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Abstract
This document extends the input to the "get-bootstrapping-data" RPC defined in RFC 8572 to
include an optional certificate signing request (CSR), enabling a bootstrapping device to
additionally obtain an identity certificate (e.g., a Local Device Identifier (LDevID) from IEEE
802.1AR) as part of the "onboarding information" response provided in the RPC-reply.
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1. Introduction

1.1. Overview
This document extends the input to the "get-bootstrapping-data" RPC defined in  to
include an optional certificate signing request (CSR) , enabling a bootstrapping device
to additionally obtain an identity certificate (e.g., an LDevID from ) as part of
the "onboarding information" response provided in the RPC-reply.

The ability to provision an identity certificate that is purpose-built for a production environment
during the bootstrapping process removes reliance on the manufacturer Certification Authority
(CA), and it also enables the bootstrapped device to join the production environment with an
appropriate identity and other attributes in its identity certificate (e.g., an LDevID).

Two YANG  modules are defined. The "ietf-ztp-types" module defines three YANG
groupings for the various messages defined in this document. The "ietf-sztp-csr" module
augments two groupings into the "get-bootstrapping-data" RPC and defines a YANG data structure

 around the third grouping.

5.  IANA Considerations

5.1.  The IETF XML Registry
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1.2. Terminology
This document uses the following terms from :

Bootstrap Server 
Bootstrapping Data 
Conveyed Information 
Device 
Manufacturer 
Onboarding Information 

[RFC8572]

• 
• 
• 
• 
• 
• 
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1.4. Conventions
Various examples in this document use "BASE64VALUE=" as a placeholder value for binary data
that has been base64 encoded (per ). This placeholder value is used
because real base64-encoded structures are often many lines long and hence distracting to the
example being presented.

Various examples in this document contain long lines that may be folded, as described in 
.

2. The "ietf-sztp-csr" Module
The "ietf-sztp-csr" module is a YANG 1.1  module that augments the "ietf-sztp-bootstrap-
server" module defined in  and defines a YANG "structure" that is to be conveyed in the
"error-info" node defined in .

2.1. Data Model Overview
The following tree diagram  illustrates the "ietf-sztp-csr" module.

SZTP-client:

SZTP-server:

Signed Data 

This document defines the following new terms:

The term "SZTP-client" refers to a "device" that is using a "bootstrap server" as a
source of "bootstrapping data". 

The term "SZTP-server" is an alternative term for "bootstrap server" that is
symmetric with the "SZTP-client" term. 

• 

1.3. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14  when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Section 9.8 of [RFC7950]

[RFC8792]

[RFC7950]
[RFC8572]

Section 7.1 of [RFC8040]

[RFC8340]
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The augmentation defines two kinds of parameters that an SZTP-client can send to an SZTP-
server. The YANG structure defines one collection of parameters that an SZTP-server can send to
an SZTP-client.

In the order of their intended use:

The SZTP-client sends a "csr-support" node, encoded in a first "get-bootstrapping-data"
request to the SZTP-server, to indicate that it supports the ability to generate CSRs. This input
parameter conveys if the SZTP-client is able to generate a new asymmetric key and, if so,
which key algorithms it supports, as well as what kinds of CSR structures the SZTP-client is
able to generate. 
The SZTP-server responds with an error, containing the "csr-request" structure, to request
the SZTP-client to generate a CSR. This structure is used to select the key algorithm the SZTP-
client should use to generate a new asymmetric key (if supported), the kind of CSR structure
the SZTP-client should generate, and optionally the content for the CSR itself. 
The SZTP-client sends one of the "*-csr" nodes, encoded in a second "get-bootstrapping-data"
request to the SZTP-server. This node encodes the server-requested CSR. 
The SZTP-server responds with onboarding information to communicate the signed
certificate to the SZTP-client. How to do this is discussed in Section 2.2. 

module: ietf-sztp-csr

  augment /sztp-svr:get-bootstrapping-data/sztp-svr:input:
    +---w (msg-type)?
       +--:(csr-support)
       |  +---w csr-support
       |     +---w key-generation!
       |     |  +---w supported-algorithms
       |     |     +---w algorithm-identifier*   binary
       |     +---w csr-generation
       |        +---w supported-formats
       |           +---w format-identifier*   identityref
       +--:(csr)
          +---w (csr-type)
             +--:(p10-csr)
             |  +---w p10-csr?   ct:csr
             +--:(cmc-csr)
             |  +---w cmc-csr?   binary
             +--:(cmp-csr)
                +---w cmp-csr?   binary

  structure csr-request:
    +-- key-generation!
    |  +-- selected-algorithm
    |     +-- algorithm-identifier    binary
    +-- csr-generation
    |  +-- selected-format
    |     +-- format-identifier    identityref
    +-- cert-req-info?    ct:csr-info

1. 

2. 

3. 

4. 
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To further illustrate how the augmentation and structure defined by the "ietf-sztp-csr" module
are used, below are two additional tree diagrams showing these nodes placed where they are
used.

The following tree diagram  illustrates SZTP's "get-bootstrapping-data" RPC with the
augmentation in place.

The following tree diagram  illustrates RESTCONF's "errors" RPC-reply message with
the "csr-request" structure in place.

[RFC8340]

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ietf-sztp-bootstrap-server

  rpcs:
    +---x get-bootstrapping-data
       +---w input
       |  +---w signed-data-preferred?          empty
       |  +---w hw-model?                       string
       |  +---w os-name?                        string
       |  +---w os-version?                     string
       |  +---w nonce?                          binary
       |  +---w (sztp-csr:msg-type)?
       |     +--:(sztp-csr:csr-support)
       |     |  +---w sztp-csr:csr-support
       |     |     +---w sztp-csr:key-generation!
       |     |     |  +---w sztp-csr:supported-algorithms
       |     |     |     +---w sztp-csr:algorithm-identifier*   bina\
ry
       |     |     +---w sztp-csr:csr-generation
       |     |        +---w sztp-csr:supported-formats
       |     |           +---w sztp-csr:format-identifier*   identit\
yref
       |     +--:(sztp-csr:csr)
       |        +---w (sztp-csr:csr-type)
       |           +--:(sztp-csr:p10-csr)
       |           |  +---w sztp-csr:p10-csr?   ct:csr
       |           +--:(sztp-csr:cmc-csr)
       |           |  +---w sztp-csr:cmc-csr?   binary
       |           +--:(sztp-csr:cmp-csr)
       |              +---w sztp-csr:cmp-csr?   binary
       +--ro output
          +--ro reporting-level?    enumeration {onboarding-server}?
          +--ro conveyed-information    cms
          +--ro owner-certificate?      cms
          +--ro ownership-voucher?      cms

[RFC8340]
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module: ietf-restconf
  +--ro errors
     +--ro error* []
        +--ro error-type       enumeration
        +--ro error-tag        string
        +--ro error-app-tag?   string
        +--ro error-path?      instance-identifier
        +--ro error-message?   string
        +--ro error-info
           +--ro sztp-csr:csr-request
              +--ro sztp-csr:key-generation!
              |  +--ro sztp-csr:selected-algorithm
              |     +--ro sztp-csr:algorithm-identifier    binary
              +--ro sztp-csr:csr-generation
              |  +--ro sztp-csr:selected-format
              |     +--ro sztp-csr:format-identifier    identityref
              +--ro sztp-csr:cert-req-info?    ct:csr-info

2.2. Example Usage

NOTE: The examples below are encoded using JSON, but they could equally well be
encoded using XML, as is supported by SZTP.

An SZTP-client implementing this specification would signal to the bootstrap server its
willingness to generate a CSR by including the "csr-support" node in its "get-bootstrapping-data"
RPC. In the example below, the SZTP-client additionally indicates that it is able to generate keys
and provides a list of key algorithms it supports, as well as provide a list of certificate formats it
supports.
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REQUEST

Assuming the SZTP-server wishes to prompt the SZTP-client to provide a CSR, then it would
respond with an HTTP 400 Bad Request error code. In the example below, the SZTP-server
specifies that it wishes the SZTP-client to generate a key using a specific algorithm and generate a
PKCS#10-based CSR containing specific content.

=============== NOTE: '\' line wrapping per RFC 8792 ================

POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
ng-data HTTP/1.1
HOST: example.com
Content-Type: application/yang-data+json

{
  "ietf-sztp-bootstrap-server:input" : {
    "hw-model": "model-x",
    "os-name": "vendor-os",
    "os-version": "17.3R2.1",
    "nonce": "extralongbase64encodedvalue=",
    "ietf-sztp-csr:csr-support": {
      "key-generation": {
        "supported-algorithms": {
          "algorithm-identifier": [
            "BASE64VALUE1",
            "BASE64VALUE2",
            "BASE64VALUE3"
          ]
        }
      },
      "csr-generation": {
        "supported-formats": {
          "format-identifier": [
            "ietf-ztp-types:p10-csr",
            "ietf-ztp-types:cmc-csr",
            "ietf-ztp-types:cmp-csr"
          ]
        }
      }
    }
  }
}
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RESPONSE

Upon being prompted to provide a CSR, the SZTP-client would POST another "get-bootstrapping-
data" request but this time including one of the "csr" nodes to convey its CSR to the SZTP-server:

HTTP/1.1 400 Bad Request
Date: Sat, 31 Oct 2021 17:02:40 GMT
Server: example-server
Content-Type: application/yang-data+json

{
  "ietf-restconf:errors" : {
    "error" : [
      {
        "error-type": "application",
        "error-tag": "missing-attribute",
        "error-message": "Missing input parameter",
        "error-info": {
          "ietf-sztp-csr:csr-request": {
            "key-generation": {
              "selected-algorithm": {
                "algorithm-identifier": "BASE64VALUE="
              }
            },
            "csr-generation": {
              "selected-format": {
                "format-identifier": "ietf-ztp-types:p10-csr"
              }
            },
            "cert-req-info": "BASE64VALUE="
          }
        }
      }
    ]
  }
}
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REQUEST

At this point, it is expected that the SZTP-server, perhaps in conjunction with other systems, such
as a backend CA or registration authority (RA), will validate the CSR's origin and proof-of-
possession and, assuming the CSR is approved, issue a signed certificate for the bootstrapping
device.

The SZTP-server responds with conveyed information (the "conveyed-information" node shown
below) that encodes "onboarding-information" (inside the base64 value) containing a signed
identity certificate for the CSR provided by the SZTP-client:

RESPONSE

How the signed certificate is conveyed inside the onboarding information is outside the scope of
this document. Some implementations may choose to convey it inside a script (e.g., SZTP's "pre-
configuration-script"), while other implementations may choose to convey it inside the SZTP
"configuration" node. SZTP onboarding information is described in .

Below are two examples of conveying the signed certificate inside the "configuration" node. Both
examples assume that the SZTP-client understands the "ietf-keystore" module defined in 

.

=============== NOTE: '\' line wrapping per RFC 8792 ================

POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
ng-data HTTP/1.1
HOST: example.com
Content-Type: application/yang-data+json

{
  "ietf-sztp-bootstrap-server:input" : {
    "hw-model": "model-x",
    "os-name": "vendor-os",
    "os-version": "17.3R2.1",
    "nonce": "extralongbase64encodedvalue=",
    "ietf-sztp-csr:p10-csr": "BASE64VALUE="
  }
}

HTTP/1.1 200 OK
Date: Sat, 31 Oct 2021 17:02:40 GMT
Server: example-server
Content-Type: application/yang-data+json

{
  "ietf-sztp-bootstrap-server:output" : {
    "reporting-level": "verbose",
    "conveyed-information": "BASE64VALUE="
  }
}

Section 2.2 of [RFC8572]

[RFC9642]
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This first example illustrates the case where the signed certificate is for the same asymmetric key
used by the SZTP-client's manufacturer-generated identity certificate (e.g., an Initial Device
Identifier (IDevID) from ). As such, the configuration needs to associate the
newly signed certificate with the existing asymmetric key:

This second example illustrates the case where the signed certificate is for a newly generated
asymmetric key. As such, the configuration needs to associate the newly signed certificate with
the newly generated asymmetric key:

[Std-802.1AR-2018]

=============== NOTE: '\' line wrapping per RFC 8792 ================

{
  "ietf-keystore:keystore": {
    "asymmetric-keys": {
      "asymmetric-key": [
        {
          "name": "Manufacturer-Generated Hidden Key",
          "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
          "public-key": "BASE64VALUE=",
          "hidden-private-key": [null],
          "certificates": {
            "certificate": [
              {
                "name": "Manufacturer-Generated IDevID Cert",
                "cert-data": "BASE64VALUE="
              },
              {
                "name": "Newly-Generated LDevID Cert",
                "cert-data": "BASE64VALUE="
              }
            ]
          }
        }
      ]
    }
  }
}
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2.3. YANG Module
This module augments an RPC defined in . The module uses data types and groupings
defined in , , and . The module also has an informative reference to

.

In addition to configuring the signed certificate, it is often necessary to also configure the issuer's
signing certificate so that the device (i.e., STZP-client) can authenticate certificates presented by
peer devices signed by the same issuer as its own. While outside the scope of this document, one
way to do this would be to use the "ietf-truststore" module defined in .

=============== NOTE: '\' line wrapping per RFC 8792 ================

{
  "ietf-keystore:keystore": {
    "asymmetric-keys": {
      "asymmetric-key": [
        {
          "name": "Manufacturer-Generated Hidden Key",
          "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
          "public-key": "BASE64VALUE=",
          "hidden-private-key": [null],
          "certificates": {
            "certificate": [
              {
                "name": "Manufacturer-Generated IDevID Cert",
                "cert-data": "BASE64VALUE="
              }
            ]
          }
        },
        {
          "name": "Newly-Generated Hidden Key",
          "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
          "public-key": "BASE64VALUE=",
          "hidden-private-key": [null],
          "certificates": {
            "certificate": [
              {
                "name": "Newly-Generated LDevID Cert",
                "cert-data": "BASE64VALUE="
              }
            ]
          }
        }
      ]
    }
  }
}

[RFC9641]

[RFC8572]
[RFC8572] [RFC8791] [RFC9640]

[Std-802.1AR-2018]
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<CODE BEGINS> file "ietf-sztp-csr@2024-10-10.yang"

module ietf-sztp-csr {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-sztp-csr";
  prefix sztp-csr;

  import ietf-sztp-bootstrap-server {
    prefix sztp-svr;
    reference
      "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
  }

  import ietf-yang-structure-ext {
    prefix sx;
    reference
      "RFC 8791: YANG Data Structure Extensions";
  }

  import ietf-ztp-types {
    prefix zt;
    reference
      "RFC 9646: Conveying a Certificate Signing Request (CSR)
                 in a Secure Zero-Touch Provisioning (SZTP)
                 Bootstrapping Request";
  }

  organization
    "IETF NETCONF (Network Configuration) Working Group";

  contact
    "WG Web:   https://datatracker.ietf.org/wg/netconf
     WG List:  NETCONF WG list <mailto:netconf@ietf.org>
     Authors:  Kent Watsen <mailto:kent+ietf@watsen.net>
               Russ Housley <mailto:housley@vigilsec.com>
               Sean Turner <mailto:sean@sn3rd.com>";

  description
    "This module augments the 'get-bootstrapping-data' RPC,
     defined in the 'ietf-sztp-bootstrap-server' module from
     SZTP (RFC 8572), enabling the SZTP-client to obtain a
     signed identity certificate (e.g., an LDevID from IEEE
     802.1AR) as part of the SZTP onboarding information
     response.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
     document are to be interpreted as described in BCP 14
     (RFC 2119) (RFC 8174) when, and only when, they appear
     in all capitals, as shown here.

     Copyright (c) 2024 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject to
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     the license terms contained in, the Revised BSD License set
     forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9646
     (https://www.rfc-editor.org/info/rfc9646); see the
     RFC itself for full legal notices.";

  revision 2024-10-10 {
    description
      "Initial version.";
    reference
      "RFC 9646: Conveying a Certificate Signing Request (CSR)
                 in a Secure Zero-Touch Provisioning (SZTP)
                 Bootstrapping Request";
  }

  // Protocol-accessible nodes

  augment "/sztp-svr:get-bootstrapping-data/sztp-svr:input" {
    description
      "This augmentation adds the 'csr-support' and 'csr' nodes to
       the SZTP (RFC 8572) 'get-bootstrapping-data' request message,
       enabling the SZTP-client to obtain an identity certificate
       (e.g., an LDevID from IEEE 802.1AR) as part of the onboarding
       information response provided by the SZTP-server.

       The 'csr-support' node enables the SZTP-client to indicate
       that it supports generating certificate signing requests
       (CSRs) and to provide details around the CSRs it is able
       to generate.

       The 'csr' node enables the SZTP-client to relay a CSR to
       the SZTP-server.";
    reference
      "IEEE 802.1AR: IEEE Standard for Local and Metropolitan
                     Area Networks - Secure Device Identity
       RFC 8572: Secure Zero Touch Provisioning (SZTP)";
    choice msg-type {
      description
        "Messages are mutually exclusive.";
      case csr-support {
        description
          "Indicates how the SZTP-client supports generating CSRs.

           If present and a SZTP-server wishes to request the
           SZTP-client generate a CSR, the SZTP-server MUST
           respond with an HTTP 400 Bad Request error code with an
           'ietf-restconf:errors' message having the 'error-tag'
           value 'missing-attribute' and the 'error-info' node
           containing the 'csr-request' structure described
           in this module.";
        uses zt:csr-support-grouping;
      }
      case csr {
        description
          "Provides the CSR generated by the SZTP-client.
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3. The "ietf-ztp-types" Module
This section defines a YANG 1.1  module that defines three YANG groupings, one for
each message sent between a ZTP-client and ZTP-server. This module is defined independently of
the "ietf-sztp-csr" module so that its groupings may be used by bootstrapping protocols other
than SZTP .

3.1. Data Model Overview
The following tree diagram  illustrates the three groupings defined in the "ietf-ztp-
types" module.

           When present, the SZTP-server SHOULD respond with
           an SZTP onboarding information message containing
           a signed certificate for the conveyed CSR.  The
           SZTP-server MAY alternatively respond with another
           HTTP error containing another 'csr-request'; in
           which case, the SZTP-client MUST delete any key
           generated for the previously generated CSR.";
        uses zt:csr-grouping;
      }
    }
  }

  sx:structure csr-request {
    description
      "A YANG data structure, per RFC 8791, that specifies
       details for the CSR that the ZTP-client is to generate.";
    reference
      "RFC 8791: YANG Data Structure Extensions";
    uses zt:csr-request-grouping;
  }

}

<CODE ENDS>

[RFC7950]

[RFC8572]

[RFC8340]
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3.2. YANG Module
This module uses data types and groupings defined in  and . The module has
additional normative references to , , , and  and an
informative reference to .

module: ietf-ztp-types

  grouping csr-support-grouping
    +-- csr-support
       +-- key-generation!
       |  +-- supported-algorithms
       |     +-- algorithm-identifier*   binary
       +-- csr-generation
          +-- supported-formats
             +-- format-identifier*   identityref
  grouping csr-request-grouping
    +-- key-generation!
    |  +-- selected-algorithm
    |     +-- algorithm-identifier    binary
    +-- csr-generation
    |  +-- selected-format
    |     +-- format-identifier    identityref
    +-- cert-req-info?    ct:csr-info
  grouping csr-grouping
    +-- (csr-type)
       +--:(p10-csr)
       |  +-- p10-csr?   ct:csr
       +--:(cmc-csr)
       |  +-- cmc-csr?   binary
       +--:(cmp-csr)
          +-- cmp-csr?   binary

[RFC8791] [RFC9640]
[RFC2986] [RFC4210] [RFC5272] [ITU.X690.2021]

[Std-802.1AR-2018]

<CODE BEGINS> file "ietf-ztp-types@2024-10-10.yang"

module ietf-ztp-types {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-ztp-types";
  prefix zt;

  import ietf-crypto-types {
    prefix ct;
    reference
      "RFC 9640: YANG Data Types and Groupings for Cryptography";
  }

  organization
    "IETF NETCONF (Network Configuration) Working Group";

  contact
    "WG Web:   https://datatracker.ietf.org/wg/netconf
     WG List:  NETCONF WG list <mailto:netconf@ietf.org>
     Authors:  Kent Watsen <mailto:kent+ietf@watsen.net>
               Russ Housley <mailto:housley@vigilsec.com>
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               Sean Turner <mailto:sean@sn3rd.com>";

  description
    "This module defines three groupings that enable
     bootstrapping devices to 1) indicate if and how they
     support generating CSRs, 2) obtain a request to
     generate a CSR, and 3) communicate the requested CSR.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
     document are to be interpreted as described in BCP 14
     (RFC 2119) (RFC 8174) when, and only when, they appear
     in all capitals, as shown here.

     Copyright (c) 2024 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject to
     the license terms contained in, the Revised BSD License set
     forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9646
     (https://www.rfc-editor.org/info/rfc9646); see the
     RFC itself for full legal notices.";

  revision 2024-10-10 {
    description
      "Initial version.";
    reference
      "RFC 9646: Conveying a Certificate Signing Request (CSR)
                 in a Secure Zero-Touch Provisioning (SZTP)
                 Bootstrapping Request";
  }

  identity certificate-request-format {
    description
      "A base identity for the request formats supported
       by the ZTP-client.

       Additional derived identities MAY be defined by
       future efforts.";
  }

  identity p10-csr {
    base certificate-request-format;
    description
      "Indicates that the ZTP-client supports generating
       requests using the 'CertificationRequest' structure
       defined in RFC 2986.";
    reference
      "RFC 2986: PKCS #10: Certification Request Syntax
                 Specification Version 1.7";
  }
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  identity cmp-csr {
    base certificate-request-format;
    description
      "Indicates that the ZTP-client supports generating
       requests using a profiled version of the PKIMessage
       that MUST contain a PKIHeader followed by a PKIBody
       containing only the ir, cr, kur, or p10cr structures
       defined in RFC 4210.";
    reference
      "RFC 4210: Internet X.509 Public Key Infrastructure
                 Certificate Management Protocol (CMP)";
  }

  identity cmc-csr {
    base certificate-request-format;
    description
      "Indicates that the ZTP-client supports generating
       requests using a profiled version of the 'Full
       PKI Request' structure defined in RFC 5272.";
    reference
      "RFC 5272: Certificate Management over CMS (CMC)";
  }

  // Protocol-accessible nodes

  grouping csr-support-grouping {
    description
      "A grouping enabling use by other efforts.";
    container csr-support {
      description
        "Enables a ZTP-client to indicate that it supports
         generating certificate signing requests (CSRs) and
         provides details about the CSRs it is able to
         generate.";
      container key-generation {
        presence "Indicates that the ZTP-client is capable of
                  generating a new asymmetric key pair.

                  If this node is not present, the ZTP-server MAY
                  request a CSR using the asymmetric key associated
                  with the device's existing identity certificate
                  (e.g., an IDevID from IEEE 802.1AR).";
        description
          "Specifies details for the ZTP-client's ability to
           generate a new asymmetric key pair.";
        container supported-algorithms {
          description
            "A list of public key algorithms supported by the
             ZTP-client for generating a new asymmetric key.";
          leaf-list algorithm-identifier {
            type binary;
            min-elements 1;
            description
              "An AlgorithmIdentifier, as defined in RFC 2986,
               encoded using ASN.1 Distinguished Encoding Rules
               (DER), as specified in ITU-T X.690.";
            reference
              "RFC 2986: PKCS #10: Certification Request Syntax
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                         Specification Version 1.7
               ITU-T X.690:
                 Information technology - ASN.1 encoding rules:
                 Specification of Basic Encoding Rules (BER),
                 Canonical Encoding Rules (CER) and Distinguished
                 Encoding Rules (DER)";
          }
        }
      }
      container csr-generation {
        description
          "Specifies details for the ZTP-client's ability to
           generate certificate signing requests.";
        container supported-formats {
          description
            "A list of certificate request formats supported
             by the ZTP-client for generating a new key.";
          leaf-list format-identifier {
            type identityref {
              base zt:certificate-request-format;
            }
            min-elements 1;
            description
              "A certificate request format supported by the
               ZTP-client.";
          }
        }
      }
    }
  }

  grouping csr-request-grouping {
    description
      "A grouping enabling use by other efforts.";
    container key-generation {
      presence "Provided by a ZTP-server to indicate that it wishes
                the ZTP-client to generate a new asymmetric key.

                This statement is present so the mandatory
                descendant nodes do not imply that this node must
                be configured.";
      description
        "The key generation parameters selected by the ZTP-server.

         This leaf MUST only appear if the ZTP-client's
         'csr-support' included the 'key-generation' node.";
      container selected-algorithm {
        description
          "The key algorithm selected by the ZTP-server.  The
           algorithm MUST be one of the algorithms specified by
           the 'supported-algorithms' node in the ZTP-client's
           message containing the 'csr-support' structure.";
        leaf algorithm-identifier {
          type binary;
          mandatory true;
          description
            "An AlgorithmIdentifier, as defined in RFC 2986,
             encoded using ASN.1 Distinguished Encoding Rules
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             (DER), as specified in ITU-T X.690.";
          reference
            "RFC 2986: PKCS #10: Certification Request Syntax
                       Specification Version 1.7
             ITU-T X.690:
               Information technology - ASN.1 encoding rules:
               Specification of Basic Encoding Rules (BER),
               Canonical Encoding Rules (CER) and Distinguished
               Encoding Rules (DER)";
        }
      }
    }
    container csr-generation {
      description
        "Specifies details for the CSR that the ZTP-client
         is to generate.";
      container selected-format {
        description
          "The CSR format selected by the ZTP-server.  The
           format MUST be one of the formats specified by
           the 'supported-formats' node in the ZTP-client's
           request message.";
        leaf format-identifier {
          type identityref {
            base zt:certificate-request-format;
          }
          mandatory true;
          description
            "A certificate request format to be used by the
             ZTP-client.";
        }
      }
    }
    leaf cert-req-info {
      type ct:csr-info;
      description
        "A CertificationRequestInfo structure, as defined in
         RFC 2986, and modeled via a 'typedef' statement by
         RFC 9640.

         Enables the ZTP-server to provide a fully populated
         CertificationRequestInfo structure that the ZTP-client
         only needs to sign in order to generate the complete
         'CertificationRequest' structure to send to the ZTP-server
         in its next 'get-bootstrapping-data' request message.

         When provided, the ZTP-client MUST use this structure
         to generate its CSR; failure to do so will result in a
         400 Bad Request response containing another 'csr-request'
         structure.

         When not provided, the ZTP-client SHOULD generate a CSR
         using the same structure defined in its existing identity
         certificate (e.g., an IDevID from IEEE 802.1AR).

         If the 'AlgorithmIdentifier' field contained inside the
         certificate 'SubjectPublicKeyInfo' field does not match
         the algorithm identified by the 'selected-algorithm' node,
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         then the client MUST reject the certificate and raise an
         error.";

      reference
        "RFC 2986:
           PKCS #10: Certification Request Syntax Specification
           Version 1.7
         RFC 9640:
           YANG Data Types and Groupings for Cryptography";
    }
  }

  grouping csr-grouping {
    description
      "Enables a ZTP-client to convey a certificate signing
       request, using the encoding format selected by a
       ZTP-server's 'csr-request' response to the ZTP-client's
       previously sent request containing the 'csr-support'
       node.";
    choice csr-type {
      mandatory true;
      description
        "A choice amongst certificate signing request formats.

         Additional formats MAY be augmented into this 'choice'
         statement by future efforts.";
      case p10-csr {
        leaf p10-csr {
          type ct:p10-csr;
          description
            "A CertificationRequest structure, per RFC 2986.
             Encoding details are defined in the 'ct:csr'
             typedef defined in RFC 9640.

             A raw P10 does not support origin authentication in
             the CSR structure.  External origin authentication
             may be provided via the ZTP-client's authentication
             to the ZTP-server at the transport layer (e.g., TLS).";
          reference
            "RFC 2986: PKCS #10: Certification Request Syntax
                       Specification Version 1.7
             RFC 9640: YANG Data Types and Groupings for
                       Cryptography";
        }
      }
      case cmc-csr {
        leaf cmc-csr {
          type binary;
          description
            "A profiled version of the 'Full PKI Request'
             message defined in RFC 5272, encoded using ASN.1
             Distinguished Encoding Rules (DER), as specified
             in ITU-T X.690.

             For asymmetric-key-based origin authentication of a
             CSR based on the initial device identity certificate's
             private key for the associated identity certificate's
             public key, the PKIData contains one reqSequence
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             element and no cmsSequence or otherMsgSequence
             elements.  The reqSequence is the TaggedRequest,
             and it is the tcr CHOICE branch.  The tcr is the
             TaggedCertificationRequest, and it is the bodyPartID
             and the certificateRequest elements.  The
             certificateRequest is signed with the initial device
             identity certificate's private key.  The initial device
             identity certificate, and optionally its certificate
             chain is included in the SignedData certificates that
             encapsulate the PKIData.

             For asymmetric-key-based origin authentication based on
             the initial device identity certificate's private key
             that signs the encapsulated CSR signed by the local
             device identity certificate's private key, the
             PKIData contains one cmsSequence element and no
             reqSequence or otherMsgSequence
             elements.  The cmsSequence is the TaggedContentInfo,
             and it includes a bodyPartID element and a contentInfo.
             The contentInfo is a SignedData encapsulating a PKIData
             with one reqSequence element and no cmsSequence or
             otherMsgSequence elements.  The reqSequence is the
             TaggedRequest, and it is the tcr CHOICE.  The tcr is the
             TaggedCertificationRequest, and it is the bodyPartID and
             the certificateRequest elements.  PKIData contains one
             cmsSequence element and no controlSequence, reqSequence,
             or otherMsgSequence elements.  The certificateRequest
             is signed with the local device identity certificate's
             private key.  The initial device identity certificate
             and optionally its certificate chain is included in
             the SignedData certificates that encapsulate the
             PKIData.

             For shared-secret-based origin authentication of a
             CSR signed by the local device identity certificate's
             private key, the PKIData contains one cmsSequence
             element and no reqSequence or otherMsgSequence
             elements.  The cmsSequence is the TaggedContentInfo,
             and it includes a bodyPartID element and a contentInfo.
             The contentInfo is an AuthenticatedData encapsulating
             a PKIData with one reqSequence element and no
             cmsSequences or otherMsgSequence elements.  The
             reqSequence is the TaggedRequest, and it is the tcr
             CHOICE.  The tcr is the TaggedCertificationRequest,
             and it is the bodyPartID and the certificateRequest
             elements.  The certificateRequest is signed with the
             local device identity certificate's private key.  The
             initial device identity certificate and optionally its
             certificate chain is included in the SignedData
             certificates that encapsulate the PKIData.";
          reference
            "RFC 5272: Certificate Management over CMS (CMC)
             ITU-T X.690:
               Information technology - ASN.1 encoding rules:
               Specification of Basic Encoding Rules (BER),
               Canonical Encoding Rules (CER) and Distinguished
               Encoding Rules (DER)";
        }
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      }
      case cmp-csr {
        leaf cmp-csr {
          type binary;
          description
            "A PKIMessage structure, as defined in RFC 4210,
             encoded using ASN.1 Distinguished Encoding Rules
             (DER), as specified in ITU-T X.690.

             For asymmetric-key-based origin authentication of a
             CSR based on the initial device identity certificate's
             private key for the associated initial device identity
             certificate's public key, PKIMessages contain one
             PKIMessage with the header and body elements, do not
             contain a protection element, and SHOULD contain the
             extraCerts element.  The header element contains the
             pvno, sender, and recipient elements.  The pvno contains
             cmp2000, and the sender contains the subject of the
             initial device identity certificate. The body element
             contains an ir, cr, kur, or p10cr CHOICE of type
             CertificationRequest.  It is signed with the initial
             device identity certificate's private key.  The
             extraCerts element contains the initial device identity
             certificate, optionally followed by its certificate
             chain excluding the trust anchor.

             For asymmetric-key-based origin authentication based
             on the initial device identity certificate's private
             key that signs the encapsulated CSR signed by the local
             device identity certificate's private key, PKIMessages
             contain one PKIMessage with the header, body, and
             protection elements and SHOULD contain the extraCerts
             element.  The header element contains the pvno, sender,
             recipient, protectionAlg, and optionally senderKID
             elements.  The pvno contains cmp2000, the sender
             contains the subject of the initial device identity
             certificate, the protectionAlg contains the
             AlgorithmIdentifier of the used signature algorithm,
             and the senderKID contains the subject key identifier
             of the initial device identity certificate. The body
             element contains an ir, cr, kur, or p10cr CHOICE of
             type CertificationRequest.  It is signed with the local
             device identity certificate's private key.  The
             protection element contains the digital signature
             generated with the initial device identity
             certificate's private key.  The extraCerts element
             contains the initial device identity certificate,
             optionally followed by its certificate chain excluding
             the trust anchor.

             For shared-secret-based origin authentication of a
             CSR signed by the local device identity certificate's
             private key, PKIMessages contain one PKIMessage with
             the header, body, and protection element and no
             extraCerts element.  The header element contains the
             pvno, sender, recipient, protectionAlg, and senderKID
             elements.  The pvno contains cmp2000, the protectionAlg
             contains the AlgorithmIdentifier of the used Message
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             Authentication Code (MAC) algorithm, and the senderKID
             contains a reference the recipient can use to identify
             the shared secret.  The body element contains an ir, cr,
             kur, or p10cr CHOICE of type CertificationRequest.  It
             is signed with the local device identity certificate's
             private key.  The protection element contains the MAC
             value generated with the shared secret.";
          reference
            "RFC 4210:
               Internet X.509 Public Key Infrastructure
               Certificate Management Protocol (CMP)
             ITU-T X.690:
               Information technology - ASN.1 encoding rules:
               Specification of Basic Encoding Rules (BER),
               Canonical Encoding Rules (CER) and Distinguished
               Encoding Rules (DER)";
        }
      }
    }
  }

}

<CODE ENDS>

4. Security Considerations
This document builds on top of the solution presented in , and therefore all the
security considerations discussed in  apply here as well.

For the various CSR formats, when using PKCS#10, the security considerations in 
apply; when using CMP, the security considerations in  apply; and when using CMC, the
security considerations in  apply.

For the various authentication mechanisms, when using TLS-level authentication, the security
considerations in  apply, and when using HTTP-level authentication, the security
considerations in  apply.

4.1. SZTP-Client Considerations

4.1.1. Ensuring the Integrity of Asymmetric Private Keys

The private key the SZTP-client uses for the dynamically generated identity certificate  be
protected from inadvertent disclosure in order to prevent identity fraud.

The security of this private key is essential in order to ensure the associated identity certificate
can be used to authenticate the device it is issued to.

It is  that devices are manufactured with a hardware security module (HSM),
such as a trusted platform module (TPM), to generate and contain the private key within the
security perimeter of the HSM. In such cases, the private key and its associated certificates 
have long validity periods.

[RFC8572]
[RFC8572]

[RFC2986]
[RFC4210]

[RFC5272]

[RFC8446]
[RFC9110]

MUST

RECOMMENDED

MAY
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In cases where the SZTP-client does not possess an HSM or is unable to use an HSM to protect the
private key, it is  to periodically reset the private key (and associated identity
certificates) in order to minimize the lifetime of unprotected private keys. For instance, a
Network Management System (NMS) controller/orchestrator application could periodically
prompt the SZTP-client to generate a new private key and provide a certificate signing request
(CSR) or, alternatively, push both the key and an identity certificate to the SZTP-client using, e.g.,
a PKCS#12 message . In another example, the SZTP-client could be configured to
periodically reset the configuration to its factory default, thus causing removal of the private key
and associated identity certificates and re-execution of the SZTP protocol.

4.1.2. Reuse of a Manufacturer-Generated Private Key

It is  that a new private key is generated for each CSR described in this document.

Implementations must randomly generate nonces and private keys. The use of inadequate
pseudorandom number generators (PRNGs) to generate cryptographic keys can result in little or
no security. An attacker may find it much easier to reproduce the PRNG environment that
produced the keys, searching the resulting small set of possibilities, rather than brute force
searching the whole key space. As an example of predictable random numbers, see
CVE-2008-0166 , and some consequences of low-entropy random numbers are
discussed in "Mining Your Ps and Qs" . The generation of quality random numbers
is difficult. , , BSI AIS 31 , BCP 106 , and
others offer valuable guidance in this area.

This private key  be protected as well as the built-in private key associated with the SZTP-
client's initial device identity certificate (e.g., the IDevID from ).

In cases where it is not possible to generate a new private key that is protected as well as the
built-in private key, it is  to reuse the built-in private key rather than generate a
new private key that is not as well protected.

4.1.3. Replay Attack Protection

This RFC enables an SZTP-client to announce an ability to generate a new key to use for its CSR.

When the SZTP-server responds with a request for the SZTP-client to generate a new key, it is
essential that the SZTP-client actually generates a new key.

Generating a new key each time enables the random bytes used to create the key to also serve the
dual-purpose of acting like a "nonce" used in other mechanisms to detect replay attacks.

When a fresh public/private key pair is generated for the request, confirmation to the SZTP-client
that the response has not been replayed is enabled by the SZTP-client's fresh public key
appearing in the signed certificate provided by the SZTP-server.

When a public/private key pair associated with the manufacturer-generated identity certificate
(e.g., IDevID) is used for the request, there may not be confirmation to the SZTP-client that the
response has not been replayed; however, the worst case result is a lost certificate that is

RECOMMENDED

[RFC7292]

RECOMMENDED

[CVE-2008-0166]
[MiningPsQs]

[ISO.20543-2019] [NIST.SP.800-90Ar1] [AIS31] [RFC4086]

SHOULD
[Std-802.1AR-2018]

RECOMMENDED
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associated to the private key known only to the SZTP-client. Protection of the private-key
information is vital to public-key cryptography. Disclosure of the private-key material to another
entity can lead to masquerades.

4.1.5. Selecting the Best Origin Authentication Mechanism

The origin of the CSR must be verified before a certificate is issued.

When generating a new key, it is important that the SZTP-client be able to provide additional
proof that it was the entity that generated the key.

The CMP and CMC certificate request formats defined in this document support origin
authentication. A raw PKCS#10 CSR does not support origin authentication.

The CMP and CMC request formats support origin authentication using both PKI and a shared
secret.

Typically, only one possible origin authentication mechanism can possibly be used, but in the
case that the SZTP-client authenticates itself using both TLS-level (e.g., IDevID) and HTTP-level
credentials (e.g., Basic), as is allowed by , then the SZTP-client may need
to choose between the two options.

In the case that the SZTP-client must choose between an asymmetric key option versus a shared
secret for origin authentication, it is  that the SZTP-client choose using the
asymmetric key.

4.1.4. Connecting to an Untrusted Bootstrap Server

 allows SZTP-clients to connect to untrusted SZTP-servers by blindly authenticating the
SZTP-server's TLS end-entity certificate.

As is discussed in , in such cases, the SZTP-client  assert that the
bootstrapping data returned is signed if the SZTP-client is to trust it.

However, the HTTP error message used in this document cannot be signed data, as described in 
.

Therefore, the solution presented in this document cannot be used when the SZTP-client
connects to an untrusted SZTP-server.

Consistent with the recommendation presented in , SZTP-clients 
 pass the "csr-support" input parameter to an untrusted SZTP-server. SZTP-clients 

instead pass the "signed-data-preferred" input parameter, as discussed in 
.

[RFC8572]

Section 9.5 of [RFC8572] MUST

[RFC8572]

Section 9.6 of [RFC8572] SHOULD
NOT SHOULD

Appendix B of
[RFC8572]

Section 5.3 of [RFC8572]
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4.1.6. Clearing the Private Key and Associated Certificate

Unlike a manufacturer-generated identity certificate (e.g., IDevID), the deployment-generated
identity certificate (e.g., LDevID) and the associated private key (assuming a new private key was
generated for the purpose) are considered user data and  be cleared whenever the SZTP-
client is reset to its factory default state, such as by the "factory-reset" RPC defined in .

4.2. SZTP-Server Considerations

4.2.1. Verifying Proof-of-Possession

Regardless, if using a new asymmetric key or the bootstrapping device's manufacturer-generated
key (e.g., the IDevID key), the public key is placed in the CSR and the CSR is signed by that private
key. Proof-of-possession of the private key is verified by ensuring the signature over the CSR
using the public key placed in the CSR.

4.2.2. Verifying Proof-of-Origin

When the bootstrapping device's manufacturer-generated private key (e.g., the IDevID key) is
reused for the CSR, proof-of-origin is verified by validating the IDevID-issuer cert and ensuring
that the CSR uses the same key pair.

When the bootstrapping device's manufacturer-generated private key (e.g., an IDevID key from
IEEE 802.1AR) is reused for the CSR, proof-of-origin is verified by validating the IDevID
certification path and ensuring that the CSR uses the same key pair.

When a fresh asymmetric key is used with the CMP or CMC formats, the authentication is part of
the protocols, which could employ either the manufacturer-generated private key or a shared
secret. In addition, CMP and CMC support processing by an RA before the request is passed to the
CA, which allows for more robust handling of errors.

4.2.3. Supporting SZTP-Clients That Don't Trust the SZTP-Server

 allows SZTP-clients to connect to untrusted SZTP-servers by blindly authenticating the
SZTP-server's TLS end-entity certificate.

As is recommended in Section 4.1.4 of this document, in such cases, SZTP-clients  pass the
"signed-data-preferred" input parameter.

The reciprocal of this statement is that SZTP-servers, wanting to support SZTP-clients that don't
trust them,  support the "signed-data-preferred" input parameter, as discussed in 

.

SHOULD
[RFC8808]

[RFC8572]

SHOULD

SHOULD
Appendix B of [RFC8572]
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4.3. Security Considerations for the "ietf-sztp-csr" YANG Module
The recommended format for documenting the security considerations for YANG modules is
described in . However, this module only augments two input
parameters into the "get-bootstrapping-data" RPC in  and therefore only needs to point
to the relevant Security Considerations sections in that RFC.

Security considerations for the "get-bootstrapping-data" RPC are described in 
. 

Security considerations for the "input" parameters passed inside the "get-bootstrapping-data"
RPC are described in . 

4.4. Security Considerations for the "ietf-ztp-types" YANG Module
The recommended format for documenting the security considerations for YANG modules is
described in . However, this module does not define any protocol-
accessible nodes (it only defines "identity" and "grouping" statements), and therefore there are
no security considerations to report.

Section 3.7 of [RFC8407]
[RFC8572]

• Section 9.16 of
[RFC8572]

• 
Section 9.6 of [RFC8572]

Section 3.7 of [RFC8407]

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

Name:
Namespace:
Prefix:
Reference:

5. IANA Considerations

5.1. The IETF XML Registry
IANA has registered two URIs in the "ns" registry of the "IETF XML Registry" 
maintained at .

urn:ietf:params:xml:ns:yang:ietf-sztp-csr 
The NETCONF WG of the IETF. 

N/A; the requested URI is an XML namespace. 

urn:ietf:params:xml:ns:yang:ietf-ztp-types 
The NETCONF WG of the IETF. 

N/A; the requested URI is an XML namespace. 

5.2. The YANG Module Names Registry
IANA has registered two YANG modules in the "YANG Module Names" registry 
maintained at .

ietf-sztp-csr 
urn:ietf:params:xml:ns:yang:ietf-sztp-csr 

sztp-csr 
RFC 9646 

[RFC3688]
<https://www.iana.org/assignments/xml-registry/>

[RFC6020]
<https://www.iana.org/assignments/yang-parameters/>
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       Introduction
       
         Overview
         This document extends the input to the "get-bootstrapping-data" RPC defined in
              to include an optional certificate
            signing request (CSR)  , enabling a
            bootstrapping device to additionally obtain an identity
            certificate (e.g., an LDevID from  )
            as part of the "onboarding information" response provided in
            the RPC-reply.
         The ability to provision an identity certificate that is purpose-built 
            for a production environment during the bootstrapping process
            removes reliance on the manufacturer Certification Authority (CA), and it also enables the
            bootstrapped device to join the production environment with an
            appropriate identity and other attributes in its identity
            certificate (e.g., an LDevID).
         Two YANG   modules are defined.  The
             "ietf-ztp-types" module defines three YANG groupings for the
             various messages defined in this document.  The "ietf-sztp-csr"
             module augments two groupings into the "get-bootstrapping-data"
             RPC and defines a YANG data structure  
               around the third grouping.
      
       
         Terminology
         This document uses the following terms from  :
         
           Bootstrap Server
           Bootstrapping Data
           Conveyed Information
           Device
           Manufacturer
           Onboarding Information
           Signed Data
        
         This document defines the following new terms:
         
           SZTP-client:
           The term "SZTP-client" refers to a "device" that is using a
              "bootstrap server" as a source of "bootstrapping data".
           SZTP-server:
           The term "SZTP-server" is an alternative term for "bootstrap
              server" that is symmetric with the "SZTP-client" term.
        
      
       
         Requirements Language
         
    The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
    " MAY", and " OPTIONAL" in this document are to be interpreted as
    described in BCP 14     
    when, and only when, they appear in all capitals, as shown here.
        
      
       
         Conventions
         Various examples in this document use "BASE64VALUE=" as a placeholder
            value for binary data that has been base64 encoded (per  ).   This placeholder value is used because real
            base64-encoded structures are often many lines long and
        hence distracting to the example being presented.
          Various examples in this document contain long lines that may be folded,
  as described in  .
      
    
     
       The "ietf-sztp-csr" Module
       The "ietf-sztp-csr" module is a YANG 1.1  
          module that augments the "ietf-sztp-bootstrap-server" module defined in
            and defines a YANG "structure" that is to be
          conveyed in the "error-info" node defined in  .
       
         Data Model Overview
         The following tree diagram   illustrates the 
            "ietf-sztp-csr" module.
         
module: ietf-sztp-csr

  augment /sztp-svr:get-bootstrapping-data/sztp-svr:input:
    +---w (msg-type)?
       +--:(csr-support)
       |  +---w csr-support
       |     +---w key-generation!
       |     |  +---w supported-algorithms
       |     |     +---w algorithm-identifier*   binary
       |     +---w csr-generation
       |        +---w supported-formats
       |           +---w format-identifier*   identityref
       +--:(csr)
          +---w (csr-type)
             +--:(p10-csr)
             |  +---w p10-csr?   ct:csr
             +--:(cmc-csr)
             |  +---w cmc-csr?   binary
             +--:(cmp-csr)
                +---w cmp-csr?   binary

  structure csr-request:
    +-- key-generation!
    |  +-- selected-algorithm
    |     +-- algorithm-identifier    binary
    +-- csr-generation
    |  +-- selected-format
    |     +-- format-identifier    identityref
    +-- cert-req-info?    ct:csr-info

         The augmentation defines two kinds of 
            parameters that an SZTP-client can send to an SZTP-server.  The
            YANG structure defines one collection of parameters that an
        SZTP-server can send to an SZTP-client.
         In the order of their intended use:
         
           The SZTP-client sends a "csr-support" node, encoded in a first 
              "get-bootstrapping-data" request to the SZTP-server, to indicate
              that it supports the ability to generate CSRs.
              This input parameter conveys if the SZTP-client is able to generate a
              new asymmetric key and, if so, which key algorithms it supports, 
              as well as what kinds of CSR structures the SZTP-client
          is able to generate.
           The SZTP-server responds with an error, containing the "csr-request"
              structure, to request
              the SZTP-client to generate a CSR.  This structure is used to
              select the key algorithm the SZTP-client should use to generate
              a new asymmetric key (if supported), the kind of CSR structure
              the SZTP-client should generate, and optionally the content for
              the CSR itself.
           The SZTP-client sends one of the "*-csr" nodes, encoded in a second 
              "get-bootstrapping-data" request to the SZTP-server.  This node 
              encodes the server-requested CSR.
           The SZTP-server responds with onboarding information to communicate
              the signed certificate to the SZTP-client.  How to do this is
              discussed in  .
        
         To further illustrate how the augmentation and structure defined
            by the "ietf-sztp-csr" module are used, below are two additional
            tree diagrams showing these nodes placed where they are used.
         The following tree diagram   illustrates SZTP's 
            "get-bootstrapping-data" RPC with the augmentation in place.
         
=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ietf-sztp-bootstrap-server

  rpcs:
    +---x get-bootstrapping-data
       +---w input
       |  +---w signed-data-preferred?          empty
       |  +---w hw-model?                       string
       |  +---w os-name?                        string
       |  +---w os-version?                     string
       |  +---w nonce?                          binary
       |  +---w (sztp-csr:msg-type)?
       |     +--:(sztp-csr:csr-support)
       |     |  +---w sztp-csr:csr-support
       |     |     +---w sztp-csr:key-generation!
       |     |     |  +---w sztp-csr:supported-algorithms
       |     |     |     +---w sztp-csr:algorithm-identifier*   bina\
ry
       |     |     +---w sztp-csr:csr-generation
       |     |        +---w sztp-csr:supported-formats
       |     |           +---w sztp-csr:format-identifier*   identit\
yref
       |     +--:(sztp-csr:csr)
       |        +---w (sztp-csr:csr-type)
       |           +--:(sztp-csr:p10-csr)
       |           |  +---w sztp-csr:p10-csr?   ct:csr
       |           +--:(sztp-csr:cmc-csr)
       |           |  +---w sztp-csr:cmc-csr?   binary
       |           +--:(sztp-csr:cmp-csr)
       |              +---w sztp-csr:cmp-csr?   binary
       +--ro output
          +--ro reporting-level?    enumeration {onboarding-server}?
          +--ro conveyed-information    cms
          +--ro owner-certificate?      cms
          +--ro ownership-voucher?      cms

         The following tree diagram   illustrates RESTCONF's
            "errors" RPC-reply message with the "csr-request" structure in place.
         
module: ietf-restconf
  +--ro errors
     +--ro error* []
        +--ro error-type       enumeration
        +--ro error-tag        string
        +--ro error-app-tag?   string
        +--ro error-path?      instance-identifier
        +--ro error-message?   string
        +--ro error-info
           +--ro sztp-csr:csr-request
              +--ro sztp-csr:key-generation!
              |  +--ro sztp-csr:selected-algorithm
              |     +--ro sztp-csr:algorithm-identifier    binary
              +--ro sztp-csr:csr-generation
              |  +--ro sztp-csr:selected-format
              |     +--ro sztp-csr:format-identifier    identityref
              +--ro sztp-csr:cert-req-info?    ct:csr-info

      
       
         Example Usage
         
           NOTE: The examples below are encoded using JSON, but they could
              equally well be encoded using XML, as is supported by SZTP.
        
         An SZTP-client implementing this specification would signal
            to the bootstrap server its willingness to generate a CSR by
            including the "csr-support" node in its "get-bootstrapping-data"
            RPC. In the example below, the SZTP-client additionally
            indicates that it is able to generate keys and provides
            a list of key algorithms it supports, as well as provide
            a list of certificate formats it supports.
         REQUEST
         
=============== NOTE: '\' line wrapping per RFC 8792 ================

POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
ng-data HTTP/1.1
HOST: example.com
Content-Type: application/yang-data+json

{
  "ietf-sztp-bootstrap-server:input" : {
    "hw-model": "model-x",
    "os-name": "vendor-os",
    "os-version": "17.3R2.1",
    "nonce": "extralongbase64encodedvalue=",
    "ietf-sztp-csr:csr-support": {
      "key-generation": {
        "supported-algorithms": {
          "algorithm-identifier": [
            "BASE64VALUE1",
            "BASE64VALUE2",
            "BASE64VALUE3"
          ]
        }
      },
      "csr-generation": {
        "supported-formats": {
          "format-identifier": [
            "ietf-ztp-types:p10-csr",
            "ietf-ztp-types:cmc-csr",
            "ietf-ztp-types:cmp-csr"
          ]
        }
      }
    }
  }
}

         Assuming the SZTP-server wishes to prompt the SZTP-client to
            provide a CSR, then it would respond with an HTTP 400 Bad Request
            error code.  In the example below, the SZTP-server specifies
            that it wishes the SZTP-client to generate a key using a specific
            algorithm and generate a PKCS#10-based CSR containing specific
            content.
         RESPONSE
         
HTTP/1.1 400 Bad Request
Date: Sat, 31 Oct 2021 17:02:40 GMT
Server: example-server
Content-Type: application/yang-data+json

{
  "ietf-restconf:errors" : {
    "error" : [
      {
        "error-type": "application",
        "error-tag": "missing-attribute",
        "error-message": "Missing input parameter",
        "error-info": {
          "ietf-sztp-csr:csr-request": {
            "key-generation": {
              "selected-algorithm": {
                "algorithm-identifier": "BASE64VALUE="
              }
            },
            "csr-generation": {
              "selected-format": {
                "format-identifier": "ietf-ztp-types:p10-csr"
              }
            },
            "cert-req-info": "BASE64VALUE="
          }
        }
      }
    ]
  }
}

         Upon being prompted to provide a CSR, the SZTP-client would
        POST another "get-bootstrapping-data" request but this time
	including one of the "csr" nodes to convey its CSR to the
            SZTP-server:
         REQUEST
         
=============== NOTE: '\' line wrapping per RFC 8792 ================

POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
ng-data HTTP/1.1
HOST: example.com
Content-Type: application/yang-data+json

{
  "ietf-sztp-bootstrap-server:input" : {
    "hw-model": "model-x",
    "os-name": "vendor-os",
    "os-version": "17.3R2.1",
    "nonce": "extralongbase64encodedvalue=",
    "ietf-sztp-csr:p10-csr": "BASE64VALUE="
  }
}

         At this point, it is expected that the SZTP-server, perhaps
            in conjunction with other systems, such as a backend CA or registration authority (RA),
            will validate the CSR's origin and proof-of-possession and,
            assuming the CSR is approved, issue a signed certificate for
            the bootstrapping device.
         The SZTP-server responds with conveyed information
        (the "conveyed-information" node shown below) that encodes
	"onboarding-information" (inside the base64 value) containing
            a signed identity certificate for the CSR provided by the
            SZTP-client:
         RESPONSE
         
HTTP/1.1 200 OK
Date: Sat, 31 Oct 2021 17:02:40 GMT
Server: example-server
Content-Type: application/yang-data+json

{
  "ietf-sztp-bootstrap-server:output" : {
    "reporting-level": "verbose",
    "conveyed-information": "BASE64VALUE="
  }
}

         How the signed certificate is conveyed inside the onboarding information
            is outside the scope of this document.  Some implementations may choose
            to convey it inside a script (e.g., SZTP's "pre-configuration-script"),
            while other implementations may choose to convey it inside the SZTP
            "configuration" node.  SZTP onboarding information is described in 
             .
         Below are two examples of conveying the signed certificate inside
            the "configuration" node.  Both examples assume that the SZTP-client
            understands the "ietf-keystore" module defined in
             .
         This first example illustrates the case where the signed certificate is
            for the same asymmetric key used by the SZTP-client's manufacturer-generated
            identity certificate (e.g., an Initial Device Identifier (IDevID) from  ).
            As such, the configuration needs to associate the newly signed certificate
            with the existing asymmetric key:
         
=============== NOTE: '\' line wrapping per RFC 8792 ================

{
  "ietf-keystore:keystore": {
    "asymmetric-keys": {
      "asymmetric-key": [
        {
          "name": "Manufacturer-Generated Hidden Key",
          "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
          "public-key": "BASE64VALUE=",
          "hidden-private-key": [null],
          "certificates": {
            "certificate": [
              {
                "name": "Manufacturer-Generated IDevID Cert",
                "cert-data": "BASE64VALUE="
              },
              {
                "name": "Newly-Generated LDevID Cert",
                "cert-data": "BASE64VALUE="
              }
            ]
          }
        }
      ]
    }
  }
}

         This second example illustrates the case where the signed certificate is
            for a newly generated asymmetric key.  As such, the configuration needs
            to associate the newly signed certificate with the newly generated
            asymmetric key:
         
=============== NOTE: '\' line wrapping per RFC 8792 ================

{
  "ietf-keystore:keystore": {
    "asymmetric-keys": {
      "asymmetric-key": [
        {
          "name": "Manufacturer-Generated Hidden Key",
          "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
          "public-key": "BASE64VALUE=",
          "hidden-private-key": [null],
          "certificates": {
            "certificate": [
              {
                "name": "Manufacturer-Generated IDevID Cert",
                "cert-data": "BASE64VALUE="
              }
            ]
          }
        },
        {
          "name": "Newly-Generated Hidden Key",
          "public-key-format": "ietf-crypto-types:subject-public-key\
-info-format",
          "public-key": "BASE64VALUE=",
          "hidden-private-key": [null],
          "certificates": {
            "certificate": [
              {
                "name": "Newly-Generated LDevID Cert",
                "cert-data": "BASE64VALUE="
              }
            ]
          }
        }
      ]
    }
  }
}

         In addition to configuring the signed certificate, it is often
            necessary to also configure the issuer's signing certificate
            so that the device (i.e., STZP-client) can authenticate
            certificates presented by peer devices signed by the same
            issuer as its own.  While outside the scope of this document,
            one way to do this would be to use the "ietf-truststore" module
            defined in  .
      
       
         YANG Module
         This module augments an RPC defined in  . The
            module uses data types and groupings defined in  ,
             , and  .
        The module also has an informative reference to  .
         
module ietf-sztp-csr {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-sztp-csr";
  prefix sztp-csr;

  import ietf-sztp-bootstrap-server {
    prefix sztp-svr;
    reference
      "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
  }

  import ietf-yang-structure-ext {
    prefix sx;
    reference
      "RFC 8791: YANG Data Structure Extensions";
  }

  import ietf-ztp-types {
    prefix zt;
    reference
      "RFC 9646: Conveying a Certificate Signing Request (CSR)
                 in a Secure Zero-Touch Provisioning (SZTP)
                 Bootstrapping Request";
  }

  organization
    "IETF NETCONF (Network Configuration) Working Group";

  contact
    "WG Web:   https://datatracker.ietf.org/wg/netconf
     WG List:  NETCONF WG list <mailto:netconf@ietf.org>
     Authors:  Kent Watsen <mailto:kent+ietf@watsen.net>
               Russ Housley <mailto:housley@vigilsec.com>
               Sean Turner <mailto:sean@sn3rd.com>";

  description
    "This module augments the 'get-bootstrapping-data' RPC,
     defined in the 'ietf-sztp-bootstrap-server' module from
     SZTP (RFC 8572), enabling the SZTP-client to obtain a
     signed identity certificate (e.g., an LDevID from IEEE
     802.1AR) as part of the SZTP onboarding information
     response.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
     document are to be interpreted as described in BCP 14
     (RFC 2119) (RFC 8174) when, and only when, they appear
     in all capitals, as shown here.

     Copyright (c) 2024 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject to
     the license terms contained in, the Revised BSD License set
     forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9646
     (https://www.rfc-editor.org/info/rfc9646); see the
     RFC itself for full legal notices.";

  revision 2024-10-10 {
    description
      "Initial version.";
    reference
      "RFC 9646: Conveying a Certificate Signing Request (CSR)
                 in a Secure Zero-Touch Provisioning (SZTP)
                 Bootstrapping Request";
  }

  // Protocol-accessible nodes

  augment "/sztp-svr:get-bootstrapping-data/sztp-svr:input" {
    description
      "This augmentation adds the 'csr-support' and 'csr' nodes to
       the SZTP (RFC 8572) 'get-bootstrapping-data' request message,
       enabling the SZTP-client to obtain an identity certificate
       (e.g., an LDevID from IEEE 802.1AR) as part of the onboarding
       information response provided by the SZTP-server.

       The 'csr-support' node enables the SZTP-client to indicate
       that it supports generating certificate signing requests
       (CSRs) and to provide details around the CSRs it is able
       to generate.

       The 'csr' node enables the SZTP-client to relay a CSR to
       the SZTP-server.";
    reference
      "IEEE 802.1AR: IEEE Standard for Local and Metropolitan
                     Area Networks - Secure Device Identity
       RFC 8572: Secure Zero Touch Provisioning (SZTP)";
    choice msg-type {
      description
        "Messages are mutually exclusive.";
      case csr-support {
        description
          "Indicates how the SZTP-client supports generating CSRs.

           If present and a SZTP-server wishes to request the
           SZTP-client generate a CSR, the SZTP-server MUST
           respond with an HTTP 400 Bad Request error code with an
           'ietf-restconf:errors' message having the 'error-tag'
           value 'missing-attribute' and the 'error-info' node
           containing the 'csr-request' structure described
           in this module.";
        uses zt:csr-support-grouping;
      }
      case csr {
        description
          "Provides the CSR generated by the SZTP-client.

           When present, the SZTP-server SHOULD respond with
           an SZTP onboarding information message containing
           a signed certificate for the conveyed CSR.  The
           SZTP-server MAY alternatively respond with another
           HTTP error containing another 'csr-request'; in
           which case, the SZTP-client MUST delete any key
           generated for the previously generated CSR.";
        uses zt:csr-grouping;
      }
    }
  }

  sx:structure csr-request {
    description
      "A YANG data structure, per RFC 8791, that specifies
       details for the CSR that the ZTP-client is to generate.";
    reference
      "RFC 8791: YANG Data Structure Extensions";
    uses zt:csr-request-grouping;
  }

}

      
    
     
       The "ietf-ztp-types" Module
       This section defines a YANG 1.1   module
          that defines three YANG groupings, one for each message sent
          between a ZTP-client and ZTP-server.  This module is defined
          independently of the "ietf-sztp-csr" module so that its 
          groupings may be used by bootstrapping protocols other than
          SZTP  .
       
         Data Model Overview
         The following tree diagram   illustrates
            the three groupings defined in the "ietf-ztp-types" module.
         
module: ietf-ztp-types

  grouping csr-support-grouping
    +-- csr-support
       +-- key-generation!
       |  +-- supported-algorithms
       |     +-- algorithm-identifier*   binary
       +-- csr-generation
          +-- supported-formats
             +-- format-identifier*   identityref
  grouping csr-request-grouping
    +-- key-generation!
    |  +-- selected-algorithm
    |     +-- algorithm-identifier    binary
    +-- csr-generation
    |  +-- selected-format
    |     +-- format-identifier    identityref
    +-- cert-req-info?    ct:csr-info
  grouping csr-grouping
    +-- (csr-type)
       +--:(p10-csr)
       |  +-- p10-csr?   ct:csr
       +--:(cmc-csr)
       |  +-- cmc-csr?   binary
       +--:(cmp-csr)
          +-- cmp-csr?   binary

      
       
         YANG Module
         This module uses data types and groupings defined in  
            and  .  The module has
            additional normative references to  ,
             ,  , and
              and an informative reference
            to  .
         
module ietf-ztp-types {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-ztp-types";
  prefix zt;

  import ietf-crypto-types {
    prefix ct;
    reference
      "RFC 9640: YANG Data Types and Groupings for Cryptography";
  }

  organization
    "IETF NETCONF (Network Configuration) Working Group";

  contact
    "WG Web:   https://datatracker.ietf.org/wg/netconf
     WG List:  NETCONF WG list <mailto:netconf@ietf.org>
     Authors:  Kent Watsen <mailto:kent+ietf@watsen.net>
               Russ Housley <mailto:housley@vigilsec.com>
               Sean Turner <mailto:sean@sn3rd.com>";

  description
    "This module defines three groupings that enable
     bootstrapping devices to 1) indicate if and how they
     support generating CSRs, 2) obtain a request to
     generate a CSR, and 3) communicate the requested CSR.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
     document are to be interpreted as described in BCP 14
     (RFC 2119) (RFC 8174) when, and only when, they appear
     in all capitals, as shown here.

     Copyright (c) 2024 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject to
     the license terms contained in, the Revised BSD License set
     forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9646
     (https://www.rfc-editor.org/info/rfc9646); see the
     RFC itself for full legal notices.";

  revision 2024-10-10 {
    description
      "Initial version.";
    reference
      "RFC 9646: Conveying a Certificate Signing Request (CSR)
                 in a Secure Zero-Touch Provisioning (SZTP)
                 Bootstrapping Request";
  }

  identity certificate-request-format {
    description
      "A base identity for the request formats supported
       by the ZTP-client.

       Additional derived identities MAY be defined by
       future efforts.";
  }

  identity p10-csr {
    base certificate-request-format;
    description
      "Indicates that the ZTP-client supports generating
       requests using the 'CertificationRequest' structure
       defined in RFC 2986.";
    reference
      "RFC 2986: PKCS #10: Certification Request Syntax
                 Specification Version 1.7";
  }

  identity cmp-csr {
    base certificate-request-format;
    description
      "Indicates that the ZTP-client supports generating
       requests using a profiled version of the PKIMessage
       that MUST contain a PKIHeader followed by a PKIBody
       containing only the ir, cr, kur, or p10cr structures
       defined in RFC 4210.";
    reference
      "RFC 4210: Internet X.509 Public Key Infrastructure
                 Certificate Management Protocol (CMP)";
  }

  identity cmc-csr {
    base certificate-request-format;
    description
      "Indicates that the ZTP-client supports generating
       requests using a profiled version of the 'Full
       PKI Request' structure defined in RFC 5272.";
    reference
      "RFC 5272: Certificate Management over CMS (CMC)";
  }

  // Protocol-accessible nodes

  grouping csr-support-grouping {
    description
      "A grouping enabling use by other efforts.";
    container csr-support {
      description
        "Enables a ZTP-client to indicate that it supports
         generating certificate signing requests (CSRs) and
         provides details about the CSRs it is able to
         generate.";
      container key-generation {
        presence "Indicates that the ZTP-client is capable of
                  generating a new asymmetric key pair.

                  If this node is not present, the ZTP-server MAY
                  request a CSR using the asymmetric key associated
                  with the device's existing identity certificate
                  (e.g., an IDevID from IEEE 802.1AR).";
        description
          "Specifies details for the ZTP-client's ability to
           generate a new asymmetric key pair.";
        container supported-algorithms {
          description
            "A list of public key algorithms supported by the
             ZTP-client for generating a new asymmetric key.";
          leaf-list algorithm-identifier {
            type binary;
            min-elements 1;
            description
              "An AlgorithmIdentifier, as defined in RFC 2986,
               encoded using ASN.1 Distinguished Encoding Rules
               (DER), as specified in ITU-T X.690.";
            reference
              "RFC 2986: PKCS #10: Certification Request Syntax
                         Specification Version 1.7
               ITU-T X.690:
                 Information technology - ASN.1 encoding rules:
                 Specification of Basic Encoding Rules (BER),
                 Canonical Encoding Rules (CER) and Distinguished
                 Encoding Rules (DER)";
          }
        }
      }
      container csr-generation {
        description
          "Specifies details for the ZTP-client's ability to
           generate certificate signing requests.";
        container supported-formats {
          description
            "A list of certificate request formats supported
             by the ZTP-client for generating a new key.";
          leaf-list format-identifier {
            type identityref {
              base zt:certificate-request-format;
            }
            min-elements 1;
            description
              "A certificate request format supported by the
               ZTP-client.";
          }
        }
      }
    }
  }

  grouping csr-request-grouping {
    description
      "A grouping enabling use by other efforts.";
    container key-generation {
      presence "Provided by a ZTP-server to indicate that it wishes
                the ZTP-client to generate a new asymmetric key.

                This statement is present so the mandatory
                descendant nodes do not imply that this node must
                be configured.";
      description
        "The key generation parameters selected by the ZTP-server.

         This leaf MUST only appear if the ZTP-client's
         'csr-support' included the 'key-generation' node.";
      container selected-algorithm {
        description
          "The key algorithm selected by the ZTP-server.  The
           algorithm MUST be one of the algorithms specified by
           the 'supported-algorithms' node in the ZTP-client's
           message containing the 'csr-support' structure.";
        leaf algorithm-identifier {
          type binary;
          mandatory true;
          description
            "An AlgorithmIdentifier, as defined in RFC 2986,
             encoded using ASN.1 Distinguished Encoding Rules
             (DER), as specified in ITU-T X.690.";
          reference
            "RFC 2986: PKCS #10: Certification Request Syntax
                       Specification Version 1.7
             ITU-T X.690:
               Information technology - ASN.1 encoding rules:
               Specification of Basic Encoding Rules (BER),
               Canonical Encoding Rules (CER) and Distinguished
               Encoding Rules (DER)";
        }
      }
    }
    container csr-generation {
      description
        "Specifies details for the CSR that the ZTP-client
         is to generate.";
      container selected-format {
        description
          "The CSR format selected by the ZTP-server.  The
           format MUST be one of the formats specified by
           the 'supported-formats' node in the ZTP-client's
           request message.";
        leaf format-identifier {
          type identityref {
            base zt:certificate-request-format;
          }
          mandatory true;
          description
            "A certificate request format to be used by the
             ZTP-client.";
        }
      }
    }
    leaf cert-req-info {
      type ct:csr-info;
      description
        "A CertificationRequestInfo structure, as defined in
         RFC 2986, and modeled via a 'typedef' statement by
         RFC 9640.

         Enables the ZTP-server to provide a fully populated
         CertificationRequestInfo structure that the ZTP-client
         only needs to sign in order to generate the complete
         'CertificationRequest' structure to send to the ZTP-server
         in its next 'get-bootstrapping-data' request message.

         When provided, the ZTP-client MUST use this structure
         to generate its CSR; failure to do so will result in a
         400 Bad Request response containing another 'csr-request'
         structure.

         When not provided, the ZTP-client SHOULD generate a CSR
         using the same structure defined in its existing identity
         certificate (e.g., an IDevID from IEEE 802.1AR).

         If the 'AlgorithmIdentifier' field contained inside the
         certificate 'SubjectPublicKeyInfo' field does not match
         the algorithm identified by the 'selected-algorithm' node,
         then the client MUST reject the certificate and raise an
         error.";

      reference
        "RFC 2986:
           PKCS #10: Certification Request Syntax Specification
           Version 1.7
         RFC 9640:
           YANG Data Types and Groupings for Cryptography";
    }
  }

  grouping csr-grouping {
    description
      "Enables a ZTP-client to convey a certificate signing
       request, using the encoding format selected by a
       ZTP-server's 'csr-request' response to the ZTP-client's
       previously sent request containing the 'csr-support'
       node.";
    choice csr-type {
      mandatory true;
      description
        "A choice amongst certificate signing request formats.

         Additional formats MAY be augmented into this 'choice'
         statement by future efforts.";
      case p10-csr {
        leaf p10-csr {
          type ct:p10-csr;
          description
            "A CertificationRequest structure, per RFC 2986.
             Encoding details are defined in the 'ct:csr'
             typedef defined in RFC 9640.

             A raw P10 does not support origin authentication in
             the CSR structure.  External origin authentication
             may be provided via the ZTP-client's authentication
             to the ZTP-server at the transport layer (e.g., TLS).";
          reference
            "RFC 2986: PKCS #10: Certification Request Syntax
                       Specification Version 1.7
             RFC 9640: YANG Data Types and Groupings for
                       Cryptography";
        }
      }
      case cmc-csr {
        leaf cmc-csr {
          type binary;
          description
            "A profiled version of the 'Full PKI Request'
             message defined in RFC 5272, encoded using ASN.1
             Distinguished Encoding Rules (DER), as specified
             in ITU-T X.690.

             For asymmetric-key-based origin authentication of a
             CSR based on the initial device identity certificate's
             private key for the associated identity certificate's
             public key, the PKIData contains one reqSequence
             element and no cmsSequence or otherMsgSequence
             elements.  The reqSequence is the TaggedRequest,
             and it is the tcr CHOICE branch.  The tcr is the
             TaggedCertificationRequest, and it is the bodyPartID
             and the certificateRequest elements.  The
             certificateRequest is signed with the initial device
             identity certificate's private key.  The initial device
             identity certificate, and optionally its certificate
             chain is included in the SignedData certificates that
             encapsulate the PKIData.

             For asymmetric-key-based origin authentication based on
             the initial device identity certificate's private key
             that signs the encapsulated CSR signed by the local
             device identity certificate's private key, the
             PKIData contains one cmsSequence element and no
             reqSequence or otherMsgSequence
             elements.  The cmsSequence is the TaggedContentInfo,
             and it includes a bodyPartID element and a contentInfo.
             The contentInfo is a SignedData encapsulating a PKIData
             with one reqSequence element and no cmsSequence or
             otherMsgSequence elements.  The reqSequence is the
             TaggedRequest, and it is the tcr CHOICE.  The tcr is the
             TaggedCertificationRequest, and it is the bodyPartID and
             the certificateRequest elements.  PKIData contains one
             cmsSequence element and no controlSequence, reqSequence,
             or otherMsgSequence elements.  The certificateRequest
             is signed with the local device identity certificate's
             private key.  The initial device identity certificate
             and optionally its certificate chain is included in
             the SignedData certificates that encapsulate the
             PKIData.

             For shared-secret-based origin authentication of a
             CSR signed by the local device identity certificate's
             private key, the PKIData contains one cmsSequence
             element and no reqSequence or otherMsgSequence
             elements.  The cmsSequence is the TaggedContentInfo,
             and it includes a bodyPartID element and a contentInfo.
             The contentInfo is an AuthenticatedData encapsulating
             a PKIData with one reqSequence element and no
             cmsSequences or otherMsgSequence elements.  The
             reqSequence is the TaggedRequest, and it is the tcr
             CHOICE.  The tcr is the TaggedCertificationRequest,
             and it is the bodyPartID and the certificateRequest
             elements.  The certificateRequest is signed with the
             local device identity certificate's private key.  The
             initial device identity certificate and optionally its
             certificate chain is included in the SignedData
             certificates that encapsulate the PKIData.";
          reference
            "RFC 5272: Certificate Management over CMS (CMC)
             ITU-T X.690:
               Information technology - ASN.1 encoding rules:
               Specification of Basic Encoding Rules (BER),
               Canonical Encoding Rules (CER) and Distinguished
               Encoding Rules (DER)";
        }
      }
      case cmp-csr {
        leaf cmp-csr {
          type binary;
          description
            "A PKIMessage structure, as defined in RFC 4210,
             encoded using ASN.1 Distinguished Encoding Rules
             (DER), as specified in ITU-T X.690.

             For asymmetric-key-based origin authentication of a
             CSR based on the initial device identity certificate's
             private key for the associated initial device identity
             certificate's public key, PKIMessages contain one
             PKIMessage with the header and body elements, do not
             contain a protection element, and SHOULD contain the
             extraCerts element.  The header element contains the
             pvno, sender, and recipient elements.  The pvno contains
             cmp2000, and the sender contains the subject of the
             initial device identity certificate. The body element
             contains an ir, cr, kur, or p10cr CHOICE of type
             CertificationRequest.  It is signed with the initial
             device identity certificate's private key.  The
             extraCerts element contains the initial device identity
             certificate, optionally followed by its certificate
             chain excluding the trust anchor.

             For asymmetric-key-based origin authentication based
             on the initial device identity certificate's private
             key that signs the encapsulated CSR signed by the local
             device identity certificate's private key, PKIMessages
             contain one PKIMessage with the header, body, and
             protection elements and SHOULD contain the extraCerts
             element.  The header element contains the pvno, sender,
             recipient, protectionAlg, and optionally senderKID
             elements.  The pvno contains cmp2000, the sender
             contains the subject of the initial device identity
             certificate, the protectionAlg contains the
             AlgorithmIdentifier of the used signature algorithm,
             and the senderKID contains the subject key identifier
             of the initial device identity certificate. The body
             element contains an ir, cr, kur, or p10cr CHOICE of
             type CertificationRequest.  It is signed with the local
             device identity certificate's private key.  The
             protection element contains the digital signature
             generated with the initial device identity
             certificate's private key.  The extraCerts element
             contains the initial device identity certificate,
             optionally followed by its certificate chain excluding
             the trust anchor.

             For shared-secret-based origin authentication of a
             CSR signed by the local device identity certificate's
             private key, PKIMessages contain one PKIMessage with
             the header, body, and protection element and no
             extraCerts element.  The header element contains the
             pvno, sender, recipient, protectionAlg, and senderKID
             elements.  The pvno contains cmp2000, the protectionAlg
             contains the AlgorithmIdentifier of the used Message
             Authentication Code (MAC) algorithm, and the senderKID
             contains a reference the recipient can use to identify
             the shared secret.  The body element contains an ir, cr,
             kur, or p10cr CHOICE of type CertificationRequest.  It
             is signed with the local device identity certificate's
             private key.  The protection element contains the MAC
             value generated with the shared secret.";
          reference
            "RFC 4210:
               Internet X.509 Public Key Infrastructure
               Certificate Management Protocol (CMP)
             ITU-T X.690:
               Information technology - ASN.1 encoding rules:
               Specification of Basic Encoding Rules (BER),
               Canonical Encoding Rules (CER) and Distinguished
               Encoding Rules (DER)";
        }
      }
    }
  }

}

      
    
     
       Security Considerations
       This document builds on top of the solution presented in
           , and therefore all the security
      considerations discussed in   apply here as well.
       For the various CSR formats, when using PKCS#10, the security considerations
          in   apply; when using CMP, the
          security considerations in   apply;
          and when using CMC, the security considerations in
        apply.
       For the various authentication mechanisms, when using
          TLS-level authentication, the security considerations in
            apply, and when using HTTP-level
          authentication, the security considerations in
        apply.
       
         SZTP-Client Considerations
         
           Ensuring the Integrity of Asymmetric Private Keys
           The private key the SZTP-client uses for the dynamically generated
              identity certificate  MUST be protected from inadvertent disclosure
              in order to prevent identity fraud.
           The security of this private key is essential in order to
              ensure the associated identity certificate can be used to
              authenticate the device it is issued to.
           It is  RECOMMENDED that devices are manufactured with a
              hardware security module (HSM), such as a trusted platform
              module (TPM), to generate and contain the private key within
              the security perimeter of the HSM.  In such cases, the private
              key and its associated certificates  MAY have long validity
              periods.
           In cases where the SZTP-client does not possess an HSM or
              is unable to use an HSM to protect the private key, it is
               RECOMMENDED to periodically reset the private key (and
              associated identity certificates) in order to minimize the
              lifetime of unprotected private keys.  For instance, a Network Management System (NMS)
              controller/orchestrator application could periodically prompt
              the SZTP-client to generate a new private key and provide a
              certificate signing request (CSR) or, alternatively, push
              both the key and an identity certificate to the SZTP-client
              using, e.g., a PKCS#12 message  .  In another
              example, the SZTP-client could be configured to periodically
              reset the configuration to its factory default, thus causing
              removal of the private key and associated identity certificates
              and re-execution of the SZTP protocol.
        
         
           Reuse of a Manufacturer-Generated Private Key
           It is  RECOMMENDED that a new private key is generated for each
              CSR described in this document.
           Implementations must randomly generate nonces and private keys.
              The use of inadequate pseudorandom number generators (PRNGs) to
              generate cryptographic keys can result in little or no security.
              An attacker may find it much easier to reproduce the PRNG environment
              that produced the keys, searching the resulting small set of
              possibilities, rather than brute force searching the whole
              key space. As an example of predictable random numbers, see
              CVE-2008-0166  , and some consequences
              of low-entropy random numbers are discussed in "Mining Your Ps and Qs"
               .  The generation of quality random
              numbers is difficult.  ,
               , BSI AIS 31  ,
              BCP 106  , and others offer valuable
              guidance in this area.
           This private key  SHOULD be protected as well as the built-in
              private key associated with the SZTP-client's initial device identity
              certificate (e.g., the IDevID from  ).
           In cases where it is not possible to generate a new private key
              that is protected as well as the built-in private key, it is
               RECOMMENDED to reuse the built-in private key rather than
              generate a new private key that is not as well protected.
        
         
           Replay Attack Protection
           This RFC enables an SZTP-client to announce an ability to
              generate a new key to use for its CSR.
           When the SZTP-server responds with a request for the SZTP-client
              to generate a new key, it is essential that the SZTP-client actually
              generates a new key.
           Generating a new key each time enables the random bytes used
              to create the key to also serve the dual-purpose of acting like
              a "nonce" used in other mechanisms to detect replay attacks.
           When a fresh public/private key pair is generated for the
              request, confirmation to the SZTP-client that the response
              has not been replayed is enabled by the SZTP-client's fresh 
              public key appearing in the signed certificate provided by
              the SZTP-server.
           When a public/private key pair associated with the 
              manufacturer-generated identity certificate (e.g., IDevID) is
              used for the request, there may not be confirmation to the
              SZTP-client that the response has not been replayed; however,
              the worst case result is a lost certificate that is associated
              to the private key known only to the SZTP-client.  Protection
              of the private-key information is vital to public-key
              cryptography.  Disclosure of the private-key material to
              another entity can lead to masquerades.
        
         
           Connecting to an Untrusted Bootstrap Server
             allows SZTP-clients to connect
              to untrusted SZTP-servers by blindly authenticating the
              SZTP-server's TLS end-entity certificate.
           As is discussed in  ,
              in such cases, the SZTP-client  MUST assert that the
              bootstrapping data returned is signed if the SZTP-client
              is to trust it.
           However, the HTTP error message used in this document
              cannot be signed data, as described in  .
           Therefore, the solution presented in this document
              cannot be used when the SZTP-client connects to an
              untrusted SZTP-server.
           Consistent with the recommendation presented in 
             , SZTP-clients
               SHOULD NOT pass the "csr-support" input parameter
              to an untrusted SZTP-server.  SZTP-clients  SHOULD
              instead pass the "signed-data-preferred" input
              parameter, as discussed in  .
        
         
           Selecting the Best Origin Authentication Mechanism
           The origin of the CSR must be verified before a
              certificate is issued.
           When generating a new key, it is important that the
              SZTP-client be able to provide additional proof that it
              was the entity that generated the key.
           The CMP and CMC certificate request formats defined in this
              document support origin authentication.  A raw 
              PKCS#10 CSR does not support origin authentication.
           The CMP and CMC request formats support origin
              authentication using both PKI and a shared secret.
           Typically, only one possible origin authentication
              mechanism can possibly be used, but in the case that the
              SZTP-client authenticates itself using both TLS-level
              (e.g., IDevID) and HTTP-level credentials (e.g., Basic), 
              as is allowed by  ,
              then the SZTP-client may need to choose between the two
              options.
           In the case that the SZTP-client must choose between an
              asymmetric key option versus a shared secret for origin
              authentication, it is  RECOMMENDED that the SZTP-client
              choose using the asymmetric key.
        
         
           Clearing the Private Key and Associated Certificate
           Unlike a manufacturer-generated identity certificate (e.g., IDevID),
              the deployment-generated identity certificate (e.g., LDevID) and
              the associated private key (assuming a new private key was generated
              for the purpose) are considered user data and  SHOULD be cleared
              whenever the SZTP-client is reset to its factory default state,
              such as by the "factory-reset" RPC defined in
               .
        
      
       
         SZTP-Server Considerations
         
           Verifying Proof-of-Possession
           Regardless, if using a new asymmetric key or the bootstrapping
              device's manufacturer-generated key (e.g., the IDevID key), the
              public key is placed in the CSR and the CSR is signed by that
              private key.  Proof-of-possession of the private key is verified
              by ensuring the signature over the CSR using the public key
              placed in the CSR.
        
         
           Verifying Proof-of-Origin
           When the bootstrapping device's manufacturer-generated 
              private key (e.g., the IDevID key) is reused for the CSR, 
              proof-of-origin is verified by validating the IDevID-issuer cert
              and ensuring that the CSR uses the same key pair.
           When the bootstrapping device's manufacturer-generated private key
              (e.g., an IDevID key from IEEE 802.1AR) is reused for the CSR, proof-of-origin is
              verified by validating the IDevID certification path and ensuring that
              the CSR uses the same key pair.
           When a fresh asymmetric key is used with the CMP or CMC formats, the
              authentication is part of the protocols, which could employ either
              the manufacturer-generated private key or a shared secret.  In addition,
              CMP and CMC support processing by an RA before the request is passed
              to the CA, which allows for more robust handling of errors.
        
         
           Supporting SZTP-Clients That Don't Trust the SZTP-Server
             allows SZTP-clients to connect
              to untrusted SZTP-servers by blindly authenticating the
              SZTP-server's TLS end-entity certificate.
           As is recommended in   of this
              document, in such cases, SZTP-clients  SHOULD pass the
              "signed-data-preferred" input parameter.
           The reciprocal of this statement is that SZTP-servers,
              wanting to support SZTP-clients that don't trust them,
               SHOULD support the "signed-data-preferred" input parameter,
              as discussed in  .
        
      
       
         Security Considerations for the "ietf-sztp-csr" YANG Module
         The recommended format for documenting the security
            considerations for YANG modules is described in  .  However, this module
            only augments two input parameters
            into the "get-bootstrapping-data" RPC in   and therefore only needs to point
            to the relevant Security Considerations sections in
            that RFC.
         
           Security considerations for the "get-bootstrapping-data" RPC
              are described in  .
           Security considerations for the "input" parameters passed inside the
              "get-bootstrapping-data" RPC are described in  .
        
      
       
         Security Considerations for the "ietf-ztp-types" YANG Module
         The recommended format for documenting the security
        considerations for YANG modules is described in  .  However, this module
            does not define any protocol-accessible nodes (it only
            defines "identity" and "grouping" statements), and therefore
            there are no security considerations to report.
      
    
     
       IANA Considerations
       
         The IETF XML Registry
         IANA has registered two URIs in the "ns" registry of
            the "IETF XML Registry"   maintained at 
             .  
        
         
           URI:
           urn:ietf:params:xml:ns:yang:ietf-sztp-csr
           Registrant Contact:
           The NETCONF WG of the IETF.
           XML:
           N/A; the requested URI is an XML namespace.
        
         
           URI:
           urn:ietf:params:xml:ns:yang:ietf-ztp-types
           Registrant Contact:
           The NETCONF WG of the IETF.
           XML:
           N/A; the requested URI is an XML namespace.
        
      
       
         The YANG Module Names Registry
         IANA has registered two YANG modules in the "YANG Module
            Names" registry   maintained at
             .
         
           Name:
           ietf-sztp-csr
           Namespace:
           urn:ietf:params:xml:ns:yang:ietf-sztp-csr
           Prefix:
           sztp-csr
           Reference:
           RFC 9646
        
         
           Name:
           ietf-ztp-types
           Namespace:
           urn:ietf:params:xml:ns:yang:ietf-ztp-types
           Prefix:
           ztp-types
           Reference:
           RFC 9646
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