

 grouping csr-request-grouping {
 description
 "A grouping enabling use by other efforts.";
 container key-generation {
 presence "Provided by a ZTP-server to indicate that it wishes
 the ZTP-client to generate a new asymmetric key.

 This statement is present so the mandatory
 descendant nodes do not imply that this node must
 be configured.";
 description
 "The key generation parameters selected by the ZTP-server.

 This leaf MUST only appear if the ZTP-client's
 'csr-support' included the 'key-generation' node.";
 container selected-algorithm {
 description
 "The key algorithm selected by the ZTP-server. The
 algorithm MUST be one of the algorithms specified by
 the 'supported-algorithms' node in the ZTP-client's
 message containing the 'csr-support' structure.";
 leaf algorithm-identifier {
 type binary;
 mandatory true;
 description
 "An AlgorithmIdentifier, as defined in RFC 2986,
 encoded using ASN.1 Distinguished Encoding Rules

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 19

 (DER), as specified in ITU-T X.690.";
 reference
 "RFC 2986: PKCS #10: Certification Request Syntax
 Specification Version 1.7
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)";
 }
 }
 }
 container csr-generation {
 description
 "Specifies details for the CSR that the ZTP-client
 is to generate.";
 container selected-format {
 description
 "The CSR format selected by the ZTP-server. The
 format MUST be one of the formats specified by
 the 'supported-formats' node in the ZTP-client's
 request message.";
 leaf format-identifier {
 type identityref {
 base zt:certificate-request-format;
 }
 mandatory true;
 description
 "A certificate request format to be used by the
 ZTP-client.";
 }
 }
 }
 leaf cert-req-info {
 type ct:csr-info;
 description
 "A CertificationRequestInfo structure, as defined in
 RFC 2986, and modeled via a 'typedef' statement by
 RFC 9640.

 Enables the ZTP-server to provide a fully populated
 CertificationRequestInfo structure that the ZTP-client
 only needs to sign in order to generate the complete
 'CertificationRequest' structure to send to the ZTP-server
 in its next 'get-bootstrapping-data' request message.

 When provided, the ZTP-client MUST use this structure
 to generate its CSR; failure to do so will result in a
 400 Bad Request response containing another 'csr-request'
 structure.

 When not provided, the ZTP-client SHOULD generate a CSR
 using the same structure defined in its existing identity
 certificate (e.g., an IDevID from IEEE 802.1AR).

 If the 'AlgorithmIdentifier' field contained inside the
 certificate 'SubjectPublicKeyInfo' field does not match
 the algorithm identified by the 'selected-algorithm' node,

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 20

 then the client MUST reject the certificate and raise an
 error.";

 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax Specification
 Version 1.7
 RFC 9640:
 YANG Data Types and Groupings for Cryptography";
 }
 }

 grouping csr-grouping {
 description
 "Enables a ZTP-client to convey a certificate signing
 request, using the encoding format selected by a
 ZTP-server's 'csr-request' response to the ZTP-client's
 previously sent request containing the 'csr-support'
 node.";
 choice csr-type {
 mandatory true;
 description
 "A choice amongst certificate signing request formats.

 Additional formats MAY be augmented into this 'choice'
 statement by future efforts.";
 case p10-csr {
 leaf p10-csr {
 type ct:p10-csr;
 description
 "A CertificationRequest structure, per RFC 2986.
 Encoding details are defined in the 'ct:csr'
 typedef defined in RFC 9640.

 A raw P10 does not support origin authentication in
 the CSR structure. External origin authentication
 may be provided via the ZTP-client's authentication
 to the ZTP-server at the transport layer (e.g., TLS).";
 reference
 "RFC 2986: PKCS #10: Certification Request Syntax
 Specification Version 1.7
 RFC 9640: YANG Data Types and Groupings for
 Cryptography";
 }
 }
 case cmc-csr {
 leaf cmc-csr {
 type binary;
 description
 "A profiled version of the 'Full PKI Request'
 message defined in RFC 5272, encoded using ASN.1
 Distinguished Encoding Rules (DER), as specified
 in ITU-T X.690.

 For asymmetric-key-based origin authentication of a
 CSR based on the initial device identity certificate's
 private key for the associated identity certificate's
 public key, the PKIData contains one reqSequence

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 21

 element and no cmsSequence or otherMsgSequence
 elements. The reqSequence is the TaggedRequest,
 and it is the tcr CHOICE branch. The tcr is the
 TaggedCertificationRequest, and it is the bodyPartID
 and the certificateRequest elements. The
 certificateRequest is signed with the initial device
 identity certificate's private key. The initial device
 identity certificate, and optionally its certificate
 chain is included in the SignedData certificates that
 encapsulate the PKIData.

 For asymmetric-key-based origin authentication based on
 the initial device identity certificate's private key
 that signs the encapsulated CSR signed by the local
 device identity certificate's private key, the
 PKIData contains one cmsSequence element and no
 reqSequence or otherMsgSequence
 elements. The cmsSequence is the TaggedContentInfo,
 and it includes a bodyPartID element and a contentInfo.
 The contentInfo is a SignedData encapsulating a PKIData
 with one reqSequence element and no cmsSequence or
 otherMsgSequence elements. The reqSequence is the
 TaggedRequest, and it is the tcr CHOICE. The tcr is the
 TaggedCertificationRequest, and it is the bodyPartID and
 the certificateRequest elements. PKIData contains one
 cmsSequence element and no controlSequence, reqSequence,
 or otherMsgSequence elements. The certificateRequest
 is signed with the local device identity certificate's
 private key. The initial device identity certificate
 and optionally its certificate chain is included in
 the SignedData certificates that encapsulate the
 PKIData.

 For shared-secret-based origin authentication of a
 CSR signed by the local device identity certificate's
 private key, the PKIData contains one cmsSequence
 element and no reqSequence or otherMsgSequence
 elements. The cmsSequence is the TaggedContentInfo,
 and it includes a bodyPartID element and a contentInfo.
 The contentInfo is an AuthenticatedData encapsulating
 a PKIData with one reqSequence element and no
 cmsSequences or otherMsgSequence elements. The
 reqSequence is the TaggedRequest, and it is the tcr
 CHOICE. The tcr is the TaggedCertificationRequest,
 and it is the bodyPartID and the certificateRequest
 elements. The certificateRequest is signed with the
 local device identity certificate's private key. The
 initial device identity certificate and optionally its
 certificate chain is included in the SignedData
 certificates that encapsulate the PKIData.";
 reference
 "RFC 5272: Certificate Management over CMS (CMC)
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)";
 }

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 22

 }
 case cmp-csr {
 leaf cmp-csr {
 type binary;
 description
 "A PKIMessage structure, as defined in RFC 4210,
 encoded using ASN.1 Distinguished Encoding Rules
 (DER), as specified in ITU-T X.690.

 For asymmetric-key-based origin authentication of a
 CSR based on the initial device identity certificate's
 private key for the associated initial device identity
 certificate's public key, PKIMessages contain one
 PKIMessage with the header and body elements, do not
 contain a protection element, and SHOULD contain the
 extraCerts element. The header element contains the
 pvno, sender, and recipient elements. The pvno contains
 cmp2000, and the sender contains the subject of the
 initial device identity certificate. The body element
 contains an ir, cr, kur, or p10cr CHOICE of type
 CertificationRequest. It is signed with the initial
 device identity certificate's private key. The
 extraCerts element contains the initial device identity
 certificate, optionally followed by its certificate
 chain excluding the trust anchor.

 For asymmetric-key-based origin authentication based
 on the initial device identity certificate's private
 key that signs the encapsulated CSR signed by the local
 device identity certificate's private key, PKIMessages
 contain one PKIMessage with the header, body, and
 protection elements and SHOULD contain the extraCerts
 element. The header element contains the pvno, sender,
 recipient, protectionAlg, and optionally senderKID
 elements. The pvno contains cmp2000, the sender
 contains the subject of the initial device identity
 certificate, the protectionAlg contains the
 AlgorithmIdentifier of the used signature algorithm,
 and the senderKID contains the subject key identifier
 of the initial device identity certificate. The body
 element contains an ir, cr, kur, or p10cr CHOICE of
 type CertificationRequest. It is signed with the local
 device identity certificate's private key. The
 protection element contains the digital signature
 generated with the initial device identity
 certificate's private key. The extraCerts element
 contains the initial device identity certificate,
 optionally followed by its certificate chain excluding
 the trust anchor.

 For shared-secret-based origin authentication of a
 CSR signed by the local device identity certificate's
 private key, PKIMessages contain one PKIMessage with
 the header, body, and protection element and no
 extraCerts element. The header element contains the
 pvno, sender, recipient, protectionAlg, and senderKID
 elements. The pvno contains cmp2000, the protectionAlg
 contains the AlgorithmIdentifier of the used Message

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 23

 Authentication Code (MAC) algorithm, and the senderKID
 contains a reference the recipient can use to identify
 the shared secret. The body element contains an ir, cr,
 kur, or p10cr CHOICE of type CertificationRequest. It
 is signed with the local device identity certificate's
 private key. The protection element contains the MAC
 value generated with the shared secret.";
 reference
 "RFC 4210:
 Internet X.509 Public Key Infrastructure
 Certificate Management Protocol (CMP)
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)";
 }
 }
 }
 }

}

<CODE ENDS>

4. Security Considerations
This document builds on top of the solution presented in , and therefore all the
security considerations discussed in apply here as well.

For the various CSR formats, when using PKCS#10, the security considerations in
apply; when using CMP, the security considerations in apply; and when using CMC, the
security considerations in apply.

For the various authentication mechanisms, when using TLS-level authentication, the security
considerations in apply, and when using HTTP-level authentication, the security
considerations in apply.

4.1. SZTP-Client Considerations

4.1.1. Ensuring the Integrity of Asymmetric Private Keys

The private key the SZTP-client uses for the dynamically generated identity certificate be
protected from inadvertent disclosure in order to prevent identity fraud.

The security of this private key is essential in order to ensure the associated identity certificate
can be used to authenticate the device it is issued to.

It is that devices are manufactured with a hardware security module (HSM),
such as a trusted platform module (TPM), to generate and contain the private key within the
security perimeter of the HSM. In such cases, the private key and its associated certificates
have long validity periods.

[RFC8572]
[RFC8572]

[RFC2986]
[RFC4210]

[RFC5272]

[RFC8446]
[RFC9110]

MUST

RECOMMENDED

MAY

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 24

In cases where the SZTP-client does not possess an HSM or is unable to use an HSM to protect the
private key, it is to periodically reset the private key (and associated identity
certificates) in order to minimize the lifetime of unprotected private keys. For instance, a
Network Management System (NMS) controller/orchestrator application could periodically
prompt the SZTP-client to generate a new private key and provide a certificate signing request
(CSR) or, alternatively, push both the key and an identity certificate to the SZTP-client using, e.g.,
a PKCS#12 message . In another example, the SZTP-client could be configured to
periodically reset the configuration to its factory default, thus causing removal of the private key
and associated identity certificates and re-execution of the SZTP protocol.

4.1.2. Reuse of a Manufacturer-Generated Private Key

It is that a new private key is generated for each CSR described in this document.

Implementations must randomly generate nonces and private keys. The use of inadequate
pseudorandom number generators (PRNGs) to generate cryptographic keys can result in little or
no security. An attacker may find it much easier to reproduce the PRNG environment that
produced the keys, searching the resulting small set of possibilities, rather than brute force
searching the whole key space. As an example of predictable random numbers, see
CVE-2008-0166 , and some consequences of low-entropy random numbers are
discussed in "Mining Your Ps and Qs" . The generation of quality random numbers
is difficult. , , BSI AIS 31 , BCP 106 , and
others offer valuable guidance in this area.

This private key be protected as well as the built-in private key associated with the SZTP-
client's initial device identity certificate (e.g., the IDevID from).

In cases where it is not possible to generate a new private key that is protected as well as the
built-in private key, it is to reuse the built-in private key rather than generate a
new private key that is not as well protected.

4.1.3. Replay Attack Protection

This RFC enables an SZTP-client to announce an ability to generate a new key to use for its CSR.

When the SZTP-server responds with a request for the SZTP-client to generate a new key, it is
essential that the SZTP-client actually generates a new key.

Generating a new key each time enables the random bytes used to create the key to also serve the
dual-purpose of acting like a "nonce" used in other mechanisms to detect replay attacks.

When a fresh public/private key pair is generated for the request, confirmation to the SZTP-client
that the response has not been replayed is enabled by the SZTP-client's fresh public key
appearing in the signed certificate provided by the SZTP-server.

When a public/private key pair associated with the manufacturer-generated identity certificate
(e.g., IDevID) is used for the request, there may not be confirmation to the SZTP-client that the
response has not been replayed; however, the worst case result is a lost certificate that is

RECOMMENDED

[RFC7292]

RECOMMENDED

[CVE-2008-0166]
[MiningPsQs]

[ISO.20543-2019] [NIST.SP.800-90Ar1] [AIS31] [RFC4086]

SHOULD
[Std-802.1AR-2018]

RECOMMENDED

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 25

associated to the private key known only to the SZTP-client. Protection of the private-key
information is vital to public-key cryptography. Disclosure of the private-key material to another
entity can lead to masquerades.

4.1.5. Selecting the Best Origin Authentication Mechanism

The origin of the CSR must be verified before a certificate is issued.

When generating a new key, it is important that the SZTP-client be able to provide additional
proof that it was the entity that generated the key.

The CMP and CMC certificate request formats defined in this document support origin
authentication. A raw PKCS#10 CSR does not support origin authentication.

The CMP and CMC request formats support origin authentication using both PKI and a shared
secret.

Typically, only one possible origin authentication mechanism can possibly be used, but in the
case that the SZTP-client authenticates itself using both TLS-level (e.g., IDevID) and HTTP-level
credentials (e.g., Basic), as is allowed by , then the SZTP-client may need
to choose between the two options.

In the case that the SZTP-client must choose between an asymmetric key option versus a shared
secret for origin authentication, it is that the SZTP-client choose using the
asymmetric key.

4.1.4. Connecting to an Untrusted Bootstrap Server

 allows SZTP-clients to connect to untrusted SZTP-servers by blindly authenticating the
SZTP-server's TLS end-entity certificate.

As is discussed in , in such cases, the SZTP-client assert that the
bootstrapping data returned is signed if the SZTP-client is to trust it.

However, the HTTP error message used in this document cannot be signed data, as described in
.

Therefore, the solution presented in this document cannot be used when the SZTP-client
connects to an untrusted SZTP-server.

Consistent with the recommendation presented in , SZTP-clients
 pass the "csr-support" input parameter to an untrusted SZTP-server. SZTP-clients

instead pass the "signed-data-preferred" input parameter, as discussed in
.

[RFC8572]

Section 9.5 of [RFC8572] MUST

[RFC8572]

Section 9.6 of [RFC8572] SHOULD
NOT SHOULD

Appendix B of
[RFC8572]

Section 5.3 of [RFC8572]

RECOMMENDED

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 26

https://rfc-editor.org/rfc/rfc8572#section-9.5
https://rfc-editor.org/rfc/rfc8572#section-9.6
https://rfc-editor.org/rfc/rfc8572#appendix-B
https://rfc-editor.org/rfc/rfc8572#section-5.3

4.1.6. Clearing the Private Key and Associated Certificate

Unlike a manufacturer-generated identity certificate (e.g., IDevID), the deployment-generated
identity certificate (e.g., LDevID) and the associated private key (assuming a new private key was
generated for the purpose) are considered user data and be cleared whenever the SZTP-
client is reset to its factory default state, such as by the "factory-reset" RPC defined in .

4.2. SZTP-Server Considerations

4.2.1. Verifying Proof-of-Possession

Regardless, if using a new asymmetric key or the bootstrapping device's manufacturer-generated
key (e.g., the IDevID key), the public key is placed in the CSR and the CSR is signed by that private
key. Proof-of-possession of the private key is verified by ensuring the signature over the CSR
using the public key placed in the CSR.

4.2.2. Verifying Proof-of-Origin

When the bootstrapping device's manufacturer-generated private key (e.g., the IDevID key) is
reused for the CSR, proof-of-origin is verified by validating the IDevID-issuer cert and ensuring
that the CSR uses the same key pair.

When the bootstrapping device's manufacturer-generated private key (e.g., an IDevID key from
IEEE 802.1AR) is reused for the CSR, proof-of-origin is verified by validating the IDevID
certification path and ensuring that the CSR uses the same key pair.

When a fresh asymmetric key is used with the CMP or CMC formats, the authentication is part of
the protocols, which could employ either the manufacturer-generated private key or a shared
secret. In addition, CMP and CMC support processing by an RA before the request is passed to the
CA, which allows for more robust handling of errors.

4.2.3. Supporting SZTP-Clients That Don't Trust the SZTP-Server

 allows SZTP-clients to connect to untrusted SZTP-servers by blindly authenticating the
SZTP-server's TLS end-entity certificate.

As is recommended in Section 4.1.4 of this document, in such cases, SZTP-clients pass the
"signed-data-preferred" input parameter.

The reciprocal of this statement is that SZTP-servers, wanting to support SZTP-clients that don't
trust them, support the "signed-data-preferred" input parameter, as discussed in

.

SHOULD
[RFC8808]

[RFC8572]

SHOULD

SHOULD
Appendix B of [RFC8572]

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 27

https://rfc-editor.org/rfc/rfc8572#appendix-B

4.3. Security Considerations for the "ietf-sztp-csr" YANG Module
The recommended format for documenting the security considerations for YANG modules is
described in . However, this module only augments two input
parameters into the "get-bootstrapping-data" RPC in and therefore only needs to point
to the relevant Security Considerations sections in that RFC.

Security considerations for the "get-bootstrapping-data" RPC are described in
.

Security considerations for the "input" parameters passed inside the "get-bootstrapping-data"
RPC are described in .

4.4. Security Considerations for the "ietf-ztp-types" YANG Module
The recommended format for documenting the security considerations for YANG modules is
described in . However, this module does not define any protocol-
accessible nodes (it only defines "identity" and "grouping" statements), and therefore there are
no security considerations to report.

Section 3.7 of [RFC8407]
[RFC8572]

• Section 9.16 of
[RFC8572]

•
Section 9.6 of [RFC8572]

Section 3.7 of [RFC8407]

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

Name:
Namespace:
Prefix:
Reference:

5. IANA Considerations

5.1. The IETF XML Registry
IANA has registered two URIs in the "ns" registry of the "IETF XML Registry"
maintained at .

urn:ietf:params:xml:ns:yang:ietf-sztp-csr
The NETCONF WG of the IETF.

N/A; the requested URI is an XML namespace.

urn:ietf:params:xml:ns:yang:ietf-ztp-types
The NETCONF WG of the IETF.

N/A; the requested URI is an XML namespace.

5.2. The YANG Module Names Registry
IANA has registered two YANG modules in the "YANG Module Names" registry
maintained at .

ietf-sztp-csr
urn:ietf:params:xml:ns:yang:ietf-sztp-csr

sztp-csr
RFC 9646

[RFC3688]
<https://www.iana.org/assignments/xml-registry/>

[RFC6020]
<https://www.iana.org/assignments/yang-parameters/>

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 28

https://rfc-editor.org/rfc/rfc8407#section-3.7
https://rfc-editor.org/rfc/rfc8572#section-9.16
https://rfc-editor.org/rfc/rfc8572#section-9.6
https://rfc-editor.org/rfc/rfc8407#section-3.7
https://www.iana.org/assignments/xml-registry/
https://www.iana.org/assignments/yang-parameters/

[ITU.X690.2021]

[RFC2119]

[RFC2986]

[RFC3688]

[RFC4210]

[RFC5272]

[RFC6020]

[RFC7950]

[RFC8040]

[RFC8174]

[RFC8446]

6. References

6.1. Normative References

,

, , , February
2021, .

, , ,
, , March 1997,
.

 and ,
, , , November 2000,

.

, , , , ,
January 2004, .

, , , and ,
, ,

, September 2005, .

 and , , ,
, June 2008, .

,
, , , October

2010, .

, , ,
, August 2016, .

, , and , , ,
, January 2017, .

, ,
, , , May 2017,

.

, , ,
, August 2018, .

Name:
Namespace:
Prefix:
Reference:

ietf-ztp-types
urn:ietf:params:xml:ns:yang:ietf-ztp-types

ztp-types
RFC 9646

ITU "Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X.690 ISO/IEC 8825-1

<https://www.itu.int/rec/T-REC-X.690/>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Nystrom, M. B. Kaliski "PKCS #10: Certification Request Syntax Specification
Version 1.7" RFC 2986 DOI 10.17487/RFC2986 <https://
www.rfc-editor.org/info/rfc2986>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Adams, C. Farrell, S. Kause, T. T. Mononen "Internet X.509 Public Key
Infrastructure Certificate Management Protocol (CMP)" RFC 4210 DOI 10.17487/
RFC4210 <https://www.rfc-editor.org/info/rfc4210>

Schaad, J. M. Myers "Certificate Management over CMS (CMC)" RFC 5272
DOI 10.17487/RFC5272 <https://www.rfc-editor.org/info/rfc5272>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 29

https://www.itu.int/rec/T-REC-X.690/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc5272
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446

[RFC8572]

[RFC8791]

[RFC9110]

[RFC9640]

[AIS31]

[CVE-2008-0166]

[ISO.20543-2019]

[MiningPsQs]

[NIST.SP.800-90Ar1]

[RFC4086]

[RFC7292]

, , and ,
, , , April 2019,

.

, , and , ,
, , June 2020,
.

, , and , ,
, , , June 2022,

.

, , ,
, October 2024, .

6.2. Informative References

 and ,
, September 2011,

.

,
, May 2008,

.

,

, ,
October 2019.

, , , and ,
,

, August
2012,

.

 and ,
,

, , June 2015,
.

, , and ,
, , , , June 2005,

.

, , , , and ,
, , ,

July 2014, .

Watsen, K. Farrer, I. M. Abrahamsson "Secure Zero Touch Provisioning
(SZTP)" RFC 8572 DOI 10.17487/RFC8572 <https://www.rfc-
editor.org/info/rfc8572>

Bierman, A. Björklund, M. K. Watsen "YANG Data Structure Extensions"
RFC 8791 DOI 10.17487/RFC8791 <https://www.rfc-editor.org/info/
rfc8791>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/
rfc9110>

Watsen, K. "YANG Data Types and Groupings for Cryptography" RFC 9640 DOI
10.17487/RFC9640 <https://www.rfc-editor.org/info/rfc9640>

Killmann, W. W. Schindler "A proposal for: Functionality classes for random
number generators - Version 2.0" <https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/
AIS_31_Functionality_classes_for_random_number_generators_e.pdf>

National Institute of Science and Technology (NIST) "National Vulnerability
Database - CVE-2008-0166 Detail" <https://nvd.nist.gov/vuln/detail/
CVE-2008-0166>

International Organization for Standardization (ISO) "Information
technology -- Security techniques -- Test and analysis methods for random bit
generators within ISO/IEC 19790 and ISO/IEC 15408" ISO/IEC 20543:2019

Heninger, N. Durumeric, Z. Wustrow, E. J. Halderman "Mining Your Ps
and Qs: Detection of Widespread Weak Keys in Network Devices" Security'12:
Proceedings of the 21st USENIX Conference on Security Symposium

<https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/heninger>

Barker, E. J. Kelsey "Recommendation for Random Number
Generation Using Deterministic Random Bit Generators" DOI 10.6028/NIST.SP.
800-90Ar1 NIST SP 800-90Ar1 <https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-90Ar1.pdf>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Moriarty, K., Ed. Nystrom, M. Parkinson, S. Rusch, A. M. Scott "PKCS #12:
Personal Information Exchange Syntax v1.1" RFC 7292 DOI 10.17487/RFC7292

<https://www.rfc-editor.org/info/rfc7292>

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 30

https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8791
https://www.rfc-editor.org/info/rfc8791
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9640
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
https://nvd.nist.gov/vuln/detail/CVE-2008-0166
https://nvd.nist.gov/vuln/detail/CVE-2008-0166
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc7292

[RFC8340]

[RFC8407]

[RFC8792]

[RFC8808]

[RFC9641]

[RFC9642]

[Std-802.1AR-2018]

 and , , , ,
, March 2018, .

,
, , , , October 2018,

.

, , , and ,
, , , June

2020, .

, , and ,
, , , August 2020,

.

, , ,
, October 2024, .

, , ,
, October 2024, .

,
, August 2018, .

Acknowledgements
The authors would like to thank for following for lively discussions on list and in the halls
(ordered by first name): , , , ,

, , , , , ,
, , , , and .

Contributors
Special thanks go to and for helping with the descriptions
for the "cmc-csr" and "cmp-csr" nodes.

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bierman, A. "Guidelines for Authors and Reviewers of Documents Containing
YANG Data Models" BCP 216 RFC 8407 DOI 10.17487/RFC8407
<https://www.rfc-editor.org/info/rfc8407>

Watsen, K. Auerswald, E. Farrel, A. Q. Wu "Handling Long Lines in
Content of Internet-Drafts and RFCs" RFC 8792 DOI 10.17487/RFC8792

<https://www.rfc-editor.org/info/rfc8792>

Wu, Q. Lengyel, B. Y. Niu "A YANG Data Model for Factory Default
Settings" RFC 8808 DOI 10.17487/RFC8808 <https://www.rfc-
editor.org/info/rfc8808>

Watsen, K. "A YANG Data Model for a Truststore" RFC 9641 DOI 10.17487/
RFC9641 <https://www.rfc-editor.org/info/rfc9641>

Watsen, K. "A YANG Data Model for a Keystore" RFC 9642 DOI 10.17487/
RFC9642 <https://www.rfc-editor.org/info/rfc9642>

IEEE "IEEE Standard for Local and Metropolitan Area Networks - Secure
Device Identity" <https://standards.ieee.org/ieee/802.1AR/6995/>

Benjamin Kaduk Dan Romascanu David von Oheimb Éric Vyncke Guy
Fedorkow Hendrik Brockhaus Joe Clarke Meral Shirazipour Murray Kucherawy Rich Salz Rob
Wilton Roman Danyliw Qin Wu Yaron Sheffer Zaheduzzaman Sarkar

David von Oheimb Hendrik Brockhaus

Authors' Addresses
Kent Watsen
Watsen Networks

kent+ietf@watsen.netEmail:

Russ Housley
Vigil Security, LLC

housley@vigilsec.comEmail:

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 31

https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8792
https://www.rfc-editor.org/info/rfc8808
https://www.rfc-editor.org/info/rfc8808
https://www.rfc-editor.org/info/rfc9641
https://www.rfc-editor.org/info/rfc9642
https://standards.ieee.org/ieee/802.1AR/6995/
mailto:kent+ietf@watsen.net
mailto:housley@vigilsec.com

Sean Turner
sn3rd

sean@sn3rd.comEmail:

RFC 9646 Conveying a CSR in an SZTP Request October 2024

Watsen, et al. Standards Track Page 32

mailto:sean@sn3rd.com

	RFC 9646
	Conveying a Certificate Signing Request (CSR) in a Secure Zero-Touch Provisioning (SZTP) Bootstrapping Request
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Overview
	1.2. Terminology
	1.3. Requirements Language
	1.4. Conventions

	2. The "ietf-sztp-csr" Module
	2.1. Data Model Overview
	2.2. Example Usage
	2.3. YANG Module

	3. The "ietf-ztp-types" Module
	3.1. Data Model Overview
	3.2. YANG Module

	4. Security Considerations
	4.1. SZTP-Client Considerations
	4.1.1. Ensuring the Integrity of Asymmetric Private Keys
	4.1.2. Reuse of a Manufacturer-Generated Private Key
	4.1.3. Replay Attack Protection
	4.1.4. Connecting to an Untrusted Bootstrap Server
	4.1.5. Selecting the Best Origin Authentication Mechanism
	4.1.6. Clearing the Private Key and Associated Certificate

	4.2. SZTP-Server Considerations
	4.2.1. Verifying Proof-of-Possession
	4.2.2. Verifying Proof-of-Origin
	4.2.3. Supporting SZTP-Clients That Don't Trust the SZTP-Server

	4.3. Security Considerations for the "ietf-sztp-csr" YANG Module
	4.4. Security Considerations for the "ietf-ztp-types" YANG Module

	5. IANA Considerations
	5.1. The IETF XML Registry
	5.2. The YANG Module Names Registry

	6. References
	6.1. Normative References
	6.2. Informative References

	Acknowledgements
	Contributors
	Authors' Addresses

 Conveying a Certificate Signing Request (CSR) in a Secure Zero-Touch Provisioning (SZTP) Bootstrapping Request

 Watsen Networks

 kent+ietf@watsen.net

 Vigil Security, LLC

 housley@vigilsec.com

 sn3rd

 sean@sn3rd.com

 ops
 netconf
 zerotouch
 bootstrap
 sztp
 ztp
 csr
 pkcs#10
 p10
 p10cr
 cmc
 cmp

 This document extends the input to the "get-bootstrapping-data" RPC defined in
 RFC 8572 to include an optional certificate signing request (CSR),
 enabling a bootstrapping device to additionally obtain an identity
 certificate (e.g., a Local Device Identifier (LDevID) from IEEE 802.1AR) as part of the
 "onboarding information" response provided in the RPC-reply.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Overview

 . Terminology

 . Requirements Language

 . Conventions

 . The "ietf-sztp-csr" Module

 . Data Model Overview

 . Example Usage

 . YANG Module

 . The "ietf-ztp-types" Module

 . Data Model Overview

 . YANG Module

 . Security Considerations

 . SZTP-Client Considerations

 . Ensuring the Integrity of Asymmetric Private Keys

 . Reuse of a Manufacturer-Generated Private Key

 . Replay Attack Protection

 . Connecting to an Untrusted Bootstrap Server

 . Selecting the Best Origin Authentication Mechanism

 . Clearing the Private Key and Associated Certificate

 . SZTP-Server Considerations

 . Verifying Proof-of-Possession

 . Verifying Proof-of-Origin

 . Supporting SZTP-Clients That Don't Trust the SZTP-Server

 . Security Considerations for the "ietf-sztp-csr" YANG Module

 . Security Considerations for the "ietf-ztp-types" YANG Module

 . IANA Considerations

 . The IETF XML Registry

 . The YANG Module Names Registry

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Contributors

 Authors' Addresses

 Introduction

 Overview
 This document extends the input to the "get-bootstrapping-data" RPC defined in
 to include an optional certificate
 signing request (CSR) , enabling a
 bootstrapping device to additionally obtain an identity
 certificate (e.g., an LDevID from)
 as part of the "onboarding information" response provided in
 the RPC-reply.
 The ability to provision an identity certificate that is purpose-built
 for a production environment during the bootstrapping process
 removes reliance on the manufacturer Certification Authority (CA), and it also enables the
 bootstrapped device to join the production environment with an
 appropriate identity and other attributes in its identity
 certificate (e.g., an LDevID).
 Two YANG modules are defined. The
 "ietf-ztp-types" module defines three YANG groupings for the
 various messages defined in this document. The "ietf-sztp-csr"
 module augments two groupings into the "get-bootstrapping-data"
 RPC and defines a YANG data structure
 around the third grouping.

 Terminology
 This document uses the following terms from :

 Bootstrap Server
 Bootstrapping Data
 Conveyed Information
 Device
 Manufacturer
 Onboarding Information
 Signed Data

 This document defines the following new terms:

 SZTP-client:
 The term "SZTP-client" refers to a "device" that is using a
 "bootstrap server" as a source of "bootstrapping data".
 SZTP-server:
 The term "SZTP-server" is an alternative term for "bootstrap
 server" that is symmetric with the "SZTP-client" term.

 Requirements Language

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Conventions
 Various examples in this document use "BASE64VALUE=" as a placeholder
 value for binary data that has been base64 encoded (per). This placeholder value is used because real
 base64-encoded structures are often many lines long and
 hence distracting to the example being presented.
 Various examples in this document contain long lines that may be folded,
 as described in .

 The "ietf-sztp-csr" Module
 The "ietf-sztp-csr" module is a YANG 1.1
 module that augments the "ietf-sztp-bootstrap-server" module defined in
 and defines a YANG "structure" that is to be
 conveyed in the "error-info" node defined in .

 Data Model Overview
 The following tree diagram illustrates the
 "ietf-sztp-csr" module.

module: ietf-sztp-csr

 augment /sztp-svr:get-bootstrapping-data/sztp-svr:input:
 +---w (msg-type)?
 +--:(csr-support)
 | +---w csr-support
 | +---w key-generation!
 | | +---w supported-algorithms
 | | +---w algorithm-identifier* binary
 | +---w csr-generation
 | +---w supported-formats
 | +---w format-identifier* identityref
 +--:(csr)
 +---w (csr-type)
 +--:(p10-csr)
 | +---w p10-csr? ct:csr
 +--:(cmc-csr)
 | +---w cmc-csr? binary
 +--:(cmp-csr)
 +---w cmp-csr? binary

 structure csr-request:
 +-- key-generation!
 | +-- selected-algorithm
 | +-- algorithm-identifier binary
 +-- csr-generation
 | +-- selected-format
 | +-- format-identifier identityref
 +-- cert-req-info? ct:csr-info

 The augmentation defines two kinds of
 parameters that an SZTP-client can send to an SZTP-server. The
 YANG structure defines one collection of parameters that an
 SZTP-server can send to an SZTP-client.
 In the order of their intended use:

 The SZTP-client sends a "csr-support" node, encoded in a first
 "get-bootstrapping-data" request to the SZTP-server, to indicate
 that it supports the ability to generate CSRs.
 This input parameter conveys if the SZTP-client is able to generate a
 new asymmetric key and, if so, which key algorithms it supports,
 as well as what kinds of CSR structures the SZTP-client
 is able to generate.
 The SZTP-server responds with an error, containing the "csr-request"
 structure, to request
 the SZTP-client to generate a CSR. This structure is used to
 select the key algorithm the SZTP-client should use to generate
 a new asymmetric key (if supported), the kind of CSR structure
 the SZTP-client should generate, and optionally the content for
 the CSR itself.
 The SZTP-client sends one of the "*-csr" nodes, encoded in a second
 "get-bootstrapping-data" request to the SZTP-server. This node
 encodes the server-requested CSR.
 The SZTP-server responds with onboarding information to communicate
 the signed certificate to the SZTP-client. How to do this is
 discussed in .

 To further illustrate how the augmentation and structure defined
 by the "ietf-sztp-csr" module are used, below are two additional
 tree diagrams showing these nodes placed where they are used.
 The following tree diagram illustrates SZTP's
 "get-bootstrapping-data" RPC with the augmentation in place.

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ietf-sztp-bootstrap-server

 rpcs:
 +---x get-bootstrapping-data
 +---w input
 | +---w signed-data-preferred? empty
 | +---w hw-model? string
 | +---w os-name? string
 | +---w os-version? string
 | +---w nonce? binary
 | +---w (sztp-csr:msg-type)?
 | +--:(sztp-csr:csr-support)
 | | +---w sztp-csr:csr-support
 | | +---w sztp-csr:key-generation!
 | | | +---w sztp-csr:supported-algorithms
 | | | +---w sztp-csr:algorithm-identifier* bina\
ry
 | | +---w sztp-csr:csr-generation
 | | +---w sztp-csr:supported-formats
 | | +---w sztp-csr:format-identifier* identit\
yref
 | +--:(sztp-csr:csr)
 | +---w (sztp-csr:csr-type)
 | +--:(sztp-csr:p10-csr)
 | | +---w sztp-csr:p10-csr? ct:csr
 | +--:(sztp-csr:cmc-csr)
 | | +---w sztp-csr:cmc-csr? binary
 | +--:(sztp-csr:cmp-csr)
 | +---w sztp-csr:cmp-csr? binary
 +--ro output
 +--ro reporting-level? enumeration {onboarding-server}?
 +--ro conveyed-information cms
 +--ro owner-certificate? cms
 +--ro ownership-voucher? cms

 The following tree diagram illustrates RESTCONF's
 "errors" RPC-reply message with the "csr-request" structure in place.

module: ietf-restconf
 +--ro errors
 +--ro error* []
 +--ro error-type enumeration
 +--ro error-tag string
 +--ro error-app-tag? string
 +--ro error-path? instance-identifier
 +--ro error-message? string
 +--ro error-info
 +--ro sztp-csr:csr-request
 +--ro sztp-csr:key-generation!
 | +--ro sztp-csr:selected-algorithm
 | +--ro sztp-csr:algorithm-identifier binary
 +--ro sztp-csr:csr-generation
 | +--ro sztp-csr:selected-format
 | +--ro sztp-csr:format-identifier identityref
 +--ro sztp-csr:cert-req-info? ct:csr-info

 Example Usage

 NOTE: The examples below are encoded using JSON, but they could
 equally well be encoded using XML, as is supported by SZTP.

 An SZTP-client implementing this specification would signal
 to the bootstrap server its willingness to generate a CSR by
 including the "csr-support" node in its "get-bootstrapping-data"
 RPC. In the example below, the SZTP-client additionally
 indicates that it is able to generate keys and provides
 a list of key algorithms it supports, as well as provide
 a list of certificate formats it supports.
 REQUEST

=============== NOTE: '\' line wrapping per RFC 8792 ================

POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
ng-data HTTP/1.1
HOST: example.com
Content-Type: application/yang-data+json

{
 "ietf-sztp-bootstrap-server:input" : {
 "hw-model": "model-x",
 "os-name": "vendor-os",
 "os-version": "17.3R2.1",
 "nonce": "extralongbase64encodedvalue=",
 "ietf-sztp-csr:csr-support": {
 "key-generation": {
 "supported-algorithms": {
 "algorithm-identifier": [
 "BASE64VALUE1",
 "BASE64VALUE2",
 "BASE64VALUE3"
]
 }
 },
 "csr-generation": {
 "supported-formats": {
 "format-identifier": [
 "ietf-ztp-types:p10-csr",
 "ietf-ztp-types:cmc-csr",
 "ietf-ztp-types:cmp-csr"
]
 }
 }
 }
 }
}

 Assuming the SZTP-server wishes to prompt the SZTP-client to
 provide a CSR, then it would respond with an HTTP 400 Bad Request
 error code. In the example below, the SZTP-server specifies
 that it wishes the SZTP-client to generate a key using a specific
 algorithm and generate a PKCS#10-based CSR containing specific
 content.
 RESPONSE

HTTP/1.1 400 Bad Request
Date: Sat, 31 Oct 2021 17:02:40 GMT
Server: example-server
Content-Type: application/yang-data+json

{
 "ietf-restconf:errors" : {
 "error" : [
 {
 "error-type": "application",
 "error-tag": "missing-attribute",
 "error-message": "Missing input parameter",
 "error-info": {
 "ietf-sztp-csr:csr-request": {
 "key-generation": {
 "selected-algorithm": {
 "algorithm-identifier": "BASE64VALUE="
 }
 },
 "csr-generation": {
 "selected-format": {
 "format-identifier": "ietf-ztp-types:p10-csr"
 }
 },
 "cert-req-info": "BASE64VALUE="
 }
 }
 }
]
 }
}

 Upon being prompted to provide a CSR, the SZTP-client would
 POST another "get-bootstrapping-data" request but this time
	including one of the "csr" nodes to convey its CSR to the
 SZTP-server:
 REQUEST

=============== NOTE: '\' line wrapping per RFC 8792 ================

POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
ng-data HTTP/1.1
HOST: example.com
Content-Type: application/yang-data+json

{
 "ietf-sztp-bootstrap-server:input" : {
 "hw-model": "model-x",
 "os-name": "vendor-os",
 "os-version": "17.3R2.1",
 "nonce": "extralongbase64encodedvalue=",
 "ietf-sztp-csr:p10-csr": "BASE64VALUE="
 }
}

 At this point, it is expected that the SZTP-server, perhaps
 in conjunction with other systems, such as a backend CA or registration authority (RA),
 will validate the CSR's origin and proof-of-possession and,
 assuming the CSR is approved, issue a signed certificate for
 the bootstrapping device.
 The SZTP-server responds with conveyed information
 (the "conveyed-information" node shown below) that encodes
	"onboarding-information" (inside the base64 value) containing
 a signed identity certificate for the CSR provided by the
 SZTP-client:
 RESPONSE

HTTP/1.1 200 OK
Date: Sat, 31 Oct 2021 17:02:40 GMT
Server: example-server
Content-Type: application/yang-data+json

{
 "ietf-sztp-bootstrap-server:output" : {
 "reporting-level": "verbose",
 "conveyed-information": "BASE64VALUE="
 }
}

 How the signed certificate is conveyed inside the onboarding information
 is outside the scope of this document. Some implementations may choose
 to convey it inside a script (e.g., SZTP's "pre-configuration-script"),
 while other implementations may choose to convey it inside the SZTP
 "configuration" node. SZTP onboarding information is described in
 .
 Below are two examples of conveying the signed certificate inside
 the "configuration" node. Both examples assume that the SZTP-client
 understands the "ietf-keystore" module defined in
 .
 This first example illustrates the case where the signed certificate is
 for the same asymmetric key used by the SZTP-client's manufacturer-generated
 identity certificate (e.g., an Initial Device Identifier (IDevID) from).
 As such, the configuration needs to associate the newly signed certificate
 with the existing asymmetric key:

=============== NOTE: '\' line wrapping per RFC 8792 ================

{
 "ietf-keystore:keystore": {
 "asymmetric-keys": {
 "asymmetric-key": [
 {
 "name": "Manufacturer-Generated Hidden Key",
 "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
 "public-key": "BASE64VALUE=",
 "hidden-private-key": [null],
 "certificates": {
 "certificate": [
 {
 "name": "Manufacturer-Generated IDevID Cert",
 "cert-data": "BASE64VALUE="
 },
 {
 "name": "Newly-Generated LDevID Cert",
 "cert-data": "BASE64VALUE="
 }
]
 }
 }
]
 }
 }
}

 This second example illustrates the case where the signed certificate is
 for a newly generated asymmetric key. As such, the configuration needs
 to associate the newly signed certificate with the newly generated
 asymmetric key:

=============== NOTE: '\' line wrapping per RFC 8792 ================

{
 "ietf-keystore:keystore": {
 "asymmetric-keys": {
 "asymmetric-key": [
 {
 "name": "Manufacturer-Generated Hidden Key",
 "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
 "public-key": "BASE64VALUE=",
 "hidden-private-key": [null],
 "certificates": {
 "certificate": [
 {
 "name": "Manufacturer-Generated IDevID Cert",
 "cert-data": "BASE64VALUE="
 }
]
 }
 },
 {
 "name": "Newly-Generated Hidden Key",
 "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
 "public-key": "BASE64VALUE=",
 "hidden-private-key": [null],
 "certificates": {
 "certificate": [
 {
 "name": "Newly-Generated LDevID Cert",
 "cert-data": "BASE64VALUE="
 }
]
 }
 }
]
 }
 }
}

 In addition to configuring the signed certificate, it is often
 necessary to also configure the issuer's signing certificate
 so that the device (i.e., STZP-client) can authenticate
 certificates presented by peer devices signed by the same
 issuer as its own. While outside the scope of this document,
 one way to do this would be to use the "ietf-truststore" module
 defined in .

 YANG Module
 This module augments an RPC defined in . The
 module uses data types and groupings defined in ,
 , and .
 The module also has an informative reference to .

module ietf-sztp-csr {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-sztp-csr";
 prefix sztp-csr;

 import ietf-sztp-bootstrap-server {
 prefix sztp-svr;
 reference
 "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
 }

 import ietf-yang-structure-ext {
 prefix sx;
 reference
 "RFC 8791: YANG Data Structure Extensions";
 }

 import ietf-ztp-types {
 prefix zt;
 reference
 "RFC 9646: Conveying a Certificate Signing Request (CSR)
 in a Secure Zero-Touch Provisioning (SZTP)
 Bootstrapping Request";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>
 Authors: Kent Watsen <mailto:kent+ietf@watsen.net>
 Russ Housley <mailto:housley@vigilsec.com>
 Sean Turner <mailto:sean@sn3rd.com>";

 description
 "This module augments the 'get-bootstrapping-data' RPC,
 defined in the 'ietf-sztp-bootstrap-server' module from
 SZTP (RFC 8572), enabling the SZTP-client to obtain a
 signed identity certificate (e.g., an LDevID from IEEE
 802.1AR) as part of the SZTP onboarding information
 response.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in BCP 14
 (RFC 2119) (RFC 8174) when, and only when, they appear
 in all capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9646
 (https://www.rfc-editor.org/info/rfc9646); see the
 RFC itself for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version.";
 reference
 "RFC 9646: Conveying a Certificate Signing Request (CSR)
 in a Secure Zero-Touch Provisioning (SZTP)
 Bootstrapping Request";
 }

 // Protocol-accessible nodes

 augment "/sztp-svr:get-bootstrapping-data/sztp-svr:input" {
 description
 "This augmentation adds the 'csr-support' and 'csr' nodes to
 the SZTP (RFC 8572) 'get-bootstrapping-data' request message,
 enabling the SZTP-client to obtain an identity certificate
 (e.g., an LDevID from IEEE 802.1AR) as part of the onboarding
 information response provided by the SZTP-server.

 The 'csr-support' node enables the SZTP-client to indicate
 that it supports generating certificate signing requests
 (CSRs) and to provide details around the CSRs it is able
 to generate.

 The 'csr' node enables the SZTP-client to relay a CSR to
 the SZTP-server.";
 reference
 "IEEE 802.1AR: IEEE Standard for Local and Metropolitan
 Area Networks - Secure Device Identity
 RFC 8572: Secure Zero Touch Provisioning (SZTP)";
 choice msg-type {
 description
 "Messages are mutually exclusive.";
 case csr-support {
 description
 "Indicates how the SZTP-client supports generating CSRs.

 If present and a SZTP-server wishes to request the
 SZTP-client generate a CSR, the SZTP-server MUST
 respond with an HTTP 400 Bad Request error code with an
 'ietf-restconf:errors' message having the 'error-tag'
 value 'missing-attribute' and the 'error-info' node
 containing the 'csr-request' structure described
 in this module.";
 uses zt:csr-support-grouping;
 }
 case csr {
 description
 "Provides the CSR generated by the SZTP-client.

 When present, the SZTP-server SHOULD respond with
 an SZTP onboarding information message containing
 a signed certificate for the conveyed CSR. The
 SZTP-server MAY alternatively respond with another
 HTTP error containing another 'csr-request'; in
 which case, the SZTP-client MUST delete any key
 generated for the previously generated CSR.";
 uses zt:csr-grouping;
 }
 }
 }

 sx:structure csr-request {
 description
 "A YANG data structure, per RFC 8791, that specifies
 details for the CSR that the ZTP-client is to generate.";
 reference
 "RFC 8791: YANG Data Structure Extensions";
 uses zt:csr-request-grouping;
 }

}

 The "ietf-ztp-types" Module
 This section defines a YANG 1.1 module
 that defines three YANG groupings, one for each message sent
 between a ZTP-client and ZTP-server. This module is defined
 independently of the "ietf-sztp-csr" module so that its
 groupings may be used by bootstrapping protocols other than
 SZTP .

 Data Model Overview
 The following tree diagram illustrates
 the three groupings defined in the "ietf-ztp-types" module.

module: ietf-ztp-types

 grouping csr-support-grouping
 +-- csr-support
 +-- key-generation!
 | +-- supported-algorithms
 | +-- algorithm-identifier* binary
 +-- csr-generation
 +-- supported-formats
 +-- format-identifier* identityref
 grouping csr-request-grouping
 +-- key-generation!
 | +-- selected-algorithm
 | +-- algorithm-identifier binary
 +-- csr-generation
 | +-- selected-format
 | +-- format-identifier identityref
 +-- cert-req-info? ct:csr-info
 grouping csr-grouping
 +-- (csr-type)
 +--:(p10-csr)
 | +-- p10-csr? ct:csr
 +--:(cmc-csr)
 | +-- cmc-csr? binary
 +--:(cmp-csr)
 +-- cmp-csr? binary

 YANG Module
 This module uses data types and groupings defined in
 and . The module has
 additional normative references to ,
 , , and
 and an informative reference
 to .

module ietf-ztp-types {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-ztp-types";
 prefix zt;

 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>
 Authors: Kent Watsen <mailto:kent+ietf@watsen.net>
 Russ Housley <mailto:housley@vigilsec.com>
 Sean Turner <mailto:sean@sn3rd.com>";

 description
 "This module defines three groupings that enable
 bootstrapping devices to 1) indicate if and how they
 support generating CSRs, 2) obtain a request to
 generate a CSR, and 3) communicate the requested CSR.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in BCP 14
 (RFC 2119) (RFC 8174) when, and only when, they appear
 in all capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9646
 (https://www.rfc-editor.org/info/rfc9646); see the
 RFC itself for full legal notices.";

 revision 2024-10-10 {
 description
 "Initial version.";
 reference
 "RFC 9646: Conveying a Certificate Signing Request (CSR)
 in a Secure Zero-Touch Provisioning (SZTP)
 Bootstrapping Request";
 }

 identity certificate-request-format {
 description
 "A base identity for the request formats supported
 by the ZTP-client.

 Additional derived identities MAY be defined by
 future efforts.";
 }

 identity p10-csr {
 base certificate-request-format;
 description
 "Indicates that the ZTP-client supports generating
 requests using the 'CertificationRequest' structure
 defined in RFC 2986.";
 reference
 "RFC 2986: PKCS #10: Certification Request Syntax
 Specification Version 1.7";
 }

 identity cmp-csr {
 base certificate-request-format;
 description
 "Indicates that the ZTP-client supports generating
 requests using a profiled version of the PKIMessage
 that MUST contain a PKIHeader followed by a PKIBody
 containing only the ir, cr, kur, or p10cr structures
 defined in RFC 4210.";
 reference
 "RFC 4210: Internet X.509 Public Key Infrastructure
 Certificate Management Protocol (CMP)";
 }

 identity cmc-csr {
 base certificate-request-format;
 description
 "Indicates that the ZTP-client supports generating
 requests using a profiled version of the 'Full
 PKI Request' structure defined in RFC 5272.";
 reference
 "RFC 5272: Certificate Management over CMS (CMC)";
 }

 // Protocol-accessible nodes

 grouping csr-support-grouping {
 description
 "A grouping enabling use by other efforts.";
 container csr-support {
 description
 "Enables a ZTP-client to indicate that it supports
 generating certificate signing requests (CSRs) and
 provides details about the CSRs it is able to
 generate.";
 container key-generation {
 presence "Indicates that the ZTP-client is capable of
 generating a new asymmetric key pair.

 If this node is not present, the ZTP-server MAY
 request a CSR using the asymmetric key associated
 with the device's existing identity certificate
 (e.g., an IDevID from IEEE 802.1AR).";
 description
 "Specifies details for the ZTP-client's ability to
 generate a new asymmetric key pair.";
 container supported-algorithms {
 description
 "A list of public key algorithms supported by the
 ZTP-client for generating a new asymmetric key.";
 leaf-list algorithm-identifier {
 type binary;
 min-elements 1;
 description
 "An AlgorithmIdentifier, as defined in RFC 2986,
 encoded using ASN.1 Distinguished Encoding Rules
 (DER), as specified in ITU-T X.690.";
 reference
 "RFC 2986: PKCS #10: Certification Request Syntax
 Specification Version 1.7
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)";
 }
 }
 }
 container csr-generation {
 description
 "Specifies details for the ZTP-client's ability to
 generate certificate signing requests.";
 container supported-formats {
 description
 "A list of certificate request formats supported
 by the ZTP-client for generating a new key.";
 leaf-list format-identifier {
 type identityref {
 base zt:certificate-request-format;
 }
 min-elements 1;
 description
 "A certificate request format supported by the
 ZTP-client.";
 }
 }
 }
 }
 }

 grouping csr-request-grouping {
 description
 "A grouping enabling use by other efforts.";
 container key-generation {
 presence "Provided by a ZTP-server to indicate that it wishes
 the ZTP-client to generate a new asymmetric key.

 This statement is present so the mandatory
 descendant nodes do not imply that this node must
 be configured.";
 description
 "The key generation parameters selected by the ZTP-server.

 This leaf MUST only appear if the ZTP-client's
 'csr-support' included the 'key-generation' node.";
 container selected-algorithm {
 description
 "The key algorithm selected by the ZTP-server. The
 algorithm MUST be one of the algorithms specified by
 the 'supported-algorithms' node in the ZTP-client's
 message containing the 'csr-support' structure.";
 leaf algorithm-identifier {
 type binary;
 mandatory true;
 description
 "An AlgorithmIdentifier, as defined in RFC 2986,
 encoded using ASN.1 Distinguished Encoding Rules
 (DER), as specified in ITU-T X.690.";
 reference
 "RFC 2986: PKCS #10: Certification Request Syntax
 Specification Version 1.7
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)";
 }
 }
 }
 container csr-generation {
 description
 "Specifies details for the CSR that the ZTP-client
 is to generate.";
 container selected-format {
 description
 "The CSR format selected by the ZTP-server. The
 format MUST be one of the formats specified by
 the 'supported-formats' node in the ZTP-client's
 request message.";
 leaf format-identifier {
 type identityref {
 base zt:certificate-request-format;
 }
 mandatory true;
 description
 "A certificate request format to be used by the
 ZTP-client.";
 }
 }
 }
 leaf cert-req-info {
 type ct:csr-info;
 description
 "A CertificationRequestInfo structure, as defined in
 RFC 2986, and modeled via a 'typedef' statement by
 RFC 9640.

 Enables the ZTP-server to provide a fully populated
 CertificationRequestInfo structure that the ZTP-client
 only needs to sign in order to generate the complete
 'CertificationRequest' structure to send to the ZTP-server
 in its next 'get-bootstrapping-data' request message.

 When provided, the ZTP-client MUST use this structure
 to generate its CSR; failure to do so will result in a
 400 Bad Request response containing another 'csr-request'
 structure.

 When not provided, the ZTP-client SHOULD generate a CSR
 using the same structure defined in its existing identity
 certificate (e.g., an IDevID from IEEE 802.1AR).

 If the 'AlgorithmIdentifier' field contained inside the
 certificate 'SubjectPublicKeyInfo' field does not match
 the algorithm identified by the 'selected-algorithm' node,
 then the client MUST reject the certificate and raise an
 error.";

 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax Specification
 Version 1.7
 RFC 9640:
 YANG Data Types and Groupings for Cryptography";
 }
 }

 grouping csr-grouping {
 description
 "Enables a ZTP-client to convey a certificate signing
 request, using the encoding format selected by a
 ZTP-server's 'csr-request' response to the ZTP-client's
 previously sent request containing the 'csr-support'
 node.";
 choice csr-type {
 mandatory true;
 description
 "A choice amongst certificate signing request formats.

 Additional formats MAY be augmented into this 'choice'
 statement by future efforts.";
 case p10-csr {
 leaf p10-csr {
 type ct:p10-csr;
 description
 "A CertificationRequest structure, per RFC 2986.
 Encoding details are defined in the 'ct:csr'
 typedef defined in RFC 9640.

 A raw P10 does not support origin authentication in
 the CSR structure. External origin authentication
 may be provided via the ZTP-client's authentication
 to the ZTP-server at the transport layer (e.g., TLS).";
 reference
 "RFC 2986: PKCS #10: Certification Request Syntax
 Specification Version 1.7
 RFC 9640: YANG Data Types and Groupings for
 Cryptography";
 }
 }
 case cmc-csr {
 leaf cmc-csr {
 type binary;
 description
 "A profiled version of the 'Full PKI Request'
 message defined in RFC 5272, encoded using ASN.1
 Distinguished Encoding Rules (DER), as specified
 in ITU-T X.690.

 For asymmetric-key-based origin authentication of a
 CSR based on the initial device identity certificate's
 private key for the associated identity certificate's
 public key, the PKIData contains one reqSequence
 element and no cmsSequence or otherMsgSequence
 elements. The reqSequence is the TaggedRequest,
 and it is the tcr CHOICE branch. The tcr is the
 TaggedCertificationRequest, and it is the bodyPartID
 and the certificateRequest elements. The
 certificateRequest is signed with the initial device
 identity certificate's private key. The initial device
 identity certificate, and optionally its certificate
 chain is included in the SignedData certificates that
 encapsulate the PKIData.

 For asymmetric-key-based origin authentication based on
 the initial device identity certificate's private key
 that signs the encapsulated CSR signed by the local
 device identity certificate's private key, the
 PKIData contains one cmsSequence element and no
 reqSequence or otherMsgSequence
 elements. The cmsSequence is the TaggedContentInfo,
 and it includes a bodyPartID element and a contentInfo.
 The contentInfo is a SignedData encapsulating a PKIData
 with one reqSequence element and no cmsSequence or
 otherMsgSequence elements. The reqSequence is the
 TaggedRequest, and it is the tcr CHOICE. The tcr is the
 TaggedCertificationRequest, and it is the bodyPartID and
 the certificateRequest elements. PKIData contains one
 cmsSequence element and no controlSequence, reqSequence,
 or otherMsgSequence elements. The certificateRequest
 is signed with the local device identity certificate's
 private key. The initial device identity certificate
 and optionally its certificate chain is included in
 the SignedData certificates that encapsulate the
 PKIData.

 For shared-secret-based origin authentication of a
 CSR signed by the local device identity certificate's
 private key, the PKIData contains one cmsSequence
 element and no reqSequence or otherMsgSequence
 elements. The cmsSequence is the TaggedContentInfo,
 and it includes a bodyPartID element and a contentInfo.
 The contentInfo is an AuthenticatedData encapsulating
 a PKIData with one reqSequence element and no
 cmsSequences or otherMsgSequence elements. The
 reqSequence is the TaggedRequest, and it is the tcr
 CHOICE. The tcr is the TaggedCertificationRequest,
 and it is the bodyPartID and the certificateRequest
 elements. The certificateRequest is signed with the
 local device identity certificate's private key. The
 initial device identity certificate and optionally its
 certificate chain is included in the SignedData
 certificates that encapsulate the PKIData.";
 reference
 "RFC 5272: Certificate Management over CMS (CMC)
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)";
 }
 }
 case cmp-csr {
 leaf cmp-csr {
 type binary;
 description
 "A PKIMessage structure, as defined in RFC 4210,
 encoded using ASN.1 Distinguished Encoding Rules
 (DER), as specified in ITU-T X.690.

 For asymmetric-key-based origin authentication of a
 CSR based on the initial device identity certificate's
 private key for the associated initial device identity
 certificate's public key, PKIMessages contain one
 PKIMessage with the header and body elements, do not
 contain a protection element, and SHOULD contain the
 extraCerts element. The header element contains the
 pvno, sender, and recipient elements. The pvno contains
 cmp2000, and the sender contains the subject of the
 initial device identity certificate. The body element
 contains an ir, cr, kur, or p10cr CHOICE of type
 CertificationRequest. It is signed with the initial
 device identity certificate's private key. The
 extraCerts element contains the initial device identity
 certificate, optionally followed by its certificate
 chain excluding the trust anchor.

 For asymmetric-key-based origin authentication based
 on the initial device identity certificate's private
 key that signs the encapsulated CSR signed by the local
 device identity certificate's private key, PKIMessages
 contain one PKIMessage with the header, body, and
 protection elements and SHOULD contain the extraCerts
 element. The header element contains the pvno, sender,
 recipient, protectionAlg, and optionally senderKID
 elements. The pvno contains cmp2000, the sender
 contains the subject of the initial device identity
 certificate, the protectionAlg contains the
 AlgorithmIdentifier of the used signature algorithm,
 and the senderKID contains the subject key identifier
 of the initial device identity certificate. The body
 element contains an ir, cr, kur, or p10cr CHOICE of
 type CertificationRequest. It is signed with the local
 device identity certificate's private key. The
 protection element contains the digital signature
 generated with the initial device identity
 certificate's private key. The extraCerts element
 contains the initial device identity certificate,
 optionally followed by its certificate chain excluding
 the trust anchor.

 For shared-secret-based origin authentication of a
 CSR signed by the local device identity certificate's
 private key, PKIMessages contain one PKIMessage with
 the header, body, and protection element and no
 extraCerts element. The header element contains the
 pvno, sender, recipient, protectionAlg, and senderKID
 elements. The pvno contains cmp2000, the protectionAlg
 contains the AlgorithmIdentifier of the used Message
 Authentication Code (MAC) algorithm, and the senderKID
 contains a reference the recipient can use to identify
 the shared secret. The body element contains an ir, cr,
 kur, or p10cr CHOICE of type CertificationRequest. It
 is signed with the local device identity certificate's
 private key. The protection element contains the MAC
 value generated with the shared secret.";
 reference
 "RFC 4210:
 Internet X.509 Public Key Infrastructure
 Certificate Management Protocol (CMP)
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)";
 }
 }
 }
 }

}

 Security Considerations
 This document builds on top of the solution presented in
 , and therefore all the security
 considerations discussed in apply here as well.
 For the various CSR formats, when using PKCS#10, the security considerations
 in apply; when using CMP, the
 security considerations in apply;
 and when using CMC, the security considerations in
 apply.
 For the various authentication mechanisms, when using
 TLS-level authentication, the security considerations in
 apply, and when using HTTP-level
 authentication, the security considerations in
 apply.

 SZTP-Client Considerations

 Ensuring the Integrity of Asymmetric Private Keys
 The private key the SZTP-client uses for the dynamically generated
 identity certificate MUST be protected from inadvertent disclosure
 in order to prevent identity fraud.
 The security of this private key is essential in order to
 ensure the associated identity certificate can be used to
 authenticate the device it is issued to.
 It is RECOMMENDED that devices are manufactured with a
 hardware security module (HSM), such as a trusted platform
 module (TPM), to generate and contain the private key within
 the security perimeter of the HSM. In such cases, the private
 key and its associated certificates MAY have long validity
 periods.
 In cases where the SZTP-client does not possess an HSM or
 is unable to use an HSM to protect the private key, it is
 RECOMMENDED to periodically reset the private key (and
 associated identity certificates) in order to minimize the
 lifetime of unprotected private keys. For instance, a Network Management System (NMS)
 controller/orchestrator application could periodically prompt
 the SZTP-client to generate a new private key and provide a
 certificate signing request (CSR) or, alternatively, push
 both the key and an identity certificate to the SZTP-client
 using, e.g., a PKCS#12 message . In another
 example, the SZTP-client could be configured to periodically
 reset the configuration to its factory default, thus causing
 removal of the private key and associated identity certificates
 and re-execution of the SZTP protocol.

 Reuse of a Manufacturer-Generated Private Key
 It is RECOMMENDED that a new private key is generated for each
 CSR described in this document.
 Implementations must randomly generate nonces and private keys.
 The use of inadequate pseudorandom number generators (PRNGs) to
 generate cryptographic keys can result in little or no security.
 An attacker may find it much easier to reproduce the PRNG environment
 that produced the keys, searching the resulting small set of
 possibilities, rather than brute force searching the whole
 key space. As an example of predictable random numbers, see
 CVE-2008-0166 , and some consequences
 of low-entropy random numbers are discussed in "Mining Your Ps and Qs"
 . The generation of quality random
 numbers is difficult. ,
 , BSI AIS 31 ,
 BCP 106 , and others offer valuable
 guidance in this area.
 This private key SHOULD be protected as well as the built-in
 private key associated with the SZTP-client's initial device identity
 certificate (e.g., the IDevID from).
 In cases where it is not possible to generate a new private key
 that is protected as well as the built-in private key, it is
 RECOMMENDED to reuse the built-in private key rather than
 generate a new private key that is not as well protected.

 Replay Attack Protection
 This RFC enables an SZTP-client to announce an ability to
 generate a new key to use for its CSR.
 When the SZTP-server responds with a request for the SZTP-client
 to generate a new key, it is essential that the SZTP-client actually
 generates a new key.
 Generating a new key each time enables the random bytes used
 to create the key to also serve the dual-purpose of acting like
 a "nonce" used in other mechanisms to detect replay attacks.
 When a fresh public/private key pair is generated for the
 request, confirmation to the SZTP-client that the response
 has not been replayed is enabled by the SZTP-client's fresh
 public key appearing in the signed certificate provided by
 the SZTP-server.
 When a public/private key pair associated with the
 manufacturer-generated identity certificate (e.g., IDevID) is
 used for the request, there may not be confirmation to the
 SZTP-client that the response has not been replayed; however,
 the worst case result is a lost certificate that is associated
 to the private key known only to the SZTP-client. Protection
 of the private-key information is vital to public-key
 cryptography. Disclosure of the private-key material to
 another entity can lead to masquerades.

 Connecting to an Untrusted Bootstrap Server
 allows SZTP-clients to connect
 to untrusted SZTP-servers by blindly authenticating the
 SZTP-server's TLS end-entity certificate.
 As is discussed in ,
 in such cases, the SZTP-client MUST assert that the
 bootstrapping data returned is signed if the SZTP-client
 is to trust it.
 However, the HTTP error message used in this document
 cannot be signed data, as described in .
 Therefore, the solution presented in this document
 cannot be used when the SZTP-client connects to an
 untrusted SZTP-server.
 Consistent with the recommendation presented in
 , SZTP-clients
 SHOULD NOT pass the "csr-support" input parameter
 to an untrusted SZTP-server. SZTP-clients SHOULD
 instead pass the "signed-data-preferred" input
 parameter, as discussed in .

 Selecting the Best Origin Authentication Mechanism
 The origin of the CSR must be verified before a
 certificate is issued.
 When generating a new key, it is important that the
 SZTP-client be able to provide additional proof that it
 was the entity that generated the key.
 The CMP and CMC certificate request formats defined in this
 document support origin authentication. A raw
 PKCS#10 CSR does not support origin authentication.
 The CMP and CMC request formats support origin
 authentication using both PKI and a shared secret.
 Typically, only one possible origin authentication
 mechanism can possibly be used, but in the case that the
 SZTP-client authenticates itself using both TLS-level
 (e.g., IDevID) and HTTP-level credentials (e.g., Basic),
 as is allowed by ,
 then the SZTP-client may need to choose between the two
 options.
 In the case that the SZTP-client must choose between an
 asymmetric key option versus a shared secret for origin
 authentication, it is RECOMMENDED that the SZTP-client
 choose using the asymmetric key.

 Clearing the Private Key and Associated Certificate
 Unlike a manufacturer-generated identity certificate (e.g., IDevID),
 the deployment-generated identity certificate (e.g., LDevID) and
 the associated private key (assuming a new private key was generated
 for the purpose) are considered user data and SHOULD be cleared
 whenever the SZTP-client is reset to its factory default state,
 such as by the "factory-reset" RPC defined in
 .

 SZTP-Server Considerations

 Verifying Proof-of-Possession
 Regardless, if using a new asymmetric key or the bootstrapping
 device's manufacturer-generated key (e.g., the IDevID key), the
 public key is placed in the CSR and the CSR is signed by that
 private key. Proof-of-possession of the private key is verified
 by ensuring the signature over the CSR using the public key
 placed in the CSR.

 Verifying Proof-of-Origin
 When the bootstrapping device's manufacturer-generated
 private key (e.g., the IDevID key) is reused for the CSR,
 proof-of-origin is verified by validating the IDevID-issuer cert
 and ensuring that the CSR uses the same key pair.
 When the bootstrapping device's manufacturer-generated private key
 (e.g., an IDevID key from IEEE 802.1AR) is reused for the CSR, proof-of-origin is
 verified by validating the IDevID certification path and ensuring that
 the CSR uses the same key pair.
 When a fresh asymmetric key is used with the CMP or CMC formats, the
 authentication is part of the protocols, which could employ either
 the manufacturer-generated private key or a shared secret. In addition,
 CMP and CMC support processing by an RA before the request is passed
 to the CA, which allows for more robust handling of errors.

 Supporting SZTP-Clients That Don't Trust the SZTP-Server
 allows SZTP-clients to connect
 to untrusted SZTP-servers by blindly authenticating the
 SZTP-server's TLS end-entity certificate.
 As is recommended in of this
 document, in such cases, SZTP-clients SHOULD pass the
 "signed-data-preferred" input parameter.
 The reciprocal of this statement is that SZTP-servers,
 wanting to support SZTP-clients that don't trust them,
 SHOULD support the "signed-data-preferred" input parameter,
 as discussed in .

 Security Considerations for the "ietf-sztp-csr" YANG Module
 The recommended format for documenting the security
 considerations for YANG modules is described in . However, this module
 only augments two input parameters
 into the "get-bootstrapping-data" RPC in and therefore only needs to point
 to the relevant Security Considerations sections in
 that RFC.

 Security considerations for the "get-bootstrapping-data" RPC
 are described in .
 Security considerations for the "input" parameters passed inside the
 "get-bootstrapping-data" RPC are described in .

 Security Considerations for the "ietf-ztp-types" YANG Module
 The recommended format for documenting the security
 considerations for YANG modules is described in . However, this module
 does not define any protocol-accessible nodes (it only
 defines "identity" and "grouping" statements), and therefore
 there are no security considerations to report.

 IANA Considerations

 The IETF XML Registry
 IANA has registered two URIs in the "ns" registry of
 the "IETF XML Registry" maintained at
 .

 URI:
 urn:ietf:params:xml:ns:yang:ietf-sztp-csr
 Registrant Contact:
 The NETCONF WG of the IETF.
 XML:
 N/A; the requested URI is an XML namespace.

 URI:
 urn:ietf:params:xml:ns:yang:ietf-ztp-types
 Registrant Contact:
 The NETCONF WG of the IETF.
 XML:
 N/A; the requested URI is an XML namespace.

 The YANG Module Names Registry
 IANA has registered two YANG modules in the "YANG Module
 Names" registry maintained at
 .

 Name:
 ietf-sztp-csr
 Namespace:
 urn:ietf:params:xml:ns:yang:ietf-sztp-csr
 Prefix:
 sztp-csr
 Reference:
 RFC 9646

 Name:
 ietf-ztp-types
 Namespace:
 urn:ietf:params:xml:ns:yang:ietf-ztp-types
 Prefix:
 ztp-types
 Reference:
 RFC 9646

 References

 Normative References

 Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

 ITU

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 PKCS #10: Certification Request Syntax Specification Version 1.7

 This memo represents a republication of PKCS #10 v1.7 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series, and change control is retained within the PKCS process. The body of this document, except for the security considerations section, is taken directly from the PKCS #9 v2.0 or the PKCS #10 v1.7 document. This memo provides information for the Internet community.

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)

 This document describes the Internet X.509 Public Key Infrastructure (PKI) Certificate Management Protocol (CMP). Protocol messages are defined for X.509v3 certificate creation and management. CMP provides on-line interactions between PKI components, including an exchange between a Certification Authority (CA) and a client system. [STANDARDS-TRACK]

 Certificate Management over CMS (CMC)

 This document defines the base syntax for CMC, a Certificate Management protocol using the Cryptographic Message Syntax (CMS). This protocol addresses two immediate needs within the Internet Public Key Infrastructure (PKI) community:
 1. The need for an interface to public key certification products and services based on CMS and PKCS #10 (Public Key Cryptography Standard), and
 2. The need for a PKI enrollment protocol for encryption only keys due to algorithm or hardware design.
 CMC also requires the use of the transport document and the requirements usage document along with this document for a full definition. [STANDARDS-TRACK]

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Secure Zero Touch Provisioning (SZTP)

 This document presents a technique to securely provision a networking device when it is booting in a factory-default state. Variations in the solution enable it to be used on both public and private networks. The provisioning steps are able to update the boot image, commit an initial configuration, and execute arbitrary scripts to address auxiliary needs. The updated device is subsequently able to establish secure connections with other systems. For instance, a device may establish NETCONF (RFC 6241) and/or RESTCONF (RFC 8040) connections with deployment-specific network management systems.

 YANG Data Structure Extensions

 This document describes YANG mechanisms for defining abstract data structures with YANG.

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 YANG Data Types and Groupings for Cryptography

 Watsen Networks

 Informative References

 A proposal for: Functionality classes for random number generators - Version 2.0

 T-Systems GEI GmbH

 Bundesamt für Sicherheit in der Informationstechnik (BSI)

 National Vulnerability Database - CVE-2008-0166 Detail

 National Institute of Science and Technology (NIST)

 Information technology -- Security techniques -- Test and analysis methods for random bit generators within ISO/IEC 19790 and ISO/IEC 15408

 International Organization for Standardization (ISO)

 Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices

 UC San Diego

 University of Michigan

 University of Michigan

 University of Michigan

 Security'12: Proceedings of the 21st USENIX Conference on Security Symposium

 Recommendation for Random Number Generation Using Deterministic Random Bit Generators

 Information Technology Laboratory

 Information Technology Laboratory

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 PKCS #12: Personal Information Exchange Syntax v1.1

 PKCS #12 v1.1 describes a transfer syntax for personal identity information, including private keys, certificates, miscellaneous secrets, and extensions. Machines, applications, browsers, Internet kiosks, and so on, that support this standard will allow a user to import, export, and exercise a single set of personal identity information. This standard supports direct transfer of personal information under several privacy and integrity modes.
 This document represents a republication of PKCS #12 v1.1 from RSA Laboratories' Public Key Cryptography Standard (PKCS) series. By publishing this RFC, change control is transferred to the IETF.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 Guidelines for Authors and Reviewers of Documents Containing YANG Data Models

 This memo provides guidelines for authors and reviewers of specifications containing YANG modules. Recommendations and procedures are defined, which are intended to increase interoperability and usability of Network Configuration Protocol (NETCONF) and RESTCONF protocol implementations that utilize YANG modules. This document obsoletes RFC 6087.

 Handling Long Lines in Content of Internet-Drafts and RFCs

 This document defines two strategies for handling long lines in width-bounded text content. One strategy, called the "single backslash" strategy, is based on the historical use of a single backslash ('\') character to indicate where line-folding has occurred, with the continuation occurring with the first character that is not a space character (' ') on the next line. The second strategy, called the "double backslash" strategy, extends the first strategy by adding a second backslash character to identify where the continuation begins and is thereby able to handle cases not supported by the first strategy. Both strategies use a self-describing header enabling automated reconstitution of the original content.

 A YANG Data Model for Factory Default Settings

 This document defines a YANG data model with the "factory-reset" RPC to allow clients to reset a server back to its factory default condition. It also defines an optional "factory-default" datastore to allow clients to read the factory default configuration for the device.
 The YANG data model in this document conforms to the Network Management Datastore Architecture (NMDA) defined in RFC 8342.

 A YANG Data Model for a Truststore

 Watsen Networks

 A YANG Data Model for a Keystore

 Watsen Networks

 IEEE Standard for Local and Metropolitan Area Networks - Secure Device Identity

 IEEE

 Acknowledgements
 The authors would like to thank for following for lively
 discussions on list and in the halls (ordered by first name):
 ,
 ,	
 ,
 ,
 ,
 ,	
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 and .

 Contributors
 Special thanks go to and
 for helping with the descriptions for the "cmc-csr" and "cmp-csr"
 nodes.

 Authors' Addresses

 Watsen Networks

 kent+ietf@watsen.net

 Vigil Security, LLC

 housley@vigilsec.com

 sn3rd

 sean@sn3rd.com

