LAMPS M. Ounsworth Internet-Draft J. Gray Intended status: Standards Track Entrust Expires: 4 September 2025 M. Pala OpenCA Labs J. Klaussner Bundesdruckerei GmbH S. Fluhrer Cisco Systems 3 March 2025 Composite ML-DSA for use in X.509 Public Key Infrastructure and CMS draft-ietf-lamps-pq-composite-sigs-04 Abstract This document defines combinations of ML-DSA [FIPS.204] in hybrid with traditional algorithms RSASSA-PKCS1-v1_5, RSASSA-PSS, ECDSA, Ed25519, and Ed448. These combinations are tailored to meet security best practices and regulatory requirements. Composite ML-DSA is applicable in any application that uses X.509, PKIX, and CMS data structures and protocols that accept ML-DSA, but where the operator wants extra protection against breaks or catastrophic bugs in ML-DSA. About This Document This note is to be removed before publishing as an RFC. The latest revision of this draft can be found at https://lamps- wg.github.io/draft-composite-sigs/draft-ietf-lamps-pq-composite- sigs.html. Status information for this document may be found at https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-sigs/. Discussion of this document takes place on the LAMPS Working Group mailing list (mailto:spams@ietf.org), which is archived at https://datatracker.ietf.org/wg/lamps/about/. Subscribe at https://www.ietf.org/mailman/listinfo/spams/. Source for this draft and an issue tracker can be found at https://github.com/lamps-wg/draft-composite-sigs. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Ounsworth, et al. Expires 4 September 2025 [Page 1] Internet-Draft Composite ML-DSA March 2025 Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on 4 September 2025. Copyright Notice Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Changes in -04 . . . . . . . . . . . . . . . . . . . . . . . 4 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1. Conventions and Terminology . . . . . . . . . . . . . . . 5 2.2. Composite Design Philosophy . . . . . . . . . . . . . . . 6 3. Overview of the Composite ML-DSA Signature Scheme . . . . . . 7 3.1. Pure vs Pre-hashed modes . . . . . . . . . . . . . . . . 8 4. Composite ML-DSA Functions . . . . . . . . . . . . . . . . . 8 4.1. Key Generation . . . . . . . . . . . . . . . . . . . . . 8 4.2. Pure Signature Mode . . . . . . . . . . . . . . . . . . . 10 4.2.1. Composite-ML-DSA.Sign . . . . . . . . . . . . . . . . 10 4.2.2. Composite-ML-DSA.Verify . . . . . . . . . . . . . . . 12 4.3. PreHash-Signature Mode . . . . . . . . . . . . . . . . . 14 4.3.1. HashComposite-ML-DSA-Sign signature mode . . . . . . 14 4.3.2. HashComposite-ML-DSA-Verify . . . . . . . . . . . . . 16 4.4. SerializeKey and DeserializeKey . . . . . . . . . . . . . 19 4.5. SerializeSignatureValue and DeSerializeSignatureValue . . 22 4.6. ML-DSA public key, private key and signature sizes for serialization and deserialization . . . . . . . . . . . . 25 5. Composite Key Structures . . . . . . . . . . . . . . . . . . 26 5.1. CompositeMLDSAPublicKey . . . . . . . . . . . . . . . . . 26 Ounsworth, et al. Expires 4 September 2025 [Page 2] Internet-Draft Composite ML-DSA March 2025 5.2. CompositeMLDSAPrivateKey . . . . . . . . . . . . . . . . 27 5.3. Encoding Rules . . . . . . . . . . . . . . . . . . . . . 28 5.4. Key Usage Bits . . . . . . . . . . . . . . . . . . . . . 29 6. Composite Signature Structures . . . . . . . . . . . . . . . 29 6.1. sa-CompositeSignature . . . . . . . . . . . . . . . . . . 29 6.2. CompositeSignatureValue . . . . . . . . . . . . . . . . . 30 7. Algorithm Identifiers . . . . . . . . . . . . . . . . . . . . 30 7.1. PureComposite-ML-DSA Algorithm Identifiers . . . . . . . 30 7.2. HashComposite-ML-DSA Algorithm Identifiers . . . . . . . 31 7.3. Domain Separators . . . . . . . . . . . . . . . . . . . . 33 7.4. Rationale for choices . . . . . . . . . . . . . . . . . . 36 7.5. RSASSA-PSS . . . . . . . . . . . . . . . . . . . . . . . 36 7.5.1. RSA2048-PSS . . . . . . . . . . . . . . . . . . . . . 36 7.5.2. RSA3072-PSS . . . . . . . . . . . . . . . . . . . . . 37 7.5.3. RSA4096-PSS . . . . . . . . . . . . . . . . . . . . . 38 8. Use in CMS . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.1. Underlying Components . . . . . . . . . . . . . . . . . . 39 8.2. SignedData Conventions . . . . . . . . . . . . . . . . . 39 8.3. Signature generation and verification . . . . . . . . . . 40 8.4. Certificate Conventions . . . . . . . . . . . . . . . . . 40 8.5. SMIMECapabilities Attribute Conventions . . . . . . . . . 41 9. ASN.1 Module . . . . . . . . . . . . . . . . . . . . . . . . 41 10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 54 10.1. Object Identifier Allocations . . . . . . . . . . . . . 55 10.1.1. Module Registration - SMI Security for PKIX Module Identifier . . . . . . . . . . . . . . . . . . . . . 55 10.1.2. Object Identifier Registrations - SMI Security for PKIX Algorithms . . . . . . . . . . . . . . . . . . . 55 11. Security Considerations . . . . . . . . . . . . . . . . . . . 60 11.1. Why Hybrids? . . . . . . . . . . . . . . . . . . . . . . 60 11.2. Non-separability, EUF-CMA and SUF . . . . . . . . . . . 61 11.3. Key Reuse . . . . . . . . . . . . . . . . . . . . . . . 63 11.4. Policy for Deprecated and Acceptable Algorithms . . . . 63 11.5. Use of Prefix to for attack mitigation . . . . . . . . . 65 12. References . . . . . . . . . . . . . . . . . . . . . . . . . 65 12.1. Normative References . . . . . . . . . . . . . . . . . . 65 12.2. Informative References . . . . . . . . . . . . . . . . . 67 Appendix A. Samples . . . . . . . . . . . . . . . . . . . . . . 69 A.1. Message Format Examples . . . . . . . . . . . . . . . . . 69 A.1.1. Example of MLDSA44-ECDSA-P256 with Context: . . . . . 69 A.1.2. Example of MLDSA44-ECDSA-P256 without a Context . . . 70 A.1.3. Example of HashMLDSA44-ECDSA-P256-SHA256 with Context . . . . . . . . . . . . . . . . . . . . . . . 70 A.1.4. Example of HashMLDSA44-ECDSA-P256-SHA256 without Context . . . . . . . . . . . . . . . . . . . . . . . 70 A.2. Composite Signature Examples . . . . . . . . . . . . . . 71 Appendix B. Component Algorithm Reference . . . . . . . . . . . 71 Ounsworth, et al. Expires 4 September 2025 [Page 3] Internet-Draft Composite ML-DSA March 2025 Appendix C. Component AlgorithmIdentifiers for Public Keys and Signatures . . . . . . . . . . . . . . . . . . . . . . . 73 Appendix D. Implementation Considerations . . . . . . . . . . . 79 D.1. FIPS certification . . . . . . . . . . . . . . . . . . . 79 D.2. Backwards Compatibility . . . . . . . . . . . . . . . . . 79 D.2.1. Hybrid Extensions (Keys and Signatures) . . . . . . . 80 Appendix E. Intellectual Property Considerations . . . . . . . . 80 Appendix F. Contributors and Acknowledgements . . . . . . . . . 80 F.1. Making contributions . . . . . . . . . . . . . . . . . . 81 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 81 1. Changes in -04 Interop-affecting changes: * Remove the ASN.1 SEQUENCE Wrapping around the Public Keys, Private Keys and Composite Signature Value * Added a prefix into the message format to allow traditional verifiers to detect if a composite signature has been stripped * Added a fixed 4-byte length value to identify the length of the first ML-DSA component so keys and signatures can be separated * Issued new prototype OIDs for testing purposes since the above changes break backwards compatiblity with version -03 * Added support for a MLDSA65-ECDSA-P256 combination because P256 is a widely supported EC algorithm * Added support for a MLDSA87-RSA4096-PSS combination at the request of Microsoft and because we want a RSA combination complaint with CNSA 2.0 * When used in CMS, all composite combinations make use of the SHA-512 digest algorithm Editorial changes: * Added normative language to make it clear that key reuse is prohibited * Updated the security considerations section * Added Message format examples * Additional editing changes as needed Ounsworth, et al. Expires 4 September 2025 [Page 4] Internet-Draft Composite ML-DSA March 2025 2. Introduction The advent of quantum computing poses a significant threat to current cryptographic systems. Traditional cryptographic algorithms such as RSA, Diffie-Hellman, DSA, and their elliptic curve variants are vulnerable to quantum attacks. During the transition to post-quantum cryptography (PQC), there is considerable uncertainty regarding the robustness of both existing and new cryptographic algorithms. While we can no longer fully trust traditional cryptography, we also cannot immediately place complete trust in post-quantum replacements until they have undergone extensive scrutiny and real-world testing to uncover and rectify potential implementation flaws. Unlike previous migrations between cryptographic algorithms, the decision of when to migrate and which algorithms to adopt is far from straightforward. Even after the migration period, it may be advantageous for an entity's cryptographic identity to incorporate multiple public-key algorithms to enhance security. Cautious implementers may opt to combine cryptographic algorithms in such a way that an attacker would need to break all of them simultaneously to compromise the protected data. These mechanisms are referred to as Post-Quantum/Traditional (PQ/T) Hybrids [I-D.ietf-pquip-pqt-hybrid-terminology]. Certain jurisdictions are already recommending or mandating that PQC lattice schemes be used exclusively within a PQ/T hybrid framework. The use of Composite scheme provides a straightforward implementation of hybrid solutions compatible with (and advocated by) some governments and cybersecurity agencies [BSI2021]. Composite ML-DSA is applicable in any application that would otherwise use ML-DSA, but wants the protection against breaks or catastrophic bugs in ML-DSA. 2.1. Conventions and Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. These words may also appear in this document in lower case as plain English words, absent their normative meanings. This document is consistent with the terminology defined in [I-D.ietf-pquip-pqt-hybrid-terminology]. In addition, the following terminology is used throughout this document: Ounsworth, et al. Expires 4 September 2025 [Page 5] Internet-Draft Composite ML-DSA March 2025 *ALGORITHM*: The usage of the term "algorithm" within this document generally refers to any function which has a registered Object Identifier (OID) for use within an ASN.1 AlgorithmIdentifier. This loosely, but not precisely, aligns with the definitions of "cryptographic algorithm" and "cryptographic scheme" given in [I-D.ietf-pquip-pqt-hybrid-terminology]. *BER*: Basic Encoding Rules (BER) as defined in [X.690]. *CLIENT*: Any software that is making use of a cryptographic key. This includes a signer, verifier, encrypter, decrypter. This is not meant to imply any sort of client-server relationship between the communicating parties. *DER*: Distinguished Encoding Rules as defined in [X.690]. *PKI*: Public Key Infrastructure, as defined in [RFC5280]. *PUBLIC / PRIVATE KEY*: The public and private portion of an asymmetric cryptographic key, making no assumptions about which algorithm. *SIGNATURE*: A digital cryptographic signature, making no assumptions about which algorithm. 2.2. Composite Design Philosophy [I-D.ietf-pquip-pqt-hybrid-terminology] defines composites as: _Composite Cryptographic Element_: A cryptographic element that incorporates multiple component cryptographic elements of the same type in a multi-algorithm scheme. Composite keys, as defined here, follow this definition and should be regarded as a single key that performs a single cryptographic operation such as key generation, signing, verifying, encapsulating, or decapsulating -- using its internal sequence of component keys as if they form a single key. This generally means that the complexity of combining algorithms can and should be handled by the cryptographic library or cryptographic module, and the single composite public key, private key, ciphertext and signature can be carried in existing fields in protocols such as PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS [RFC5652], and the Trust Anchor Format [RFC5914]. In this way, composites achieve "protocol backwards-compatibility" in that they will drop cleanly into any protocol that accepts an analogous single-algorithm cryptographic scheme without requiring any modification of the protocol to handle multiple algorithms. Ounsworth, et al. Expires 4 September 2025 [Page 6] Internet-Draft Composite ML-DSA March 2025 3. Overview of the Composite ML-DSA Signature Scheme Composite schemes are defined as cryptographic primitives that consist of three algorithms: * KeyGen() -> (pk, sk): A probabilistic key generation algorithm, which generates a public key pk and a secret key sk. * Sign(sk, Message) -> (signature): A signing algorithm which takes as input a secret key sk and a Message, and outputs a signature * Verify(pk, Message, signature) -> true or false: A verification algorithm which takes as input a public key, a Message, and a signature and outputs true if the signature verifies correctly. Thus it proves the Message was signed with the secret key associated with the public key and verifies the integrity of the Message. If the signature and public key cannot verify the Message, it returns false. We define the following algorithms which we use to serialize and deserialize the public and private keys * SerializeKey(key) -> bytes: Produce a byte string encoding the public or private key. * DeserializeKey(bytes) -> pk: Parse a byte string to recover a public or private key. This function can fail if the input byte string is malformed. We define the following algorithms which are used to serialize and deseralize the composite signature value * SerializeSignatureValue(CompositeSignatureValue) -> bytes: Produce a byte string encoding the CompositeSignatureValue. * DeserializeSignatureValue(bytes) -> pk: Parse a byte string to recover a CompositeSignatureValue. This function can fail if the input byte string is malformed. A composite signature allows the security properties of the two underlying algorithms to be combined via standard signature operations Sign() and Verify(). This specification uses the Post-Quantum signature scheme ML-DSA as specified in [FIPS.204] and [I-D.ietf-lamps-dilithium-certificates]. For Traditional signature schemes, this document uses the RSASSA- PKCS1-v1_5 and RSASSA-PSS algorithms defined in [RFC8017], the Elliptic Curve Digital Signature Algorithm ECDSA scheme defined in Ounsworth, et al. Expires 4 September 2025 [Page 7] Internet-Draft Composite ML-DSA March 2025 section 6 of [FIPS.186-5], and Ed25519 / Ed448 which are defined in [RFC8410]. A simple "signature combiner"function which prepends a domain separator value specific to the composite algorithm is used to bind the two component signatures to the composite algorithm and achieve weak non-separability. 3.1. Pure vs Pre-hashed modes In [FIPS.204] NIST defined ML-DSA to have both pure and pre-hashed signing modes, referred to as "ML-DSA" and "HashML-DSA" respectively. Following this, this document defines "Composite-ML-DSA" and "HashComposite-ML-DSA" which mirror the external functions defined in [FIPS.204]. 4. Composite ML-DSA Functions 4.1. Key Generation To generate a new keypair for Composite schemes, the KeyGen() -> (pk, sk) function is used. The KeyGen() function calls the two key generation functions of the component algorithms for the Composite keypair in no particular order. Multi-process or multi-threaded applications might choose to execute the key generation functions in parallel for better key generation performance. The following process is used to generate composite keypair values: Ounsworth, et al. Expires 4 September 2025 [Page 8] Internet-Draft Composite ML-DSA March 2025 KeyGen() -> (pk, sk) Explicit inputs: None Implicit inputs: ML-DSA A placeholder for the specific ML-DSA algorithm and parameter set to use, for example, could be "ML-DSA-65". Trad A placeholder for the specific traditional algorithm and parameter set to use, for example "RSASSA-PSS" or "Ed25519". Output: (pk, sk) The composite keypair. Key Generation Process: 1. Generate component keys (mldsaPK, mldsaSK) = ML-DSA.KeyGen() (tradPK, tradSK) = Trad.KeyGen() 2. Check for component key gen failure if NOT (mldsaPK, mldsaSK) or NOT (tradPK, tradSK): output "Key generation error" 3. Encode the component keys into composite structures pk = CompositeSignaturePublicKey(mldsaPK, tradPK) sk = CompositeSignaturePrivateKey(mldsaSK, tradSK) 4. Output the composite keys return (pk, sk) Figure 1: Composite KeyGen(pk, sk) The structures CompositeSignaturePublicKey and CompositeSignaturePrivateKey are described in Section 5.1 and Section 5.2 respectively and are used here as placeholders since implementations MAY use their own internal key representations in cases where interoperability is not required. Ounsworth, et al. Expires 4 September 2025 [Page 9] Internet-Draft Composite ML-DSA March 2025 In order to ensure fresh keys, the key generation functions MUST be executed for both component algorithms. Compliant parties MUST NOT use, import or export component keys that are used in other contexts, combinations, or by themselves as keys for standalone algorithm use. For more details on the security considerations around key reuse, see section Section 11.3. Note that in step 2 above, both component key generation processes are invoked, and no indication is given about which one failed. This SHOULD be done in a timing-invariant way to prevent side-channel attackers from learning which component algorithm failed. 4.2. Pure Signature Mode This mode mirrors ML-DSA defined in Sections 5.2 and 5.3 of [FIPS.204]. In the pure mode the Domain separator value is concatenated with the length of the context in bytes, the context, and the message to be signed. After that, the signature process for each component algorithm is invoked and the values are then placed in the CompositeSignatureValue structure defined in Section 6.1. A composite signature's value MUST include two signature components and MUST be in the same order as the components from the corresponding signing key. 4.2.1. Composite-ML-DSA.Sign This mode mirrors ML-DSA.Sign(sk, M, ctx) defined in Algorithm 2 in Section 5.2 of [FIPS.204]. Composite-ML-DSA.Sign (sk, M, ctx) -> (signature) Explicit inputs: sk Composite private key consisting of signing private keys for each component. M The Message to be signed, an octet string. ctx The Message context string used in the composite signature combiner, which defaults to the empty string. Implicit inputs: Ounsworth, et al. Expires 4 September 2025 [Page 10] Internet-Draft Composite ML-DSA March 2025 ML-DSA A placeholder for the specific ML-DSA algorithm and parameter set to use, for example, could be "ML-DSA-65". Trad A placeholder for the specific traditional algorithm and parameter set to use, for example "RSASSA-PSS with id-sha256" or "Ed25519". Domain Domain separator value for binding the signature to the Composite OID. See section on Domain Separators below. Prefix The prefix String which is the byte encoding of the String "CompositeAlgorithmSignatures2025" which in hex is 436F6D706F73697465416C676F726974686D5369676E61747572657332303235 Output: signature The composite signature, a CompositeSignatureValue. Signature Generation Process: 1. If len(ctx) > 255: return error 2. Compute the Message M'. M' = Prefix || Domain || len(ctx) || ctx || M 3. Separate the private key into component keys. (mldsaSK, tradSK) = sk 4. Generate the 2 component signatures independently, by calculating the signature over M' according to their algorithm specifications. mldsaSig = ML-DSA.Sign( mldsaSK, M', ctx=Domain ) tradSig = Trad.Sign( tradSK, M' ) 5. If either ML-DSA.Sign() or Trad.Sign() return an error, then this process must return an error. if NOT mldsaSig or NOT tradSig: output "Signature generation error" 6. Encode each component signature into a CompositeSignatureValue. signature = CompositeSignatureValue(mldsaSig, tradSig) 7. Output signature Ounsworth, et al. Expires 4 September 2025 [Page 11] Internet-Draft Composite ML-DSA March 2025 return signature Figure 2: Composite-ML-DSA.Sign(sk, M, ctx) It is possible to use component private keys stored in separate software or hardware keystores. Variations in the process to accommodate particular private key storage mechanisms are considered to be conformant to this document so long as it produces the same output and error handling as the process sketched above. Note that in step 5 above, both component signature processes are invoked, and no indication is given about which one failed. This SHOULD be done in a timing-invariant way to prevent side-channel attackers from learning which component algorithm failed. Note that there are two different context strings ctx here: the first is the application context that is passed in to Composite-ML-DSA.Sign and bound to the composite signature combiner. The second is the ctx that is passed down into the underlying ML-DSA.Sign and here Composite-ML-DSA itself is the application that we wish to bind, and outer ctx is already contained within the M' message. 4.2.2. Composite-ML-DSA.Verify This mode mirrors ML-DSA.Verify(pk, M, signature, ctx) defined in Algorithm 3 in Section 5.3 of [FIPS.204]. Compliant applications MUST output "Valid signature" (true) if and only if all component signatures were successfully validated, and "Invalid signature" (false) otherwise. Composite-ML-DSA.Verify(pk, M, signature, ctx) Explicit inputs: pk Composite public key consisting of verification public keys for each component. M Message whose signature is to be verified, an octet string. signature CompositeSignatureValue containing the component signature values (mldsaSig and tradSig) to be verified. ctx The Message context string used in the composite signature combiner, which defaults to the empty string. Implicit inputs: Ounsworth, et al. Expires 4 September 2025 [Page 12] Internet-Draft Composite ML-DSA March 2025 ML-DSA A placeholder for the specific ML-DSA algorithm and parameter set to use, for example, could be "ML-DSA-65". Trad A placeholder for the specific traditional algorithm and parameter set to use, for example "RSASSA-PSS with id-sha256" or "Ed25519". Domain Domain separator value for binding the signature to the Composite OID. See section on Domain Separators below. Prefix The prefix String which is the byte encoding of the String "CompositeAlgorithmSignatures2025" which in hex is 436F6D706F73697465416C676F726974686D5369676E61747572657332303235 Output: Validity (bool) "Valid signature" (true) if the composite signature is valid, "Invalid signature" (false) otherwise. Signature Verification Process: 1. If len(ctx) > 255 return error 2. Separate the keys and signatures (pk1, pk2) = pk (s1, s2) = signature If Error during Desequencing, or if any of the component keys or signature values are not of the correct key type or length for the given component algorithm then output "Invalid signature" and stop. 3. Compute the Message M'. M' = Prefix || Domain || len(ctx) || ctx || M 4. Check each component signature individually, according to its algorithm specification. If any fail, then the entire signature validation fails. if not ML-DSA.Verify( pk1, M', s1, ctx=Domain) then output "Invalid signature" if not Trad.Verify( pk2, M', s2) then output "Invalid signature" Ounsworth, et al. Expires 4 September 2025 [Page 13] Internet-Draft Composite ML-DSA March 2025 if all succeeded, then output "Valid signature" Figure 3: Composite-ML-DSA.Verify(pk, Message, signature, Context) Note that in step 4 above, the function fails early if the first component fails to verify. Since no private keys are involved in a signature verification, there are no timing attacks to consider, so this is ok. 4.3. PreHash-Signature Mode This mode mirrors HashML-DSA defined in Section 5.4 of [FIPS.204]. In the pre-hash mode the Domain separator Section 7.3 is concatenated with the length of the context in bytes, the context, an additional DER encoded value that represents the OID of the Hash function and finally the hash of the message to be signed. After that, the signature process for each component algorithm is invoked and the values are then placed in the CompositeSignatureValue structure defined in Section 6.1. A composite signature's value MUST include two signature components and MUST be in the same order as the components from the corresponding signing key. Note that there are two different context strings ctx here: the first is the application context that is passed in to Composite-ML-DSA.Sign and bound to the composite signature combiner. The second is the ctx that is passed down into the underlying ML-DSA.Sign and here Composite-ML-DSA itself is the application that we wish to bind, and outer ctx is already contained within the M' message. 4.3.1. HashComposite-ML-DSA-Sign signature mode This mode mirrors HashML-DSA.Sign(sk, M, ctx, PH) defined in Algorithm 4 Section 5.4.1 of [FIPS.204]. In the pre-hash mode the Domain separator (see Section 7.3) is concatenated with the length of the context in bytes, the context, an additional DER encoded value that indicates which Hash function was used for the pre-hash and finally the pre-hashed message PH(M). Ounsworth, et al. Expires 4 September 2025 [Page 14] Internet-Draft Composite ML-DSA March 2025 HashComposite-ML-DSA.Sign (sk, M, ctx, PH) -> (signature) Explicit inputs: sk Composite private key consisting of signing private keys for each component. M The Message to be signed, an octet string. ctx The Message context string used in the composite signature combiner, which defaults to the empty string. PH The Message Digest Algorithm for pre-hashing. See section on pre-hashing the message below. Implicit inputs: ML-DSA A placeholder for the specific ML-DSA algorithm and parameter set to use, for example, could be "ML-DSA-65". Trad A placeholder for the specific traditional algorithm and parameter set to use, for example "RSASSA-PSS with id-sha256" or "Ed25519". Prefix The prefix String which is the byte encoding of the String "CompositeAlgorithmSignatures2025" which in hex is 436F6D706F73697465416C676F726974686D5369676E61747572657332303235 Domain Domain separator value for binding the signature to the Composite OID. See section on Domain Separators below. HashOID The DER Encoding of the Object Identifier of the PreHash algorithm (PH) which is passed into the function. Output: signature The composite signature, a CompositeSignatureValue. Signature Generation Process: 1. If len(ctx) > 255: return error 2. Compute the Message format M'. M' := Prefix || Domain || len(ctx) || ctx || HashOID || PH(M) 3. Separate the private key into component keys. Ounsworth, et al. Expires 4 September 2025 [Page 15] Internet-Draft Composite ML-DSA March 2025 (mldsaSK, tradSK) = sk 4. Generate the 2 component signatures independently, by calculating the signature over M' according to their algorithm specifications. mldsaSig = ML-DSA.Sign( mldsaSK, M', ctx=Domain ) tradSig = Trad.Sign( tradSK, M' ) 5. If either ML-DSA.Sign() or Trad.Sign() return an error, then this process must return an error. if NOT mldsaSig or NOT tradSig: output "Signature generation error" 6. Encode each component signature into a CompositeSignatureValue. signature := CompositeSignatureValue(mldsaSig, tradSig) 7. Output signature return signature Figure 4: HashComposite-ML-DSA.Sign(sk, M, ctx, PH) It is possible to use component private keys stored in separate software or hardware keystores. Variations in the process to accommodate particular private key storage mechanisms are considered to be conformant to this document so long as it produces the same output and error handling as the process sketched above. Note that in step 5 above, both component signature processes are invoked, and no indication is given about which one failed. This SHOULD be done in a timing-invariant way to prevent side-channel attackers from learning which component algorithm failed. Note that there are two different context strings ctx here: the first is the application context that is passed in to Composite-ML-DSA.Sign and bound to the composite signature combiner. The second is the ctx that is passed down into the underlying ML-DSA.Sign and here Composite-ML-DSA itself is the application that we wish to bind, and outer ctx is already contained within the M' message. 4.3.2. HashComposite-ML-DSA-Verify This mode mirrors HashML-DSA.Verify(pk, M, signature, ctx, PH) defined in Section 5.4.1 of [FIPS.204]. Ounsworth, et al. Expires 4 September 2025 [Page 16] Internet-Draft Composite ML-DSA March 2025 Compliant applications MUST output "Valid signature" (true) if and only if all component signatures were successfully validated, and "Invalid signature" (false) otherwise. HashComposite-ML-DSA.Verify(pk, M, signature, ctx, PH) Explicit inputs: pk Composite public key consisting of verification public keys for each component. M Message whose signature is to be verified, an octet string. signature CompositeSignatureValue containing the component signature values (mldsaSig and tradSig) to be verified. ctx The Message context string used in the composite signature combiner, which defaults to the empty string. PH The Message Digest Algorithm for pre-hashing. See section on pre-hashing the message below. Implicit inputs: ML-DSA A placeholder for the specific ML-DSA algorithm and parameter set to use, for example, could be "ML-DSA-65". Trad A placeholder for the specific traditional algorithm and parameter set to use, for example "RSASSA-PSS with id-sha256" or "Ed25519". Prefix The prefix String which is the byte encoding of the String "CompositeAlgorithmSignatures2025" which in hex is 436F6D706F73697465416C676F726974686D5369676E61747572657332303235 Domain Domain separator value for binding the signature to the Composite OID. See section on Domain Separators below. HashOID The DER Encoding of the Object Identifier of the PreHash algorithm (PH) which is passed into the function. Output: Validity (bool) "Valid signature" (true) if the composite signature is valid, "Invalid signature" (false) otherwise. Ounsworth, et al. Expires 4 September 2025 [Page 17] Internet-Draft Composite ML-DSA March 2025 Signature Verification Process: 1. If len(ctx) > 255 return error 2. Separate the keys and signatures (pk1, pk2) = pk (s1, s2) = signature If Error during Desequencing, or if any of the component keys or signature values are not of the correct key type or length for the given component algorithm then output "Invalid signature" and stop. 3. Compute a Hash of the Message. M' = Prefix || Domain || len(ctx) || ctx || HashOID || PH(M) 4. Check each component signature individually, according to its algorithm specification. If any fail, then the entire signature validation fails. if not ML-DSA.Verify( pk1, M', s1, ctx=Domain ) then output "Invalid signature" if not Trad.Verify( pk2, M', s2 ) then output "Invalid signature" if all succeeded, then output "Valid signature" Figure 5: HashComposite-ML-DSA.Verify(pk, M, signature, ctx, PH) Note that in step 4 above, the function fails early if the first component fails to verify. Since no private keys are involved in a signature verification, there are no timing attacks to consider, so this is ok. Note that there are two different context strings ctx here: the first is the application context that is passed in to Composite-ML-DSA.Sign and bound to the composite signature combiner. The second is the ctx that is passed down into the underlying ML-DSA.Sign and here Composite-ML-DSA itself is the application that we wish to bind, and outer ctx is already contained within the M' message. Ounsworth, et al. Expires 4 September 2025 [Page 18] Internet-Draft Composite ML-DSA March 2025 4.4. SerializeKey and DeserializeKey Each component key is serialized according to their respective standard as shown in Appendix B and concatenated together using a fixed 4-byte length field denoting the length in bytes of the first component key, as shown below. Ounsworth, et al. Expires 4 September 2025 [Page 19] Internet-Draft Composite ML-DSA March 2025 Composite-ML-DSA.SerializeKey(key) -> bytes Explicit Input: key Composite ML-DSA public key or private key Implicit inputs: ML-DSA A placeholder for the specific ML-DSA algorithm and parameter set to use, for example, could be "ML-DSA-65". Trad A placeholder for the specific traditional algorithm and parameter set to use, for example "RSA" or "ECDSA". IntegerToBytes A function that takes an Integer and converts it to a byte representation of size byteLength. See definition in [FIPS.204] Output: bytes The encoded public key or private key Serialization Process: 1. Separate the keys (mldsaKey, tradKey) = key 2. Serialize each of the constituent public keys The component keys are serialized according to their respective standard as shown in the component algorithm appendix. mldsaEncodedKey = MLDSA.SerializeKey(mldsaKey) tradEncodedKey = Trad.SerializeKey(tradKey) 3. Calculate the length encoding of the mldsaEncodedPK If (mldsaEncodeKey.length) > 2^32 then output "message too long" and stop. encodedLength = IntegerToBytes(mldsaEncodeKey.length, 4) 4. Combine and output the encoded public key bytes = encodedLength || mldsaEncodedPK || tradEncodedPK output bytes Figure 6: Composite SerializeKey(pk) Ounsworth, et al. Expires 4 September 2025 [Page 20] Internet-Draft Composite ML-DSA March 2025 Deserialization reverses this process, raising an error in the event that the input is malformed. Each component key is deserialized according to their respective standard as shown in Appendix B. Composite-ML-DSA.DeserializeKey(bytes) -> pk Explicit Input: bytes An encoded public key or private key Implicit inputs: ML-DSA A placeholder for the specific ML-DSA algorithm and parameter set to use, for example, could be "ML-DSA-65". Trad A placeholder for the specific traditional algorithm and parameter set to use, for example "RSA" or "ECDSA". Output: key The composite ML-DSA public key or private key Deserialization Process: 1. Validate the length of the the input byte string if bytes is not the correct length: output "Deserialization error" 2. Parse each constituent encoded key. The first 4 bytes encodes the length of mldsaEncodedKey, which MAY be used to separate the mldsaEncodedKey and tradEncodedKey, and then is to be discarded. This length SHOULD be checked against the expected length value as per ML-DSA. (mldsaEncodedKey, tradEncodedKey) = bytes 3. Deserialize the constituent public or private keys The component keys are deserialized according to their respective standard as shown in the component algorithm appendix. mldsaKey = MLDSA.DeserializeKey(mldsaEncodedKey) tradKey = Trad.DeserializeKey(tradEncodedKey) 4. If either ML-DSA.DeserializeKey() or Trad.DeserializeKey() return an error, then this process must return an error. Ounsworth, et al. Expires 4 September 2025 [Page 21] Internet-Draft Composite ML-DSA March 2025 if NOT mldsaKey or NOT tradKey: output "Deserialization error" 5. Output the composite ML-DSA key output (mldsaPK, tradPK) Figure 7: Composite DeserializeKey(bytes) 4.5. SerializeSignatureValue and DeSerializeSignatureValue Each component signature is serialized according to their respective standard as shown in Appendix B and concatenated together using a fixed 4-byte length field denoting the length in bytes of the first component signature, as shown below. Ounsworth, et al. Expires 4 September 2025 [Page 22] Internet-Draft Composite ML-DSA March 2025 Composite-ML-DSA.SerializeSignatureValue(CompositeSignatureValue) -> bytes Explicit Input: CompositeSignatureValue The Composite Signature Value obtained from Composite-ML-DSA.Sign() Implicit inputs: ML-DSA A placeholder for the specific ML-DSA algorithm and parameter set to use, for example, could be "ML-DSA-65". Trad A placeholder for the specific traditional algorithm and parameter set to use, for example "RSA" or "ECDSA". IntegerToBytes A function that takes an Integer and converts it to a byte representation of size byteLength. See definition in [FIPS.204] Output: bytes The encoded CompositeSignatureValue Serialization Process: 1. Separate the signatures (mldsaSig, tradSig) = CompositeSignatureValue 2. Serialize each of the constituent signatures The component signatures are serialized according to their respective standard as shown in the component algorithm appendix. mldsaEncodedSignature = ML-DSA.SerializeSignature(mldsaSig) tradEncodedSignature = Trad.SerializeSignature(tradSig) 3. Calculate the length encoding of the mldsaEncodedSignature If (mldsaEncodeKey.length) > 2^32 then output "message too long" and stop. encodedLength = IntegerToBytes(mldsaEncodeKey.length, 4) encodedLength = IntegerToBytes(mldsaEncodedSignature.length, 4) 4. Combine and output the encoded composite signature bytes = encodedLength || mldsaEncodedSignature || tradEncodedSignature output bytes Ounsworth, et al. Expires 4 September 2025 [Page 23] Internet-Draft Composite ML-DSA March 2025 Figure 8: Composite SerializeSignatureValue(CompositeSignatureValue) Deserialization reverses this process, raising an error in the event that the input is malformed. Each component signature is deserialized according to their respective standard as shown in Appendix B. Composite-ML-DSA.DeserializeSignatureValue(bytes) -> CompositeSignatureValue Explicit Input: bytes An encoded CompositeSignatureValue Implicit inputs: ML-DSA A placeholder for the specific ML-DSA algorithm and parameter set to use, for example, could be "ML-DSA-65". Trad A placeholder for the specific traditional algorithm and parameter set to use, for example "RSA" or "ECDSA". Output: CompositeSignatureValue The CompositeSignatureValue Deserialization Process: 1. Validate the length of the the input byte string if bytes is not the correct length: output "Deserialization error" 2. Parse each constituent encoded signature. The first 4 bytes encodes the length of mldsaEncodedSignature, which MAY be used to separate the mldsaEncodedSignature and tradEncodedSignature, and then is to be discarded. The mldsaEncodedSignature length SHOULD be checked against the expected length value as per ML-DSA. (mldsaEncodedSignature, tradEncodedSignature) = bytes 3. Deserialize the constituent signature values The component signatures are deserialized according to their respective standard as shown in the component algorithm appendix. mldsaSig = ML-DSA.DeserializeSignature(mldsaEncodedSignature) tradSig = Trad.DeserializeSignature(tradEncodedSignature) 4. If either ML-DSA.DeserializeSignature() or Ounsworth, et al. Expires 4 September 2025 [Page 24] Internet-Draft Composite ML-DSA March 2025 Trad.DeserializeSignature() return an error, then this process must return an error. if NOT mldsaSig or NOT tradSig: output "Deserialization error" 5. Output the CompositeSignatureValue output (mldsaSig, tradSig) Figure 9: Composite DeserializeSignatureValue(bytes) 4.6. ML-DSA public key, private key and signature sizes for serialization and deserialization As noted above, the composite public key, composite private key and composite signature value serialization and deserialization methods use a fixed 4-byte length value to indicate the size of the first component. This is to allow the separation of the first component from the second component. It is RECOMMENDED that the length specified for the first component be checked against the values from the table below to ensure the encoding has been done propertly. If future composite combinations make use of algorithms where the first component uses variable length keys or signatures, then this fixed 4-byte length value can be used to ensure the components are correctly deserialized. The following table shows the possible length values in bytes for the public, private and signature sizes for ML-DSA which can be used to deserialzie the components. +===========+============+====================+===========+ | Algorithm | Public key | Private key | Signature | +===========+============+====================+===========+ | ML-DSA-44 | 1312 | 32 or 2560 or 2592 | 2420 | +-----------+------------+--------------------+-----------+ | ML-DSA-65 | 1952 | 32 or 4032 or 4064 | 3309 | +-----------+------------+--------------------+-----------+ | ML-DSA-87 | 2592 | 32 or 4896 or 4928 | 4627 | +-----------+------------+--------------------+-----------+ Table 1: ML-DSA Key and Signature Sizes in bytes Ounsworth, et al. Expires 4 September 2025 [Page 25] Internet-Draft Composite ML-DSA March 2025 5. Composite Key Structures In order to form composite public keys and signature values, we define ASN.1-based composite encodings such that these structures can be used as a drop-in replacement for existing public key and signature fields such as those found in PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS [RFC5652]. 5.1. CompositeMLDSAPublicKey The wire encoding of a Composite ML-DSA public key is: CompositeMLDSAPublicKey ::= BIT STRING Since RSA and ECDSA component public keys are themselves in a DER encoding, the following show the internal structure of the various public key types used in this specification: When a CompositeMLDSAPublicKey is used with an RSA public key, the BIT STRING is generated by the concatenation of a raw ML-DSA key according to [I-D.ietf-lamps-dilithium-certificates], and an RSAPublicKey (which is a DER encoded RSAPublicKey). When a CompositeMLDSAPublicKey is used with an EC public key, the BIT STRING is generated by the concatenation of a raw ML-DSA key according to [I-D.ietf-lamps-dilithium-certificates] and an ECDSAPublicKey (which is a DER encoded ECPoint). When a CompositeMLDSAPublicKey is used with an Edwards public key, the BIT STRING is generated by the concatenation of a raw ML-DSA key according to [I-D.ietf-lamps-dilithium-certificates] and a raw Edwards public key according to [RFC8410]. Some applications may need to reconstruct the SubjectPublicKeyInfo objects corresponding to each component public key. Table 2 or Table 3 in Section 7 provides the necessary mapping between composite and their component algorithms for doing this reconstruction. When the CompositeMLDSAPublicKey must be provided in octet string or bit string format, the data structure is encoded as specified in Section 5.3. Component keys of a CompositeMLDSAPublicKey MUST NOT be used in any other type of key or as a standalone key. For more details on the security considerations around key reuse, see section Section 11.3. Ounsworth, et al. Expires 4 September 2025 [Page 26] Internet-Draft Composite ML-DSA March 2025 The following ASN.1 Information Object Class is defined to allow for compact definitions of each composite algorithm, leading to a smaller overall ASN.1 module. pk-CompositeSignature {OBJECT IDENTIFIER:id, PublicKeyType} PUBLIC-KEY ::= { IDENTIFIER id KEY PublicKeyType PARAMS ARE absent CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign} } As an example, the public key type id-MLDSA44-ECDSA-P256 is defined as: id-MLDSA44-ECDSA-P256 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA44-ECDSA-P256, CompositeMLDSAPublicKey } The full set of key types defined by this specification can be found in the ASN.1 Module in Section 9. 5.2. CompositeMLDSAPrivateKey When a Composite ML-DSA private key is to be exported from a cryptographic module, it uses an analogous definition to the public keys: CompositeMLDSAPrivateKey ::= OCTET STRING Each element of the CompositeMLDSAPrivateKey is an OCTET STRING according to the encoding of the underlying algorithm specification and will decode into the respective private key structures in an analogous way to the public key structures defined in Section 5.1. The ASN.1 module in this document does not provide helper classes for private keys. The PrivateKey for each component algorithm MUST be in the same order as defined in Section 5.1. Use cases that require an interoperable encoding for composite private keys will often need to place a CompositeMLDSAPrivateKey inside a OneAsymmetricKey structure defined in [RFC5958], such as when private keys are carried in PKCS #12 [RFC7292], CMP [RFC4210] or CRMF [RFC4211]. The definition of OneAsymmetricKey is copied here for convenience: Ounsworth, et al. Expires 4 September 2025 [Page 27] Internet-Draft Composite ML-DSA March 2025 OneAsymmetricKey ::= SEQUENCE { version Version, privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, privateKey PrivateKey, attributes [0] Attributes OPTIONAL, ..., [[2: publicKey [1] PublicKey OPTIONAL ]], ... } ... PrivateKey ::= OCTET STRING -- Content varies based on type of key. The -- algorithm identifier dictates the format of -- the key. When a CompositeMLDSAPrivateKey is conveyed inside a OneAsymmetricKey structure (version 1 of which is also known as PrivateKeyInfo) [RFC5958], the privateKeyAlgorithm field SHALL be set to the corresponding composite algorithm identifier defined according to Section 7 and its parameters field MUST be absent. The privateKey field SHALL contain the CompositeMLDSAPrivateKey, and the publicKey field remains OPTIONAL. If the publicKey field is present, it MUST be a CompositeMLDSAPublicKey. Some applications may need to reconstruct the OneAsymmetricKey objects corresponding to each component private key. Section 7 provides the necessary mapping between composite and their component algorithms for doing this reconstruction. Component keys of a CompositeMLDSAPrivateKey MUST NOT be used in any other type of key or as a standalone key. For more details on the security considerations around key reuse, see section Section 11.3. 5.3. Encoding Rules Many protocol specifications will require that the composite public key and composite private key data structures be represented by an octet string or bit string. When an octet string is required, the DER encoding of the composite data structure SHALL be used directly. When a bit string is required, the octets of the DER encoded composite data structure SHALL be used as the bits of the bit string, with the most significant bit of the first octet becoming the first bit, and so on, ending with the least significant bit of the last octet becoming the last bit of the bit string. Ounsworth, et al. Expires 4 September 2025 [Page 28] Internet-Draft Composite ML-DSA March 2025 In the interests of simplicity and avoiding compatibility issues, implementations that parse these structures MAY accept both BER and DER. 5.4. Key Usage Bits When any of the Composite ML-DSA AlgorithmIdentifier appears in the SubjectPublicKeyInfo field of an X.509 certificate [RFC5280], the key usage certificate extension MUST only contain only signing-type key usages. The normal keyUsage rules for signing-type keys from [RFC5280] apply, and are reproduced here for completeness. For Certification Authority (CA) certificates that carry a composite public key, any combination of the following values MAY be present and any other values MUST NOT be present: digitalSignature; nonRepudiation; keyCertSign; and cRLSign. For End Entity certificates, any combination of the following values MAY be present and any other values MUST NOT be present: digitalSignature; and nonRepudiation; Composite ML-DSA keys MUST NOT be used in a "dual usage" mode because even if the traditional component key supports both signing and encryption, the post-quantum algorithms do not and therefore the overall composite algorithm does not. 6. Composite Signature Structures 6.1. sa-CompositeSignature The ASN.1 algorithm object for a composite signature is: sa-CompositeSignature{OBJECT IDENTIFIER:id, PUBLIC-KEY:publicKeyType } SIGNATURE-ALGORITHM ::= { IDENTIFIER id VALUE CompositeSignatureValue PARAMS ARE absent PUBLIC-KEYS {publicKeyType} } Ounsworth, et al. Expires 4 September 2025 [Page 29] Internet-Draft Composite ML-DSA March 2025 6.2. CompositeSignatureValue The output of a Composite ML-DSA algorithm is the DER encoding of the following structure: The CompositeSignatureValue is the DER encoding of a concatenation of the signature values from the underlying component algorithms. It is represented in ASN.1 as follows: CompositeSignatureValue ::= BIT STRING The order of the component signature values is the same as the order defined in Section 5.1. 7. Algorithm Identifiers This table summarizes the list of Composite ML-DSA algorithms and lists the OID and the two component algorithms. Domain separator values are defined below in Section 7.3. EDNOTE: these are prototyping OIDs to be replaced by IANA. .1 is equal to 2.16.840.1.114027.80.8.1.1 7.1. PureComposite-ML-DSA Algorithm Identifiers Pure Composite-ML-DSA Signature public key types: +======================+============+=========+=======================+ |Composite Signature |OID |First |Second Algorithm | |Algorithm | |Algorithm| | +======================+============+=========+=======================+ |id-MLDSA44-RSA2048-PSS|.60|id-ML- |id-RSASSA-PSS with id- | | | |DSA-44 |sha256 | +----------------------+------------+---------+-----------------------+ |id- |.61|id-ML- |sha256WithRSAEncryption| |MLDSA44-RSA2048-PKCS15| |DSA-44 | | +----------------------+------------+---------+-----------------------+ |id-MLDSA44-Ed25519 |.62|id-ML- |id-Ed25519 | | | |DSA-44 | | +----------------------+------------+---------+-----------------------+ |id-MLDSA44-ECDSA-P256 |.63|id-ML- |ecdsa-with-SHA256 with | | | |DSA-44 |secp256r1 | +----------------------+------------+---------+-----------------------+ |id-MLDSA65-RSA3072-PSS|.64|id-ML- |id-RSASSA-PSS with id- | | | |DSA-65 |sha256 | +----------------------+------------+---------+-----------------------+ |id- |.65|id-ML- |sha256WithRSAEncryption| Ounsworth, et al. Expires 4 September 2025 [Page 30] Internet-Draft Composite ML-DSA March 2025 |MLDSA65-RSA3072-PKCS15| |DSA-65 | | +----------------------+------------+---------+-----------------------+ |id-MLDSA65-RSA4096-PSS|.66|id-ML- |id-RSASSA-PSS with id- | | | |DSA-65 |sha384 | +----------------------+------------+---------+-----------------------+ |id- |.67|id-ML- |sha384WithRSAEncryption| |MLDSA65-RSA4096-PKCS15| |DSA-65 | | +----------------------+------------+---------+-----------------------+ |id-MLDSA65-ECDSA-P256 |.68|id-ML- |ecdsa-with-SHA256 with | | | |DSA-65 |secp256r1 | +----------------------+------------+---------+-----------------------+ |id-MLDSA65-ECDSA-P384 |.69|id-ML- |ecdsa-with-SHA384 with | | | |DSA-65 |secp384r1 | +----------------------+------------+---------+-----------------------+ |id-MLDSA65-ECDSA- |.70|id-ML- |ecdsa-with-SHA256 with | |brainpoolP256r1 | |DSA-65 |brainpoolP256r1 | +----------------------+------------+---------+-----------------------+ |id-MLDSA65-Ed25519 |.71|id-ML- |id-Ed25519 | | | |DSA-65 | | +----------------------+------------+---------+-----------------------+ |id-MLDSA87-ECDSA-P384 |.72|id-ML- |ecdsa-with-SHA384 with | | | |DSA-87 |secp384r1 | +----------------------+------------+---------+-----------------------+ |id-MLDSA87-ECDSA- |.73|id-ML- |ecdsa-with-SHA384 with | |brainpoolP384r1 | |DSA-87 |brainpoolP384r1 | +----------------------+------------+---------+-----------------------+ |id-MLDSA87-Ed448 |.74|id-ML- |id-Ed448 | | | |DSA-87 | | +----------------------+------------+---------+-----------------------+ |id-MLDSA87-RSA4096-PSS|.75|id-ML- |id-RSASSA-PSS with id- | | | |DSA-87 |sha384 | +----------------------+------------+---------+-----------------------+ Table 2: Pure ML-DSA Composite Signature Algorithms See the ASN.1 module in section Section 9 for the explicit definitions of the above Composite ML-DSA algorithms. Full specifications for the referenced algorithms can be found in Appendix B. 7.2. HashComposite-ML-DSA Algorithm Identifiers HashComposite-ML-DSA Signature public key types: Ounsworth, et al. Expires 4 September 2025 [Page 31] Internet-Draft Composite ML-DSA March 2025 +=================================+============+=========+=======================+======+ |Composite Signature Algorithm |OID |First |Second Algorithm |Pre- | | | |Algorithm| |Hash | +=================================+============+=========+=======================+======+ |id-HashMLDSA44-RSA2048-PSS-SHA256|.80|id-ML- |id-RSASSA-PSS with id- |id- | | | |DSA-44 |sha256 |sha256| +---------------------------------+------------+---------+-----------------------+------+ |id- |.81|id-ML- |sha256WithRSAEncryption|id- | |HashMLDSA44-RSA2048-PKCS15-SHA256| |DSA-44 | |sha256| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA44-Ed25519-SHA512 |.82|id-ML- |id-Ed25519 |id- | | | |DSA-44 | |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA44-ECDSA-P256-SHA256 |.83|id-ML- |ecdsa-with-SHA256 with |id- | | | |DSA-44 |secp256r1 |sha256| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA65-RSA3072-PSS-SHA512|.84|id-ML- |id-RSASSA-PSS with id- |id- | | | |DSA-65 |sha256 |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id- |.85|id-ML- |sha256WithRSAEncryption|id- | |HashMLDSA65-RSA3072-PKCS15-SHA512| |DSA-65 | |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA65-RSA4096-PSS-SHA512|.86|id-ML- |id-RSASSA-PSS with id- |id- | | | |DSA-65 |sha384 |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id- |.87|id-ML- |sha384WithRSAEncryption|id- | |HashMLDSA65-RSA4096-PKCS15-SHA512| |DSA-65 | |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA65-ECDSA-P256-SHA512 |.88|id-ML- |ecdsa-with-SHA256 with |id- | | | |DSA-65 |secp256r1 |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA65-ECDSA-P384-SHA512 |.89|id-ML- |ecdsa-with-SHA384 with |id- | | | |DSA-65 |secp384r1 |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA65-ECDSA- |.90|id-ML- |ecdsa-with-SHA256 with |id- | |brainpoolP256r1-SHA512 | |DSA-65 |brainpoolP256r1 |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA65-Ed25519-SHA512 |.91|id-ML- |id-Ed25519 |id- | | | |DSA-65 | |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA87-ECDSA-P384-SHA512 |.92|id-ML- |ecdsa-with-SHA384 with |id- | | | |DSA-87 |secp384r1 |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA87-ECDSA- |.93|id-ML- |ecdsa-with-SHA384 with |id- | |brainpoolP384r1-SHA512 | |DSA-87 |brainpoolP384r1 |sha512| +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA87-Ed448-SHA512 |.94|id-ML- |id-Ed448 |id- | | | |DSA-87 | |sha512| Ounsworth, et al. Expires 4 September 2025 [Page 32] Internet-Draft Composite ML-DSA March 2025 +---------------------------------+------------+---------+-----------------------+------+ |id-HashMLDSA87-RSA4096-PSS-SHA512|.95|id-ML- |id-RSASSA-PSS with id- |id- | | | |DSA-87 |sha384 |sha512| +---------------------------------+------------+---------+-----------------------+------+ Table 3: Hash ML-DSA Composite Signature Algorithms See the ASN.1 module in Section 9 for the explicit definitions of the above Composite ML-DSA algorithms. The Pre-Hash algorithm is used as the PH algorithm and the DER Encoded OID value of this Hash is used as HashOID for the Message format in step 2 of HashComposite-ML-DSA.Sign in section Section 4.3.1 and HashComposite-ML-DSA.Verify in Section 4.3.2. Full specifications for the referenced algorithms can be found in Appendix B. 7.3. Domain Separators As mentioned above, the OID input value is used as a domain separator for the Composite Signature Generation and verification process and is the DER encoding of the OID. The following table shows the HEX encoding for each Signature Algorithm. Ounsworth, et al. Expires 4 September 2025 [Page 33] Internet-Draft Composite ML-DSA March 2025 +==================================+============================+ | Composite Signature Algorithm | Domain Separator (in Hex | | | encoding) | +==================================+============================+ | id-MLDSA44-RSA2048-PSS | 060B6086480186FA6B5008013C | +----------------------------------+----------------------------+ | id-MLDSA44-RSA2048-PKCS15 | 060B6086480186FA6B5008013D | +----------------------------------+----------------------------+ | id-MLDSA44-Ed25519 | 060B6086480186FA6B5008013E | +----------------------------------+----------------------------+ | id-MLDSA44-ECDSA-P256 | 060B6086480186FA6B5008013F | +----------------------------------+----------------------------+ | id-MLDSA65-RSA3072-PSS | 060B6086480186FA6B50080140 | +----------------------------------+----------------------------+ | id-MLDSA65-RSA3072-PKCS15 | 060B6086480186FA6B50080141 | +----------------------------------+----------------------------+ | id-MLDSA65-RSA4096-PSS | 060B6086480186FA6B50080142 | +----------------------------------+----------------------------+ | id-MLDSA65-RSA4096-PKCS15 | 060B6086480186FA6B50080143 | +----------------------------------+----------------------------+ | id-MLDSA65-ECDSA-P256 | 060B6086480186FA6B50080144 | +----------------------------------+----------------------------+ | id-MLDSA65-ECDSA-P384 | 060B6086480186FA6B50080145 | +----------------------------------+----------------------------+ | id-MLDSA65-ECDSA-brainpoolP256r1 | 060B6086480186FA6B50080146 | +----------------------------------+----------------------------+ | id-MLDSA65-Ed25519 | 060B6086480186FA6B50080147 | +----------------------------------+----------------------------+ | id-MLDSA87-ECDSA-P384 | 060B6086480186FA6B50080148 | +----------------------------------+----------------------------+ | id-MLDSA87-ECDSA-brainpoolP384r1 | 060B6086480186FA6B50080149 | +----------------------------------+----------------------------+ | id-MLDSA87-Ed448 | 060B6086480186FA6B5008014A | +----------------------------------+----------------------------+ | id-MLDSA87-RSA4096-PSS | 060B6086480186FA6B5008014B | +----------------------------------+----------------------------+ Table 4 Ounsworth, et al. Expires 4 September 2025 [Page 34] Internet-Draft Composite ML-DSA March 2025 +===================================+============================+ | Composite Signature Algorithm | Domain Separator (in Hex | | | encoding) | +===================================+============================+ | id-HashMLDSA44-RSA2048-PSS-SHA256 | 060B6086480186FA6B50080150 | +-----------------------------------+----------------------------+ | id- | 060B6086480186FA6B50080151 | | HashMLDSA44-RSA2048-PKCS15-SHA256 | | +-----------------------------------+----------------------------+ | id-HashMLDSA44-Ed25519-SHA512 | 060B6086480186FA6B50080152 | +-----------------------------------+----------------------------+ | id-HashMLDSA44-ECDSA-P256-SHA256 | 060B6086480186FA6B50080153 | +-----------------------------------+----------------------------+ | id-HashMLDSA65-RSA3072-PSS-SHA512 | 060B6086480186FA6B50080154 | +-----------------------------------+----------------------------+ | id- | 060B6086480186FA6B50080155 | | HashMLDSA65-RSA3072-PKCS15-SHA512 | | +-----------------------------------+----------------------------+ | id-HashMLDSA65-RSA4096-PSS-SHA512 | 060B6086480186FA6B50080156 | +-----------------------------------+----------------------------+ | id- | 060B6086480186FA6B50080157 | | HashMLDSA65-RSA4096-PKCS15-SHA512 | | +-----------------------------------+----------------------------+ | id-HashMLDSA65-ECDSA-P256-SHA512 | 060B6086480186FA6B50080158 | +-----------------------------------+----------------------------+ | id-HashMLDSA65-ECDSA-P384-SHA512 | 060B6086480186FA6B50080159 | +-----------------------------------+----------------------------+ | id-HashMLDSA65-ECDSA- | 060B6086480186FA6B5008015A | | brainpoolP256r1-SHA512 | | +-----------------------------------+----------------------------+ | id-HashMLDSA65-Ed25519-SHA512 | 060B6086480186FA6B5008015B | +-----------------------------------+----------------------------+ | id-HashMLDSA87-ECDSA-P384-SHA512 | 060B6086480186FA6B5008015C | +-----------------------------------+----------------------------+ | id-HashMLDSA87-ECDSA- | 060B6086480186FA6B5008015D | | brainpoolP384r1-SHA512 | | +-----------------------------------+----------------------------+ | id-HashMLDSA87-Ed448-SHA512 | 060B6086480186FA6B5008015E | +-----------------------------------+----------------------------+ | id-HashMLDSA87-RSA4096-PSS-SHA512 | 060B6086480186FA6B5008015F | +-----------------------------------+----------------------------+ Table 5: Hash ML-DSA Composite Signature Domain Separators Ounsworth, et al. Expires 4 September 2025 [Page 35] Internet-Draft Composite ML-DSA March 2025 7.4. Rationale for choices In generating the list of Composite algorithms, the following general guidance was used, however during development of this specification several algorithms were added by direct request even though they do not fit this guidance. * Pair equivalent levels. * NIST-P-384 is CNSA approved [CNSA2.0] for all classification levels. * 521 bit curve not widely used. SHA2 is used throughout in order to facilitate implementations that do not have easy access to SHA3 outside of the ML-DSA function. At the higher security levels of pre-hashed Composite ML-DSA, for example id-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512, the 384-bit elliptic curve component is used with SHA2-384 which is its pre-hash (ie the pre-hash that is considered to be internal to the ECDSA component), yet SHA2-512 is used as the pre-hash for the overall composite because in this case the pre-hash must not weaken the ML- DSA-87 component against a collision attack. 7.5. RSASSA-PSS Use of RSASSA-PSS [RFC8017] requires extra parameters to be specified, which differ for each security level. Also note that this specification fixes the Public Key OID of RSASSA- PSS to id-RSASSA-PSS (1.2.840.113549.1.1.10), although most implementations also would accept rsaEncryption (1.2.840.113549.1.1.1). 7.5.1. RSA2048-PSS The RSA component keys MUST be generated at the 2048-bit security level in order to match that of ML-DSA-44. As with the other composite signature algorithms, when id- MLDSA44-RSA2048-PSS and id-HashMLDSA44-RSA2048-PSS-SHA256 is used in an AlgorithmIdentifier, the parameters MUST be absent. id- MLDSA44-RSA2048-PSS and id-HashMLDSA44-RSA2048-PSS-SHA256 SHALL instantiate RSASSA-PSS with the following parameters: Ounsworth, et al. Expires 4 September 2025 [Page 36] Internet-Draft Composite ML-DSA March 2025 +==========================+=========+ | RSASSA-PSS Parameter | Value | +==========================+=========+ | Mask Generation Function | mgf1 | +--------------------------+---------+ | Mask Generation params | SHA-256 | +--------------------------+---------+ | Message Digest Algorithm | SHA-256 | +--------------------------+---------+ | Salt Length in bits | 256 | +--------------------------+---------+ Table 6: RSASSA-PSS 2048 Parameters where: * Mask Generation Function (mgf1) is defined in [RFC8017] * SHA-256 is defined in [RFC6234]. 7.5.2. RSA3072-PSS The RSA component keys MUST be generated at the 3072-bit security level in order to match that of ML-DSA-65. As with the other composite signature algorithms, when id- MLDSA65-RSA3072-PSS or id-HashMLDSA65-RSA3072-PSS-SHA512 is used in an AlgorithmIdentifier, the parameters MUST be absent. id- MLDSA65-RSA3072-PSS or id-HashMLDSA65-RSA3072-PSS-SHA512 SHALL instantiate RSASSA-PSS with the following parameters: +==========================+=========+ | RSASSA-PSS Parameter | Value | +==========================+=========+ | Mask Generation Function | mgf1 | +--------------------------+---------+ | Mask Generation params | SHA-256 | +--------------------------+---------+ | Message Digest Algorithm | SHA-256 | +--------------------------+---------+ | Salt Length in bits | 256 | +--------------------------+---------+ Table 7: RSASSA-PSS 3072 Parameters where: * Mask Generation Function (mgf1) is defined in [RFC8017] Ounsworth, et al. Expires 4 September 2025 [Page 37] Internet-Draft Composite ML-DSA March 2025 * SHA-256 is defined in [RFC6234]. 7.5.3. RSA4096-PSS The RSA component keys MUST be generated at the 4096-bit security level in order to match that of ML-DSA-65. As with the other composite signature algorithms, when id- MLDSA65-RSA4096-PSS or id-HashMLDSA65-RSA4096-PSS-SHA384 is used in an AlgorithmIdentifier, the parameters MUST be absent. id- MLDSA65-RSA4096-PSS or id-HashMLDSA65-RSA4096-PSS-SHA384 SHALL instantiate RSASSA-PSS with the following parameters: +==========================+=========+ | RSASSA-PSS Parameter | Value | +==========================+=========+ | Mask Generation Function | mgf1 | +--------------------------+---------+ | Mask Generation params | SHA-384 | +--------------------------+---------+ | Message Digest Algorithm | SHA-384 | +--------------------------+---------+ | Salt Length in bits | 384 | +--------------------------+---------+ Table 8: RSASSA-PSS 4096 Parameters where: * Mask Generation Function (mgf1) is defined in [RFC8017] * SHA-384 is defined in [RFC6234]. 8. Use in CMS [EDNOTE: The convention in LAMPS is to specify algorithms and their CMS conventions in separate documents. Here we have presented them in the same document, but this section has been written so that it can easily be moved to a stand-alone document.] Composite Signature algorithms MAY be employed for one or more recipients in the CMS signed-data content type [RFC5652]. All recommendations for using Composite ML-DSA in CMS are fully aligned with the use of ML-DSA in CMS [I-D.ietf-lamps-cms-ml-dsa]. Ounsworth, et al. Expires 4 September 2025 [Page 38] Internet-Draft Composite ML-DSA March 2025 8.1. Underlying Components A compliant implementation MUST support SHA-512 [FIPS180] for all composite variants in this document. Implementations MAY also support other algorithms for the SignerInfo digestAlgorithm and SHOULD use algorithms that produce a hash value of a size that is at least twice the collision strength of the internal commitment hash used by ML-DSA. Note: The Hash ML-DSA Composite identifiers are relevant here because this algorithm operation mode is not provided in CMS, which is consistent with [I-D.ietf-lamps-cms-ml-dsa]. 8.2. SignedData Conventions As specified in CMS [RFC5652], the digital signature is produced from the message digest and the signer's private key. The signature is computed over different values depending on whether signed attributes are absent or present. When signed attributes are absent, the composite signature is computed over the content of the signed-data. The "content" of a signed-data is the value of the encapContentInfo eContent OCTET STRING. The tag and length octets are not included. When signed attributes are present, a hash is computed over the content using the hash function specified in Section 8.1, and then a message-digest attribute is constructed to contain the resulting hash value, and then the result of DER encoding the set of signed attributes, which MUST include a content-type attribute and a message-digest attribute, and then the composite signature is computed over the DER-encoded output. In summary: IF (signed attributes are absent) THEN Composite-ML-DSA.Sign(content) ELSE message-digest attribute = Hash(content); Composite-ML-DSA.Sign(DER(SignedAttributes)) When using Composite Signatures, the fields in the SignerInfo are used as follows: digestAlgorithm: Per Section 5.3 of [RFC5652], the digestAlgorithm contains the one-way hash function used by the CMS signer. To ensure collision resistance, the identified message digest algorithm SHOULD produce a hash value of a size that is at least twice the collision strength of the internal commitment hash used by ML-DSA component algorithm of the Composite Signature. Ounsworth, et al. Expires 4 September 2025 [Page 39] Internet-Draft Composite ML-DSA March 2025 signatureAlgorithm: The signatureAlgorithm MUST contain one of the the Composite Signature algorithm identifiers as specified in Section 8.1} signature: The signature field contains the signature value resulting from the composite signing operation of the specified signatureAlgorithm. 8.3. Signature generation and verification Composite signatures have a context string input that can be used to ensure that different signatures are generated for different application contexts. When using composite signatures for CMS, the context string is the empty string. 8.4. Certificate Conventions The conventions specified in this section augment RFC 5280 [RFC5280]. The willingness to accept a composite Signature Algorithm MAY be signaled by the use of the SMIMECapabilities Attribute as specified in Section 2.5.2. of [RFC8551] or the SMIMECapabilities certificate extension as specified in [RFC4262]. The intended application for the public key MAY be indicated in the key usage certificate extension as specified in Section 4.2.1.3 of [RFC5280]. If the keyUsage extension is present in a certificate that conveys a composite Signature public key, then the key usage extension MUST contain only the following value: digitalSignature nonRepudiation keyCertSign cRLSign The keyEncipherment and dataEncipherment values MUST NOT be present. That is, a public key intended to be employed only with a composite signature algorithm MUST NOT also be employed for data encryption. This requirement does not carry any particular security consideration; only the convention that signature keys be identified with 'digitalSignature','nonRepudiation','keyCertSign' or 'cRLSign' key usages. Ounsworth, et al. Expires 4 September 2025 [Page 40] Internet-Draft Composite ML-DSA March 2025 8.5. SMIMECapabilities Attribute Conventions Section 2.5.2 of [RFC8551] defines the SMIMECapabilities attribute to announce a partial list of algorithms that an S/MIME implementation can support. When constructing a CMS signed-data content type [RFC5652], a compliant implementation MAY include the SMIMECapabilities attribute. The SMIMECapability SEQUENCE representing a composite signature Algorithm MUST include the appropriate object identifier as per Section 8.1 in the capabilityID field. 9. ASN.1 Module Composite-MLDSA-2025 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-composite-mldsa-2025(TBDMOD) } DEFINITIONS IMPLICIT TAGS ::= BEGIN EXPORTS ALL; IMPORTS PUBLIC-KEY, SIGNATURE-ALGORITHM, SMIME-CAPS, AlgorithmIdentifier{} FROM AlgorithmInformation-2009 -- RFC 5912 [X509ASN1] { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-algorithmInformation-02(58) } ; -- -- Object Identifiers -- -- Defined in ITU-T X.690 der OBJECT IDENTIFIER ::= {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)} -- -- Signature Algorithm -- -- -- Composite Signature basic structures Ounsworth, et al. Expires 4 September 2025 [Page 41] Internet-Draft Composite ML-DSA March 2025 -- -- -- When a CompositeMLDSAPublicKey is used with an RSA public key, the BIT STRING is generated -- by the concatenation of a raw ML-DSA key according to {{I-D.ietf-lamps-dilithium-certificates}}, -- and an RSAPublicKey (which is a DER encoded RSAPublicKey). -- When a CompositeMLDSAPublicKey is used with an EC public key, the BIT STRING is generated -- by the concatenation of a raw ML-DSA key according to {{I-D.ietf-lamps-dilithium-certificates}} -- and an ECDSAPublicKey according to [RFC5480]. -- When a CompositeMLDSAPublicKey is used with an Edwards public key, the BIT STRING is generated -- by the concatenation of a raw ML-DSA key according to {{I-D.ietf-lamps-dilithium-certificates}} -- and a raw Edwards public key according to [RFC8410]. CompositeMLDSAPublicKey ::= BIT STRING -- -- When a CompositeMLDSAPrivateKey is used with an RSA public key, the OCTET STRING is generated -- by the concatenation of an ML-DSA private key according to {{I-D.ietf-lamps-dilithium-certificates}}, -- and an RSAPrivateKey (which is a DER encoded RSAPrivateKey). -- When a CompositeMLDSAPrivateKey is used with an EC public key, the OCTET STRING is generated -- by the concatenation of an ML-DSA private key according to {{I-D.ietf-lamps-dilithium-certificates}}, -- and an ECDSAPrivateKey according to [RFC5915]. -- When a CompositeMLDSAPrivateKey is used with an Edwards public key, the OCTET STRING is generated -- by the concatenation of an ML-DSA private key according to {{I-D.ietf-lamps-dilithium-certificates}}, -- and a raw Edwards private key according to [RFC8410]. CompositeMLDSAPrivateKey ::= OCTET STRING -- Composite Signature Value is just an BIT STRING and is a concatenation of the component signature -- algorithms. CompositeSignatureValue ::= BIT STRING -- -- Information Object Classes -- pk-CompositeSignature {OBJECT IDENTIFIER:id, PublicKeyType} PUBLIC-KEY ::= { IDENTIFIER id KEY PublicKeyType PARAMS ARE absent CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign} Ounsworth, et al. Expires 4 September 2025 [Page 42] Internet-Draft Composite ML-DSA March 2025 } sa-CompositeSignature{OBJECT IDENTIFIER:id, PUBLIC-KEY:publicKeyType } SIGNATURE-ALGORITHM ::= { IDENTIFIER id VALUE CompositeSignatureValue PARAMS ARE absent PUBLIC-KEYS {publicKeyType} } -- PURE Version of OIDS -- TODO: OID to be replaced by IANA id-MLDSA44-RSA2048-PSS OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 60 } pk-MLDSA44-RSA2048-PSS PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA44-RSA2048-PSS, CompositeMLDSAPublicKey} sa-MLDSA44-RSA2048-PSS SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA44-RSA2048-PSS, pk-MLDSA44-RSA2048-PSS } -- TODO: OID to be replaced by IANA id-MLDSA44-RSA2048-PKCS15 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 61 } pk-MLDSA44-RSA2048-PKCS15 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA44-RSA2048-PKCS15, CompositeMLDSAPublicKey} sa-MLDSA44-RSA2048-PKCS15 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA44-RSA2048-PKCS15, pk-MLDSA44-RSA2048-PKCS15 } -- TODO: OID to be replaced by IANA id-MLDSA44-Ed25519 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 62 } pk-MLDSA44-Ed25519 PUBLIC-KEY ::= Ounsworth, et al. Expires 4 September 2025 [Page 43] Internet-Draft Composite ML-DSA March 2025 pk-CompositeSignature{ id-MLDSA44-Ed25519, CompositeMLDSAPublicKey} sa-MLDSA44-Ed25519 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA44-Ed25519, pk-MLDSA44-Ed25519 } -- TODO: OID to be replaced by IANA id-MLDSA44-ECDSA-P256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 63 } pk-MLDSA44-ECDSA-P256 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA44-ECDSA-P256, CompositeMLDSAPublicKey} sa-MLDSA44-ECDSA-P256 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA44-ECDSA-P256, pk-MLDSA44-ECDSA-P256 } -- TODO: OID to be replaced by IANA id-MLDSA65-RSA3072-PSS OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 64 } pk-MLDSA65-RSA3072-PSS PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA65-RSA3072-PSS, CompositeMLDSAPublicKey} sa-MLDSA65-RSA3072-PSS SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA65-RSA3072-PSS, pk-MLDSA65-RSA3072-PSS } -- TODO: OID to be replaced by IANA id-MLDSA65-RSA3072-PKCS15 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 65 } pk-MLDSA65-RSA3072-PKCS15 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA65-RSA3072-PKCS15, CompositeMLDSAPublicKey} Ounsworth, et al. Expires 4 September 2025 [Page 44] Internet-Draft Composite ML-DSA March 2025 sa-MLDSA65-RSA3072-PKCS15 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA65-RSA3072-PKCS15, pk-MLDSA65-RSA3072-PKCS15 } -- TODO: OID to be replaced by IANA id-MLDSA65-RSA4096-PSS OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 66 } pk-MLDSA65-RSA4096-PSS PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA65-RSA4096-PSS, CompositeMLDSAPublicKey} sa-MLDSA65-RSA4096-PSS SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA65-RSA4096-PSS, pk-MLDSA65-RSA4096-PSS } -- TODO: OID to be replaced by IANA id-MLDSA65-RSA4096-PKCS15 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 67 } pk-MLDSA65-RSA4096-PKCS15 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA65-RSA4096-PKCS15, CompositeMLDSAPublicKey} sa-MLDSA65-RSA4096-PKCS15 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA65-RSA4096-PKCS15, pk-MLDSA65-RSA4096-PKCS15 } -- TODO: OID to be replaced by IANA id-MLDSA65-ECDSA-P256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 68 } pk-MLDSA65-ECDSA-P256 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA65-ECDSA-P256, CompositeMLDSAPublicKey} sa-MLDSA65-ECDSA-P256 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA65-ECDSA-P256, pk-MLDSA65-ECDSA-P256 } Ounsworth, et al. Expires 4 September 2025 [Page 45] Internet-Draft Composite ML-DSA March 2025 -- TODO: OID to be replaced by IANA id-MLDSA65-ECDSA-P384 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 69 } pk-MLDSA65-ECDSA-P384 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA65-ECDSA-P384, CompositeMLDSAPublicKey} sa-MLDSA65-ECDSA-P384 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA65-ECDSA-P384, pk-MLDSA65-ECDSA-P384 } -- TODO: OID to be replaced by IANA id-MLDSA65-ECDSA-brainpoolP256r1 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 70 } pk-MLDSA65-ECDSA-brainpoolP256r1 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA65-ECDSA-brainpoolP256r1, CompositeMLDSAPublicKey} sa-MLDSA65-ECDSA-brainpoolP256r1 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA65-ECDSA-brainpoolP256r1, pk-MLDSA65-ECDSA-brainpoolP256r1 } -- TODO: OID to be replaced by IANA id-MLDSA65-Ed25519 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 71 } pk-MLDSA65-Ed25519 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA65-Ed25519, CompositeMLDSAPublicKey} sa-MLDSA65-Ed25519 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA65-Ed25519, pk-MLDSA65-Ed25519 } -- TODO: OID to be replaced by IANA id-MLDSA87-ECDSA-P384 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 72 } Ounsworth, et al. Expires 4 September 2025 [Page 46] Internet-Draft Composite ML-DSA March 2025 pk-MLDSA87-ECDSA-P384 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA87-ECDSA-P384, CompositeMLDSAPublicKey} sa-MLDSA87-ECDSA-P384 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA87-ECDSA-P384, pk-MLDSA87-ECDSA-P384 } -- TODO: OID to be replaced by IANA id-MLDSA87-ECDSA-brainpoolP384r1 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 73 } pk-MLDSA87-ECDSA-brainpoolP384r1 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA87-ECDSA-brainpoolP384r1, CompositeMLDSAPublicKey} sa-MLDSA87-ECDSA-brainpoolP384r1 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA87-ECDSA-brainpoolP384r1, pk-MLDSA87-ECDSA-brainpoolP384r1 } -- TODO: OID to be replaced by IANA id-MLDSA87-Ed448 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 74 } pk-MLDSA87-Ed448 PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA87-Ed448, CompositeMLDSAPublicKey} sa-MLDSA87-Ed448 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA87-Ed448, pk-MLDSA87-Ed448 } -- TODO: OID to be replaced by IANA id-MLDSA87- OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 75 } pk-MLDSA87-RSA4096-PSS PUBLIC-KEY ::= pk-CompositeSignature{ id-MLDSA87-RSA4096-PSS, CompositeMLDSAPublicKey} Ounsworth, et al. Expires 4 September 2025 [Page 47] Internet-Draft Composite ML-DSA March 2025 sa-MLDSA87-RSA4096-PSS SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-MLDSA87-RSA4096-PSS, pk-MLDSA87-RSA4096-PSS } -- PreHash Version of the OIDs -- TODO: OID to be replaced by IANA id-HashMLDSA44-RSA2048-PSS-SHA256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 80 } pk-HashMLDSA44-RSA2048-PSS-SHA256 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA44-RSA2048-PSS-SHA256, CompositeMLDSAPublicKey} sa-HashMLDSA44-RSA2048-PSS-SHA256 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA44-RSA2048-PSS-SHA256, pk-HashMLDSA44-RSA2048-PSS-SHA256 } -- TODO: OID to be replaced by IANA id-HashMLDSA44-RSA2048-PKCS15-SHA256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 81 } pk-HashMLDSA44-RSA2048-PKCS15-SHA256 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA44-RSA2048-PKCS15-SHA256, CompositeMLDSAPublicKey} sa-HashMLDSA44-RSA2048-PKCS15-SHA256 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA44-RSA2048-PKCS15-SHA256, pk-HashMLDSA44-RSA2048-PKCS15-SHA256 } -- TODO: OID to be replaced by IANA id-HashMLDSA44-Ed25519-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 82 } pk-HashMLDSA44-Ed25519-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA44-Ed25519-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA44-Ed25519-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA44-Ed25519-SHA512, Ounsworth, et al. Expires 4 September 2025 [Page 48] Internet-Draft Composite ML-DSA March 2025 pk-HashMLDSA44-Ed25519-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA44-ECDSA-P256-SHA256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 83 } pk-HashMLDSA44-ECDSA-P256-SHA256 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA44-ECDSA-P256-SHA256, CompositeMLDSAPublicKey} sa-HashMLDSA44-ECDSA-P256-SHA256 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA44-ECDSA-P256-SHA256, pk-HashMLDSA44-ECDSA-P256-SHA256 } -- TODO: OID to be replaced by IANA id-HashMLDSA65-RSA3072-PSS-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 84 } pk-HashMLDSA65-RSA3072-PSS-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA65-RSA3072-PSS-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA65-RSA3072-PSS-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA65-RSA3072-PSS-SHA512, pk-HashMLDSA65-RSA3072-PSS-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA65-RSA3072-PKCS15-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 85 } pk-HashMLDSA65-RSA3072-PKCS15-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA65-RSA3072-PKCS15-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA65-RSA3072-PKCS15-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA65-RSA3072-PKCS15-SHA512, pk-HashMLDSA65-RSA3072-PKCS15-SHA512 } -- TODO: OID to be replaced by IANA Ounsworth, et al. Expires 4 September 2025 [Page 49] Internet-Draft Composite ML-DSA March 2025 id-HashMLDSA65-RSA4096-PSS-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 86 } pk-HashMLDSA65-RSA4096-PSS-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA65-RSA4096-PSS-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA65-RSA4096-PSS-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA65-RSA4096-PSS-SHA512, pk-HashMLDSA65-RSA4096-PSS-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA65-RSA4096-PKCS15-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 87 } pk-HashMLDSA65-RSA4096-PKCS15-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA65-RSA4096-PKCS15-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA65-RSA4096-PKCS15-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA65-RSA4096-PKCS15-SHA512, pk-HashMLDSA65-RSA4096-PKCS15-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA65-ECDSA-P256-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 88 } pk-HashMLDSA65-ECDSA-P256-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA65-ECDSA-P256-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA65-ECDSA-P256-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA65-ECDSA-P256-SHA512, pk-HashMLDSA65-ECDSA-P256-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA65-ECDSA-P384-SHA512 OBJECT IDENTIFIER ::= { Ounsworth, et al. Expires 4 September 2025 [Page 50] Internet-Draft Composite ML-DSA March 2025 joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 89 } pk-HashMLDSA65-ECDSA-P384-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA65-ECDSA-P384-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA65-ECDSA-P384-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA65-ECDSA-P384-SHA512, pk-HashMLDSA65-ECDSA-P384-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA65-ECDSA-brainpoolP256r1-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 90 } pk-HashMLDSA65-ECDSA-brainpoolP256r1-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA65-ECDSA-brainpoolP256r1-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA65-ECDSA-brainpoolP256r1-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA65-ECDSA-brainpoolP256r1-SHA512, pk-HashMLDSA65-ECDSA-brainpoolP256r1-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA65-Ed25519-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 91 } pk-HashMLDSA65-Ed25519-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA65-Ed25519-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA65-Ed25519-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA65-Ed25519-SHA512, pk-HashMLDSA65-Ed25519-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA87-ECDSA-P384-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 92 } Ounsworth, et al. Expires 4 September 2025 [Page 51] Internet-Draft Composite ML-DSA March 2025 pk-HashMLDSA87-ECDSA-P384-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA87-ECDSA-P384-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA87-ECDSA-P384-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA87-ECDSA-P384-SHA512, pk-HashMLDSA87-ECDSA-P384-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 93 } pk-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512, pk-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA87-Ed448-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 94 } pk-HashMLDSA87-Ed448-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA87-Ed448-SHA512, CompositeMLDSAPublicKey} sa-HashMLDSA87-Ed448-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA87-Ed448-SHA512, pk-HashMLDSA87-Ed448-SHA512 } -- TODO: OID to be replaced by IANA id-HashMLDSA87-RSA4096-PSS-SHA512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027) algorithm(80) composite(8) signature(1) 95 } pk-HashMLDSA87-RSA4096-PSS-SHA512 PUBLIC-KEY ::= pk-CompositeSignature{ id-HashMLDSA87-RSA4096-PSS-SHA512, CompositeMLDSAPublicKey} Ounsworth, et al. Expires 4 September 2025 [Page 52] Internet-Draft Composite ML-DSA March 2025 sa-HashMLDSA87-RSA4096-PSS-SHA512 SIGNATURE-ALGORITHM ::= sa-CompositeSignature{ id-HashMLDSA87-RSA4096-PSS-SHA512, pk-HashMLDSA87-RSA4096-PSS-SHA512 } SignatureAlgorithmSet SIGNATURE-ALGORITHM ::= { sa-MLDSA44-RSA2048-PSS | sa-MLDSA44-RSA2048-PKCS15 | sa-MLDSA44-Ed25519 | sa-MLDSA44-ECDSA-P256 | sa-MLDSA65-RSA3072-PSS | sa-MLDSA65-RSA3072-PKCS15 | sa-MLDSA65-RSA4096-PSS | sa-MLDSA65-RSA4096-PKCS15 | sa-MLDSA65-ECDSA-P256 | sa-MLDSA65-ECDSA-P384 | sa-MLDSA65-ECDSA-brainpoolP256r1 | sa-MLDSA65-Ed25519 | sa-MLDSA87-ECDSA-P384 | sa-MLDSA87-ECDSA-brainpoolP384r1 | sa-MLDSA87-Ed448 | sa-MLDSA87-RSA4096-PSS | sa-HashMLDSA44-RSA2048-PSS-SHA256 | sa-HashMLDSA44-RSA2048-PKCS15-SHA256 | sa-HashMLDSA44-Ed25519-SHA512 | sa-HashMLDSA44-ECDSA-P256-SHA256 | sa-HashMLDSA65-RSA3072-PSS-SHA512 | sa-HashMLDSA65-RSA3072-PKCS15-SHA512 | sa-HashMLDSA65-RSA4096-PSS-SHA512 | sa-HashMLDSA65-RSA4096-PKCS15-SHA512 | sa-HashMLDSA65-ECDSA-P256-SHA512 | sa-HashMLDSA65-ECDSA-P384-SHA512 | sa-HashMLDSA65-ECDSA-brainpoolP256r1-SHA512 | sa-HashMLDSA65-Ed25519-SHA512 | sa-HashMLDSA87-ECDSA-P384-SHA512 | sa-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512 | sa-HashMLDSA87-Ed448-SHA512 | sa-HashMLDSA87-RSA4096-PSS-SHA512, ... } -- -- Expand the S/MIME capabilities set used by CMS [RFC5911] -- -- TODO: this doesn't compile, error: -- "The referenced object in the 'ValueFromObject' Ounsworth, et al. Expires 4 September 2025 [Page 53] Internet-Draft Composite ML-DSA March 2025 -- syntax with the field '&smimeCaps' is invalid or does not exist." -- We need help from an SMIME expert SMimeCaps SMIME-CAPS ::= { sa-MLDSA44-RSA2048-PSS.&smimeCaps | sa-MLDSA44-RSA2048-PKCS15.&smimeCaps | sa-MLDSA44-Ed25519.&smimeCaps | sa-MLDSA44-ECDSA-P256.&smimeCaps | sa-MLDSA65-RSA3072-PSS.&smimeCaps | sa-MLDSA65-RSA3072-PKCS15.&smimeCaps | sa-MLDSA65-RSA4096-PSS.&smimeCaps | sa-MLDSA65-RSA4096-PKCS15.&smimeCaps | sa-MLDSA65-ECDSA-P256.&smimeCaps | sa-MLDSA65-ECDSA-P384.&smimeCaps | sa-MLDSA65-ECDSA-brainpoolP256r1.&smimeCaps | sa-MLDSA65-Ed25519.&smimeCaps | sa-MLDSA87-ECDSA-P384.&smimeCaps | sa-MLDSA87-ECDSA-brainpoolP384r1.&smimeCaps | sa-MLDSA87-Ed448.&smimeCaps | sa-MLDSA87-RSA4096-PSS.&smimeCaps | sa-HashMLDSA44-RSA2048-PSS-SHA256.&smimeCaps | sa-HashMLDSA44-RSA2048-PKCS15-SHA256.&smimeCaps | sa-HashMLDSA44-Ed25519-SHA512.&smimeCaps | sa-HashMLDSA44-ECDSA-P256-SHA256.&smimeCaps | sa-HashMLDSA65-RSA3072-PSS-SHA512.&smimeCaps | sa-HashMLDSA65-RSA3072-PKCS15-SHA512.&smimeCaps | sa-HashMLDSA65-RSA4096-PSS-SHA512.&smimeCaps | sa-HashMLDSA65-RSA4096-PKCS15-SHA512.&smimeCaps | sa-HashMLDSA65-ECDSA-P256-SHA512.&smimeCaps | sa-HashMLDSA65-ECDSA-P384-SHA512.&smimeCaps | sa-HashMLDSA65-ECDSA-brainpoolP256r1-SHA512.&smimeCaps | sa-HashMLDSA65-Ed25519-SHA512.&smimeCaps | sa-HashMLDSA87-ECDSA-P384-SHA512.&smimeCaps | sa-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512.&smimeCaps | sa-HashMLDSA87-Ed448-SHA512.&smimeCaps | sa-HashMLDSA87-RSA4096-PSS-SHA512.&smimeCaps, ... } END 10. IANA Considerations IANA is requested to allocate a value from the "SMI Security for PKIX Module Identifier" registry [RFC7299] for the included ASN.1 module, and allocate values from "SMI Security for PKIX Algorithms" to identify the fourteen Algorithms defined within. Ounsworth, et al. Expires 4 September 2025 [Page 54] Internet-Draft Composite ML-DSA March 2025 10.1. Object Identifier Allocations EDNOTE to IANA: OIDs will need to be replaced in both the ASN.1 module and in Table 2 and Table 3. 10.1.1. Module Registration - SMI Security for PKIX Module Identifier * Decimal: IANA Assigned - *Replace TBDMOD* * Description: Composite-Signatures-2023 - id-mod-composite- signatures * References: This Document 10.1.2. Object Identifier Registrations - SMI Security for PKIX Algorithms * id-MLDSA44-RSA2048-PSS - Decimal: IANA Assigned - Description: id-MLDSA44-RSA2048-PSS - References: This Document * id-MLDSA44-RSA2048-PKCS15 - Decimal: IANA Assigned - Description: id-MLDSA44-RSA2048-PKCS15 - References: This Document * id-MLDSA44-Ed25519 - Decimal: IANA Assigned - Description: id-MLDSA44-Ed25519 - References: This Document * id-MLDSA44-ECDSA-P256 - Decimal: IANA Assigned - Description: id-MLDSA44-ECDSA-P256 - References: This Document Ounsworth, et al. Expires 4 September 2025 [Page 55] Internet-Draft Composite ML-DSA March 2025 * id-MLDSA65-RSA3072-PSS - Decimal: IANA Assigned - Description: id-MLDSA65-RSA3072-PSS - References: This Document * id-MLDSA65-RSA3072-PKCS15 - Decimal: IANA Assigned - Description: id-MLDSA65-RSA3072-PKCS15 - References: This Document * id-MLDSA65-RSA4096-PSS - Decimal: IANA Assigned - Description: id-MLDSA65-RSA4096-PSS - References: This Document * id-MLDSA65-RSA4096-PKCS15 - Decimal: IANA Assigned - Description: id-MLDSA65-RSA4096-PKCS15 - References: This Document * id-MLDSA65-ECDSA-P256 - Decimal: IANA Assigned - Description: id-MLDSA65-ECDSA-P256 - References: This Document * id-MLDSA65-ECDSA-P384 - Decimal: IANA Assigned - Description: id-MLDSA65-ECDSA-P384 - References: This Document Ounsworth, et al. Expires 4 September 2025 [Page 56] Internet-Draft Composite ML-DSA March 2025 * id-MLDSA65-ECDSA-brainpoolP256r1 - Decimal: IANA Assigned - Description: id-MLDSA65-ECDSA-brainpoolP256r1 - References: This Document * id-MLDSA65-Ed25519 - Decimal: IANA Assigned - Description: id-MLDSA65-Ed25519 - References: This Document * id-MLDSA87-ECDSA-P384 - Decimal: IANA Assigned - Description: id-MLDSA87-ECDSA-P384 - References: This Document * id-MLDSA87-ECDSA-brainpoolP384r1 - Decimal: IANA Assigned - Description: id-MLDSA87-ECDSA-brainpoolP384r1 - References: This Document * id-MLDSA87-Ed448 - Decimal: IANA Assigned - Description: id-MLDSA87-Ed448 - References: This Document * id-MLDSA87-RSA4096-PSS - Decimal: IANA Assigned - Description: id-MLDSA87-RSA4096-PSS - References: This Document Ounsworth, et al. Expires 4 September 2025 [Page 57] Internet-Draft Composite ML-DSA March 2025 * id-HashMLDSA44-RSA2048-PSS-SHA256 - Decimal: IANA Assigned - Description: id-HashMLDSA44-RSA2048-PSS-SHA256 - References: This Document * id-HashMLDSA44-RSA2048-PKCS15-SHA256 - Decimal: IANA Assigned - Description: id-HashMLDSA44-RSA2048-PKCS15-SHA256 - References: This Document * id-HashMLDSA44-Ed25519-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA44-Ed25519-SHA512 - References: This Document * id-HashMLDSA44-ECDSA-P256-SHA256 - Decimal: IANA Assigned - Description: id-HashMLDSA44-ECDSA-P256-SHA256 - References: This Document * id-HashMLDSA65-RSA3072-PSS-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA65-RSA3072-PSS-SHA512 - References: This Document * id-HashMLDSA65-RSA3072-PKCS15-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA65-RSA3072-PKCS15-SHA512 - References: This Document Ounsworth, et al. Expires 4 September 2025 [Page 58] Internet-Draft Composite ML-DSA March 2025 * id-HashMLDSA65-RSA4096-PSS-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA65-RSA4096-PSS-SHA512 - References: This Document * id-HashMLDSA65-RSA4096-PKCS15-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA65-RSA4096-PKCS15-SHA512 - References: This Document * id-HashMLDSA65-ECDSA-P256-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA65-ECDSA-P256-SHA512 - References: This Document * id-HashMLDSA65-ECDSA-P384-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA65-ECDSA-P384-SHA512 - References: This Document * id-HashMLDSA65-ECDSA-brainpoolP256r1-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA65-ECDSA-brainpoolP256r1-SHA512 - References: This Document * id-HashMLDSA65-Ed25519-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA65-Ed25519-SHA512 - References: This Document Ounsworth, et al. Expires 4 September 2025 [Page 59] Internet-Draft Composite ML-DSA March 2025 * id-HashMLDSA87-ECDSA-P384-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA87-ECDSA-P384-SHA512 - References: This Document * id-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA87-ECDSA-brainpoolP384r1-SHA512 - References: This Document * id-HashMLDSA87-Ed448-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA87-Ed448-SHA512 - References: This Document * id-HashMLDSA87-RSA4096-PSS-SHA512 - Decimal: IANA Assigned - Description: id-HashMLDSA87-RSA4096-PSS-SHA512 - References: This Document 11. Security Considerations 11.1. Why Hybrids? In broad terms, a PQ/T Hybrid can be used either to provide dual- algorithm security or to provide migration flexibility. Let's quickly explore both. Dual-algorithm security. The general idea is that the data is proctected by two algorithms such that an attacker would need to break both in order to compromise the data. As with most of cryptography, this property is easy to state in general terms, but becomes more complicated when expressed in formalisms. Section 11.2 goes into more detail here. One common counter-argument against PQ/T hybrid signatures is that if an attacker can forge one of the component algorithms, then why attack the hybrid-signed message at Ounsworth, et al. Expires 4 September 2025 [Page 60] Internet-Draft Composite ML-DSA March 2025 all when they could simply forge a completely new message? The answer to this question must be found outside the cryptographic primitives themselves, and instead in policy; once an algorithm is known to be broken it ought to be disallowed for single-algorithm use by cryptographic policy, while hybrids involving that algorithm may continue to be used and to provide value. Migration flexibility. Some PQ/T hybrids exist to provide a sort of "OR" mode where the client can choose to use one algorithm or the other or both. The intention is that the PQ/T hybrid mechanism builds in backwards compatibility to allow legacy and upgraded clients to co-exist and communicate. The Composites presented in this specification do not provide this since they operate in a strict "AND" mode, but they do provide codebase migration flexibility. Consider that an organization has today a mature, validated, certified, hardened implementation of RSA or ECC. Composites allow them to add to this an ML-DSA implementation which immediately starts providing benefits against long-term document integrity attacks even if that ML-DSA implemtation is still experimental, non-validated, non-certified, non-hardened implementation. More details of obtaining FIPS certification of a composite algorithm can be found in Appendix D.1. 11.2. Non-separability, EUF-CMA and SUF The signature combiner defined in this document is Weakly Non- Separable (WNS), as defined in [I-D.ietf-pquip-hybrid-signature-spectrums], since the forged message M’ will include the composite domain separator as evidence. The prohibition on key reuse between composite and single-algorithm contexts discussed in Section 11.3 further strengthens the non- separability in practice, but does not achieve Strong Non- Separability (SNS) since policy mechanisms such as this are outside the definition of SNS. Unforgeability properties are somewhat more nuanced. We recall first the definitions of Exitential Unforgeability under Chosen Message Attack (EUF-CMA) and Strong Unforgeability (SUF).The classic EUF-CMA game is in reference to a pair of algorithms ( Sign(), Verify() ) where the attacker has access to a signing oracle using the Sign() and must produce a message-signature pair (m', s') that is accepted by the verifier using Verify() and where m was never signed by the oracle. SUF requires that the attacker cannot construct a new signature to an already-signed message. Ounsworth, et al. Expires 4 September 2025 [Page 61] Internet-Draft Composite ML-DSA March 2025 The pair ( CompositeML-DSA.Sign(), CompositeML-DSA.Verify() ) is EUF- CMA secure so long as at least one component algorithm is EUF-CMA secure since any attempt to modify the message would cause the EUF- CMA secure component to fail its Verify() which in turn will cause CompositeML-DSA.Verify() to fail. CompositeML-DSA only achieves SUF security if both components are SUF secure, which is not a useful property; the argument is that if the first component algorithm is not SUF secure then by definition it admits at least one (m, s1*) pair where s1* was not produced by the honest signer and it then can be combined with an honestly-signed (m, s2) signature over the same message m to create (m, (s1*, s2)) which violates SUF for the composite algorithm. Of the traditional signature component algorithms used in this specification, only Ed25519 and Ed448 are SUF secure and therefore applications that require SUF security to be maintained even in the event that ML-DSA is broken SHOULD use it in composite with Ed25519 or Ed448. In addition to the classic EUF-CMA game, we should also consider a “cross-protocol” version of the EUF-CMA game that is relevant to hybrids. Specifically, we want to consider a modified version of the EUF-CMA game where the attacker has access to either a signing oracle over the two component algorithms in isolation, Trad.Sign() and ML- DSA.Sign(), and attempts to fraudulently present them as a composite, or where the attacker has access to a composite oracle for signing and then attempts to split the signature back into components and present them to either ML-DSA.Verify() or Trad.Verify(). In the case of CompositeML-DSA, a specific message forgery exists for a cross-protocol EUF-CMA attack, namely introduced by the prefix construction added to M. This applies to use of individual component signing oracles with fraudulent presentation of the signature to a composite verification oracle, and use of a composite signing oracle with fraudulent splitting of the signature for presentation to component verification oracle(s) of either ML-DSA.Verify() or Trad.Verify(). In the first case, an attacker with access to signing oracles for the two component algorithms can sign M’ and then trivially assemble a composite. In the second case, the message M’ (containing the composite domain separator) can be presented as having been signed by a standalone component algorithm. However, use of the context string for domain separation enables Weak Non- Separability and auditable checks on hybrid use, which is deemed a reasonable trade-off. Moreover and very importantly, the cross- protocol EUF-CMA attack in either direction is foiled if implementors strictly follow the prohibition on key reuse presented in Section 11.3 since there cannot exist simultaneously composite and non-composite signers and verifiers for the same keys. Ounsworth, et al. Expires 4 September 2025 [Page 62] Internet-Draft Composite ML-DSA March 2025 11.3. Key Reuse When using single-algorithm cryptography, the best practice is to always generate fresh key material for each purpose, for example when renewing a certificate, or obtaining both a TLS and S/MIME certificate for the same device, however in practice key reuse in such scenarios is not always catastrophic to security and therefore often tolerated, despite cross-protocol attacks having been shown. (citation needed here) Within the broader context of PQ / Traditional hybrids, we need to consider new attack surfaces that arise due to the hybrid constructions that did not exist in single-algorithm contexts. One of these is key reuse where the component keys within a hybrid are also used by themselves within a single-algorithm context. For example, it might be tempting for an operator to take an already- deployed RSA key pair and combine it with an ML-DSA key pair to form a hybrid key pair for use in a hybrid algorithm. Within a hybrid signature context this leads to a class of attacks referred to as "stripping attacks" discussed in Section 11.2 and may also open up risks from further cross-protocol attacks. Despite the weak non- separability property offered by the composite signature combiner, key reuse MUST be avoided to prevent the introduction of EUF-CMA vulnerabilities. In addition, there is a further implication to key reuse regarding certificate revocation. Upon receiving a new certificate enrollment request, many certification authorities will check if the requested public key has been previously revoked due to key compromise. Often a CA will perform this check by using the public key hash. Therefore, even if both components of a composite have been previously revoked, the CA may only check the hash of the combined composite key and not find the revocations. Therefore, because the possibilty of key reuse exists even though forbidden in this specification, CAs performing revocation checks on a composite key SHOULD also check both component keys independently to verify that the component keys have not been revoked. 11.4. Policy for Deprecated and Acceptable Algorithms Traditionally, a public key, certificate, or signature contains a single cryptographic algorithm. If and when an algorithm becomes deprecated (for example, RSA-512, or SHA1), then clients performing signatures or verifications should be updated to adhere to appropriate policies. Ounsworth, et al. Expires 4 September 2025 [Page 63] Internet-Draft Composite ML-DSA March 2025 In the composite model this is less obvious since implementers may decide that certain cryptographic algorithms have complementary security properties and are acceptable in combination even though one or both algorithms are deprecated for individual use. As such, a single composite public key or certificate may contain a mixture of deprecated and non-deprecated algorithms. Since composite algorithms are registered independently of their component algorithms, their deprecation can be handled independently from that of their component algorithms. For example a cryptographic policy might continue to allow id-MLDSA65-ECDSA-P256-SHA512 even after ECDSA-P256 is deprecated. When considering stripping attacks, one need consider the case where an attacker has fully compromised one of the component algorithms to the point that they can produce forged signatures that appear valid under one of the component public keys, and thus fool a victim verifier into accepting a forged signature. The protection against this attack relies on the victim verifier trusting the pair of public keys as a single composite key, and not trusting the individual component keys by themselves. Specifically, in order to achieve this non-separability property, this specification makes two assumptions about how the verifier will establish trust in a composite public key: 1. This specification assumes that all of the component keys within a composite key are freshly generated for the composite; ie a given public key MUST NOT appear as a component within a composite key and also within single-algorithm constructions. 2. This specification assumes that composite public keys will be bound in a structure that contains a signature over the public key (for example, an X.509 Certificate [RFC5280]), which is chained back to a trust anchor, and where that signature algorithm is at least as strong as the composite public key that it is protecting. There are mechanisms within Internet PKI where trusted public keys do not appear within signed structures -- such as the Trust Anchor format defined in [RFC5914]. In such cases, it is the responsibility of implementers to ensure that trusted composite keys are distributed in a way that is tamper-resistant and does not allow the component keys to be trusted independently. Ounsworth, et al. Expires 4 September 2025 [Page 64] Internet-Draft Composite ML-DSA March 2025 11.5. Use of Prefix to for attack mitigation The Prefix value specified in the message format calculated in Section 4 can be used by a traditional verifier to detect if the composite signature has been stripped apart. An attacker would need to compute M' = Prefix || Domain || len(ctx) || ctx || M or M' := Prefix || Domain || len(ctx) || ctx || HashOID || PH(M). Since the Prefix is the constant String "CompositeAlgorithmSignatures2025" (Byte encoding 436F6D706F73697465416C676F726974686D5369676E61747572657332303235 ) a traditional verifier can check if the Message starts with this prefix and reject the message. 12. References 12.1. Normative References [FIPS.186-5] National Institute of Standards and Technology (NIST), "Digital Signature Standard (DSS)", February 2023, . [FIPS.204] National Institute of Standards and Technology (NIST), "Module-Lattice-Based Digital Signature Standard", August 2024, . [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification Request Syntax Specification Version 1.7", RFC 2986, DOI 10.17487/RFC2986, November 2000, . [RFC4210] Adams, C., Farrell, S., Kause, T., and T. Mononen, "Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)", RFC 4210, DOI 10.17487/RFC4210, September 2005, . [RFC4211] Schaad, J., "Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)", RFC 4211, DOI 10.17487/RFC4211, September 2005, . Ounsworth, et al. Expires 4 September 2025 [Page 65] Internet-Draft Composite ML-DSA March 2025 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, . [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk, "Elliptic Curve Cryptography Subject Public Key Information", RFC 5480, DOI 10.17487/RFC5480, March 2009, . [RFC5639] Lochter, M. and J. Merkle, "Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation", RFC 5639, DOI 10.17487/RFC5639, March 2010, . [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, September 2009, . [RFC5758] Dang, Q., Santesson, S., Moriarty, K., Brown, D., and T. Polk, "Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA", RFC 5758, DOI 10.17487/RFC5758, January 2010, . [RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958, DOI 10.17487/RFC5958, August 2010, . [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic Curve Cryptography Algorithms", RFC 6090, DOI 10.17487/RFC6090, February 2011, . [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234, DOI 10.17487/RFC6234, May 2011, . [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves for Security", RFC 7748, DOI 10.17487/RFC7748, January 2016, . [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/RFC8032, January 2017, . Ounsworth, et al. Expires 4 September 2025 [Page 66] Internet-Draft Composite ML-DSA March 2025 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . [RFC8410] Josefsson, S. and J. Schaad, "Algorithm Identifiers for Ed25519, Ed448, X25519, and X448 for Use in the Internet X.509 Public Key Infrastructure", RFC 8410, DOI 10.17487/RFC8410, August 2018, . [RFC8411] Schaad, J. and R. Andrews, "IANA Registration for the Cryptographic Algorithm Object Identifier Range", RFC 8411, DOI 10.17487/RFC8411, August 2018, . [X.690] ITU-T, "Information technology - ASN.1 encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)", ISO/IEC 8825-1:2015, November 2015. 12.2. Informative References [ANSSI2024] French Cybersecurity Agency (ANSSI), Federal Office for Information Security (BSI), Netherlands National Communications Security Agency (NLNCSA), and Swedish National Communications Security Authority, Swedish Armed Forces, "Position Paper on Quantum Key Distribution", n.d., . [Bindel2017] Bindel, N., Herath, U., McKague, M., and D. Stebila, "Transitioning to a quantum-resistant public key infrastructure", 2017, . [BSI2021] Federal Office for Information Security (BSI), "Quantum- safe cryptography - fundamentals, current developments and recommendations", October 2021, . Ounsworth, et al. Expires 4 September 2025 [Page 67] Internet-Draft Composite ML-DSA March 2025 [I-D.ietf-lamps-cms-ml-dsa] S, B., R, A., and D. Van Geest, "Use of the ML-DSA Signature Algorithm in the Cryptographic Message Syntax (CMS)", Work in Progress, Internet-Draft, draft-ietf- lamps-cms-ml-dsa-02, 17 January 2025, . [I-D.ietf-lamps-dilithium-certificates] Massimo, J., Kampanakis, P., Turner, S., and B. Westerbaan, "Internet X.509 Public Key Infrastructure: Algorithm Identifiers for ML-DSA", Work in Progress, Internet-Draft, draft-ietf-lamps-dilithium-certificates- 04, 22 July 2024, . [I-D.ietf-pquip-hybrid-signature-spectrums] Bindel, N., Hale, B., Connolly, D., and F. D, "Hybrid signature spectrums", Work in Progress, Internet-Draft, draft-ietf-pquip-hybrid-signature-spectrums-00, 24 May 2024, . [I-D.ietf-pquip-pqt-hybrid-terminology] D, F., P, M., and B. Hale, "Terminology for Post-Quantum Traditional Hybrid Schemes", Work in Progress, Internet- Draft, draft-ietf-pquip-pqt-hybrid-terminology-04, 10 September 2024, . [I-D.pala-klaussner-composite-kofn] Pala, M. and J. Klaußner, "K-threshold Composite Signatures for the Internet PKI", Work in Progress, Internet-Draft, draft-pala-klaussner-composite-kofn-00, 15 November 2022, . [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April 2002, . [RFC5914] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor Format", RFC 5914, DOI 10.17487/RFC5914, June 2010, . Ounsworth, et al. Expires 4 September 2025 [Page 68] Internet-Draft Composite ML-DSA March 2025 [RFC7292] Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A., and M. Scott, "PKCS #12: Personal Information Exchange Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014, . [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T. Kivinen, "Internet Key Exchange Protocol Version 2 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October 2014, . [RFC7299] Housley, R., "Object Identifier Registry for the PKIX Working Group", RFC 7299, DOI 10.17487/RFC7299, July 2014, . [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, "PKCS #1: RSA Cryptography Specifications Version 2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016, . [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, . [RFC8551] Schaad, J., Ramsdell, B., and S. Turner, "Secure/ Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification", RFC 8551, DOI 10.17487/RFC8551, April 2019, . Appendix A. Samples A.1. Message Format Examples A.1.1. Example of MLDSA44-ECDSA-P256 with Context: M' = Prefix || Domain || len(ctx) || ctx || M M = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } ctx = new byte[] { 8, 13, 6, 12, 5, 16, 25, 23 } Message encoded: 43:6F:6D:70:6F:73:69:74:65:41:6C:67:6F:72:69:74:68:6D:53:69:67:6E:61:74:75:72:65:73:32:30:32:35:06:0B:60:86:48:01:86:FA:6B:50:08:01:3F:08:08:0D:06:0C:05:10:19:17:00:01:02:03:04:05:06:07:08:09 Prefix: 43:6F:6D:70:6F:73:69:74:65:41:6C:67:6F:72:69:74:68:6D:53:69:67:6E:61:74:75:72:65:73:32:30:32:35: Domain: 06:0B:60:86:48:01:86:FA:6B:50:08:01:3F: len(ctx): 08: ctx: 08:0D:06:0C:05:10:19:17: M: 00:01:02:03:04:05:06:07:08:09 Ounsworth, et al. Expires 4 September 2025 [Page 69] Internet-Draft Composite ML-DSA March 2025 A.1.2. Example of MLDSA44-ECDSA-P256 without a Context M' = Prefix || Domain || len(ctx) || ctx || M M = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } ctx = not used Message Encoded: 43:6F:6D:70:6F:73:69:74:65:41:6C:67:6F:72:69:74:68:6D:53:69:67:6E:61:74:75:72:65:73:32:30:32:35:06:0B:60:86:48:01:86:FA:6B:50:08:01:3F:00:00:01:02:03:04:05:06:07:08:09 Prefix: 43:6F:6D:70:6F:73:69:74:65:41:6C:67:6F:72:69:74:68:6D:53:69:67:6E:61:74:75:72:65:73:32:30:32:35: Domain: :06:0B:60:86:48:01:86:FA:6B:50:08:01:3F: len(ctx): 00: ctx: empty M: 00:01:02:03:04:05:06:07:08:09 A.1.3. Example of HashMLDSA44-ECDSA-P256-SHA256 with Context M' = Prefix || Domain || len(ctx) || ctx || HashOID || PH(M) M = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } ctx = new byte[] { 8, 13, 6, 12, 5, 16, 25, 23 } Encoded Message: 43:6F:6D:70:6F:73:69:74:65:41:6C:67:6F:72:69:74:68:6D:53:69:67:6E:61:74:75:72:65:73:32:30:32:35:06:0B:60:86:48:01:86:FA:6B:50:08:01:53:08:08:0D:06:0C:05:10:19:17:06:09:60:86:48:01:65:03:04:02:01:1F:82:5A:A2:F0:02:0E:F7:CF:91:DF:A3:0D:A4:66:8D:79:1C:5D:48:24:FC:8E:41:35:4B:89:EC:05:79:5A:B3 Prefix: 43:6F:6D:70:6F:73:69:74:65:41:6C:67:6F:72:69:74:68:6D:53:69:67:6E:61:74:75:72:65:73:32:30:32:35: Domain: :06:0B:60:86:48:01:86:FA:6B:50:08:01:53: len(ctx): 08: ctx: 08:0D:06:0C:05:10:19:17: HashOID: 06:09:60:86:48:01:65:03:04:02:01: PH(M): 1F:82:5A:A2:F0:02:0E:F7:CF:91:DF:A3:0D:A4:66:8D:79:1C:5D:48:24:FC:8E:41:35:4B:89:EC:05:79:5A:B3 A.1.4. Example of HashMLDSA44-ECDSA-P256-SHA256 without Context Ounsworth, et al. Expires 4 September 2025 [Page 70] Internet-Draft Composite ML-DSA March 2025 M' = Prefix || Domain || len(ctx) || ctx || HashOID || PH(M) M = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } ctx = not used Encoded Message: 43:6F:6D:70:6F:73:69:74:65:41:6C:67:6F:72:69:74:68:6D:53:69:67:6E:61:74:75:72:65:73:32:30:32:35:06:0B:60:86:48:01:86:FA:6B:50:08:01:53:00:06:09:60:86:48:01:65:03:04:02:01:1F:82:5A:A2:F0:02:0E:F7:CF:91:DF:A3:0D:A4:66:8D:79:1C:5D:48:24:FC:8E:41:35:4B:89:EC:05:79:5A:B3 Prefix: 43:6F:6D:70:6F:73:69:74:65:41:6C:67:6F:72:69:74:68:6D:53:69:67:6E:61:74:75:72:65:73:32:30:32:35: Domain: :06:0B:60:86:48:01:86:FA:6B:50:08:01:53 len(ctx): 00: ctx: empty HashOID: 06:09:60:86:48:01:65:03:04:02:01: PH(M): 1F:82:5A:A2:F0:02:0E:F7:CF:91:DF:A3:0D:A4:66:8D:79:1C:5D:48:24:FC:8E:41:35:4B:89:EC:05:79:5A:B3 A.2. Composite Signature Examples TODO - Need Samples Appendix B. Component Algorithm Reference This section provides references to the full specification of the algorithms used in the composite constructions. Ounsworth, et al. Expires 4 September 2025 [Page 71] Internet-Draft Composite ML-DSA March 2025 +=========================+=========================+=============+ | Component Signature | OID |Specification| | Algorithm ID | | | +=========================+=========================+=============+ | id-ML-DSA-44 | 2.16.840.1.101.3.4.3.17 |[FIPS.204] | +-------------------------+-------------------------+-------------+ | id-ML-DSA-65 | 2.16.840.1.101.3.4.3.18 |[FIPS.204] | +-------------------------+-------------------------+-------------+ | id-ML-DSA-87 | 2.16.840.1.101.3.4.3.19 |[FIPS.204] | +-------------------------+-------------------------+-------------+ | id-Ed25519 | 1.3.101.112 |[RFC8410] | +-------------------------+-------------------------+-------------+ | id-Ed448 | 1.3.101.113 |[RFC8410] | +-------------------------+-------------------------+-------------+ | ecdsa-with-SHA256 | 1.2.840.10045.4.3.2 |[RFC5758] | +-------------------------+-------------------------+-------------+ | ecdsa-with-SHA512 | 1.2.840.10045.4.3.4 |[RFC5758] | +-------------------------+-------------------------+-------------+ | sha256WithRSAEncryption | 1.2.840.113549.1.1.11 |[RFC8017] | +-------------------------+-------------------------+-------------+ | sha512WithRSAEncryption | 1.2.840.113549.1.1.13 |[RFC8017] | +-------------------------+-------------------------+-------------+ | id-RSASSA-PSS | 1.2.840.113549.1.1.10 |[RFC8017] | +-------------------------+-------------------------+-------------+ Table 9: Component Signature Algorithms used in Composite Constructions +==================+=======================+===============+ | Elliptic CurveID | OID | Specification | +==================+=======================+===============+ | secp256r1 | 1.2.840.10045.3.1.7 | [RFC6090] | +------------------+-----------------------+---------------+ | secp384r1 | 1.3.132.0.34 | [RFC6090] | +------------------+-----------------------+---------------+ | brainpoolP256r1 | 1.3.36.3.3.2.8.1.1.7 | [RFC5639] | +------------------+-----------------------+---------------+ | brainpoolP384r1 | 1.3.36.3.3.2.8.1.1.11 | [RFC5639] | +------------------+-----------------------+---------------+ Table 10: Elliptic Curves used in Composite Constructions Ounsworth, et al. Expires 4 September 2025 [Page 72] Internet-Draft Composite ML-DSA March 2025 +===========+=========================+===============+ | HashID | OID | Specification | +===========+=========================+===============+ | id-sha256 | 2.16.840.1.101.3.4.2.1 | [RFC6234] | +-----------+-------------------------+---------------+ | id-sha512 | 2.16.840.1..101.3.4.2.3 | [RFC6234] | +-----------+-------------------------+---------------+ Table 11: Hash algorithms used in Composite Constructions Appendix C. Component AlgorithmIdentifiers for Public Keys and Signatures To ease implementing Composite Signatures this section specifies the Algorithms Identifiers for each component algorithm. They are provided as ASN.1 value notation and copy and paste DER encoding to avoid any ambiguity. Developers may use this information to reconstruct non hybrid public keys and signatures from each component that can be fed to crypto APIs to create or verify a single component signature. For newer Algorithms like Ed25519 or ML-DSA the AlgorithmIdentifiers are the same for Public Key and Signature. Older Algorithms have different AlgorithmIdentifiers for keys and signatures and are specified separately here for each component. *ML-DSA-44 -- AlgorithmIdentifier of Public Key and Signature* ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-ML-DSA-44 -- (2 16 840 1 101 3 4 3 17) } DER: 30 0B 06 09 60 86 48 01 65 03 04 03 11 *ML-DSA-65 -- AlgorithmIdentifier of Public Key and Signature* ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-ML-DSA-65 -- (2 16 840 1 101 3 4 3 18) } DER: 30 0B 06 09 60 86 48 01 65 03 04 03 12 *ML-DSA-87 -- AlgorithmIdentifier of Public Key and Signature* Ounsworth, et al. Expires 4 September 2025 [Page 73] Internet-Draft Composite ML-DSA March 2025 ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-ML-DSA-87 -- (2 16 840 1 101 3 4 3 19) } DER: 30 0B 06 09 60 86 48 01 65 03 04 03 13 *RSASSA-PSS 2048 -- AlgorithmIdentifier of Public Key* ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-RSASSA-PSS -- (1.2.840.113549.1.1.10) } DER: 30 0B 06 09 2A 86 48 86 F7 0D 01 01 0A *RSASSA-PSS 2048 -- AlgorithmIdentifier of Signature* ASN.1: signatureAlgorithm AlgorithmIdentifier ::= { algorithm id-RSASSA-PSS, -- (1.2.840.113549.1.1.10) parameters ANY ::= { AlgorithmIdentifier ::= { algorithm id-sha256, -- (2.16.840.1.101.3.4.2.1) parameters NULL }, AlgorithmIdentifier ::= { algorithm id-mgf1, -- (1.2.840.113549.1.1.8) parameters AlgorithmIdentifier ::= { algorithm id-sha256, -- (2.16.840.1.101.3.4.2.1) parameters NULL } }, saltLength 32 } } DER: 30 41 06 09 2A 86 48 86 F7 0D 01 01 0A 30 34 A0 0F 30 0D 06 09 60 86 48 01 65 03 04 02 01 05 00 A1 1C 30 1A 06 09 2A 86 48 86 F7 0D 01 01 08 30 0D 06 09 60 86 48 01 65 03 04 02 01 05 00 A2 03 02 01 20 *RSASSA-PSS 3072 & 4096 -- AlgorithmIdentifier of Public Key* Ounsworth, et al. Expires 4 September 2025 [Page 74] Internet-Draft Composite ML-DSA March 2025 ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-RSASSA-PSS -- (1.2.840.113549.1.1.10) } DER: 30 0B 06 09 2A 86 48 86 F7 0D 01 01 0A *RSASSA-PSS 3072 & 4096 -- AlgorithmIdentifier of Signature* ASN.1: signatureAlgorithm AlgorithmIdentifier ::= { algorithm id-RSASSA-PSS, -- (1.2.840.113549.1.1.10) parameters ANY ::= { AlgorithmIdentifier ::= { algorithm id-sha512, -- (2.16.840.1.101.3.4.2.3) parameters NULL }, AlgorithmIdentifier ::= { algorithm id-mgf1, -- (1.2.840.113549.1.1.8) parameters AlgorithmIdentifier ::= { algorithm id-sha512, -- (2.16.840.1.101.3.4.2.3) parameters NULL } }, saltLength 64 } } DER: 30 41 06 09 2A 86 48 86 F7 0D 01 01 0A 30 34 A0 0F 30 0D 06 09 60 86 48 01 65 03 04 02 03 05 00 A1 1C 30 1A 06 09 2A 86 48 86 F7 0D 01 01 08 30 0D 06 09 60 86 48 01 65 03 04 02 03 05 00 A2 03 02 01 40 *RSASSA-PKCS1-v1_5 2048 -- AlgorithmIdentifier of Public Key* ASN.1: algorithm AlgorithmIdentifier ::= { algorithm rsaEncryption, -- (1.2.840.113549.1.1.1) parameters NULL } DER: 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 *RSASSA-PKCS1-v1_5 2048 -- AlgorithmIdentifier of Signature* Ounsworth, et al. Expires 4 September 2025 [Page 75] Internet-Draft Composite ML-DSA March 2025 ASN.1: signatureAlgorithm AlgorithmIdentifier ::= { algorithm sha256WithRSAEncryption, -- (1.2.840.113549.1.1.11) parameters NULL } DER: 30 0D 06 09 2A 86 48 86 F7 0D 01 01 0D 05 00 *RSASSA-PKCS1-v1_5 3072 & 4096 -- AlgorithmIdentifier of Public Key* ASN.1: algorithm AlgorithmIdentifier ::= { algorithm rsaEncryption, -- (1.2.840.113549.1.1.1) parameters NULL } DER: 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 *RSASSA-PKCS1-v1_5 3072 & 4096 -- AlgorithmIdentifier of Signature* ASN.1: signatureAlgorithm AlgorithmIdentifier ::= { algorithm sha512WithRSAEncryption, -- (1.2.840.113549.1.1.13) parameters NULL } DER: 30 0D 06 09 2A 86 48 86 F7 0D 01 01 0D 05 00 *ECDSA NIST 256 -- AlgorithmIdentifier of Public Key* ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-ecPublicKey -- (1.2.840.10045.2.1) parameters ANY ::= { AlgorithmIdentifier ::= { algorithm secp256r1 -- (1.2.840.10045.3.1.7) } } } DER: 30 13 06 07 2A 86 48 CE 3D 02 01 06 08 2A 86 48 CE 3D 03 01 07 *ECDSA NIST 256 -- AlgorithmIdentifier of Signature* Ounsworth, et al. Expires 4 September 2025 [Page 76] Internet-Draft Composite ML-DSA March 2025 ASN.1: signature AlgorithmIdentifier ::= { algorithm ecdsa-with-SHA256 -- (1.2.840.10045.4.3.2) } DER: 30 0A 06 08 2A 86 48 CE 3D 04 03 02 *ECDSA NIST-384 -- AlgorithmIdentifier of Public Key* ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-ecPublicKey -- (1.2.840.10045.2.1) parameters ANY ::= { AlgorithmIdentifier ::= { algorithm secp384r1 -- (1.3.132.0.34) } } } DER: 30 10 06 07 2A 86 48 CE 3D 02 01 06 05 2B 81 04 00 22 *ECDSA NIST-384 -- AlgorithmIdentifier of Signature* ASN.1: signature AlgorithmIdentifier ::= { algorithm ecdsa-with-SHA384 -- (1.2.840.10045.4.3.3) } DER: 30 0A 06 08 2A 86 48 CE 3D 04 03 03 *ECDSA Brainpool-256 -- AlgorithmIdentifier of Public Key* ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-ecPublicKey -- (1.2.840.10045.2.1) parameters ANY ::= { AlgorithmIdentifier ::= { algorithm brainpoolP256r1 -- (1.3.36.3.3.2.8.1.1.7) } } } DER: 30 14 06 07 2A 86 48 CE 3D 02 01 06 09 2B 24 03 03 02 08 01 01 07 Ounsworth, et al. Expires 4 September 2025 [Page 77] Internet-Draft Composite ML-DSA March 2025 *ECDSA Brainpool-256 -- AlgorithmIdentifier of Signature* ASN.1: signature AlgorithmIdentifier ::= { algorithm ecdsa-with-SHA256 -- (1.2.840.10045.4.3.2) } DER: 30 0A 06 08 2A 86 48 CE 3D 04 03 02 *ECDSA Brainpool-384 -- AlgorithmIdentifier of Public Key* ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-ecPublicKey -- (1.2.840.10045.2.1) parameters ANY ::= { AlgorithmIdentifier ::= { algorithm brainpoolP384r1 -- (1.3.36.3.3.2.8.1.1.11) } } } DER: 30 14 06 07 2A 86 48 CE 3D 02 01 06 09 2B 24 03 03 02 08 01 01 0B *ECDSA Brainpool-384 -- AlgorithmIdentifier of Signature* ASN.1: signature AlgorithmIdentifier ::= { algorithm ecdsa-with-SHA384 -- (1.2.840.10045.4.3.3) } DER: 30 0A 06 08 2A 86 48 CE 3D 04 03 03 *Ed25519 -- AlgorithmIdentifier of Public Key and Signature* ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-Ed25519 -- (1.3.101.112) } DER: 30 05 06 03 2B 65 70 *Ed448 -- AlgorithmIdentifier of Public Key and Signature* Ounsworth, et al. Expires 4 September 2025 [Page 78] Internet-Draft Composite ML-DSA March 2025 ASN.1: algorithm AlgorithmIdentifier ::= { algorithm id-Ed448 -- (1.3.101.113) } DER: 30 05 06 03 2B 65 71 Appendix D. Implementation Considerations D.1. FIPS certification One of the primary design goals of this specification is for the overall composite algorithm to be able to be considered FIPS-approved even when one of the component algorithms is not. Implementors seeking FIPS certification of a composite Signature algorithm where only one of the component algorithms has been FIPS- validated or FIPS-approved should credit the FIPS-validated component algorithm with full security strength, the non-FIPS-validated component algorithm with zero security, and the overall composite should be considered at least as strong and thus FIPS-approved. The authors wish to note that this gives composite algorithms great future utility both for future cryptographic migrations as well as bridging across jurisdictions, for example defining composite algorithms which combine FIPS cryptography with cryptography from a different national standards body. D.2. Backwards Compatibility The term "backwards compatibility" is used here to mean something more specific; that existing systems as they are deployed today can interoperate with the upgraded systems of the future. This draft explicitly does not provide backwards compatibility, only upgraded systems will understand the OIDs defined in this document. Ounsworth, et al. Expires 4 September 2025 [Page 79] Internet-Draft Composite ML-DSA March 2025 If backwards compatibility is required, then additional mechanisms will be needed. Migration and interoperability concerns need to be thought about in the context of various types of protocols that make use of X.509 and PKIX with relation to digital signature objects, from online negotiated protocols such as TLS 1.3 [RFC8446] and IKEv2 [RFC7296], to non-negotiated asynchronous protocols such as S/MIME signed email [RFC8551], document signing such as in the context of the European eIDAS regulations [eIDAS2014], and publicly trusted code signing [codeSigningBRsv2.8], as well as myriad other standardized and proprietary protocols and applications that leverage CMS [RFC5652] signed structures. Composite simplifies the protocol design work because it can be implemented as a signature algorithm that fits into existing systems. D.2.1. Hybrid Extensions (Keys and Signatures) The use of Composite Crypto provides the possibility to process multiple algorithms without changing the logic of applications but updating the cryptographic libraries: one-time change across the whole system. However, when it is not possible to upgrade the crypto engines/libraries, it is possible to leverage X.509 extensions to encode the additional keys and signatures. When the custom extensions are not marked critical, although this approach provides the most backward-compatible approach where clients can simply ignore the post-quantum (or extra) keys and signatures, it also requires all applications to be updated for correctly processing multiple algorithms together. Appendix E. Intellectual Property Considerations The following IPR Disclosure relates to this draft: https://datatracker.ietf.org/ipr/3588/ Appendix F. Contributors and Acknowledgements This document incorporates contributions and comments from a large group of experts. The Editors would especially like to acknowledge the expertise and tireless dedication of the following people, who attended many long meetings and generated millions of bytes of electronic mail and VOIP traffic over the past few years in pursuit of this document: Ounsworth, et al. Expires 4 September 2025 [Page 80] Internet-Draft Composite ML-DSA March 2025 Daniel Van Geest (CryptoNext), Dr. Britta Hale (Naval Postgraduade School), Tim Hollebeek (Digicert), Panos Kampanakis (Cisco Systems), Richard Kisley (IBM), Serge Mister (Entrust), Piotr Popis, François Rousseau, Falko Strenzke, Felipe Ventura (Entrust), Alexander Ralien (Siemens), José Ignacio Escribano, Jan Oupický, 陳志華 (Abel C. H. Chen, Chunghwa Telecom), 林邦曄 (Austin Lin, Chunghwa Telecom) and Mojtaba Bisheh-Niasar We especially want to recognize the contributions of Dr. Britta Hale who has helped immensely with strengthening the signature combiner construction, and with analyzing the scheme with respect to EUF-CMA and Non-Separability properties. We are grateful to all who have given feedback over the years, formally or informally, on mailing lists or in person, including any contributors who may have been inadvertently omitted from this list. This document borrows text from similar documents, including those referenced below. Thanks go to the authors of those documents. "Copying always makes things easier and less error prone" - [RFC8411]. F.1. Making contributions Additional contributions to this draft are welcome. Please see the working copy of this draft at, as well as open issues at: https://github.com/lamps-wg/draft-composite-sigs Authors' Addresses Mike Ounsworth Entrust Limited 2500 Solandt Road – Suite 100 Ottawa, Ontario K2K 3G5 Canada Email: mike.ounsworth@entrust.com John Gray Entrust Limited 2500 Solandt Road – Suite 100 Ottawa, Ontario K2K 3G5 Canada Email: john.gray@entrust.com Ounsworth, et al. Expires 4 September 2025 [Page 81] Internet-Draft Composite ML-DSA March 2025 Massimiliano Pala OpenCA Labs New York City, New York, United States of America Email: director@openca.org Jan Klaussner Bundesdruckerei GmbH Kommandantenstr. 18 10969 Berlin Germany Email: jan.klaussner@bdr.de Scott Fluhrer Cisco Systems Email: sfluhrer@cisco.com Ounsworth, et al. Expires 4 September 2025 [Page 82]