Inserting figures into TeX documents

Szabé Péter

Budapest University of Technology and Ecomomics

http://www.inf.bme.hu/\"pts/ (without the backslash)

Abstract

* My article deals with the practical considerations of inserting sampled figures

into TeX documents. Sub-topics:

e Choosing the appropriate compression for sampled images.

Software

patents. PostScript and PDF compatibility.

e Conversion of PNG, JPEG, TIFF and GIF files to PDF (for pdfTeX) and
EPS (for dvips). sam2p, a conversion utility I've developed recently.

e Creating pixel-based figures with transparent pixels. Transparency support

in sam2p.

The IWTEX graphics package and epsf.tex for
plain TEX provide an easy and fairly standard way
for including EPS figures into TEX documents with
PostScript target, and pdfTeX together with the gra
phics package supports PDF figures in IXTEX docu-
ments with PDF targets. This works fine for vector
images, because serious editors have EPS export ca-
pability, and one can convert an EPS file to PDF
with several utilities (such as epstopdf bundled with
teTEX, ps2pdf bundled with Ghostscript, PSTill and
Acrobat Distiller).

Inclusion of raster (bitmap) images seems to be
even simpler and less troublesome at the first glance.
Under UNIX, the convert utility of ImageMagick
can be used to create a PBM or PGM file, which
can be converted to EPS by the pnmtops utility of
NetPBM. Filters mentioned in the previous para-
graph can be used to create a PDF file from the
EPS. There are several other approaches, which will
be described later in this article.

But high-quality raster image files tend to be
huge, and thus documents containing raster images
can be only trasferred on the network only slowly,
and printing is even more slower. It is common
that a PostScript version of a small article with a
few dozen raster illustrations becomes larger than
100 MB, and printing each page on a personal prin-
ter takes half an hour. Software techniques such
as compression and colorspace transformation can
be used to make these images much smaller, and
PostScript and PDF support much of these tech-
niques, but unfortunately currently no free utilities

* The author thanks GUST for funding his participation
in EuroBachoTEX 2002, and Ferenc Wettl for testing sam2p.

TUGboat, Volume 0 (2001), No. 0— Proceedings of the 2001 Annual Meeting

exist that give the user full control over the image
representation parameters.

This article analyses the problem and possi-

ble solutions in detail, and presents the new util-
ity sam2p written by the author of the article, that
implements these solutions.
Concepts Although PostScript and PDF are most
often used for faithfully representing two-dimension-
al vector graphics, they have sophisticated features
for displaying sampled image data as well. Unfortu-
nately the PostScript and PDF output facilities of
existing image converters and editors don’t make use
of these advanced features: they often produce large,
slow and incompatible PostScript or PDF code. sam
2p is a new sampled image conversion utility that
gives the user full control to adjust compliance, com-
pression and encoding of the PostScript and PDF
output files.

The concept of sampled images is rather sim-
ple: the image is a rectangular array of pizels, in
which the color of each pixel is independent of the
others. A color consists of one or more components
(channels, planes): for example, the colors of the
RGB color space are composed of a red, a green
and a blue component. The name sampled image
comes from the fact that only a finite number of
pixel samples of the continuous picture are stored.
(The sampled image is also quantized, e.g. the com-
ponents are integers in the range 0...255, where 0
means darkest, 255 means lightest.) Sampled im-
ages are also called raster images or bitmap images.
Some images have an alpha channel, which describes
the opacity of the pixels: a pixel having a = 0 is
fully transparent, and a pixel with a = 1 is opaque.
Non-rectangular shapes can be represented with a

1001



Szabé Péter

rectangular image having transparent pixels outside
the shape, and opacity can be used this way to draw
arbitrary shapes atop of each other.

Recent versions of the PostScript and PDF for-
mats fully support the notions defined above. Many
features are not available in older PostScript print-
ers, and there are even some features (such as opac-
ity) that are documented in the file format, but not
implemented in any common free renderers. Thus,
compatibility must be always considered when cre-
ating a PostScript or PDF file containing a sam-
pled image. These two file formats are based on
a common graphics model, and thus they are al-
most equivalent. The actual image data (being ei-
ther compressed or not) is stored the same way in
PostScript and PDF files, only the syntax of the
surrounding meta-information (such as the image
width, height and color space specification) is dif-
ferent.

The most important difference between Post-
Script and PDF formats is that PostScript is a full-
featured programming language, and it gives more
power to the programmer to represent the image.
For example, one can write a PostScript program
that would compute and draw a Mandelbrot or Julia
set as a sampled image, but there is no similar capa-
bility in PDF (i.e the pixels have to be pre-computed
before the generation of the PDF file). The pro-
gramming constructs of PostScript can be used to
compensate the weaknesses of the interpreter: for
example, older interpreters don’t support the Flate
(ZIP) compression, but this can be overcome by
including a pure PostScript implementation of the
/FlateDecode filter into the EPS file, just before
the image data, and executing the supplied code
when the filter is missing from the interpreter itself.
sam2p does this and several other tricks to increase
compatibility of PostScript files. Unfortunately this
doesn’t work for PDF'; there is no way to extend the
list of available filters.

Raster images are most commonly used as il-
lustrations in more complex documents, thus the
holding PostScript and PDF files should be gen-
erated embeddable. The design of the PDF file
format makes embedding any PDF file (including
the most complex ones) very easy, even without the
special attention of the generator. PostScript fig-
ures, on the other hand, share a common names-
pace (and very limited memory) with the document
they are embedded into, and extreme caution should
be taken to avoid conflicts with the document it-
self and with other figures. Encapsulated PostScript
(EPS) is the most common file format of embed-
dable PostScript code, and most utilities (including

1002

sam2p) output sampled PostScript images as EPS.
There is a thumbnail/preview feature in the EPS
format, but sam2p doesn’t emit one, because most
utilities (including the utilities related to TEX) ig-
nore it, and they would call Ghostscript to render an
independent preview anyway.

Smaller output Sampled images, especially when
rendered in high resolution (> 300 DPI), tend to be
large and occupy much space on disk. A PDF file
with many high resolution figures in it gets down-
loaded slowly from the web, and a PDF file with low
resolution images looks ugly when printed. A long
PostScript file containing large images prints very
slowly, and might even fill up the disk space of the
computer running the printer spooler. (Just imagine
multiple PostScript files of 200 MB being printed on
an old, dedicated print server with small hard disks.
This situation often happened to the author.) Large
PostScript files print especially slowly, because the
parallel-port interface on which the printer is con-
nected to the computer is too slow, or the processor
embedded to the printer running the PostScript in-
terpreter is slow. It is really annoying to wait more
than a minute for a single A4 page, and even more
annying to wait for someone else’s job running at
this “speed”.

When running TEX on an old machine, the user
must wait several minutes for TEX finishing skip-
ping long EPS files after finding geometry (bound-
ing box) information. The situation is even worse
today, when one expects WYSIWYG, or — at least
— instant preview. Several minutes is definitely not
instant.

Thus, the generated PostScript and PDF files
should be as small as possible. This can be accom-
plished by:

e apply filtering to reduce noise, increase contrast
etc.: This should be done manually in graph-
ical image editors. Sometimes even a size re-
duction of a factor of 4 can be achieved by re-
moving noise and unnecessary information. As
part of the filtering, the user should adjust the
color palette: black should be exactly black (RGB
triplet #000000), and white should be completely
white (RGB triplet #£££fff), because otherwise
Ghostscript would print glaring gray regions.

e using less bits for representing a single color com-
ponent: A black-white image needs only 1 bit per
pixel, and it would be big waste to include it as
an 8-bit RGB image with 24 bits per pixel. Even
color images can be encoded with a few bits when
using only a palette of very few number of dif-
ferent colors. PostScript and PDF support may

TUGboat, Volume 0 (2001), No. 0— Proceedings of the 2001 Annual Meeting



sample formats ranging between 1...33 bits per
pixel.

e using compression adequate for the image types:
There is no universal method that finds the com-
pression with best ratio, but in general, continu-
ous-tone color or gray images (such as photos or
scanned paintings) should be compressed with the
JPEG (DCT) compression filter, black-white im-
ages should be encoded with the the Group3 Fax
(CCITTFax) filter, and ZIP compression (Flate)
is quite good for other sample formats. When
ZIP compression is not available on the printer,
LZW (patented till 19 June 2003) or RLE (poor
ratio) can be used.

e image data should be preconditioned for compres-
sion: There are several predictors (such as hori-
zontal differencing) that convert similar patterns
found in the image to repeating data bytes, so the
compression ratio of some filters will be improved.

Sometimes the user has a priori knowledge about
the structure of the image, and knows the best com-
bination of compression filters, parameters and pre-
dictors. Although many converters support some
kind of Postscript or PDF compression, unfortu-
nately free utilities that would respect the exact wish
of the user haven’t existed before sam2p.

A beginner who doesn’t want to know about all
the details, can use the output profile created by an
expert. An output profile consists of several inde-
pendent rules. For example, if the profile contains a
rule with DCT compression, and another rule with
Fax compression, sam2p will choose automatically
the first rule for continuous-tone RGB images, and
the second rule for black-white images. When two
rules are in conflict (i.e. they are both applicable),
the one that has been declared first is applied.

More compatible output The PostScript format
has evolved much over time. Newer versions provide
color images and more compression filters:

e PSL1. This is the very first PostScript specifica-
tion, called LanguageLevell, as defined by Adobe
in 1985. It doesn’t have any predefined filters,
and supports only grayscale images directly. Very
limited support for RGB images with few dif-
ferent colors exists, using the setrgbcolor and
imagemask operators.

e PSLC. This is Levell PostScript with the CMYK
extension. The CMYK color space is not impor-
tant for sam2p, but the extension also adds the
colorimage operator with the ability of drawing
arbitrary RGB (and CMYK) images. This is the
standard that ancient PostScript printers follow.

TUGboat, Volume 0 (2001), No. 0— Proceedings of the 2001 Annual Meeting

Inserting figures into TeX documents

e PSL2. PostScript LanguageLevel 2 supports sev-
eral color spaces (e.g. “indexed”=paletted), and
all compression filters except ZIP. Ghostscript, PS
till, Acrobat Distiller, and most PostScript print-
ers today understand this LanguageLevel.

e PSL3. The most important feature added by
Level3 is Flate compression. Ghostscript supports
this and many other features of this level. Unfor-
tunately Level3 is too new, it has not been imple-
mented by major printer vendors yet.

The history of PDF files is shorter: PDF1.0
roughly corresponds to PSL2, and PDF1.2 added
ZIP compression. It is important to note that most
PostScript printers cannot print PDF files, because
random access (i.e arbirary file seeking, positioning)
would be required, but printers are connected with
parellel, USB or TCP interface, which provides only
serial data stream access. There are, however, ad-
vanced printers that read the whole PDF file into
their memory before processing it. As a conclu-
sion, neither PDF or PostScript can fully replace
the other one, so sam2p supports both.

In sam2p, the user can specify the exact ver-
sion of the PostScript or PDF format the output
should comply to, and the program gives an error
message on illegal combinations (such as ZIP com-
pression in PSL2). In some cases, tricky PostScript
code is used to emulate features of higher levels. For
example, RLE and ZIP (de)compression is provided
even in PSL1 (1), by inlining the pure PostScript
implementation of the decompressor into the EPS
file. More examples: indexed images are emulated
in PSLC, and a grayscale-mapped version of the
colorimage operator is provided for PSL1. The
implementations of these PostScript tricks are cur-
rently incompatible with each other, but the archi-
tecture of sam2p makes adding more combinations
possible. This way, compatibility is not an alterna-
tive of file size, but it is an alternative of decompres-
sion and printing speed.

sam2p sam2p is a UNIX command line utility writ-
ten in ANSI C++ that converts many raster im-
age formats into Adobe PostScript or PDF files. It
gives full control to the user to specify standards-
compliance, compression, and bit depths. The im-
ages are not vectorized. It is common that sam2p
can compress an image down to an 50kB Levell
PostScript file without quality loss, while other pop-
ular converters produce multi-megabyte output. sa
m2p is unique, because it provides some Level3 com-
pression filters even on Levell devices.

1003



Szabé Péter

The program source code for UNIX systems is
available from http://www.inf.bme.hu/ pts/sam
2p-latest.tar.gz. The license is GNU GPL. Doc-
umentation, compilation instructions and examples
are included. The author can be reached via e-
mail at <pts@fazekas.hu> with the Subject start-
ing with [sam2p],.

The most important limitations are:

e only DeviceRGB color space is supported, with
the Indexed, Gray and RGB image types

e Color depth is 8 bits maxium.

e Indexed images can have up to 256 colors

e alpha channel and transparency supported only
for Indexed images: only one color may be trans-
parent

Temporary limitations at 4 April 2002:

e GUI was not working

e the software is in beta state (the author welcomes
bug reports)

e PDF output was not implemented

e transparent PS and PDF output is very limited

some PSL1 tricks were not included

Although sam2p is a command line utility (i.e,
without a graphical user interface), it doesn’t accept
any command line options: it must be controlled
from “job” files. It expects a single command line
argument: the name of the job file. sam2p runs that
single job, prints debug, info, notice, warning and
error messages (etc.), and creates a single output
file: a PS or a PDF. For multiple jobs and multiple
output files, one has to run the program multiple
times.

The syntax of the job file resembles PostScript
and PDF. For example:

<<Y)sam2p job file
/InputFile (input.ppm)
/OutputFile (output.eps)
/Profile [
<< /FileFormat/PSL2 /SampleFormat/Mask
/TransferEncoding/Binary
/Compression/Fax
>> 1 >>

The Profile is a list of one or more Qutput rules.
Each output rule is a dictionary (written between <<
and >>), and specifies all the desired properties the
OutputFile should have. In the example, there is
a single output rule that specifies that output.eps
should be an EPS file conforming to PostScript Lan-
guageLevel 2, containing the image as a Mask (i.e
only a single, non-trasparent color and a transparent
color), the file is Binary (can contain arbitrary char-
acters and long lines), and data is compressed with

1004

the CCITT Fax encoding filter. Additional keys and
values of the output rule dictionary will be described
later.

The Profile contains a single output rule most
of the time, but it is possible to specify more than
one. sam2p tries to follow the output rules in the
order they are specified, and if it encounters an in-
consistency (not an I/O error!), then it proceeds to
the next output rule. For example, one can spec-
ify a Profile that works for all grayscale images, and
provides the compression adequate for the bit depth:

<<Jsam2p job file
/InputFile (in.pgm) /OutputFile (out.eps)
/Profile [
<< /FileFormat/PSL1 /SampleFormat/Opaque
/TransferEncoding/ASCII >>
<< /FileFormat/PSL2 /SampleFormat/Grayl
/TransferEncoding/A85
/Compression/Fax >>
<< /FileFormat/PSL3 /SampleFormat/Gray2
/TransferEncoding/A85
/Compression/ZIP >>
<< /FileFormat/PSL3 /SampleFormat/Gray4
/TransferEncoding/A85
/Compression/ZIP /Predictor 2 >>
<< /FileFormat/PSL3 /SampleFormat/Gray8
/TransferEncoding/A85
/Compression/ZIP /Predictor 15 >>
1 >

Note that there is no ultimate way to specify
best compression; the configuration above may or
may not suit the compression of special grayscale im-
ages. For example, if the 8-bit images the user would
like to compress are photos, then JPEG (/Compres
sion/IJG /Hints<</Quality 60>>) is probably a
better choice.

The job file is case sensitive, and newlines and
spaces are treated as a single space outside strings.
The job file contains a single job dictionary describ-
ing a single conversion. Other files may be included
with the run command, for example:

<<Ysam2p job file
/InputFile (in.pgm)
/Profile [

/OutputFile (out.eps)
(my_profile.jib) run ] >>

See the documentation shipped with the sam2p
sources for a complete reference of output rule ele-
ments. The most important keys are:

e /FileFormat: any of /PSL1, /PSLC, /PSL2, /PSL
3, /PDFB1.0, /PDFB1.2, /PDF1.0, /PDF1.2, /GIF
89a, /PNM, /Empty. PDFB creates a PDF without
an image dictionary, but with a BI inline image.
This is recommended when the PDF file will be

TUGboat, Volume 0 (2001), No. 0— Proceedings of the 2001 Annual Meeting



processed by pdfTeX, because pdfTeX forces ZIP
compression on non-BI images.

e /SampleFormat: specifies the bit depth and color
space in which the samples are stored. Possi-
ble values are: /Opaque, /Transparent, /Grayl,
/Indexedl, /Mask, /Transparent2, /Gray2, /In
dexed2, /Transparent4, /Rgbl, /Gray4, /Index
ed4, /Transparent8, /Rgb2, /Gray8, /Indexed8,
/Rgb4, /Rgb8, /Asis. Use /Asis together with
1JG compression.

e /WarningOK: true or false. With false (non-
default), this output rule is disabled for an image
if it would cause warnings to be printed.

e /TransferEncoding: any of /Binary, /ASCII,
/Hex=/AHx, /A85. /ASCII is useful only when
no image data will be stored, for example with
/Opaque and /Transparent.

e /Compression: any of /None, /LZW, /ZIP=/Flat
e=/F1, /RLE=/RunLength, /Fax=/CCITTFax, /D
CT=/JPEG, /I1JG, /JAIL. DCT is JPEG compression
with the PostScript /DCTEncode filter (creates
large JPEG files), /1JG is JPEG compression us-
ing cjpeg by the Independent JPEG Group (rec-
ommended, produces small JPEG files), /JAI is
mostly verbatim inclusion of a JPEG file read
from /InputFile. /ZIP generally doesn’t work
in PSL2 or PDF1.0, and other filters generally
don’t work in PSLC. Because of the PostScript
trickery, there is a chance that /ZIP and /RLE
works even in PSL1.

e /Predictor: any of 1 (no predictor), 2 (TIFF
predictor 2), 10...15 (PNG predictors), 45 (al-
ternative implementation of PNG predictor 15).
When used together with /ZIP or /LZW, it may
decrease output file size. See [1] for details.

e /Hints: a dictionary of several additional param-
eters and hints, for fine tuning. See the documen-
tation of sam2p for details.

sam2p can autodetect and read the following
image formats:
e PNM, PBM, PGM, PPM. These are the preferred
formats for non-transparent images.

e XPM. This is the preferred format for indexed
images with transparency.

BMP (Windows and OS/2 Bitmap)
GIF (Compuserve Graphics Interchange Format)
LBM (IFF ILBM)
TGA (Targa)
baseline JPEG JFIF (limited support)

Some other input formats (such as PNG, TIFF,
PS, EPS, PDF, XBM, XWD, PCX, Utah RLE) are
planned in the future.

TUGboat, Volume 0 (2001), No. 0— Proceedings of the 2001 Annual Meeting

Inserting figures into TeX documents

Implementation considerations sam2p manip-
ulates possibly huge raster images. Today desktop
computers tend to have more and more system mem-
ory, into which the entire image can be read. But
free memory shouldn’t be wasted: the programmer
must have precise control over the memory allocated
for image data. The program should be fast, even
when converting large images. Scripting languages
and Java provide memory management (i.e. auto-
matic memory deallocation, and safety from illegal
memory access), but are slow and they waste re-
sources when dealing with image data. Among the
popular programming languages, only C and C++
fulfills the mentioned memory usage and speed re-
quirements.

The code would include stacked encoding fil-
ters, for example the ASCII85Encode filter writes
the actual data to the output file, reads the output
of the LZWEncode filter, which indeed reads the out-
put of a predictor. The filters and predictors can
have multiple implementations (such as a truly in-
ternal, one using a shared library such as zlib, or one
that spawns an external process to do the job). This
complexity can be easily handled within the object-
oriented paradigm, but would be a mess in pure
C. Other reasons for C++ beyond supporting ob-
jects are the powerful syntactic sugars and the stan-
dardness and standards-compliance of compilers: no
more confusion and partial implementations with
traditional or ANSI C. So sam2p is implemented
in Standard C++, but without using <iostream>
or STL (which are not available on many systems).
However, advanced C++ features (such as nested
templates) are not available on some present C++
compilers, so these should be avoided in sam2p.

Another important design choice is between mo-
nolithic and modular. The philisophy of the author
is that the program should provide most function-
ality without using external libraries or other pro-
grams. Interfaces of external libraries tend to change
between versions, so a compiled program using a li-
brary very probably won’t work when a newer ver-
sion of the library is installed. And — even worse
— the program won’t compile 3-5 years later, when
the “old” version of library isn’t available anymore.
(As an example, there are plenty of software on the
Internet that work only with a rather old GTK ver-
sion of the library, which is almost impossible to
be installed to a modern system already having a
modern GTK. Most users and system administra-
tors don’t have time to fiddle with old and unavail-
able libraries, thus they will refuse to install software
using these libraries.)

1005



Szabé Péter

sam2p is modular in the source level, but mono-
lithic after it has been compiled. For example, it is
quite easy to include a new type of input image for-
mat by writing a file in_XYZ. cpp, and registering the
loader in sam2p_main.cpp; after that, sam2p has to
be recompiled. The program doesn’t use any exter-
nal libraries, but it is able to call external programs,
for example, the cjpeg utility is invoked when the
user requests IJG compression. In future versions
of sam2p, the user will have a choice between multi-
ple implementations of the same compression filter.
sam2p doesn’t require any C-++-specific libraries,
not even STL or libstdc++.

Modularity is especially important in the foll-
wing areas: Loaders (that load InputFiles), Appliers
(that apply an output rule and create the Output-
Files) and compression filters. Currently it is very
easy to add new Loaders and Appliers, because their
interface to the main program is small, simple and
well-defined. New compression filters will probaby
never be added, because PostScript and PDF sup-
ports only the filters already implemented. How-
ever, alternate implementations of existing filters
would be important, but the code has to be reor-
ganized a little for that.

sam2p is being developed on a Linux system,
and currently only flavors of UNIX are supported as
run-time platforms. Porting to Win32 or Mac would
not be hard, because the user interface is minimal,
but the author isn’t experienced enough and doesn’t
have time to do it.

Legal issues The LZW compression is patented:
software containing LZW (de)compression code can
be distributed only with the prior written permis-
sion of Unisys. According to <mcb@cloanto.com>,
author of http://lzw.info, the “exact” answers
may come only from lawyers and courts; consider-
ing the IBM, the BT and Unisys US patents, then
the last of the three would be the Unisys one, expir-
ing on June 19, 2003, 24:00. There cannot be other
(new) patents on LZW, as far as he knows.

The GIF file format uses LZW compression,
and moreover GIF is a registered trademark of Com-
puserve.

Thus, to avoid legal problems, LZW compres-
sion, GIF import and GIF export are disabled in
sam2p, until these patents and tradermarks expire.

Other utilities sam2p was born because the au-
thor has tried several existing utilities, and none of
them were perfect for his needs. The author has ex-
amined the documentation and source code of these
utilities, and he has benefited much of them.

e the convert utility (from ImageMagick, Debian
package graphics/imagemagick), with output for-
mats EPS: EPS2: EPSI: EPSF: PS: PS2:. Most of
these formats are big and slow, and ImageMagick
sometimes produces illegal ADSC comments, so
dvips cannot embed the image. Apart from ADSC
bug, ImageMagick seems to create the most com-
patible and best embeddable EPS files. The EPS:
format should be used for Levell EPS, and EPS2:
for Level2 EPS. The others are obsolete. Partially
respects the —compress option.

e the convert utility with PDF: output format.
Only partially respects the -compress option,
and produces illegal %PDF-1.1 header with the
/FlateDecode filter.

o the Save as PostScript feature of xv (former De-
bian package non-free/graphics/xv). Does RLE
compression with PSL1 (!), image can be adjusted
to the paper size, but cannot generate EPS.

e the tiff2ps utility from libtiff (Debian package
graphics/libtiff-tools). Needs the -z and -e op-
tions; the -2 (Level2) option is recommended.
The scaling (size) of the image is still somewhat
obscure, the scale operation should be removed
from the EPS file by hand. When generating
Level2 EPS, tiff2ps fully respects the compres-
sion of the TIFF file, and produces an equally
small EPS. The tiffcp utility can be used to
adjust the TIFF compression. Unfortunately, old
versions of tiff2ps don’t support Flate compres-
sion, and new versions partially support LZW
compression due to the Unisys patent. tiff2ps
seems to be the most advanced EPS-generator,
but it still cannot exploit all features of the PDF
and PostScript sampled image model.

e the fax2ps utility from the same source. Sup-
ports only Fax compression.

e the gif2ps utility from Debian package graphics/
libungif-bin. GIF supports only the Indexed color
space, and so does gif2ps.

e the Save as PostScript, EPS feature of The GIMP
(Debian package graphics/gimp). Creates PSLC
EPS with the colorimage operator. Compression
not supported.

e the Print to file feature of The GIMP. Creates
Level2 PS, not EPS.

e the pnmtops utility from NetPBM (Debian pack-
age graphics/netpbm). Creates PSLC EPS with
/Hex and /RLE.

e the g3tops utlity from Mgetty (Debian package
comm/mgetty-docs). Only Fax compression.

e the jpeg2ps utility from Debian package non-
free/graphics/jpeg2ps. Ounly /JAI and /A85 is
supported.

1006 TUGboat, Volume 0 (2001), No. 0— Proceedings of the 2001 Annual Meeting



e the jpg2pdf shareware utility, available from
http://www.sanface.com/jpg2pdf .html. Only
the RGB color space, with JPEG compression.
Simplistic software with stupid legal limitations.

e The author has investigated several PHP mod-
ules that generate PDF, but they were not general
enough to support all SampleFormats.

e the imagetops utility from CUPS (Debian pack-
age net/cupsys). This is a smart shell script that
invokes djpeg, pngtopnm, bmptopnm, giftopnm,
tifftopnm, ppmtogpm and pnmtops. No way to
specify compression.

Better transparency PSL3 and PDF1.3 provide
a better way to specify images with transparence
pixels. This way uses patterns and masked images.
However, most present printers and utilities don’t
support these features yet, so these are not included
into sam2p. For complete support, a new type of
color space (RGBA: RGB with transparecy) should
be implemented.

Currently sam2p produces the transparent im-
ages by calling the PostScript imagemask operator
for all different colors. This can be slow and make
the output file large and less compressible.

Rendering: the reverse direction It is easy to
convert a PostScript or a PDF document into a se-
ries of bitmap files, using GNU Ghostscript:

gs -g100x200 -sDEVICE=ppmraw -q -dNOPAUSE
-dBATCH -q -dSAFER
-sOutputFile=out’d.ppm infile.ps

In the command above, -r specifies the DPI re-
soulution, -g specifies the image size in pixels (thus
it should be doubled for double resolution), ppmraw
is the output file format (should be pbmraw for black-
white, pgmraw for 8-bit grayscale and ppmraw for 8-
bit RGB). The files outl.ppm, out2.ppm etc. will
be generated. These files can be loaded into The
GIMP, or they can be converted to other sampled
image formats with ImageMagick’s convert utility
or the pnmtox* utilities of NetPBM.

Sometimes it is more convenient to specify the
sampled image size in PostScript points (72bp =
lin):
gs —dDEVICEWIDTHPOINTS=100 -dDEVICEHEIGHTP

OINTS=200 -r144 -sDEVICE=ppmraw -q
-dNOPAUSE -dBATCH -dSAFER
-sOutputFile=out’d.ppm infile.ps

Some malicious PostScript files override the res-
olution or the page size specified on the command
line. This can be avoided by prepending the follow-
ing a special preamble to the PostScript file. This

TUGboat, Volume 0 (2001), No. 0— Proceedings of the 2001 Annual Meeting

Inserting figures into TeX documents

preamble can be found in the sam2p sources with
filename contrib/aprea.ps.

Ghostscript can read PDF files besides PS files.
However, some PDFs tend to be too complicated
for Ghostscript, so they should be converted into a
simpler, temporary PostScript first. This can be
accomplished by the File/Ezport... menu item of
Adobe Acrobat, the File/Print menu item of Adobe
Acrobat Reader, or the pdftops utility found in the
XPdf distribution. Unfortunately pdftops ignores
the bitmap fonts embedded by pdfTeX.

The psrender utility written by the author of
sam2p calls Ghostscript to convert a PostScript file
to another PostScript containing all pages as big
raster graphics. This is useful when printing onto
an old PostScript (Level 2) printer with small mem-
ory or buggy implementation. However, the output
of psrender tends to be big (multi-megabyte for
a single page), thus the document gets printed very
slowly. But sometimes even an extremely long print-
ing time is better than having no printout at all.

psrender is available from the Search facility of
http://www.freshmeat.net/, the other utilitites
mentioned are part of major Linux distributions.

Conclusion sam2p makes the creation of small,
compatible PostScript and PDF figures containing
sampled images possible. Documents with these fig-
ures are small, and can be printed or transferred
quite fast. There is work still to be done, but sam2p
is already more general and more sophisticated than
any other converter the author is aware of.

During further development, the software has
to be tested, and bugs have to be fixed. Planned fea-
tures (such as PDF output, and better transparency
handling) have to be implemented.

References

[1] Ed Taft, Steve Chernicoff and Carline Rose:
PostScript Language Reference.
Addison—Wesley. 1999.

[2] Jim Meeehan, Ed Taft, Steve Chernicoff and
Carline Rose: PDF Reference. Second edition.
Addison—Wesley. 2000.

1007



