Section Page

1. Introduction 3
2. The character set 10
3. Input and output 13
4. String handling 18
5. On-line and off-line printing 24
6. Reporting errors 29
7. Arithmetic with scaled numbers 38
8. Algebraic and transcendental functions 48
9. Packed data 58
10. Dynamic memory allocation 60
11. Memory layout 66
12. The command codes 70
13. The hash table 83
14. Token lists 89
15. Data structures for variables 94
16. Saving and restoring equivalents 104
17. Data structures for paths 106
18. Choosing control points 111
19. Generating discrete moves 124
20. Edge structures 133
21. Subdivision into octants 158
22. Filling a contour 189
23. Polygonal pens 192
24. Filling an envelope 202
25. Elliptical pens 215
26. Direction and intersection times 223
27. Online graphic output 233
28. Dynamic linear equations 240
29. Dynamic nonlinear equations 254
30. Introduction to the syntactic routines 256
31. Input stacks and states 257
32. Maintaining the input stacks 264
33. Getting the next token 267
34. Scanning macro definitions 275
35. Expanding the next token 282
36. Conditional processing 293
37. Iterations 297
38. File names 302
39. Introduction to the parsing routines 311
40. Parsing primary expressions 323
41. Parsing secondary and higher expressions 335
42. Doing the operations 347
43. Statements and commands 377
44. Commands 388
45. Font metric data 405
46. Generic font file format 426
47. Shipping characters out 431
48. Dumping and undumping the tables 440
49. The main program 446
50. Debugging 452
51. System-dependent changes 454
52. Index 455
53. Introduction. This is METAFONT, a font compiler intended to produce typefaces of high quality. The Pascal program that follows is the definition of METAFONT84, a standard version of METAFONT that is designed to be highly portable so that identical output will be obtainable on a great variety of computers. The conventions of METAFONT84 are the same as those of $\mathrm{T}_{\mathrm{E}} \mathrm{X} 82$.

The main purpose of the following program is to explain the algorithms of METAFONT as clearly as possible. As a result, the program will not necessarily be very efficient when a particular Pascal compiler has translated it into a particular machine language. However, the program has been written so that it can be tuned to run efficiently in a wide variety of operating environments by making comparatively few changes. Such flexibility is possible because the documentation that follows is written in the WEB language, which is at a higher level than Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the necessary refinements. Semi-automatic translation to other languages is also feasible, because the program below does not make extensive use of features that are peculiar to Pascal.
A large piece of software like METAFONT has inherent complexity that cannot be reduced below a certain level of difficulty, although each individual part is fairly simple by itself. The WEB language is intended to make the algorithms as readable as possible, by reflecting the way the individual program pieces fit together and by providing the cross-references that connect different parts. Detailed comments about what is going on, and about why things were done in certain ways, have been liberally sprinkled throughout the program. These comments explain features of the implementation, but they rarely attempt to explain the METAFONT language itself, since the reader is supposed to be familiar with The METAFONT book.
2. The present implementation has a long ancestry, beginning in the spring of 1977, when its author wrote a prototype set of subroutines and macros that were used to develop the first Computer Modern fonts. This original proto-METAFONT required the user to recompile a SAIL program whenever any character was changed, because it was not a "language" for font design; the language was SAIL. After several hundred characters had been designed in that way, the author developed an interpretable language called METAFONT, in which it was possible to express the Computer Modern programs less cryptically. A complete METAFONT processor was designed and coded by the author in 1979. This program, written in SAIL, was adapted for use with a variety of typesetting equipment and display terminals by Leo Guibas, Lyle Ramshaw, and David Fuchs. Major improvements to the design of Computer Modern fonts were made in the spring of 1982, after which it became clear that a new language would better express the needs of letterform designers. Therefore an entirely new METAFONT language and system were developed in 1984; the present system retains the name and some of the spirit of METAFONT79, but all of the details have changed.
No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping METAFONT84 "frozen" from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of METAFONT84 itself, and the program has been designed so that such extensions are not extremely difficult to make. The banner string defined here should be changed whenever METAFONT undergoes any modifications, so that it will be clear which version of METAFONT might be the guilty party when a problem arises.
If this program is changed, the resulting system should not be called 'METAFONT'; the official name 'METAFONT' by itself is reserved for software systems that are fully compatible with each other. A special test suite called the "TRAP test" is available for helping to determine whether an implementation deserves to be known as 'METAFONT' [cf. Stanford Computer Science report CS1095, January 1986].
define banner $\equiv{ }^{\prime}$ This $_{\sqcup}$ is $_{\sqcup}$ METAFONT, \sqcup Version ${ }_{\sqcup} 2.71828182^{\prime}$. \{ printed when METAFONT starts $\}$

3．Different Pascals have slightly different conventions，and the present program expresses METAFONT in terms of the Pascal that was available to the author in 1984．Constructions that apply to this particular compiler，which we shall call Pascal－H，should help the reader see how to make an appropriate interface for other systems if necessary．（Pascal－H is Charles Hedrick＇s modification of a compiler for the DECsystem－ 10 that was originally developed at the University of Hamburg；cf．Software－Practice and Experience 6 （1976），29－42．The METAFONT program below is intended to be adaptable，without extensive changes，to most other versions of Pascal，so it does not fully use the admirable features of Pascal－H．Indeed，a conscious effort has been made here to avoid using several idiosyncratic features of standard Pascal itself，so that most of the code can be translated mechanically into other high－level languages．For example，the＇with＇and ＇$n e w$＇features are not used，nor are pointer types，set types，or enumerated scalar types；there are no＇var＇ parameters，except in the case of files or in the system－dependent paint＿row procedure；there are no tag fields on variant records；there are no real variables；no procedures are declared local to other procedures．）

The portions of this program that involve system－dependent code，where changes might be necessary because of differences between Pascal compilers and／or differences between operating systems，can be identified by looking at the sections whose numbers are listed under＇system dependencies＇in the index． Furthermore，the index entries for＇dirty Pascal＇list all places where the restrictions of Pascal have not been followed perfectly，for one reason or another．

4．The program begins with a normal Pascal program heading，whose components will be filled in later， using the conventions of WEB．For example，the portion of the program called＇\langle Global variables 13\rangle＇below will be replaced by a sequence of variable declarations that starts in $\S 13$ of this documentation．In this way， we are able to define each individual global variable when we are prepared to understand what it means；we do not have to define all of the globals at once．Cross references in $\S 13$ ，where it says＂See also sections 20， $26, \ldots, "$ also make it possible to look at the set of all global variables，if desired．Similar remarks apply to the other portions of the program heading．

Actually the heading shown here is not quite normal：The program line does not mention any output file，because Pascal－H would ask the METAFONT user to specify a file name if output were specified here．
define mtype $\equiv t @ \& y @ \& p @ \& e \quad\{$ this is a WEB coding trick：$\}$
format mtype \equiv type \quad＇mtype＇will be equivalent to＇type＇\}
format type \equiv true \quad \｛but＇type＇will not be treated as a reserved word \}
\langle Compiler directives 9〉
program $M F ; \quad\{$ all file names are defined dynamically $\}$
label \langle Labels in the outer block 6\rangle
const 〈Constants in the outer block 11〉
mtype 〈Types in the outer block 18〉
$\operatorname{var}\langle$ Global variables 13 〉
procedure initialize；\｛this procedure gets things started properly \} var \langle Local variables for initialization 19〉
begin \langle Set initial values of key variables 21 〉 end；

〈Basic printing procedures 57〉
〈Error handling procedures 73\rangle

5．The overall METAFONT program begins with the heading just shown，after which comes a bunch of procedure declarations and function declarations．Finally we will get to the main program，which begins with the comment＇start＿here＇．If you want to skip down to the main program now，you can look up ＇start＿here＇in the index．But the author suggests that the best way to understand this program is to follow pretty much the order of METAFONT＇s components as they appear in the WEB description you are now reading，since the present ordering is intended to combine the advantages of the＂bottom up＂and＂top down＂approaches to the problem of understanding a somewhat complicated system．
6. Three labels must be declared in the main program, so we give them symbolic names.
define start_of_MF $=1$ \{ go here when METAFONT's variables are initialized \}
define end_of_MF $=9998$ \{ go here to close files and terminate gracefully $\}$
define final_end $=9999$ \{ this label marks the ending of the program \}
\langle Labels in the outer block 6$\rangle \equiv$
start_of_MF, end_of_MF, final_end; \{ key control points \}
This code is used in section 4.
7. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes occurs when METAFONT is being installed or when system wizards are fooling around with METAFONT without quite knowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords 'debuggubed', with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by 'stat . . . tats' that is intended for use when statistics are to be kept about METAFONT's memory usage. The stat . . . tats code also implements special diagnostic information that is printed when tracingedges >1.

```
define debug \equiv@{ {change this to 'debug \equiv' when debugging }
define gubed \equiv@} {change this to 'gubed \equiv' when debugging }
format debug \equivbegin
format gubed \equiv end
define stat \equiv@{ {change this to 'stat \equiv', when gathering usage statistics }
define tats \equiv@} {change this to 'tats \equiv' when gathering usage statistics }
format stat \equivbegin
format tats \equivend
```

8. This program has two important variations: (1) There is a long and slow version called INIMF, which does the extra calculations needed to initialize METAFONT's internal tables; and (2) there is a shorter and faster production version, which cuts the initialization to a bare minimum. Parts of the program that are needed in (1) but not in (2) are delimited by the codewords 'init ...tini'.
```
define init \(\equiv\) \{change this to 'init \(\equiv \mathfrak{Q}\{\) ' in the production version \(\}\)
define tini \(\equiv\) \{change this to 'tini \(\equiv \mathfrak{@}\}\) ' in the production version \(\}\)
format init \(\equiv\) begin
format tini \(\equiv\) end
```

9. If the first character of a Pascal comment is a dollar sign, Pascal-H treats the comment as a list of "compiler directives" that will affect the translation of this program into machine language. The directives shown below specify full checking and inclusion of the Pascal debugger when METAFONT is being debugged, but they cause range checking and other redundant code to be eliminated when the production system is being generated. Arithmetic overflow will be detected in all cases.
\langle Compiler directives 9$\rangle \equiv$ @\{@\&\$C-, $A+, D-@\} \quad\{$ no range check, catch arithmetic overflow, no debug overhead \} debug @\{@\&\$C+,D+@\} gubed \{but turn everything on when debugging \}
This code is used in section 4.
10. This METAFONT implementation conforms to the rules of the Pascal User Manual published by Jensen and Wirth in 1975 , except where system-dependent code is necessary to make a useful system program, and except in another respect where such conformity would unnecessarily obscure the meaning and clutter up the code: We assume that case statements may include a default case that applies if no matching label is found. Thus, we shall use constructions like
```
case x of
1: < code for }x=1\rangle
3: < code for }x=3\rangle
othercases < code for }x\not=1\mathrm{ and }x\not=3
endcases
```

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default mechanism. For example, the Pascal-H compiler allows 'others:' as a default label, and other Pascals allow syntaxes like 'else' or 'otherwise' or 'otherwise:', etc. The definitions of othercases and endcases should be changed to agree with local conventions. Note that no semicolon appears before endcases in this program, so the definition of endcases should include a semicolon if the compiler wants one. (Of course, if no default mechanism is available, the case statements of METAFONT will have to be laboriously extended by listing all remaining cases. People who are stuck with such Pascals have, in fact, done this, successfully but not happily!)
define othercases \equiv others: $\quad\{$ default for cases not listed explicitly \}
define endcases \equiv end $\quad\{$ follows the default case in an extended case statement $\}$
format othercases \equiv else
format endcases \equiv end
11. The following parameters can be changed at compile time to extend or reduce METAFONT's capacity. They may have different values in INIMF and in production versions of METAFONT.
\langle Constants in the outer block 11$\rangle \equiv$
mem_max $=30000 ; \quad\{$ greatest index in METAFONT's internal mem array; must be strictly less than max_halfword; must be equal to mem_top in INIMF, otherwise \geq mem_top $\}$
max_internal $=100 ; \quad\{$ maximum number of internal quantities $\}$
buf_size $=500 ; \quad\{$ maximum number of characters simultaneously present in current lines of open files; must not exceed max_halfword $\}$
error_line $=72 ; \quad\{$ width of context lines on terminal error messages $\}$
half_error_line $=42 ; \quad\{$ width of first lines of contexts in terminal error messages; should be between 30 and error_line -15$\}$
max_print_line $=79 ; \quad\{$ width of longest text lines output; should be at least 60$\}$
screen_width $=768 ; \quad$ \{ number of pixels in each row of screen display $\}$
screen_depth $=1024 ; \quad$ \{ number of pixels in each column of screen display $\}$
stack_size $=30 ; \quad$ \{ maximum number of simultaneous input sources $\}$
max_strings $=2000 ; \quad\{$ maximum number of strings; must not exceed max_halfword $\}$
string_vacancies $=8000 ; \quad\{$ the minimum number of characters that should be available for the user's identifier names and strings, after METAFONT's own error messages are stored \}
pool_size $=32000 ; \quad\{$ maximum number of characters in strings, including all error messages and
help texts, and the names of all identifiers; must exceed string_vacancies by the total length of
METAFONT's own strings, which is currently about 22000$\}$
move_size $=5000 ; \quad$ \{ space for storing moves in a single octant $\}$
max_wiggle $=300 ; \quad\{$ number of autorounded points per cycle $\}$
gf_buf_size $=800 ; \quad\{$ size of the output buffer, must be a multiple of 8$\}$
file_name_size $=40 ; \quad$ \{ file names shouldn't be longer than this $\}$
pool_name $=$ 'MFbases:MF.POOL \quad பபபபபபபபபபபபபபபபபபபபபபபப';
\{string of length file_name_size; tells where the string pool appears \}
path_size $=300 ; \quad$ \{ maximum number of knots between breakpoints of a path \}
bistack_size $=785$; \quad \{ size of stack for bisection algorithms; should probably be left at this value $\}$
header_size $=100 ; \quad\{$ maximum number of TFM header words, times 4$\}$
lig_table_size $=5000$;
\{ maximum number of ligature/kern steps, must be at least 255 and at most 32510 \}
max_kerns $=500 ; \quad$ \{ maximum number of distinct kern amounts \}
max_font_dimen $=50 ; \quad\{$ maximum number of fontdimen parameters $\}$
This code is used in section 4.
12. Like the preceding parameters, the following quantities can be changed at compile time to extend or reduce METAFONT's capacity. But if they are changed, it is necessary to rerun the initialization program INIMF to generate new tables for the production METAFONT program. One can't simply make helter-skelter changes to the following constants, since certain rather complex initialization numbers are computed from them. They are defined here using WEB macros, instead of being put into Pascal's const list, in order to emphasize this distinction.
define mem_min $=0 \quad\{$ smallest index in the mem array, must not be less than min_halfword $\}$
define mem_top $\equiv 30000 \quad\{$ largest index in the mem array dumped by INIMF; must be substantially larger than mem_min and not greater than mem_max $\}$
define h ash_size $=2100$
\{ maximum number of symbolic tokens, must be less than max_halfword $-3 *$ param_size $\}$
define hash_prime $=1777 \quad$ \{a prime number equal to about 85% of hash_size \}
define max_in_open $=6$
\{ maximum number of input files and error insertions that can be going on simultaneously $\}$
define param_size $=150 \quad$ \{ maximum number of simultaneous macro parameters $\}$
13. In case somebody has inadvertently made bad settings of the "constants," METAFONT checks them using a global variable called bad.

This is the first of many sections of METAFONT where global variables are defined.
\langle Global variables 13$\rangle \equiv$
bad: integer; \{ is some "constant" wrong? \}
See also sections $20,25,29,31,38,42,50,54,68,71,74,91,97,129,137,144,148,159,160,161,166,178,190,196,198,200$, $201,225,230,250,267,279,283,298,308,309,327,371,379,389,395,403,427,430,448,455,461,464,507,552,555$, $557,566,569,572,579,585,592,624,628,631,633,634,659,680,699,738,752,767,768,775,782,785,791,796,813$, 821, 954, 1077, 1084, 1087, 1096, 1119, 1125, 1130, 1149, 1152, 1162, 1183, 1188, and 1203.
This code is used in section 4.
14. Later on we will say 'if mem_max \geq max_halfword then $b a d \leftarrow 10$ ', or something similar. (We can't do that until max_halfword has been defined.)
\langle Check the "constant" values for consistency 14$\rangle \equiv$
bad $\leftarrow 0$;
if (half_error_line < 30) $\vee($ half_error_line $>$ error_line -15$)$ then bad $\leftarrow 1$;
if max_print_line <60 then bad $\leftarrow 2$;
if $g f_{-}$buf_size $\bmod 8 \neq 0$ then bad $\leftarrow 3$;
if mem_min $+1100>$ mem_top then bad $\leftarrow 4$;
if hash_prime > hash_size then bad $\leftarrow 5$;
if header_size $\bmod 4 \neq 0$ then bad $\leftarrow 6$;
if (lig_table_size < 255) \vee (lig_table_size $>32510)$ then bad $\leftarrow 7$;
See also sections $154,204,214,310,553$, and 777 .
This code is used in section 1204.
15. Labels are given symbolic names by the following definitions, so that occasional goto statements will be meaningful. We insert the label 'exit' just before the 'end' of a procedure in which we have used the 'return' statement defined below; the label 'restart' is occasionally used at the very beginning of a procedure; and the label 'reswitch' is occasionally used just prior to a case statement in which some cases change the conditions and we wish to branch to the newly applicable case. Loops that are set up with the loop construction defined below are commonly exited by going to 'done' or to 'found' or to 'not_found', and they are sometimes repeated by going to 'continue'. If two or more parts of a subroutine start differently but end up the same, the shared code may be gathered together at 'common_ending'.

Incidentally, this program never declares a label that isn't actually used, because some fussy Pascal compilers will complain about redundant labels.

```
define exit \(=10 \quad\) \{ go here to leave a procedure \(\}\)
define restart \(=20 \quad\) \{ go here to start a procedure again \}
define reswitch \(=21\) \{ go here to start a case statement again \}
define continue \(=22 \quad\) \{ go here to resume a loop \}
define done \(=30 \quad\) \{ go here to exit a loop \(\}\)
define done \(1=31 \quad\{\) like done, when there is more than one loop \(\}\)
define done \(2=32 \quad\{\) for exiting the second loop in a long block \(\}\)
define done3 \(=33 \quad\{\) for exiting the third loop in a very long block \(\}\)
define done \(4=34\) \{for exiting the fourth loop in an extremely long block \(\}\)
define done \(5=35 \quad\) \{ for exiting the fifth loop in an immense block \(\}\)
define done \(6=36 \quad\{\) for exiting the sixth loop in a block \(\}\)
define found \(=40 \quad\) \{ go here when you've found it \}
define found \(1=41 \quad\) \{like found, when there's more than one per routine \(\}\)
define found2 \(=42 \quad\) \{like found, when there's more than two per routine \(\}\)
define not_found \(=45\) \{ go here when you've found nothing \}
define common_ending \(=50 \quad\) \{ go here when you want to merge with another branch \}
```

16. Here are some macros for common programming idioms.
define $\operatorname{incr}(\#) \equiv \# \leftarrow \#+1 \quad$ \{increase a variable by unity $\}$
define $\operatorname{decr}(\#) \equiv \# \leftarrow \#-1 \quad\{$ decrease a variable by unity $\}$
define negate $(\#) \equiv \# \leftarrow-\# \quad\{$ change the sign of a variable $\}$
define double $(\#) \equiv \# \leftarrow \#+\# \quad\{$ multiply a variable by two $\}$
define loop \equiv while true do $\quad\{$ repeat over and over until a goto happens $\}$
format loop \equiv xclause $\{$ WEB's xclause acts like 'while true do'\}
define do_nothing \equiv \{empty statement $\}$
define return \equiv goto exit $\{$ terminate a procedure call $\}$
format return \equiv nil $\quad\{$ WEB will henceforth say return instead of return $\}$
17. The character set. In order to make METAFONT readily portable to a wide variety of computers, all of its input text is converted to an internal eight-bit code that includes standard ASCII, the "American Standard Code for Information Interchange." This conversion is done immediately when each character is read in. Conversely, characters are converted from ASCII to the user's external representation just before they are output to a text file.

Such an internal code is relevant to users of METAFONT only with respect to the char and ASCII operations, and the comparison of strings.
18. Characters of text that have been converted to METAFONT's internal form are said to be of type $A S C I I_{-}$code, which is a subrange of the integers.
\langle Types in the outer block 18$\rangle \equiv$
ASCII_code $=0 . .255 ; \quad\{$ eight-bit numbers $\}$
See also sections $24,37,101,105,106,156,186,565,571,627$, and 1151.
This code is used in section 4.
19. The original Pascal compiler was designed in the late 60 s, when six-bit character sets were common, so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and small letters in a convenient way, especially in a program for font design; so the present specification of METAFONT has been written under the assumption that the Pascal compiler and run-time system permit the use of text files with more than 64 distinguishable characters. More precisely, we assume that the character set contains at least the letters and symbols associated with ASCII codes ' 40 through ' 176 ; all of these characters are now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to decide what to call the associated data type. Some Pascals use the original name char for the characters in text files, even though there now are more than 64 such characters, while other Pascals consider char to be a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text_char to stand for the data type of the characters that are converted to and from $A S C I I _c o d e$ when they are input and output. We shall also assume that text_char consists of the elements chr (first_text_char) through chr (last_text_char), inclusive. The following definitions should be adjusted if necessary.
define text_char \equiv char $\quad\{$ the data type of characters in text files $\}$
define first_text_char $=0 \quad$ \{ordinal number of the smallest element of text_char \}
define last_text_char $=255$ \{ ordinal number of the largest element of text_char \}
\langle Local variables for initialization 19$\rangle \equiv$
i : integer;
See also section 130 .
This code is used in section 4 .
20. The METAFONT processor converts between ASCII code and the user's external character set by means of arrays xord and $x c h r$ that are analogous to Pascal's ord and $c h r$ functions.
\langle Global variables 13$\rangle+\equiv$
xord: array [text_char] of $A S C I I_{-}$code; \{specifies conversion of input characters \}
$x c h r$: array [ASCII_code] of text_char; \{ specifies conversion of output characters \}
21. Since we are assuming that our Pascal system is able to read and write the visible characters of standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment statements initialize the standard part of the $x c h r$ array properly, without needing any system-dependent changes. On the other hand, it is possible to implement METAFONT with less complete character sets, and in such cases it will be necessary to change something here.
\langle Set initial values of key variables 21$\rangle \equiv$


```
\(x \operatorname{chr}\left[{ }^{\prime} 45\right] \leftarrow{ }^{-\%^{\prime}} ; \operatorname{xchr}\left[{ }^{\prime} 46\right] \leftarrow{ }^{\prime} \&^{`} ; \operatorname{xchr}\left[{ }^{\prime} 47\right] \leftarrow{ }^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}\);
\(x \operatorname{chr}\left[{ }^{\prime} 50\right] \leftarrow{ }^{\prime}\left({ }^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 51\right] \leftarrow{ }^{\prime}\right)^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 52\right] \leftarrow{ }^{\prime} *^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 53\right] \leftarrow{ }^{\prime}+^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 54\right] \leftarrow{ }^{\prime},{ }^{\prime} ;\)
```



```
\(\operatorname{xchr}\left[{ }^{\prime} 60\right] \leftarrow{ }^{-} 0^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 61\right] \leftarrow{ }^{-} 1^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 62\right] \leftarrow{ }^{\prime} 2^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 63\right] \leftarrow{ }^{\prime} 3^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 64\right] \leftarrow{ }^{\prime} 4^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 65\right] \leftarrow{ }^{-} 5^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 66\right] \leftarrow{ }^{\prime} 6^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 67\right] \leftarrow{ }^{\prime} 7^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime 7} 70\right] \leftarrow{ }^{-} 8^{\prime} ; \operatorname{xchr}\left[{ }^{\prime \prime} 71\right] \leftarrow{ }^{\prime} 9^{\prime} ; \operatorname{xchr}\left[{ }^{\prime \prime} 72\right] \leftarrow{ }^{\prime}:^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 73\right] \leftarrow \leftarrow^{\prime} ;{ }^{\prime} ; \operatorname{xchr}\left[{ }^{\prime \prime} 74\right] \leftarrow{ }^{\prime}<^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 75\right] \leftarrow{ }^{\prime}==^{\prime} ; \operatorname{xchr}\left[{ }^{\prime \prime} 76\right] \leftarrow{ }^{-}>^{\prime} ; \operatorname{xchr}\left[^{\prime} 77\right] \leftarrow{ }^{\prime}{ }^{\prime} ?^{\top} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 100\right] \leftarrow{ }^{\prime} @^{-} ; \operatorname{xchr}\left[{ }^{\prime} 101\right] \leftarrow{ }^{\prime} \mathrm{A}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 102\right] \leftarrow{ }^{\prime} \mathrm{B}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 103\right] \leftarrow{ }^{\prime} \mathrm{C}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 104\right] \leftarrow{ }^{\prime} \mathrm{D}^{\prime} ;\)
\(\operatorname{xchr}\left[{ }^{\prime} 105\right] \leftarrow{ }^{\prime} \mathrm{E}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 106\right] \leftarrow{ }^{-} \mathrm{F}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 107\right] \leftarrow{ }^{\prime} \mathrm{G}^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 110\right] \leftarrow{ }^{\prime} \mathrm{H}^{\prime} ; \operatorname{xch}\left[{ }^{\prime} 111\right] \leftarrow{ }^{\prime} \mathrm{I}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 112\right] \leftarrow{ }^{\prime} \mathrm{J}^{\prime} ; \operatorname{xch}\left[{ }^{\prime} 113\right] \leftarrow{ }^{\prime} \mathrm{K}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 114\right] \leftarrow \mathrm{L}^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 115\right] \leftarrow{ }^{\prime} \mathrm{M}^{\prime} ; \operatorname{xch}\left[{ }^{\prime} 116\right] \leftarrow{ }^{\prime} \mathrm{N}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 117\right] \leftarrow{ }^{\prime} \mathrm{O}^{\prime} ;\)
\(x \operatorname{ch}\left[{ }^{\prime} 120\right] \leftarrow{ }^{\prime} \mathrm{P}^{\prime} ; x \operatorname{chr}\left[{ }^{\prime} 121\right] \leftarrow{ }^{\prime} \mathrm{Q}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 122\right] \leftarrow{ }^{\prime} \mathrm{R}^{\prime} ; \operatorname{xch}\left[{ }^{\prime} 123\right] \leftarrow{ }^{\prime} \mathrm{S}^{\prime} ; x \operatorname{chr}\left[{ }^{\prime} 124\right] \leftarrow{ }^{-} \mathrm{T}^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 125\right] \leftarrow{ }^{\prime} \mathrm{U}^{\prime} ; x \operatorname{chr}\left[{ }^{\prime} 126\right] \leftarrow{ }^{-} \mathrm{V}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 127\right] \leftarrow{ }^{\prime} \mathrm{W}^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 130\right] \leftarrow{ }^{\prime} \mathrm{X}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 131\right] \leftarrow{ }^{\prime} \mathrm{Y}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 132\right] \leftarrow{ }^{\prime} \mathrm{Z}^{\prime} ; \operatorname{xch}\left[{ }^{\prime} 133\right] \leftarrow{ }^{\prime}\left[{ }^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 134\right] \leftarrow{ }^{\prime} \backslash^{\prime} ;\right.\)
\(\left.x \operatorname{chr}\left[{ }^{\prime} 135\right] \leftarrow{ }^{\prime}\right]^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 136\right] \leftarrow{ }^{\prime}{ }^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 137\right] \leftarrow{ }^{\prime}{ }^{\prime}{ }^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 140\right] \leftarrow{ }^{\prime} \cdot ; \operatorname{xch}\left[{ }^{\prime} 141\right] \leftarrow{ }^{\prime} \mathrm{a}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 142\right] \leftarrow{ }^{\prime} \mathrm{b}^{\prime} ; \operatorname{xch}\left[{ }^{\prime} 143\right] \leftarrow{ }^{\prime} \mathrm{c}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 144\right] \leftarrow \mathrm{'}^{\prime} \mathrm{d}^{\prime} ;\)
\(\operatorname{xchr}\left[{ }^{\prime} 145\right] \leftarrow{ }^{\prime} \mathrm{e}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 146\right] \leftarrow{ }^{\prime} \mathrm{f}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 147\right] \leftarrow{ }^{\prime} \mathrm{g}^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 150\right] \leftarrow{ }^{\prime} \mathrm{h}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 151\right] \leftarrow{ }^{\prime} \mathrm{i}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 152\right] \leftarrow{ }^{\prime} \mathrm{'j}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 153\right] \leftarrow{ }^{\prime} \mathrm{k}{ }^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 154\right] \leftarrow{ }^{\prime} \mathrm{I}^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 155\right] \leftarrow{ }^{\prime} \mathrm{m}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 156\right] \leftarrow{ }^{\prime} \mathrm{n}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 157\right] \leftarrow{ }^{\prime} \mathrm{o}^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 160\right] \leftarrow{ }^{\prime} \mathrm{p}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 161\right] \leftarrow{ }^{\prime} \mathrm{q}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 162\right] \leftarrow{ }^{\prime} \mathrm{r}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 163\right] \leftarrow{ }^{\prime} \mathrm{s}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 164\right] \leftarrow \mathrm{'}^{\prime} \mathrm{t}^{\prime} ;\)
\(x \operatorname{chr}\left[{ }^{\prime} 165\right] \leftarrow \mathrm{'}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 166\right] \leftarrow \mathrm{'}^{-} \mathrm{v}^{\prime} ; \operatorname{xchr}\left[{ }^{\prime} 167\right] \leftarrow{ }^{\prime} \mathrm{w}^{\prime} ;\)
```



```
\(\left.x \operatorname{chr}\left[{ }^{\prime} 175\right] \leftarrow{ }^{-}\right\}^{\prime} ; x \operatorname{chr}\left[{ }^{\prime} 176\right] \leftarrow{ }^{{ }^{\prime}}{ }^{-}\);
```

See also sections $22,23,69,72,75,92,98,131,138,179,191,199,202,231,251,396,428,449,456,462,570,573,593,739$, $753,776,797,822,1078,1085,1097,1150,1153$, and 1184.
This code is used in section 4.
22. The ASCII code is "standard" only to a certain extent, since many computer installations have found it advantageous to have ready access to more than 94 printing characters. If METAFONT is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the input and output files, it doesn't really matter what codes are specified in $x \operatorname{chr}[0 \ldots$ '37], but the safest policy is to blank everything out by using the code shown below.

However, other settings of $x c h r$ will make METAFONT more friendly on computers that have an extended character set, so that users can type things like ' \neq ' instead of '<>'. People with extended character sets can assign codes arbitrarily, giving an $x c h r$ equivalent to whatever characters the users of METAFONT are allowed to have in their input files. Appropriate changes to METAFONT's char_class table should then be made. (Unlike $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, each installation of METAFONT has a fixed assignment of category codes, called the char_class.) Such changes make portability of programs more difficult, so they should be introduced cautiously if at all.
\langle Set initial values of key variables 21$\rangle+\equiv$
for $i \leftarrow 0$ to ' 37 do $\operatorname{xchr}[i] \leftarrow{ }^{\prime}{ }^{\prime}$ ';
for $i \leftarrow{ }^{\prime} 177$ to ' 377 do $x \operatorname{chr}[i] \leftarrow{ }^{\prime} \sqcup^{\prime}$;
23. The following system-independent code makes the xord array contain a suitable inverse to the information in $x c h r$. Note that if $x c h r[i]=x \operatorname{chr}[j]$ where $i<j<{ }^{\prime} 177$, the value of $\operatorname{xord}[x c h r[i]]$ will turn out to be j or more; hence, standard ASCII code numbers will be used instead of codes below ' 40 in case there is a coincidence.
\langle Set initial values of key variables 21$\rangle+\equiv$ for $i \leftarrow$ first_text_char to last_text_char do $\operatorname{xord}[\operatorname{chr}(i)] \leftarrow{ }^{\prime} 177$;
for $i \leftarrow ' 200$ to ' 377 do $\operatorname{xord}[\operatorname{xchr}[i]] \leftarrow i$;
for $i \leftarrow 0$ to ${ }^{\prime} 176$ do $\operatorname{xord}[x \operatorname{chr}[i]] \leftarrow i$;
24. Input and output. The bane of portability is the fact that different operating systems treat input and output quite differently, perhaps because computer scientists have not given sufficient attention to this problem. People have felt somehow that input and output are not part of "real" programming. Well, it is true that some kinds of programming are more fun than others. With existing input/output conventions being so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions when one can find a way to make the program a little less bad than it might have been. We have two choices, either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect is very attractive, so let's get it over with.

The basic operations we need to do are (1) inputting and outputting of text, to or from a file or the user's terminal; (2) inputting and outputting of eight-bit bytes, to or from a file; (3) instructing the operating system to initiate ("open") or to terminate ("close") input or output from a specified file; (4) testing whether the end of an input file has been reached; (5) display of bits on the user's screen. The bit-display operation will be discussed in a later section; we shall deal here only with more traditional kinds of I/O.

METAFONT needs to deal with two kinds of files. We shall use the term alpha_file for a file that contains textual data, and the term byte_file for a file that contains eight-bit binary information. These two types turn out to be the same on many computers, but sometimes there is a significant distinction, so we shall be careful to distinguish between them. Standard protocols for transferring such files from computer to computer, via high-speed networks, are now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a word_file, when dumping and reloading base information for its own initialization. We shall define a word file later; but it will be possible for us to specify simple operations on word files before they are defined.

```
\(\langle\) Types in the outer block 18〉+三
    eight_bits \(=0 . .255 ; \quad\{\) unsigned one-byte quantity \(\}\)
    alpha_file \(=\) packed file of text_char; \(\{\) files that contain textual data \(\}\)
    byte_file \(=\) packed file of eight_bits \(; \quad\{\) files that contain binary data \(\}\)
```

25. Most of what we need to do with respect to input and output can be handled by the I/O facilities that are standard in Pascal, i.e., the routines called get, put, eof, and so on. But standard Pascal does not allow file variables to be associated with file names that are determined at run time, so it cannot be used to implement METAFONT; some sort of extension to Pascal's ordinary reset and rewrite is crucial for our purposes. We shall assume that name_of_file is a variable of an appropriate type such that the Pascal run-time system being used to implement METAFONT can open a file whose external name is specified by name_of_file.
\langle Global variables 13$\rangle+\equiv$
name_of_file: packed array [1..file_name_size] of char;
\{ on some systems this may be a record variable \}
name_length: 0 . . file_name_size;
\{ this many characters are actually relevant in name_of_file (the rest are blank) \}
26. The Pascal-H compiler with which the present version of METAFONT was prepared has extended the rules of Pascal in a very convenient way. To open file f, we can write

$$
\begin{array}{ll}
\operatorname{reset}(f, \text { name }, & - \\
\operatorname{rewrite}(f, & \\
\operatorname{rewame}, & \text { for input; } \\
\left.0^{-}\right) & \text {for output. } .
\end{array}
$$

The 'name' parameter, which is of type 'packed array [〈any〉] of text_char', stands for the name of the external file that is being opened for input or output. Blank spaces that might appear in name are ignored.
The ' $/ 0$ ' parameter tells the operating system not to issue its own error messages if something goes wrong. If a file of the specified name cannot be found, or if such a file cannot be opened for some other reason (e.g., someone may already be trying to write the same file), we will have $\operatorname{erstat}(f) \neq 0$ after an unsuccessful reset or rewrite. This allows METAFONT to undertake appropriate corrective action.

METAFONT's file-opening procedures return false if no file identified by name_of_file could be opened.
define reset_OK $(\#) \equiv \operatorname{erstat}(\#)=0$
define rewrite_OK (\#) $\equiv \operatorname{erstat}(\#)=0$
function a_open_in(var f : alpha_file): boolean; \{ open a text file for input \}
begin reset $\left(f\right.$, name_of_file, $\left.\boldsymbol{}^{-} 0^{\circ}\right)$; a_open_in \leftarrow reset_OK (f);
end;
function a_open_out(var f : alpha_file): boolean; \{open a text file for output \}
begin rewrite $\left(f\right.$, name_of_file, $\left.\boldsymbol{-}^{\prime} \mathbf{O}^{\circ}\right)$; $a_{\text {_open_out }} \leftarrow$ rewrite_OK (f);
end;
function b_open_out(var f : byte_file): boolean; \{ open a binary file for output \}
begin rewrite $\left(f\right.$, name_of_file,,$\left.^{\prime} 0^{\circ}\right)$; b_open_out \leftarrow rewrite_OK (f);
end;
function w_open_in(var f : word_file): boolean; \{ open a word file for input \}
begin $\operatorname{reset}\left(f\right.$, name_of_file, $\left.{ }^{-} / 0^{`}\right)$; w_open_in $\leftarrow \operatorname{reset_ OK(f);~}$
end;
function $w_{\text {_open_out }}(\operatorname{var} f:$ word_file): boolean; $\quad\{$ open a word file for output \}
begin rewrite (f, name_of_file, $\left.{ }^{-} / 0^{\circ}\right)$; w_open_out \leftarrow rewrite_OK (f);
end;
27. Files can be closed with the Pascal-H routine 'close (f) ', which should be used when all input or output with respect to f has been completed. This makes f available to be opened again, if desired; and if f was used for output, the close operation makes the corresponding external file appear on the user's area, ready to be read.
procedure a_close(var f: alpha_file); \{close a text file \} begin close (f);
end;
procedure b_{-}close (var f : byte_file); \{close a binary file \}
begin close (f);
end;
procedure w_{-}close(var f : word_file); \{close a word file \} begin close (f); end;
28. Binary input and output are done with Pascal's ordinary get and put procedures, so we don't have to make any other special arrangements for binary I/O. Text output is also easy to do with standard Pascal routines. The treatment of text input is more difficult, however, because of the necessary translation to ASCII_code values. METAFONT's conventions should be efficient, and they should blend nicely with the user's operating environment.
29. Input from text files is read one line at a time, using a routine called input_ln. This function is defined in terms of global variables called buffer, first, and last that will be described in detail later; for now, it suffices for us to know that buffer is an array of ASCII_code values, and that first and last are indices into this array representing the beginning and ending of a line of text.
\langle Global variables 13$\rangle+\equiv$
buffer: array [0. . buf_size] of ASCII_code; \{lines of characters being read \}
first: 0 .. buf_size; \{ the first unused position in buffer \}
last: $0 .$. buf_size; $\quad\{$ end of the line just input to buffer \}
max_buf_stack: 0 .. buf_size; \{largest index used in buffer \}
30. The input_ln function brings the next line of input from the specified file into available positions of the buffer array and returns the value true, unless the file has already been entirely read, in which case it returns false and sets last \leftarrow first. In general, the ASCII_code numbers that represent the next line of the file are input into buffer [first], buffer[first +1], ..., buffer [last -1]; and the global variable last is set equal to first plus the length of the line. Trailing blanks are removed from the line; thus, either last $=$ first (in which case the line was entirely blank) or buffer $[$ last -1$] \neq$ "ь".

An overflow error is given, however, if the normal actions of input_ln would make last \geq buf_size; this is done so that other parts of METAFONT can safely look at the contents of buffer [last +1] without overstepping the bounds of the buffer array. Upon entry to input_ln, the condition first < buf_size will always hold, so that there is always room for an "empty" line.

The variable max_buf_stack, which is used to keep track of how large the buf_size parameter must be to accommodate the present job, is also kept up to date by input_ln.

If the bypass_eoln parameter is true, input_ln will do a get before looking at the first character of the line; this skips over an eoln that was in $f \uparrow$. The procedure does not do a get when it reaches the end of the line; therefore it can be used to acquire input from the user's terminal as well as from ordinary text files.

Standard Pascal says that a file should have eoln immediately before eof, but METAFONT needs only a weaker restriction: If eof occurs in the middle of a line, the system function eoln should return a true result (even though $f \uparrow$ will be undefined).
function input_ln(var f : alpha_file; bypass_eoln : boolean): boolean;
\{inputs the next line or returns false \}
var last_nonblank: 0 .. buf_size; \{last with trailing blanks removed \}
begin if bypass_eoln then
if $\neg e o f(f)$ then $\operatorname{get}(f) ; \quad\{$ input the first character of the line into $f \uparrow\}$
last \leftarrow first $; \quad\{$ cf. Matthew 19:30 \}
if $e o f(f)$ then input_ln \leftarrow false
else begin last_nonblank \leftarrow first;
while $\neg e o l n(f)$ do
begin if last \geq max_buf_stack then
begin max_buf_stack \leftarrow last +1 ;
if max_buf_stack $=$ buf_size then \langle Report overflow of the input buffer, and abort 34\rangle;
end;
buffer $[$ last $] \leftarrow \operatorname{xord}[f \uparrow] ; \operatorname{get}(f)$; incr (last);
if buffer $[$ last -1$] \neq " \mathrm{\cup}$ " then last_nonblank \leftarrow last;
end;
last \leftarrow last_nonblank; input_ln \leftarrow true;
end;
end;
31. The user's terminal acts essentially like other files of text, except that it is used both for input and for output. When the terminal is considered an input file, the file variable is called term_in, and when it is considered an output file the file variable is term_out.
\langle Global variables 13$\rangle+\equiv$
term_in: alpha_file; $\{$ the terminal as an input file $\}$
term_out: alpha_file; \{ the terminal as an output file \}
32. Here is how to open the terminal files in Pascal-H. The '/I' switch suppresses the first get.

define t_{-}open_out \equiv rewrite (term_out,$^{\prime}$ TTY: ${ }^{\prime},{ }^{\prime} / 0^{\circ}$) $\quad\{$ open the terminal for text output $\}$
33. Sometimes it is necessary to synchronize the input/output mixture that happens on the user's terminal, and three system-dependent procedures are used for this purpose. The first of these, update_terminal, is called when we want to make sure that everything we have output to the terminal so far has actually left the computer's internal buffers and been sent. The second, clear_terminal, is called when we wish to cancel any input that the user may have typed ahead (since we are about to issue an unexpected error message). The third, wake_up_terminal, is supposed to revive the terminal if the user has disabled it by some instruction to the operating system. The following macros show how these operations can be specified in Pascal-H:
define update_terminal \equiv break (term_out) $\quad\{$ empty the terminal output buffer $\}$
define clear_terminal \equiv break_in(term_in, true) $\quad\{$ clear the terminal input buffer \}
define wake_up_terminal \equiv do_nothing $\quad\{$ cancel the user's cancellation of output $\}$
34. We need a special routine to read the first line of METAFONT input from the user's terminal. This line is different because it is read before we have opened the transcript file; there is sort of a "chicken and egg' problem here. If the user types 'input cmr10' on the first line, or if some macro invoked by that line does such an input, the transcript file will be named 'cmr10.log'; but if no input commands are performed during the first line of terminal input, the transcript file will acquire its default name 'mfput.log'. (The transcript file will not contain error messages generated by the first line before the first input command.)

The first line is even more special if we are lucky enough to have an operating system that treats METAFONT differently from a run-of-the-mill Pascal object program. It's nice to let the user start running a METAFONT job by typing a command line like ' MF cmr10'; in such a case, METAFONT will operate as if the first line of input were 'cmr 10', i.e., the first line will consist of the remainder of the command line, after the part that invoked METAFONT.

The first line is special also because it may be read before METAFONT has input a base file. In such cases, normal error messages cannot yet be given. The following code uses concepts that will be explained later. (If the Pascal compiler does not support non-local goto, the statement 'goto final_end' should be replaced by something that quietly terminates the program.)

```
Report overflow of the input buffer, and abort 34\rangle\equiv
    if base_ident =0 then
        begin write_ln(term_out, `Buffer_列ize
        end
    else begin cur_input.loc_field }\leftarrow\mathrm{ first; cur_input.limit_field }\leftarrow\mathrm{ last - 1;
        overflow("buffer_size", buf_size);
        end
```

This code is used in section 30 .
35. Different systems have different ways to get started. But regardless of what conventions are adopted, the routine that initializes the terminal should satisfy the following specifications:

1) It should open file term_in for input from the terminal. (The file term_out will already be open for output to the terminal.)
2) If the user has given a command line, this line should be considered the first line of terminal input. Otherwise the user should be prompted with ' $* *$ ', and the first line of input should be whatever is typed in response.
3) The first line of input, which might or might not be a command line, should appear in locations first to last - 1 of the buffer array.
4) The global variable loc should be set so that the character to be read next by METAFONT is in buffer [loc]. This character should not be blank, and we should have loc <last.
(It may be necessary to prompt the user several times before a non-blank line comes in. The prompt is ' $* *$ ' instead of the later '*' because the meaning is slightly different: 'input' need not be typed immediately after ' $* *$ '.)
define loc \equiv cur_input.loc_field $\quad\{$ location of first unread character in buffer \}
36. The following program does the required initialization without retrieving a possible command line. It should be clear how to modify this routine to deal with command lines, if the system permits them.
function init_terminal: boolean; \{ gets the terminal input started \}
label exit;
begin t_open_in;
loop begin wake_up_terminal; write(term_out, ${ }^{-} *{ }^{*-}$); update_terminal;
if \neg input_ln $($ term_in, true $)$ then $\{$ this shouldn't happen $\}$

init_terminal \leftarrow false; return;
end;
$l o c \leftarrow$ first;
while $(l o c<l a s t) \wedge(b u f f e r[l o c]=" ь ")$ do incr $(l o c)$;
if loc < last then
begin init_terminal \leftarrow true; return; \{return unless the line was all blank \} end;

end;
exit: end;
37. String handling. Symbolic token names and diagnostic messages are variable-length strings of eight-bit characters. Since Pascal does not have a well-developed string mechanism, METAFONT does all of its string processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled with a simple data structure. The array str_pool contains all of the (eight-bit) ASCII codes in all of the strings, and the array str_start contains indices of the starting points of each string. Strings are referred to by integer numbers, so that string number s comprises the characters str_pool $[j]$ for str_start $[s] \leq j<\operatorname{str}$ _start $[s+1]$. Additional integer variables pool_ptr and str_ptr indicate the number of entries used so far in str_pool and str_start, respectively; locations str_pool[pool_ptr] and str_start $\left[s t r_{-} p t r\right]$ are ready for the next string to be allocated.

String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in accordance with the conventions of WEB, which converts single-character strings into the ASCII code number of the single character involved, while it converts other strings into integers and builds a string pool file. Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46, which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater than 255 . String number 46 will presumably be the single character '. '; but some ASCII codes have no standard visible representation, and METAFONT may need to be able to print an arbitrary ASCII character, so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.

Elements of the str_pool array must be ASCII codes that can actually be printed; i.e., they must have an $x c h r$ equivalent in the local character set. (This restriction applies only to preloaded strings, not to those generated dynamically by the user.)
Some Pascal compilers won't pack integers into a single byte unless the integers lie in the range $-128 \ldots 127$. To accommodate such systems we access the string pool only via macros that can easily be redefined.
define $s i(\#) \equiv \# \quad$ \{ convert from ASCII_code to packed_ASCII_code \}
define $s o(\#) \equiv \#$ \{convert from packed_ASCII_code to ASCII_code \}
\langle Types in the outer block 18〉 $+\equiv$
pool_pointer $=0 .$. pool_size; $\quad\{$ for variables that point into str_pool $\}$
str_number $=0 .$. max_strings $; \quad\{$ for variables that point into str_start $\}$
packed_ASCII_code $=0 . .255 ; \quad$ \{ elements of str_pool array \}
38. 〈Global variables 13$\rangle+\equiv$
str_pool: packed array [pool_pointer] of packed_ASCII_code; \{the characters \}
str_start: array [str_number] of pool_pointer; \{the starting pointers \}
pool_ptr: pool_pointer; \{ first unused position in str_pool \}
str_ptr: str_number; \{ number of the current string being created \}
init_pool_ptr: pool_pointer; \{ the starting value of pool_ptr \}
init_str_ptr: str_number; \{ the starting value of str_ptr \}
max_pool_ptr: pool_pointer; \{ the maximum so far of pool_ptr \}
max_str_ptr: str_number; \{ the maximum so far of str_ptr \}
39. Several of the elementary string operations are performed using WEB macros instead of Pascal procedures, because many of the operations are done quite frequently and we want to avoid the overhead of procedure calls. For example, here is a simple macro that computes the length of a string.
define length $(\#) \equiv($ str_start $[\#+1]-$ str_start $[\#]) \quad\{$ the number of characters in string number \# $\}$
40. The length of the current string is called cur_length:
define cur_length $\equiv($ pool_ptr - str_start [str_ptr] $)$
41. Strings are created by appending character codes to str_pool. The append_char macro, defined here, does not check to see if the value of pool_ptr has gotten too high; this test is supposed to be made before append_char is used.
To test if there is room to append l more characters to str_pool, we shall write str_room (l), which aborts METAFONT and gives an apologetic error message if there isn't enough room.

```
define append_char \((\#) \equiv\) \{put ASCII_code \# at the end of str_pool \(\}\)
    begin str_pool[pool_ptr] \(\leftarrow\) si(\#); incr (pool_ptr);
    end
define str_room \((\#) \equiv\) \{ make sure that the pool hasn't overflowed \}
    begin if pool_ptr + \# > max_pool_ptr then
        begin if pool_ptr + \# > pool_size then overflow("pool_size", pool_size - init_pool_ptr);
        max_pool_ptr \(\leftarrow\) pool_ptr + \#;
        end;
    end
```

42. METAFONT's string expressions are implemented in a brute-force way: Every new string or substring that is needed is simply copied into the string pool.
Such a scheme can be justified because string expressions aren't a big deal in METAFONT applications; strings rarely need to be saved from one statement to the next. But it would waste space needlessly if we didn't try to reclaim the space of strings that are going to be used only once.

Therefore a simple reference count mechanism is provided: If there are no references to a certain string from elsewhere in the program, and if there are no references to any strings created subsequent to it, then the string space will be reclaimed.
The number of references to string number s will be str_ref $[s]$. The special value str_ref $[s]=$ max_str_ref $=$ 127 is used to denote an unknown positive number of references; such strings will never be recycled. If a string is ever referred to more than 126 times, simultaneously, we put it in this category. Hence a single byte suffices to store each str_ref.

```
define max_str_ref \(=127 \quad\) \{ "infinite" number of references \(\}\)
define add_str_ref (\#) \(\equiv\)
    begin if str_ref \([\#]<\) max_str_ref then incr (str_ref \([\#])\);
    end
```

\langle Global variables 13$\rangle+\equiv$ str_ref: array [str_number] of 0 .. max_str_ref;
43. Here's what we do when a string reference disappears:

```
define delete_str_ref(#) \equiv
    begin if str_ref[#] < max_str_ref then
                if str_ref[#] > 1 then decr(str_ref[#]) else flush_string(#);
    end
```

\langle Declare the procedure called flush_string 43$\rangle \equiv$
procedure flush_string (s : str_number);
begin if $s<s t r_{-} p t r-1$ then $s t r_{-} r e f[s] \leftarrow 0$
else repeat decr (str_ptr);
until str_ref $[$ str_ptr -1$] \neq 0$;
pool_ptr \leftarrow str_start[str_ptr];
end;

This code is used in section 73 .
44. Once a sequence of characters has been appended to str_pool, it officially becomes a string when the function make_string is called. This function returns the identification number of the new string as its value.

```
function make_string: str_number; {current string enters the pool}
    begin if str_ptr = max_str_ptr then
        begin if str_ptr = max_strings then overflow("number 
        incr(max_str_ptr);
        end;
    str_ref[str_ptr]}\leftarrow 1; incr(str_ptr); str_start[str_ptr] \leftarrow pool_ptr; make_string \leftarrow str_ptr - 1;
    end;
```

45. The following subroutine compares string s with another string of the same length that appears in buffer starting at position k; the result is true if and only if the strings are equal.
function str_eq_buf (s : str_number; k : integer): boolean; \{ test equality of strings \}
label not_found; \{ loop exit \}
var j : pool_pointer; \{running index \}
result: boolean; \{result of comparison \}
begin $j \leftarrow$ str_start $[s]$;
while $j<$ str_start $[s+1]$ do
begin if so $($ str_pool $[j]) \neq$ buffer $[k]$ then
begin result \leftarrow false; goto not_found; end;
incr (j); incr (k);
end;
result \leftarrow true;
not_found: str_eq_buf \leftarrow result;
end;
46. Here is a similar routine, but it compares two strings in the string pool, and it does not assume that they have the same length. If the first string is lexicographically greater than, less than, or equal to the second, the result is respectively positive, negative, or zero.
```
function \(\operatorname{str}\) _vs_str ( \(s, t:\) str_number \()\) : integer; \(\quad\{\) test equality of strings \(\}\)
    label exit;
    var \(j, k\) : pool_pointer; \{running indices \}
            \(l s, l t\) : integer; \{lengths \(\}\)
            \(l\) : integer ; \{length remaining to test \}
    begin \(l s \leftarrow\) length \((s)\); lt \(\leftarrow\) length \((t)\);
    if \(l s \leq l t\) then \(l \leftarrow l s\) else \(l \leftarrow l t\);
    \(j \leftarrow\) str_start \([s] ; k \leftarrow\) str_start \([t]\);
    while \(l>0\) do
        begin if str_pool \([j] \neq\) str_pool \([k]\) then
            begin \(s t r_{-} v s_{-} s t r \leftarrow\) str_pool \([j]-\) str_pool \([k]\); return;
            end;
        \(\operatorname{incr}(j) ; \operatorname{incr}(k) ; \operatorname{decr}(l)\);
        end;
    \(s t r \_v s \_s t r \leftarrow l s-l t ;\)
exit: end;
```

47. The initial values of str_pool, str_start, pool_ptr, and str_ptr are computed by the INIMF program, based in part on the information that WEB has output while processing METAFONT.
init function get_strings_started: boolean;
\{ initializes the string pool, but returns false if something goes wrong \}
label done, exit;
var $k, l: 0 . .255 ; \quad\{$ small indices or counters $\}$
m, n : text_char; $\{$ characters input from pool_file $\}$
g : str_number; \{ the string just created \}
a: integer; \{ accumulator for check sum \}
c : boolean; \{ check sum has been checked \}
begin pool_ptr $\leftarrow 0$; str_ptr $\leftarrow 0$; max_pool_ptr $\leftarrow 0$; max_str_ptr $\leftarrow 0$; str_start $[0] \leftarrow 0$;
〈 Make the first 256 strings 48〉;
\langle Read the other strings from the MF.POOL file and return true, or give an error message and return false 51);
exit: end;
tini
48. define app_lc_hex $(\#) \equiv l \leftarrow \# ;$
if $l<10$ then append_char $(l+" 0 ")$ else append_char $(l-10+$ "a")
\langle Make the first 256 strings 48$\rangle \equiv$
for $k \leftarrow 0$ to 255 do
begin if (\langle Character k cannot be printed 49\rangle) then
begin append_char("^"); append_char("^");
if $k<' 100$ then append_char $\left(k+{ }^{\prime} 100\right)$
else if $k<$ '200 then append_char $(k-100)$
else begin app_lc_hex (k div 16); app_lc_hex ($k \bmod 16$);
end;
end
else append_char (k);
$g \leftarrow$ make_string; str_ref $[g] \leftarrow$ max_str_ref;
end
This code is used in section 47 .
49. The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be printed in three-symbol form like "^A' unless a system-dependent change is made here. Installations that have an extended character set, where for example $\operatorname{xchr}[$ ' 32$]={ }^{\prime} \neq$ ', would like string ' 32 to be the single character '32 instead of the three characters '136, '136, '132 (${ }^{\wedge} \mathrm{Z}$). On the other hand, even people with an extended character set will want to represent string ' 15 by ${ }^{\wedge} \mathrm{M}$, since ' 15 is ASCII's "carriage return" code; the idea is to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or characters that are treated anomalously in text files.
Unprintable characters of codes 128-255 are, similarly, rendered "~80-^"ff.
The boolean expression defined here should be true unless METAFONT internal code number k corresponds to a non-troublesome visible symbol in the local character set. If character k cannot be printed, and $k<{ }^{\prime} 200$, then character $k+{ }^{\prime} 100$ or $k-100$ must be printable; moreover, ASCII codes ['60 .. ' 71 , '136, '141 .. '146] must be printable.
\langle Character k cannot be printed 49$\rangle \equiv$

$$
(k<\text { "ப" }) \vee(k>\text { "~" })
$$

This code is used in section 48 .

50．When the WEB system program called TANGLE processes the MF．WEB description that you are now reading，it outputs the Pascal program MF．PAS and also a string pool file called MF．POOL．The INIMF program reads the latter file，where each string appears as a two－digit decimal length followed by the string itself，and the information is recorded in METAFONT＇s string memory．
\langle Global variables 13$\rangle+\equiv$
init pool＿file：alpha＿file；\｛ the string－pool file output by TANGLE \}
tini
51．define bad＿pool（\＃）\equiv
begin wake＿up＿terminal；write＿ln（term＿out，\＃）；a＿close（pool＿file）；get＿strings＿started $\leftarrow f a l s e ;$ return；
end
〈Read the other strings from the MF．POOL file and return true，or give an error message and return
false 51$\rangle \equiv$
name＿of＿file \leftarrow pool＿name $; \quad\{$ we needn＇t set name＿length \}
if a＿open＿in（pool＿file）then
begin $c \leftarrow$ false；
repeat 〈Read one string，but return false if the string memory space is getting too tight for comfort 52\rangle ；
until c ；
a_{-}＿close（pool＿file）；get＿strings＿started \leftarrow true；
end

This code is used in section 47 ．
52．〈Read one string，but return false if the string memory space is getting too tight for comfort 52$\rangle \equiv$

read（pool＿file，m, n ）；\｛read two digits of string length $\}$
if $m={ }^{\prime}{ }^{\prime}$＇then \langle Check the pool check sum 53\rangle
else begin if $(\operatorname{xord}[m]<" 0 ") \vee(\operatorname{xord}[m]>" 9 ") \vee(\operatorname{xord}[n]<" 0 ") \vee(\operatorname{xord}[n]>" 9 ")$ then

$l \leftarrow \operatorname{xord}[m] * 10+\operatorname{xord}[n]-" 0 " * 11 ; \quad$ \｛ compute the length \}

for $k \leftarrow 1$ to l do
begin if eoln（pool＿file）then $m \leftarrow{ }^{\prime} \varphi^{\prime}$ else read（pool＿file，m ）；
append＿char（xord $[m]$ ）；

end；

read＿ln（pool＿file）；$g \leftarrow$ make＿string；str＿ref $[g] \leftarrow$ max＿str＿ref；
end；
end
This code is used in section 51.
53. The WEB operation @\$ denotes the value that should be at the end of this MF.POOL file; any other value means that the wrong pool file has been loaded.
\langle Check the pool check sum 53$\rangle \equiv$
begin $a \leftarrow 0 ; k \leftarrow 1$;
loop begin if $(\operatorname{xord}[n]<" 0 ") \vee(\operatorname{xord}[n]>" 9 ")$ then

$a \leftarrow 10 * a+\operatorname{xord}[n]-$ "0";
if $k=9$ then goto done;
$\operatorname{incr}(k)$; read (pool_file, n);
end;

$c \leftarrow$ true;
end
This code is used in section 52 .
54. On-line and off-line printing. Messages that are sent to a user's terminal and to the transcriptlog file are produced by several 'print' procedures. These procedures will direct their output to a variety of places, based on the setting of the global variable selector, which has the following possible values:
term_and_log, the normal setting, prints on the terminal and on the transcript file.
log_only, prints only on the transcript file.
term_only, prints only on the terminal.
no_print, doesn't print at all. This is used only in rare cases before the transcript file is open.
pseudo, puts output into a cyclic buffer that is used by the show_context routine; when we get to that routine we shall discuss the reasoning behind this curious mode.
new_string, appends the output to the current string in the string pool.
The symbolic names 'term_and_log', etc., have been assigned numeric codes that satisfy the convenient relations no_print $+1=$ term_only, no_print $+2=$ log_only, term_only $+2=$ log_only $+1=$ term_and_log.

Three additional global variables, tally and term_offset and file_offset, record the number of characters that have been printed since they were most recently cleared to zero. We use tally to record the length of (possibly very long) stretches of printing; term_offset and file_offset, on the other hand, keep track of how many characters have appeared so far on the current line that has been output to the terminal or to the transcript file, respectively.
define no_print $=0 \quad\{$ selector setting that makes data disappear $\}$
define term_only $=1 \quad\{$ printing is destined for the terminal only $\}$
define log_only $=2 \quad\{$ printing is destined for the transcript file only $\}$
define term_and_log $=3$ \{normal selector setting \}
define p seudo $=4 \quad\{$ special selector setting for show_context $\}$
define new_string $=5 \quad\{$ printing is deflected to the string pool $\}$
define max_selector $=5 \quad$ \{ highest selector setting $\}$
\langle Global variables 13$\rangle+\equiv$
log_file: alpha_file; \{ transcript of METAFONT session \}
selector: 0 . . max_selector; \{ where to print a message \}
dig: array $[0.22]$ of $0 . .15 ; \quad\{$ digits in a number being output $\}$
tally: integer; \{ the number of characters recently printed \}
term_offset: 0 . . max_print_line; \{ the number of characters on the current terminal line \}
file_offset: 0 .. max_print_line; \{ the number of characters on the current file line \}
trick_buf: array [0 . . error_line] of ASCII_code; \{ circular buffer for pseudoprinting \}
trick_count: integer; \{ threshold for pseudoprinting, explained later \}
first_count: integer; \{another variable for pseudoprinting \}
55. 〈Initialize the output routines 55$\rangle \equiv$
selector \leftarrow term_only; tally $\leftarrow 0$; term_offset $\leftarrow 0$; file_offset $\leftarrow 0$;
See also sections 61, 783, and 792 .
This code is used in section 1204.
56. Macro abbreviations for output to the terminal and to the log file are defined here for convenience. Some systems need special conventions for terminal output, and it is possible to adhere to those conventions by changing wterm, wterm_ln, and wterm_cr here.

```
define wterm(\#) ) write(term_out,\#)
define wterm_ln(\#) = write_ln(term_out,\#)
define wterm_cr \(\equiv\) write_ln(term_out)
define \(w \log (\#) \equiv\) write (log_file, \#)
define wlog_ln(\#) \(\equiv\) write_ln(log_file, \#)
define \(w l o g_{-} c r \equiv\) write_ln(log_file)
```

57. To end a line of text output, we call print_ln.
\langle Basic printing procedures 57$\rangle \equiv$
procedure print_ln; \{prints an end-of-line \}
begin case selector of
term_and_log: begin $w t e r m _c r ; ~ w l o g _c r ; ~ t e r m _o f f s e t ~ \leftarrow 0 ; ~ f i l e _o f f s e t ~ \leftarrow 0 ; ~ ;$ end;
log_only: begin wlog_cr; file_offset $\leftarrow 0$;
end;
term_only: begin wterm_cr; term_offset $\leftarrow 0$;
end;
no_print, pseudo, new_string: do_nothing;
end; \{ there are no other cases \}
end; \{ note that tally is not affected $\}$
See also sections $58,59,60,62,63,64,103,104,187,195,197$, and 773.
This code is used in section 4.
58. The print_char procedure sends one character to the desired destination, using the $x c h r$ array to map it into an external character compatible with input_ln. All printing comes through print_ln or print_char.
\langle Basic printing procedures 57$\rangle+\equiv$
procedure print_char(s:ASCII_code); \{prints a single character \}
begin case selector of
term_and_log: begin wterm (xchr[s]); wlog(xchr[s]); incr(term_offset); incr(file_offset);
if term_offset = max_print_line then
begin wterm_cr; term_offset $\leftarrow 0$; end;
if file_offset $=$ max_print_line then
begin wlog_cr; file_offset $\leftarrow 0$;
end;
end;
log_only: begin $w \log (x c h r[s])$; incr(file_offset); if file_offset = max_print_line then print_ln; end;
term_only: begin wterm (xchr[s]); incr(term_offset);
if term_offset $=$ max_print_line then print_ln;
end;
no_print: do_nothing;
pseudo: if tally < trick_count then trick_buf [tally mod error_line $] \leftarrow s$;
new_string: begin if pool_ptr < pool_size then append_char(s);
end; \{we drop characters if the string space is full $\}$
end; \{ there are no other cases \}
incr (tally);
end;
59. An entire string is output by calling print. Note that if we are outputting the single standard ASCII character c , we could call $\operatorname{print}(\mathrm{cc} \mathrm{c})$, since " $\mathrm{c} "=99$ is the number of a single-character string, as explained above. But print_char("c") is quicker, so METAFONT goes directly to the print_char routine when it knows that this is safe. (The present implementation assumes that it is always safe to print a visible ASCII character.)
\langle Basic printing procedures 57$\rangle+\equiv$
procedure print (s : integer); \{prints string $s\}$
var j : pool_pointer; \{current character code position \}
begin if $(s<0) \vee\left(s \geq s t r _p t r\right)$ then $s \leftarrow$ "???"; \{ this can't happen \}
if $(s<256) \wedge($ selector $>$ pseudo $)$ then print _char (s)
else begin $j \leftarrow$ str_start $[s]$;
while $j<$ str_start [$s+1]$ do
begin print_char(so(str_pool[j])); incr(j);
end;
end;
end;
60. Sometimes it's necessary to print a string whose characters may not be visible ASCII codes. In that case slow_print is used.
〈Basic printing procedures 57$\rangle+\equiv$
procedure slow_print (s : integer); \{prints string $s\}$
var j : pool_pointer; \{current character code position \}
begin if $(s<0) \vee(s \geq$ str_ptr $)$ then $s \leftarrow$ "???"; \{this can't happen \}
if $(s<256) \wedge($ selector $>$ pseudo $)$ then print_char (s)
else begin $j \leftarrow$ str_start $[s]$;
while $j<$ str_start $[s+1]$ do
begin $\operatorname{print}($ so(str_pool $[j]))$; incr (j);
end;
end;
end;
61. Here is the very first thing that METAFONT prints: a headline that identifies the version number and base name. The term_offset variable is temporarily incorrect, but the discrepancy is not serious since we assume that this part of the program is system dependent.
```
<Initialize the output routines 55\rangle+\equiv
    wterm(banner);
```



```
    else begin slow_print(base_ident); print_ln;
        end;
    update_terminal;
```

62. The procedure print_nl is like print, but it makes sure that the string appears at the beginning of a new line.
\langle Basic printing procedures 57$\rangle+\equiv$
procedure print_nl(s : str_number); \{prints string s at beginning of line \}
begin if $(($ term_offset $>0) \wedge($ odd $($ selector $))) \vee(($ file_offset $>0) \wedge($ selector \geq log_only $))$ then print_ln; print (s);
end;
63. An array of digits in the range $0 \ldots 9$ is printed by print_the_digs.
\langle Basic printing procedures 57$\rangle+\equiv$
procedure print_the_digs $(k:$ eight_bits $) ; \quad\{\operatorname{prints} \operatorname{dig}[k-1] \ldots \operatorname{dig}[0]\}$
begin while $k>0$ do
begin decr (k); print_char ("0" + dig $[k])$;
end;
end;
64. The following procedure, which prints out the decimal representation of a given integer n, has been written carefully so that it works properly if $n=0$ or if $(-n)$ would cause overflow. It does not apply mod or div to negative arguments, since such operations are not implemented consistently by all Pascal compilers.
\langle Basic printing procedures 57$\rangle+\equiv$
procedure print_int (n : integer $)$; \{prints an integer in decimal form $\}$
var $k: 0 \ldots 23 ; \quad\left\{\right.$ index to current digit; we assume that $\left.|n|<10^{23}\right\}$
m : integer; \{used to negate n in possibly dangerous cases \}
begin $k \leftarrow 0$;
if $n<0$ then
begin print_char("-");
if $n>-100000000$ then negate (n)
else begin $m \leftarrow-1-n ; n \leftarrow m \operatorname{div} 10 ; m \leftarrow(m \bmod 10)+1 ; k \leftarrow 1$;
if $m<10$ then $\operatorname{dig}[0] \leftarrow m$
else begin $\operatorname{dig}[0] \leftarrow 0 ; \operatorname{incr}(n)$; end;
end;
end;
repeat $\operatorname{dig}[k] \leftarrow n \bmod 10 ; n \leftarrow n \operatorname{div} 10 ; \operatorname{incr}(k)$;
until $n=0$;
print_the_digs (k);
end;
65. METAFONT also makes use of a trivial procedure to print two digits. The following subroutine is usually called with a parameter in the range $0 \leq n \leq 99$.
procedure print_dd (n : integer $)$; \{ prints two least significant digits $\}$
begin $n \leftarrow a b s(n) \bmod 100 ;$ print_char $(" 0 "+(n \operatorname{div} 10)) ;$ print_char $(" 0 "+(n \bmod 10))$;
end;
66. Here is a procedure that asks the user to type a line of input, assuming that the selector setting is either term_only or term_and_log. The input is placed into locations first through last - 1 of the buffer array, and echoed on the transcript file if appropriate.
This procedure is never called when interaction $<$ scroll_mode.
define prompt_input (\#) \equiv
begin wake_up_terminal; print(\#); term_input;
end $\{$ prints a string and gets a line of input $\}$
procedure term_input; \{ gets a line from the terminal \}
var $k: 0$..buf_size; ; index into buffer \}
begin update_terminal; \{now the user sees the prompt for sure\}

term_offset $\leftarrow 0 ; \quad$ \{ the user's line ended with \langle return $\rangle\}$
decr (selector); \{ prepare to echo the input \}
if last \neq first then
for $k \leftarrow$ first to last -1 do $\operatorname{print}($ buffer $[k])$;
print_ln; buffer $[$ last $] \leftarrow " \% " ;$ incr (selector); $\{$ restore previous status $\}$
end;
67. Reporting errors. When something anomalous is detected, METAFONT typically does something like this:
```
print_err("Something\sqcupanomalous&has\sqcupbeen_detected");
help3("This戳the
("This
("explain
error;
```

A two-line help message would be given using help2, etc.; these informal helps should use simple vocabulary that complements the words used in the official error message that was printed. (Outside the U.S.A., the help messages should preferably be translated into the local vernacular. Each line of help is at most 60 characters long, in the present implementation, so that max_print_line will not be exceeded.)

The print_err procedure supplies a '!' before the official message, and makes sure that the terminal is awake if a stop is going to occur. The error procedure supplies a '.' after the official message, then it shows the location of the error; and if interaction = error_stop_mode, it also enters into a dialog with the user, during which time the help message may be printed.
68. The global variable interaction has four settings, representing increasing amounts of user interaction:
define batch_mode $=0 \quad$ \{omits all stops and omits terminal output $\}$
define nonstop_mode $=1 \quad\{$ omits all stops $\}$
define scroll_mode $=2 \quad\{$ omits error stops $\}$
define error_stop_mode $=3$ \{stops at every opportunity to interact \}
define print_err $(\#) \equiv$
begin if interaction $=$ error_stop_mode then wake_up_terminal;
print_nl("!ப"); print(\#);
end
\langle Global variables 13$\rangle+\equiv$
interaction: batch_mode . . error_stop_mode; \{ current level of interaction \}
69. 〈Set initial values of key variables 21$\rangle+\equiv$
interaction \leftarrow error_stop_mode;
70. METAFONT is careful not to call error when the print selector setting might be unusual. The only possible values of selector at the time of error messages are
no_print (when interaction = batch_mode and log_file not yet open);
term_only (when interaction > batch_mode and log_file not yet open);
log_only (when interaction = batch_mode and log_file is open);
term_and_log (when interaction > batch_mode and log_file is open).
\langle Initialize the print selector based on interaction 70$\rangle \equiv$
if interaction $=$ batch_mode then selector \leftarrow no_print else selector $\leftarrow t e r m$ _only
This code is used in sections 1023 and 1211.
71. A global variable deletions_allowed is set false if the get_next routine is active when error is called; this ensures that get_next will never be called recursively.
The global variable history records the worst level of error that has been detected. It has four possible values: spotless, warning_issued, error_message_issued, and fatal_error_stop.

Another global variable, error_count, is increased by one when an error occurs without an interactive dialog, and it is reset to zero at the end of every statement. If error_count reaches 100, METAFONT decides that there is no point in continuing further.
define spotless $=0 \quad\{$ history value when nothing has been amiss yet $\}$
define warning_issued $=1 \quad\{$ history value when begin_diagnostic has been called $\}$
define error_message_issued $=2 \quad$ \{ history value when error has been called $\}$
define fatal_error_stop $=3 \quad\{$ history value when termination was premature $\}$
\langle Global variables 13$\rangle+\equiv$
deletions_allowed: boolean; \{ is it safe for error to call get_next? $\}$
history: spotless . . fatal_error_stop; \{ has the source input been clean so far? \}
error_count: $-1 . .100 ;$ \{ the number of scrolled errors since the last statement ended \}
72. The value of history is initially fatal_error_stop, but it will be changed to spotless if METAFONT survives the initialization process.
\langle Set initial values of key variables 21$\rangle+\equiv$
deletions_allowed \leftarrow true; error_count $\leftarrow 0 ; \quad$ \{ history is initialized elsewhere \}
73. Since errors can be detected almost anywhere in METAFONT, we want to declare the error procedures near the beginning of the program. But the error procedures in turn use some other procedures, which need to be declared forward before we get to error itself.
It is possible for error to be called recursively if some error arises when get_next is being used to delete a token, and/or if some fatal error occurs while METAFONT is trying to fix a non-fatal one. But such recursion is never more than two levels deep.
\langle Error handling procedures 73$\rangle \equiv$
procedure normalize_selector; forward;
procedure get_next; forward;
procedure term_input; forward;
procedure show_context; forward;
procedure begin_file_reading; forward;
procedure open_log_file; forward;
procedure close_files_and_terminate; forward;
procedure clear_for_error_prompt; forward;
debug procedure debug_help; forward; gubed
〈Declare the procedure called flush_string 43〉
See also sections $76,77,88,89$, and 90 .
This code is used in section 4.
74. Individual lines of help are recorded in the array help_line, which contains entries in positions 0 .. (help_ptr - 1). They should be printed in reverse order, i.e., with help_line [0] appearing last.

```
define hlp1 \((\#) \equiv\) help_line \([0] \leftarrow \#\); end
define hlp2 (\#) \(\equiv\) help_line \([1] \leftarrow \#\); hlp1
define hlp \(3(\#) \equiv\) help_line \([2] \leftarrow \#\); hlp2
define hlp4 \((\#) \equiv\) help_line \([3] \leftarrow \#\); hlp3
define hlp5 (\#) \(\equiv\) help_line \([4] \leftarrow \#\); hlp4
define hlp \(6(\#) \equiv\) help_line \([5] \leftarrow \#\); hlp 5
define help \(0 \equiv\) help_ptr \(\leftarrow 0 \quad\) \{sometimes there might be no help \}
define help \(1 \equiv\) begin help_ptr \(\leftarrow 1\); hlp1 \{ use this with one help line\}
define help \(2 \equiv\) begin help_ptr \(\leftarrow 2\); hlp2 \(\quad\) \{ use this with two help lines \}
define help \(3 \equiv\) begin help_ptr \(\leftarrow 3\); hlp \(3 \quad\) \{ use this with three help lines \}
define help \(4 \equiv\) begin help_ptr \(\leftarrow 4\); hlp4 \(\quad\) \{ use this with four help lines \}
define help \(5 \equiv\) begin help_ptr \(\leftarrow 5\); hlp \(5 \quad\) \{ use this with five help lines \}
define help \(6 \equiv\) begin help_ptr \(\leftarrow 6\); hlp \(6 \quad\) \{ use this with six help lines \}
```

\langle Global variables 13$\rangle+\equiv$
help_line: array [0..5] of str_number; \{ helps for the next error \}
help_ptr: $0 . .6$; \{ the number of help lines present \}
use_err_help: boolean; \{ should the err_help string be shown? \}
err_help: str_number; \{a string set up by errhelp \}
75. \langle Set initial values of key variables 21$\rangle+\equiv$
help_ptr $\leftarrow 0 ;$ use_err_help \leftarrow false; err_help $\leftarrow 0$;
76. The jump_out procedure just cuts across all active procedure levels and goes to end_of_MF. This is the only nontrivial goto statement in the whole program. It is used when there is no recovery from a particular error.
Some Pascal compilers do not implement non-local goto statements. In such cases the body of jump_out should simply be 'close_files_and_terminate;' followed by a call on some system procedure that quietly terminates the program.
\langle Error handling procedures 73$\rangle+\equiv$
procedure jump_out;
begin goto end_of_MF;
end;

77．Here now is the general error routine．
\langle Error handling procedures 73$\rangle+\equiv$
procedure error；\｛completes the job of error reporting \}
label continue，exit；
var c：ASCII＿code；\｛ what the user types \}
s1，s2，s3：integer；\｛used to save global variables when deleting tokens \}
j ：pool＿pointer；\｛ character position being printed \}
begin if history $<$ error＿message＿issued then history \leftarrow error＿message＿issued；
print＿char（＂．＂）；show＿context；
if interaction $=$ error＿stop＿mode then \langle Get user＇s advice and return 78\rangle ；
incr（error＿count）；
if error＿count $=100$ then
begin print＿nl（＂（That」makes 100＿$_{\sqcup}$ errors；\quad please」try」again．）＂）；history \leftarrow fatal＿error＿stop；
jump＿out；
end；
\langle Put help message on the transcript file 86\rangle ；
exit：end；

78．〈 Get user＇s advice and return 78$\rangle \equiv$
loop begin continue：if interaction \neq error＿stop＿mode then return；
clear＿for＿error＿prompt；prompt＿input（＂？ь＂）；
if last $=$ first then return；
$c \leftarrow$ buffer［first］；
if $c \geq$＂a＂then $c \leftarrow c+$＂A＂－＂a＂；\｛ convert to uppercase $\}$
\langle Interpret code c and return if done 79\rangle ； end
This code is used in section 77 ．

79．It is desirable to provide an＇E＇option here that gives the user an easy way to return from METAFONT to the system editor，with the offending line ready to be edited．But such an extension requires some system wizardry，so the present implementation simply types out the name of the file that should be edited and the relevant line number．

There is a secret＇D＇option available when the debugging routines haven＇t been commented out．
\langle Interpret code c and return if done 79$\rangle \equiv$
case c of
＂0＂，＂1＂，＂2＂，＂3＂，＂4＂，＂5＂，＂6＂，＂7＂，＂8＂，＂9＂：if deletions＿allowed then
〈Delete c－＂0＂tokens and goto continue 83〉；
debug＂D＂：begin debug＿help；goto continue；end；gubed
＂E＂：if file＿ptr＞0 then
if input＿stack［file＿ptr］．name＿field ≥ 256 then
 print（＂чat」line」＂）；print＿int（line）；
interaction \leftarrow scroll＿mode；jump＿out；
end；
＂ H ＂：〈Print the help information and goto continue 84〉；
＂I＂：〈Introduce new material from the terminal and return 82〉；
＂Q＂，＂R＂，＂S＂：〈 Change the interaction level and return 81〉；
＂X＂：begin interaction \leftarrow scroll＿mode；jump＿out； end；
othercases do＿nothing
endcases；
〈Print the menu of available options 80 〉
This code is used in section 78.
80．〈Print the menu of available options 80$\rangle \equiv$

print＿nl（＂I $I_{\llcorner } \mathrm{to}_{\sqcup}$ insert $_{\lrcorner}$Something，\sqcup＂）；
if file＿ptr >0 then
if input＿stack［file＿ptr］．name＿field ≥ 256 then $\operatorname{print}\left(" E_{\sqcup}\right.$ to $_{\sqcup}$ edit $_{\lrcorner}$your $\left._{\sqcup f} f i l e, "\right)$ ；
if deletions＿allowed then

print＿nl（＂H $\mathrm{H}_{\mathrm{f}} \mathrm{or}_{\llcorner }$help， $\mathrm{X}_{\llcorner } \mathrm{to}_{\bullet} \mathrm{quit}$. ＂）；
end
This code is used in section 79 ．
81．Here the author of METAFONT apologizes for making use of the numerical relation between＂Q＂，＂R＂， ＂S＂，and the desired interaction settings batch＿mode，nonstop＿mode，scroll＿mode．
\langle Change the interaction level and return 81$\rangle \equiv$
begin error＿count $\leftarrow 0$ ；interaction \leftarrow batch＿mode $+c-$＂Q＂；print $($＂OK， 匕entering ＂）；
case c of
＂Q＂：begin print（＂batchmode＂）；decr（selector）；
end；
＂R＂：print（＂nonstopmode＂）；
＂S＂：print（＂scrollmode＂）；
end；\｛ there are no other cases \}
print（＂．．．＂）；print＿ln；update＿terminal；return；
end
This code is used in section 79 ．

82．When the following code is executed，buffer $[($ first +1$)$ ．．（last -1$)]$ may contain the material inserted by the user；otherwise another prompt will be given．In order to understand this part of the program fully， you need to be familiar with METAFONT＇s input stacks．
〈Introduce new material from the terminal and return 82$\rangle \equiv$
begin begin＿file＿reading；\｛ enter a new syntactic level for terminal input \}
if last $>$ first +1 then
begin loc \leftarrow first +1 ；buffer $[$ first $] \leftarrow$＂ь＂；
end
else begin prompt＿input（＂insert＞＂）；loc \leftarrow first；
end；
first \leftarrow last +1 ；cur＿input．limit＿field \leftarrow last；return；
end
This code is used in section 79.

83．We allow deletion of up to 99 tokens at a time．
\langle Delete $c-$＂ 0 ＂tokens and goto continue 83$\rangle \equiv$
begin $s 1 \leftarrow$ cur＿cmd；s2 \leftarrow cur＿mod $; ~ s 3 ~ \leftarrow$ cur＿sym；OK＿to＿interrupt \leftarrow false；
if $($ last $>$ first +1$) \wedge($ buffer $[$ first +1$] \geq " 0 ") \wedge($ buffer $[$ first +1$] \leq " 9 ")$ then $c \leftarrow c * 10+$ buffer $[$ first +1$]-$＂ 0 ＂$* 11$
else $c \leftarrow c-$＂ 0 ＂；
while $c>0$ do
begin get＿next；\｛ one－level recursive call of error is possible \}
\langle Decrease the string reference count，if the current token is a string 743\rangle ；
decr（c）；
end；
cur＿cmd $\leftarrow s 1 ;$ cur＿mod $\leftarrow s 2 ;$ cur＿sym $\leftarrow s 3 ;$ OK＿to＿interrupt $\leftarrow t r u e$ ；

end
This code is used in section 79.

84．〈Print the help information and goto continue 84$\rangle \equiv$
begin if use＿err＿help then
begin 〈Print the string err＿help，possibly on several lines 85\rangle ；
use＿err＿help \leftarrow false；
end

repeat decr（help＿ptr）；print（help＿line［help＿ptr］）；print＿ln；
until help＿ptr $=0$ ；
end；

goto continue；
end
This code is used in section 79.

85．〈Print the string err＿help，possibly on several lines 85$\rangle \equiv$
$j \leftarrow$ str＿start［err＿help］；
while $j<$ str＿start $[$ err＿help +1$]$ do
begin if str＿pool $[j] \neq \operatorname{si}(" \%$＂）then $\operatorname{print}($ so $($ str＿pool $[j]))$
else if $j+1=$ str＿start $[$ err＿help +1$]$ then print＿ln
else if str＿pool $[j+1] \neq s i(" \%$＂）then print＿ln
else begin incr（ j ）；print＿char（＂\％＂）；
end；
$\operatorname{incr}(j)$ ；
end
This code is used in sections 84 and 86 ．

86．〈Put help message on the transcript file 86$\rangle \equiv$
if interaction $>$ batch＿mode then decr（selector）；\｛avoid terminal output $\}$
if use＿err＿help then
begin print＿nl（＂＂）；〈 Print the string err＿help，possibly on several lines 85\rangle ；
end
else while help＿ptr >0 do
begin decr（help＿ptr）；print＿nl（help＿line［help＿ptr］）； end；
print＿ln；
if interaction $>$ batch＿mode then $\operatorname{incr}($ selector $) ; \quad\{$ re－enable terminal output $\}$
print＿ln
This code is used in section 77 ．

87．In anomalous cases，the print selector might be in an unknown state；the following subroutine is called to fix things just enough to keep running a bit longer．
procedure normalize＿selector；
begin if log＿opened then selector \leftarrow term＿and＿log
else selector \leftarrow term＿only；
if job＿name $=0$ then open＿log＿file；
if interaction $=$ batch＿mode then decr（selector）；
end；
88．The following procedure prints METAFONT＇s last words before dying．
define succumb \equiv
begin if interaction $=$ error＿stop＿mode then interaction \leftarrow scroll＿mode；
\｛no more interaction \}
if $l_{\text {log＿opened }}$ then error；
debug if interaction＞batch＿mode then debug＿help；gubed
history \leftarrow fatal＿error＿stop；jump＿out；$\quad\{$ irrecoverable error $\}$
end
\langle Error handling procedures 73$\rangle+\equiv$
procedure fatal＿error（ s ：str＿number）；\｛prints s ，and that＇s it \}
begin normalize＿selector；
print＿err（＂Emergencyபstop＂）；help1（s）；succumb；
end；
89. Here is the most dreaded error message.
\langle Error handling procedures 73$\rangle+\equiv$
procedure overflow ($s:$ str_number; $n:$ integer); $\{$ stop due to finiteness $\}$
begin normalize_selector; print_err("METAFONT_Capacity」exceeded, Sorry $_{\perp}[")$; print (s);
print_char("="); print_int(n); print_char("]");

end;
90. The program might sometime run completely amok, at which point there is no choice but to stop. If no previous error has been detected, that's bad news; a message is printed that is really intended for the METAFONT maintenance person instead of the user (unless the user has been particularly diabolical). The index entries for 'this can't happen' may help to pinpoint the problem.
\langle Error handling procedures 73$\rangle+\equiv$
procedure confusion(s : str_number); \{ consistency check violated; s tells where \}
begin normalize_selector;
if history < error_message_issued then

end

end;
succumb;
end;
91. Users occasionally want to interrupt METAFONT while it's running. If the Pascal runtime system allows this, one can implement a routine that sets the global variable interrupt to some nonzero value when such an interrupt is signalled. Otherwise there is probably at least a way to make interrupt nonzero using the Pascal debugger.
define check_interrupt \equiv
begin if interrupt $\neq 0$ then pause_for_instructions;
end
end
\langle Global variables 13$\rangle+\equiv$
interrupt: integer; \{should METAFONT pause for instructions? \}
OK_to_interrupt: boolean; \{should interrupts be observed? \}
92. 〈Set initial values of key variables 21$\rangle+\equiv$
interrupt $\leftarrow 0$; OK_to_interrupt \leftarrow true;
93. When an interrupt has been detected, the program goes into its highest interaction level and lets the user have the full flexibility of the error routine. METAFONT checks for interrupts only at times when it is safe to do this.

```
procedure pause_for_instructions;
    begin if OK_to_interrupt then
        begin interaction \(\leftarrow\) error_stop_mode;
        if \(\left(\right.\) selector \(\left.=l o g_{-} o n l y\right) \vee(\) selector \(=\) no_print \()\) then incr \((\) selector \()\);
        print_err("Interruption"); help3("You rang?")
```



```
        deletions_allowed \(\leftarrow\) true; interrupt \(\leftarrow 0\);
        end;
    end;
```

94. Many of METAFONT's error messages state that a missing token has been inserted behind the scenes. We can save string space and program space by putting this common code into a subroutine.
procedure missing_err (s : str_number);

end;
95. Arithmetic with scaled numbers. The principal computations performed by METAFONT are done entirely in terms of integers less than 2^{31} in magnitude; thus, the arithmetic specified in this program can be carried out in exactly the same way on a wide variety of computers, including some small ones.

But Pascal does not define the div operation in the case of negative dividends; for example, the result of $(-2 * n-1) \operatorname{div} 2$ is $-(n+1)$ on some computers and $-n$ on others. There are two principal types of arithmetic: "translation-preserving," in which the identity $(a+q * b) \operatorname{div} b=(a \operatorname{div} b)+q$ is valid; and "negation-preserving," in which $(-a) \operatorname{div} b=-(a \operatorname{div} b)$. This leads to two METAFONTs, which can produce different results, although the differences should be negligible when the language is being used properly. The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ processor has been defined carefully so that both varieties of arithmetic will produce identical output, but it would be too inefficient to constrain METAFONT in a similar way.
define el_gordo $\equiv{ }^{\prime} 177777777777 \quad\left\{2^{31}-1\right.$, the largest value that METAFONT likes $\}$
96. One of METAFONT's most common operations is the calculation of $\left\lfloor\frac{a+b}{2}\right\rfloor$, the midpoint of two given integers a and b. The only decent way to do this in Pascal is to write ' $(a+b)$ div 2 '; but on most machines it is far more efficient to calculate ' $(a+b)$ right shifted one bit'.

Therefore the midpoint operation will always be denoted by 'half $(a+b)$ ' in this program. If METAFONT is being implemented with languages that permit binary shifting, the half macro should be changed to make this operation as efficient as possible.
define half (\#) \equiv (\#) $\operatorname{div} 2$
97. A single computation might use several subroutine calls, and it is desirable to avoid producing multiple error messages in case of arithmetic overflow. So the routines below set the global variable arith_error to true instead of reporting errors directly to the user.
\langle Global variables 13$\rangle+\equiv$
arith_error: boolean; \{ has arithmetic overflow occurred recently? \}
98. 〈Set initial values of key variables 21$\rangle+\equiv$
arith_error \leftarrow false;
99. At crucial points the program will say check_arith, to test if an arithmetic error has been detected.
define check_arith \equiv
begin if arith_error then clear_arith;
end
procedure clear_arith; begin print_err("Arithmetic ${ }_{\sqcup}$ overflow");

 end;
100. Addition is not always checked to make sure that it doesn't overflow, but in places where overflow isn't too unlikely the slow_add routine is used.

```
function slow_add ( \(x, y:\) integer \()\) : integer;
    begin if \(x \geq 0\) then
        if \(y \leq\) el_gordo \(-x\) then slow_add \(\leftarrow x+y\)
        else begin arith_error \(\leftarrow\) true; slow_add \(\leftarrow\) el_gordo;
            end
    else if \(-y \leq\) el_gordo \(+x\) then slow_add \(\leftarrow x+y\)
        else begin arith_error \(\leftarrow\) true; slow_add \(\leftarrow\)-el_gordo;
            end;
    end;
```

101. Fixed-point arithmetic is done on scaled integers that are multiples of 2^{-16}. In other words, a binary point is assumed to be sixteen bit positions from the right end of a binary computer word.
```
define quarter_unit \equiv'40000 { { '14, represents 0.250000 }
define half_unit \equiv'100000 { { '15},\mathrm{ ,represents 0.50000 }
define three_quarter_unit \equiv'140000 {3\cdot '24,}\mathrm{ ,represents 0.75000}
define unity \equiv'200000 { 2'16}\mathrm{ ,represents 1.00000 }
define two \equiv'400000 { {2'17, represents 2.00000 }
define three \equiv'600000 { {2'17 +2 2', represents 3.00000 }
```

\langle Types in the outer block 18$\rangle+\equiv$
scaled $=$ integer $; \quad\{$ this type is used for scaled integers $\}$
small_number $=0 . .63 ; \quad\{$ this type is self-explanatory $\}$
102. The following function is used to create a scaled integer from a given decimal fraction $\left(. d_{0} d_{1} \ldots d_{k-1}\right)$, where $0 \leq k \leq 17$. The digit d_{i} is given in $\operatorname{dig}[i]$, and the calculation produces a correctly rounded result.
function round_decimals (k : small_number): scaled; \{converts a decimal fraction \}
var a: integer; \{ the accumulator \}
begin $a \leftarrow 0$;
while $k>0$ do
begin $\operatorname{decr}(k) ; a \leftarrow(a+\operatorname{dig}[k] * t w o) \operatorname{div} 10$;
end;
round_decimals \leftarrow half $(a+1)$;
end;

103．Conversely，here is a procedure analogous to print＿int．If the output of this procedure is subsequently read by METAFONT and converted by the round＿decimals routine above，it turns out that the original value will be reproduced exactly．A decimal point is printed only if the value is not an integer．If there is more than one way to print the result with the optimum number of digits following the decimal point，the closest possible value is given．

The invariant relation in the repeat loop is that a sequence of decimal digits yet to be printed will yield the original number if and only if they form a fraction f in the range $s-\delta \leq 10 \cdot 2^{16} f<s$ ．We can stop if and only if $f=0$ satisfies this condition；the loop will terminate before s can possibly become zero．

```
<Basic printing procedures 57\rangle +三
procedure print_scaled(s : scaled); {prints scaled real, rounded to five digits }
    var delta: scaled; { amount of allowable inaccuracy }
    begin if s<0 then
        begin print_char("-"); negate(s); { print the sign, if negative }
        end;
    print_int(s div unity); {print the integer part }
    s\leftarrow10* (s mod unity) +5;
    if }s\not=5\mathrm{ then
        begin delta }\leftarrow10; print_char(".")
        repeat if delta > unity then }s\leftarrows+\mp@subsup{}{}{\prime}100000-(\mathrm{ delta div 2); {round the final digit }
            print_char("0" + (s div unity)); s\leftarrow10*(s mod unity); delta }\leftarrow\mathrm{ delta * 10;
        until s\leqdelta;
        end;
    end;
```

104．We often want to print two scaled quantities in parentheses，separated by a comma．
〈Basic printing procedures 57$\rangle+\equiv$
procedure print＿two（ x, y ：scaled）；\｛prints＇$\left.(x, y)^{\prime}\right\}$
begin print＿char（＂（＂）；print＿scaled（x）；print＿char（＂，＂）；print＿scaled（y）；print＿char（＂）＂）；
end；
105．The scaled quantities in METAFONT programs are generally supposed to be less than 2^{12} in absolute value，so METAFONT does much of its internal arithmetic with 28 significant bits of precision．A fraction denotes a scaled integer whose binary point is assumed to be 28 bit positions from the right．
define fraction＿half $\equiv{ }^{\prime} 1000000000 \quad\left\{2^{27}\right.$ ，represents 0.50000000$\}$
define fraction＿one \equiv＇2000000000 $\left\{2^{28}\right.$ ，represents 1.00000000$\}$
define fraction＿two $\equiv{ }^{\prime} 4000000000 \quad\left\{2^{29}\right.$ ，represents 2.00000000$\}$
define fraction＿three \equiv＇ $6000000000 \quad\left\{3 \cdot 2^{28}\right.$ ，represents 3.00000000$\}$
define fraction＿four $\equiv ' 10000000000 \quad\left\{2^{30}\right.$ ，represents 4.00000000$\}$
\langle Types in the outer block 18〉 $+\equiv$
fraction $=$ integer $; \quad\{$ this type is used for scaled fractions $\}$
106．In fact，the two sorts of scaling discussed above aren＇t quite sufficient；METAFONT has yet another， used internally to keep track of angles in units of 2^{-20} degrees．
define forty＿five＿deg $\equiv{ }^{\prime} 264000000 \quad\left\{45 \cdot 2^{20}\right.$ ，represents $\left.45^{\circ}\right\}$
define ninety＿deg $\equiv{ }^{\prime} 550000000 \quad\left\{90 \cdot 2^{20}\right.$ ，represents $\left.90^{\circ}\right\}$
define one＿eighty＿deg $\equiv{ }^{\prime} 1320000000 \quad\left\{180 \cdot 2^{20}\right.$ ，represents $\left.180^{\circ}\right\}$
define three＿sixty＿deg $\equiv{ }^{\prime} 2640000000 \quad\left\{360 \cdot 2^{20}\right.$ ，represents $\left.360^{\circ}\right\}$
\langle Types in the outer block 18$\rangle+\equiv$
angle $=$ integer $; \quad\{$ this type is used for scaled angles $\}$
107. The make_fraction routine produces the fraction equivalent of p / q, given integers p and q; it computes the integer $f=\left\lfloor 2^{28} p / q+\frac{1}{2}\right\rfloor$, when p and q are positive. If p and q are both of the same scaled type t, the "type relation" make_fraction $(t, t)=$ fraction is valid; and it's also possible to use the subroutine "backwards," using the relation make_fraction $(t$, fraction $)=t$ between scaled types.

If the result would have magnitude 2^{31} or more, make_fraction sets arith_error \leftarrow true. Most of METAFONT's internal computations have been designed to avoid this sort of error.

Notice that if 64 -bit integer arithmetic were available, we could simply compute $\left(2^{29} * p+q\right) \operatorname{div}(2 * q)$. But when we are restricted to Pascal's 32 -bit arithmetic we must either resort to multiple-precision maneuvering or use a simple but slow iteration. The multiple-precision technique would be about three times faster than the code adopted here, but it would be comparatively long and tricky, involving about sixteen additional multiplications and divisions.

This operation is part of METAFONT's "inner loop"; indeed, it will consume nearly 10% of the running time (exclusive of input and output) if the code below is left unchanged. A machine-dependent recoding will therefore make METAFONT run faster. The present implementation is highly portable, but slow; it avoids multiplication and division except in the initial stage. System wizards should be careful to replace it with a routine that is guaranteed to produce identical results in all cases.

As noted below, a few more routines should also be replaced by machine-dependent code, for efficiency. But when a procedure is not part of the "inner loop," such changes aren't advisable; simplicity and robustness are preferable to trickery, unless the cost is too high.
function make_fraction (p, q : integer): fraction;
var f : integer; \{ the fraction bits, with a leading 1 bit \}
n : integer; $\quad\{$ the integer part of $|p / q|\}$
negative: boolean; \quad \{should the result be negated? \}
be_careful: integer; \{disables certain compiler optimizations \}
begin if $p \geq 0$ then negative \leftarrow false
else begin negate (p); negative \leftarrow true; end;
if $q \leq 0$ then
begin debug if $q=0$ then confusion("/"); gubed
negate (q); negative $\leftarrow \neg$ negative;
end;
$n \leftarrow p \operatorname{div} q ; p \leftarrow p \bmod q ;$
if $n \geq 8$ then begin arith_error \leftarrow true; if negative then make_fraction \leftarrow-el_gordo else make_fraction \leftarrow el_gordo; end
else begin $n \leftarrow(n-1) *$ fraction_one; $\left\langle\right.$ Compute $\left.f=\left\lfloor 2^{28}(1+p / q)+\frac{1}{2}\right\rfloor 108\right\rangle$; if negative then make_fraction $\leftarrow-(f+n)$ else make_fraction $\leftarrow f+n$; end;
end;
108. The repeat loop here preserves the following invariant relations between f, p, and q : (i) $0 \leq p<q$; (ii) $f q+p=2^{k}\left(q+p_{0}\right)$, where k is an integer and p_{0} is the original value of p.

Notice that the computation specifies $(p-q)+p$ instead of $(p+p)-q$, because the latter could overflow. Let us hope that optimizing compilers do not miss this point; a special variable be_careful is used to emphasize the necessary order of computation. Optimizing compilers should keep be_careful in a register, not store it in memory.

```
\(\left\langle\right.\) Compute \(\left.f=\left\lfloor 2^{28}(1+p / q)+\frac{1}{2}\right\rfloor 108\right\rangle \equiv\)
    \(f \leftarrow 1 ;\)
    repeat \(b e_{-} c a r e f u l \leftarrow p-q ; p \leftarrow b e_{-} c a r e f u l+p ;\)
        if \(p \geq 0\) then \(f \leftarrow f+f+1\)
        else begin double \((f) ; p \leftarrow p+q\);
            end;
    until \(f \geq\) fraction_one;
    be_careful \(\leftarrow p-q\);
    if be_careful \(+p \geq 0\) then \(\operatorname{incr}(f)\)
```

This code is used in section 107.
109. The dual of make_fraction is take_fraction, which multiplies a given integer q by a fraction f. When the operands are positive, it computes $p=\left\lfloor q f / 2^{28}+\frac{1}{2}\right\rfloor$, a symmetric function of q and f.

This routine is even more "inner loopy" than make_fraction; the present implementation consumes almost 20% of METAFONT's computation time during typical jobs, so a machine-language or 64 -bit substitute is advisable.
function take_fraction (q : integer; $f:$ fraction $)$: integer;
var p : integer; \{the fraction so far $\}$
negative: boolean; \{should the result be negated? \}
n : integer; $\quad\{$ additional multiple of $q\}$
be_careful: integer; \{ disables certain compiler optimizations $\}$
begin \langle Reduce to the case that $f \geq 0$ and $q \geq 0110\rangle$;
if $f<$ fraction_one then $n \leftarrow 0$
else begin $n \leftarrow f$ div fraction_one; $f \leftarrow f$ mod fraction_one;
if $q \leq e l _$gordo div n then $n \leftarrow n * q$
else begin arith_error \leftarrow true; $n \leftarrow$ el_gordo;
end;
end;
$f \leftarrow f+$ fraction_one; $\left\langle\right.$ Compute $\left.p=\left\lfloor q f / 2^{28}+\frac{1}{2}\right\rfloor-q 111\right\rangle ;$
be_careful $\leftarrow n-$ el_gordo;
if be_careful $+p>0$ then
begin arith_error \leftarrow true ; $n \leftarrow$ el_gordo $-p$;
end;
if negative then take_fraction $\leftarrow-(n+p)$
else take_fraction $\leftarrow n+p$;
end;
110. \langle Reduce to the case that $f \geq 0$ and $q \geq 0110\rangle \equiv$
if $f \geq 0$ then negative \leftarrow false
else begin negate (f); negative \leftarrow true; end;
if $q<0$ then
begin negate (q); negative $\leftarrow \neg$ negative; end;
This code is used in sections 109 and 112.
111. The invariant relations in this case are (i) $\left\lfloor(q f+p) / 2^{k}\right\rfloor=\left\lfloor q f_{0} / 2^{28}+\frac{1}{2}\right\rfloor$, where k is an integer and f_{0} is the original value of f; (ii) $2^{k} \leq f<2^{k+1}$.
$\left\langle\right.$ Compute $\left.p=\left\lfloor q f / 2^{28}+\frac{1}{2}\right\rfloor-q 111\right\rangle \equiv$
$p \leftarrow$ fraction_half; $\quad\left\{\right.$ that's 2^{27}; the invariants hold now with $\left.k=28\right\}$
if $q<$ fraction_four then
repeat if odd (f) then $p \leftarrow \operatorname{half}(p+q)$ else $p \leftarrow \operatorname{half}(p)$;
$f \leftarrow \operatorname{half}(f)$;
until $f=1$
else repeat if $o d d(f)$ then $p \leftarrow p+\operatorname{half}(q-p)$ else $p \leftarrow \operatorname{half}(p)$;
$f \leftarrow$ half (f);
until $f=1$
This code is used in section 109.
112. When we want to multiply something by a scaled quantity, we use a scheme analogous to take_fraction but with a different scaling. Given positive operands, take_scaled computes the quantity $p=\left\lfloor q f / 2^{16}+\frac{1}{2}\right\rfloor$.

Once again it is a good idea to use 64 -bit arithmetic if possible; otherwise take_scaled will use more than 2% of the running time when the Computer Modern fonts are being generated.

```
function take_scaled ( \(q:\) integer \(; f:\) scaled \()\) : integer;
    var \(p\) : integer; \{ the fraction so far \}
        negative: boolean; \(\quad\) should the result be negated? \(\}\)
        \(n\) : integer; \(\quad\{\) additional multiple of \(q\) \}
        be_careful: integer; \{ disables certain compiler optimizations \}
    begin \(\langle\) Reduce to the case that \(f \geq 0\) and \(q \geq 0110\rangle\);
    if \(f<\) unity then \(n \leftarrow 0\)
    else begin \(n \leftarrow f\) div unity; \(f \leftarrow f\) mod unity;
        if \(q \leq\) el_gordo div \(n\) then \(n \leftarrow n * q\)
        else begin arith_error \(\leftarrow\) true; \(n \leftarrow\) el_gordo;
            end;
        end;
    \(f \leftarrow f+\) unity; \(\left\langle\right.\) Compute \(\left.p=\left\lfloor q f / 2^{16}+\frac{1}{2}\right\rfloor-q 113\right\rangle ;\)
    be_careful \(\leftarrow n\)-el_gordo;
    if be_careful \(+p>0\) then
        begin arith_error \(\leftarrow\) true \(; n \leftarrow\) el_gordo \(-p\);
        end;
    if negative then take_scaled \(\leftarrow-(n+p)\)
    else take_scaled \(\leftarrow n+p\);
    end;
```

113. $\left\langle\right.$ Compute $\left.p=\left\lfloor q f / 2^{16}+\frac{1}{2}\right\rfloor-q 113\right\rangle \equiv$
$p \leftarrow$ half_unit; $\quad\left\{\right.$ that's 2^{15}; the invariants hold now with $k=16$ \}
if $q<$ fraction_four then
repeat if $\operatorname{odd}(f)$ then $p \leftarrow \operatorname{half}(p+q)$ else $p \leftarrow \operatorname{half}(p)$;
$f \leftarrow \operatorname{half}(f)$;
until $f=1$
else repeat if $\operatorname{odd}(f)$ then $p \leftarrow p+\operatorname{half}(q-p)$ else $p \leftarrow \operatorname{half}(p)$;
$f \leftarrow \operatorname{half}(f)$;
until $f=1$

This code is used in section 112.
114. For completeness, there's also make_scaled, which computes a quotient as a scaled number instead of as a fraction. In other words, the result is $\left\lfloor 2^{16} p / q+\frac{1}{2}\right\rfloor$, if the operands are positive. (This procedure is not used especially often, so it is not part of METAFONT's inner loop.)
function make_scaled (p, q : integer): scaled;
var f : integer; \{ the fraction bits, with a leading 1 bit \}
n : integer; $\quad\{$ the integer part of $|p / q|\}$
negative: boolean; \quad \{should the result be negated? $\}$
be_careful: integer; \{ disables certain compiler optimizations \}
begin if $p \geq 0$ then negative \leftarrow false
else begin negate (p); negative \leftarrow true; end;
if $q \leq 0$ then
begin debug if $q=0$ then confusion("/");
gubed
negate (q); negative $\leftarrow \neg$ negative;
end;
$n \leftarrow p \operatorname{div} q ; p \leftarrow p \bmod q ;$
if $n \geq$ ' 100000 then
begin arith_error \leftarrow true;
if negative then make_scaled \leftarrow-el_gordo else make_scaled \leftarrow el_gordo; end
else begin $n \leftarrow(n-1) *$ unity; $\left\langle\right.$ Compute $\left.f=\left\lfloor 2^{16}(1+p / q)+\frac{1}{2}\right\rfloor 115\right\rangle$; if negative then make_scaled $\leftarrow-(f+n)$ else make_scaled $\leftarrow f+n$; end;
end;
115. $\left\langle\right.$ Compute $\left.f=\left\lfloor 2^{16}(1+p / q)+\frac{1}{2}\right\rfloor 115\right\rangle \equiv$
$f \leftarrow 1$;
repeat b e_careful $\leftarrow p-q ; p \leftarrow b e _c a r e f u l+p$; if $p \geq 0$ then $f \leftarrow f+f+1$
else begin double (f); $p \leftarrow p+q$; end;
until $f \geq$ unity;
be_careful $\leftarrow p-q$;
if be_careful $+p \geq 0$ then incr (f)
This code is used in section 114.
116. Here is a typical example of how the routines above can be used. It computes the function

$$
\frac{1}{3 \tau} f(\theta, \phi)=\frac{\tau^{-1}\left(2+\sqrt{2}\left(\sin \theta-\frac{1}{16} \sin \phi\right)\left(\sin \phi-\frac{1}{16} \sin \theta\right)(\cos \theta-\cos \phi)\right)}{3\left(1+\frac{1}{2}(\sqrt{5}-1) \cos \theta+\frac{1}{2}(3-\sqrt{5}) \cos \phi\right)},
$$

where τ is a scaled "tension" parameter. This is METAFONT's magic fudge factor for placing the first control point of a curve that starts at an angle θ and ends at an angle ϕ from the straight path. (Actually, if the stated quantity exceeds 4 , METAFONT reduces it to 4 .)
The trigonometric quantity to be multiplied by $\sqrt{2}$ is less than $\sqrt{2}$. (It's a sum of eight terms whose absolute values can be bounded using relations such as $\sin \theta \cos \theta \leq \frac{1}{2}$.) Thus the numerator is positive; and since the tension τ is constrained to be at least $\frac{3}{4}$, the numerator is less than $\frac{16}{3}$. The denominator is nonnegative and at most 6 . Hence the fixed-point calculations below are guaranteed to stay within the bounds of a 32 -bit computer word.

The angles θ and ϕ are given implicitly in terms of fraction arguments $s t$, ct, sf, and $c f$, representing $\sin \theta, \cos \theta, \sin \phi$, and $\cos \phi$, respectively.
function velocity (st, ct, sf, cf: fraction; $t:$ scaled): fraction;
var acc, num, denom: integer; \{registers for intermediate calculations \}
begin $a c c \leftarrow t a k e_{-} f r a c t i o n(s t-(s f \operatorname{div} 16)$, sf - (st div 16)); acc \leftarrow take_fraction (acc, ct -cf);
num \leftarrow fraction_two + take_fraction (acc, 379625062); $\left\{2^{28} \sqrt{2} \approx 379625062.497\right\}$
denom \leftarrow fraction_three + take_fraction $(c t, 497706707)+$ take_fraction $(c f, 307599661)$;
$\left\{3 \cdot 2^{27} \cdot(\sqrt{5}-1) \approx 497706706.78\right.$ and $\left.3 \cdot 2^{27} \cdot(3-\sqrt{5}) \approx 307599661.22\right\}$
if $t \neq$ unity then num \leftarrow make_scaled $($ num,$t) ; \quad\{$ make_scaled $($ fraction, scaled $)=$ fraction $\}$
if num div $4 \geq$ denom then velocity \leftarrow fraction_four
else velocity \leftarrow make_fraction(num, denom);
end;
117. The following somewhat different subroutine tests rigorously if $a b$ is greater than, equal to, or less than $c d$, given integers (a, b, c, d). In most cases a quick decision is reached. The result is $+1,0$, or -1 in the three respective cases.
define return_sign (\#) \equiv
begin ab_vs_cd $\leftarrow \# ;$ return;
end
function $a b_{-} v s_{-} c d(a, b, c, d:$ integer $)$: integer $;$
label exit;
var q, r : integer; \{temporary registers \}
begin \langle Reduce to the case that $a, c \geq 0, b, d>0118\rangle$;
loop begin $q \leftarrow a \operatorname{div} d ; r \leftarrow c \operatorname{div} b$;
if $q \neq r$ then
if $q>r$ then return_sign(1) else return_sign(-1);
$q \leftarrow a \bmod d ; r \leftarrow c \bmod b ;$
if $r=0$ then
if $q=0$ then return_sign(0) else return_sign(1);
if $q=0$ then return_sign (-1);
$a \leftarrow b ; b \leftarrow q ; c \leftarrow d ; d \leftarrow r ;$
end; $\quad\{$ now $a>d>0$ and $c>b>0\}$
exit: end;
118. \langle Reduce to the case that $a, c \geq 0, b, d>0118\rangle \equiv$
if $a<0$ then begin negate (a); negate (b); end;
if $c<0$ then begin negate (c); negate (d); end;
if $d \leq 0$ then begin if $b \geq 0$ then
if $((a=0) \vee(b=0)) \wedge((c=0) \vee(d=0))$ then return_sign (0) else return_sign(1);
if $d=0$ then
if $a=0$ then return_sign (0) else return_sign (-1);
$q \leftarrow a ; a \leftarrow c ; c \leftarrow q ; q \leftarrow-b ; b \leftarrow-d ; d \leftarrow q ;$
end
else if $b \leq 0$ then
begin if $b<0$ then
if $a>0$ then return_sign (-1);
if $c=0$ then return_sign (0)
else return_sign (-1);
end
This code is used in section 117.
119. We conclude this set of elementary routines with some simple rounding and truncation operations that are coded in a machine-independent fashion. The routines are slightly complicated because we want them to work without overflow whenever $-2^{31} \leq x<2^{31}$.
function floor_scaled (x : scaled): scaled; $\quad\left\{2^{16}\left\lfloor x / 2^{16}\right\rfloor\right\}$
var be_careful: integer; \{temporary register \}
begin if $x \geq 0$ then floor_scaled $\leftarrow x-(x \bmod$ unity $)$
else begin be_careful $\leftarrow x+1$; floor_scaled $\leftarrow x+((-$ be_careful $) \bmod$ unity $)+1$ - unity; end;
end;
function floor_unscaled (x : scaled): integer; $\left\{\left\lfloor x / 2^{16}\right\rfloor\right\}$
var be_careful: integer; \{temporary register \}
begin if $x \geq 0$ then floor_unscaled $\leftarrow x$ div unity
else begin be_careful $\leftarrow x+1$; floor_unscaled $\leftarrow-(1+((-$ be_careful $)$ div unity $))$; end;
end;
function round_unscaled (x : scaled): integer; $\left\{\left\lfloor x / 2^{16}+.5\right\rfloor\right\}$
var be_careful: integer; \{ temporary register \}
begin if $x \geq$ half_unit then round_unscaled $\leftarrow 1+\left(\left(x-h a l f _u n i t\right)\right.$ div unity $)$
else if $x \geq$-half_unit then round_unscaled $\leftarrow 0$
else begin be_careful $\leftarrow x+1$; round_unscaled $\leftarrow-\left(1+\left(\left(-b e _c a r e f u l-h a l f _u n i t\right)\right.\right.$ div unity $\left.)\right)$; end;
end;
function round_fraction($x:$ fraction): scaled; $\left\{\left\lfloor x / 2^{12}+.5\right\rfloor\right\}$
var be_careful: integer; \{temporary register \}
begin if $x \geq 2048$ then round_fraction $\leftarrow 1+((x-2048) \operatorname{div} 4096)$
else if $x \geq-2048$ then round_fraction $\leftarrow 0$
else begin be_careful $\leftarrow x+1$; round_fraction $\leftarrow-\left(1+\left(\left(-b e _c a r e f u l-2048\right) \operatorname{div} 4096\right)\right)$; end;
end;
120. Algebraic and transcendental functions. METAFONT computes all of the necessary special functions from scratch, without relying on real arithmetic or system subroutines for sines, cosines, etc.
121. To get the square root of a scaled number x, we want to calculate $s=\left\lfloor 2^{8} \sqrt{x}+\frac{1}{2}\right\rfloor$. If $x>0$, this is the unique integer such that $2^{16} x-s \leq s^{2}<2^{16} x+s$. The following subroutine determines s by an iterative method that maintains the invariant relations $x=2^{46-2 k} x_{0} \bmod 2^{30}, 0<y=\left\lfloor 2^{16-2 k} x_{0}\right\rfloor-s^{2}+s \leq q=2 s$, where x_{0} is the initial value of x. The value of y might, however, be zero at the start of the first iteration.
function square_rt($x:$ scaled): scaled;
var k : small_number; \{iteration control counter \}
y, q : integer; \{registers for intermediate calculations \}
begin if $x \leq 0$ then 〈Handle square root of zero or negative argument 122〉
else begin $k \leftarrow 23 ; q \leftarrow 2$;
while $x<$ fraction_two do $\quad\left\{\right.$ i.e., while $\left.x<2^{29}\right\}$
begin $\operatorname{decr}(k) ; x \leftarrow x+x+x+x$; end;
if $x<$ fraction_four then $y \leftarrow 0$
else begin $x \leftarrow x$-fraction_four ; $y \leftarrow 1$; end;
repeat \langle Decrease k by 1 , maintaining the invariant relations between x, y, and $q 123\rangle$;
until $k=0$;
square_rt \leftarrow half (q);
end;
end;
122. \langle Handle square root of zero or negative argument 122$\rangle \equiv$
begin if $x<0$ then

end;
square_rt $\leftarrow 0$;
end
This code is used in section 121.
123. \langle Decrease k by 1 , maintaining the invariant relations between x, y, and $q 123\rangle \equiv$
double (x); double (y);
if $x \geq$ fraction_four then $\quad\left\{\right.$ note that fraction_four $\left.=2^{30}\right\}$
begin $x \leftarrow x$-fraction_four; incr (y);
end;
double $(x) ; y \leftarrow y+y-q$; double (q);
if $x \geq$ fraction_four then
begin $x \leftarrow x-$ fraction_four; incr (y);
end;
if $y>q$ then
begin $y \leftarrow y-q ; q \leftarrow q+2$;
end
else if $y \leq 0$ then
begin $q \leftarrow q-2 ; y \leftarrow y+q$;
end;
$\operatorname{decr}(k)$
This code is used in section 121.
124. Pythagorean addition $\sqrt{a^{2}+b^{2}}$ is implemented by an elegant iterative scheme due to Cleve Moler and Donald Morrison [IBM Journal of Research and Development 27 (1983), 577-581]. It modifies a and b in such a way that their Pythagorean sum remains invariant, while the smaller argument decreases.

```
function pyth_add ( \(a, b:\) integer \()\) : integer;
    label done;
    var \(r\) : fraction; \(\quad\{\) register used to transform \(a\) and \(b\}\)
        big: boolean; \(\left\{\right.\) is the result dangerously near \(2^{31}\) ? \}
    begin \(a \leftarrow a b s(a) ; b \leftarrow a b s(b)\);
    if \(a<b\) then
        begin \(r \leftarrow b ; b \leftarrow a ; a \leftarrow r\);
        end; \(\quad\{\) now \(0 \leq b \leq a\}\)
    if \(b>0\) then
        begin if \(a<\) fraction_two then big \(\leftarrow\) false
        else begin \(a \leftarrow a \operatorname{div} 4 ; b \leftarrow b \operatorname{div} 4 ;\) big \(\leftarrow t r u e\);
            end; \{ we reduced the precision to avoid arithmetic overflow \}
            \(\left\langle\right.\) Replace \(a\) by an approximation to \(\left.\sqrt{a^{2}+b^{2}} 125\right\rangle\);
            if big then
                if \(a<\) fraction_two then \(a \leftarrow a+a+a+a\)
            else begin arith_error \(\leftarrow\) true; \(a \leftarrow\) el_gordo;
                end;
        end;
    pyth_add \(\leftarrow a\);
    end;
```

125. The key idea here is to reflect the vector (a, b) about the line through $(a, b / 2)$.
$\left\langle\right.$ Replace a by an approximation to $\left.\sqrt{a^{2}+b^{2}} 125\right\rangle \equiv$
loop begin $r \leftarrow$ make_fraction $(b, a) ; r \leftarrow$ take_fraction $(r, r) ; \quad$ now $\left.r \approx b^{2} / a^{2}\right\}$
if $r=0$ then goto done;
$r \leftarrow$ make_fraction $(r$, fraction_four $+r) ; a \leftarrow a+$ take_fraction $(a+a, r) ; b \leftarrow$ take_fraction($b, r)$;
end;
done:
This code is used in section 124.
126. Here is a similar algorithm for $\sqrt{a^{2}-b^{2}}$. It converges slowly when b is near a, but otherwise it works fine.
function pyth_sub ($a, b:$ integer): integer;
label done;
var r : fraction; $\quad\{$ register used to transform a and $b\}$
big: boolean; $\left\{\right.$ is the input dangerously near 2^{31} ? \}
begin $a \leftarrow a b s(a) ; b \leftarrow a b s(b)$;
if $a \leq b$ then 〈Handle erroneous pyth_sub and set $a \leftarrow 0$ 128〉
else begin if $a<$ fraction_four then $b i g \leftarrow$ false
else begin $a \leftarrow$ half (a); $b \leftarrow$ half (b); big \leftarrow true;
end;
$\left\langle\right.$ Replace a by an approximation to $\left.\sqrt{a^{2}-b^{2}} 127\right\rangle$;
if big then $a \leftarrow a+a$;
end;
pyth_sub $\leftarrow a$;
end;

127．$\left\langle\right.$ Replace a by an approximation to $\left.\sqrt{a^{2}-b^{2}} 127\right\rangle \equiv$
loop begin $r \leftarrow$ make＿fraction $(b, a) ; r \leftarrow$ take＿fraction $(r, r) ; \quad$ now $\left.r \approx b^{2} / a^{2}\right\}$ if $r=0$ then goto done； $r \leftarrow$ make＿fraction $(r$, fraction＿four $-r) ; a \leftarrow a-t a k e_{-} f r a c t i o n(a+a, r) ; b \leftarrow t a k e_{-}$fraction (b, r) ； end；
done：
This code is used in section 126.
128．〈Handle erroneous pyth＿sub and set $a \leftarrow 0128\rangle \equiv$

begin if $a<b$ then

begin print＿err（＂Pythagorean ${ }_{\lrcorner}$subtraction $_{\sqcup}$＂）；print＿scaled（a）；print（＂＋－＋＂）；print＿scaled（b）； print（＂\llcorner has \lrcorner been $\lrcorner r e p l a c e d\llcorner$ by $\lrcorner 0$＂）；

end；
$a \leftarrow 0 ;$
end
This code is used in section 126.
129．The subroutines for logarithm and exponential involve two tables．The first is simple：two＿to＿the $[k]$ equals 2^{k} ．The second involves a bit more calculation，which the author claims to have done correctly： spec＿log $[k]$ is 2^{27} times $\ln \left(1 /\left(1-2^{-k}\right)\right)=2^{-k}+\frac{1}{2} 2^{-2 k}+\frac{1}{3} 2^{-3 k}+\cdots$ ，rounded to the nearest integer．
\langle Global variables 13$\rangle+\equiv$
two＿to＿the：array［ $0 \ldots 30$ ］of integer；\｛ powers of two \}
spec＿log：array $[1 . .28]$ of integer；$\{$ special logarithms $\}$
130．\langle Local variables for initialization 19〉 $+\equiv$ k ：integer；\｛ all－purpose loop index \}

131．〈Set initial values of key variables 21$\rangle+\equiv$
two＿to＿the $[0] \leftarrow 1$ ；
for $k \leftarrow 1$ to 30 do two＿to＿the $[k] \leftarrow 2 *$ two＿to＿the $[k-1]$ ；
spec＿log $[1] \leftarrow 93032640$ ；spec＿log $[2] \leftarrow 38612034$ ；spec＿log $[3] \leftarrow 17922280$ ；spec＿log $[4] \leftarrow 8662214$ ；
spec＿log $[5] \leftarrow 4261238 ;$ spec＿log $[6] \leftarrow 2113709 ;$ spec＿log $[7] \leftarrow 1052693 ;$ spec＿log $[8] \leftarrow 525315$ ；
spec＿log $[9] \leftarrow 262400$ ；spec＿log $[10] \leftarrow 131136$ ；spec＿log $[11] \leftarrow 65552$ ；spec＿log $[12] \leftarrow 32772$ ；
spec＿log $[13] \leftarrow 16385$ ；
for $k \leftarrow 14$ to 27 do spec＿log $[k] \leftarrow$ two＿to＿the $[27-k]$ ；
spec＿log $[28] \leftarrow 1$ ；
132. Here is the routine that calculates 2^{8} times the natural logarithm of a scaled quantity; it is an integer approximation to $2^{24} \ln \left(x / 2^{16}\right)$, when x is a given positive integer.

The method is based on exercise 1.2.2-25 in The Art of Computer Programming: During the main iteration we have $1 \leq 2^{-30} x<1 /\left(1-2^{1-k}\right)$, and the logarithm of $2^{30} x$ remains to be added to an accumulator register called y. Three auxiliary bits of accuracy are retained in y during the calculation, and sixteen auxiliary bits to extend y are kept in z during the initial argument reduction. (We add $100 \cdot 2^{16}=6553600$ to z and subtract 100 from y so that z will not become negative; also, the actual amount subtracted from y is 96 , not 100 , because we want to add 4 for rounding before the final division by 8.)
function m _log (x : scaled): scaled;
var $y, z:$ integer; \{auxiliary registers \}
k : integer; \{iteration counter \}
begin if $x \leq 0$ then 〈Handle non-positive logarithm 134〉
else begin $y \leftarrow 1302456956+4-100 ; \quad\left\{14 \times 2^{27} \ln 2 \approx 1302456956.421063\right\}$
$z \leftarrow 27595+6553600 ; \quad\left\{\right.$ and $\left.2^{16} \times .421063 \approx 27595\right\}$
while $x<$ fraction_four do
begin double (x); $y \leftarrow y-93032639 ; z \leftarrow z-48782$;
end; $\quad\left\{2^{27} \ln 2 \approx 93032639.74436163\right.$ and $\left.2^{16} \times .74436163 \approx 48782\right\}$
$y \leftarrow y+(z \operatorname{div}$ unity $) ; k \leftarrow 2 ;$
while $x>$ fraction_four +4 do
$\left\langle\right.$ Increase k until x can be multiplied by a factor of 2^{-k}, and adjust y accordingly 133\rangle;
$m_{-} \log \leftarrow y \operatorname{div} 8 ;$
end;
end;
133. $\left\langle\right.$ Increase k until x can be multiplied by a factor of 2^{-k}, and adjust y accordingly 133$\rangle \equiv$
begin $z \leftarrow((x-1)$ div two_to_the $[k])+1 ; \quad\left\{z=\left\lceil x / 2^{k}\right\rceil\right\}$
while $x<$ fraction_four $+z$ do
begin $z \leftarrow \operatorname{half}(z+1) ; k \leftarrow k+1$;
end;
$y \leftarrow y+$ spec_log $[k] ; x \leftarrow x-z ;$
end
This code is used in section 132.
134. \langle Handle non-positive logarithm 134$\rangle \equiv$

end
This code is used in section 132.
135. Conversely, the exponential routine calculates $\exp \left(x / 2^{8}\right)$, when x is scaled. The result is an integer approximation to $2^{16} \exp \left(x / 2^{24}\right)$, when x is regarded as an integer.
function $m_{-} \exp (x:$ scaled $)$: scaled;
var k : small_number; \{loop control index \}
$y, z:$ integer; \{auxiliary registers \}
begin if $x>174436200$ then $\left\{2^{24} \ln \left(\left(2^{31}-1\right) / 2^{16}\right) \approx 174436199.51\right\}$ begin arith_error \leftarrow true; m_exp \leftarrow el_gordo; end
else if $x<-197694359$ then $m_{-} \exp \leftarrow 0 \quad\left\{2^{24} \ln \left(2^{-1} / 2^{16}\right) \approx-197694359.45\right\}$
else begin if $x \leq 0$ then
begin $z \leftarrow-8 * x ; y \leftarrow ' 4000000 ; \quad\left\{y=2^{20}\right\}$
end
else begin if $x \leq 127919879$ then $z \leftarrow 1023359037-8 * x$
$\left\{2^{27} \ln \left(\left(2^{31}-1\right) / 2^{20}\right) \approx 1023359037.125\right\}$
else $z \leftarrow 8 *(174436200-x) ; \quad\{z$ is always nonnegative $\}$
$y \leftarrow$ el_gordo;
end;
$\left\langle\right.$ Multiply y by $\left.\exp \left(-z / 2^{27}\right) 136\right\rangle$;
if $x \leq 127919879$ then $m_{_} \exp \leftarrow(y+8)$ div 16 else $m_{_} \exp \leftarrow y$; end;
end;
136. The idea here is that subtracting spec_log $[k]$ from z corresponds to multiplying y by $1-2^{-k}$.

A subtle point (which had to be checked) was that if $x=127919879$, the value of y will decrease so that $y+8$ doesn't overflow. In fact, z will be 5 in this case, and y will decrease by 64 when $k=25$ and by 16 when $k=27$.
$\left\langle\right.$ Multiply y by $\left.\exp \left(-z / 2^{27}\right) 136\right\rangle \equiv$
$k \leftarrow 1$;
while $z>0$ do
begin while $z \geq$ spec_log $[k]$ do
begin $z \leftarrow z-$ spec_log $[k] ; y \leftarrow y-1-\left(\left(y-t w o_{-} t o_{-} t h e[k-1]\right) \operatorname{div}\right.$ two_to_the $\left.[k]\right)$;
end;
incr (k);
end
This code is used in section 135.
137. The trigonometric subroutines use an auxiliary table such that spec_atan [k] contains an approximation to the angle whose tangent is $1 / 2^{k}$.
\langle Global variables 13$\rangle+\equiv$
spec_atan: array $[1 . .26]$ of angle; $\left\{\arctan 2^{-k} \operatorname{times} 2^{20} \cdot 180 / \pi\right\}$
138. 〈Set initial values of key variables 21$\rangle+\equiv$
spec_atan $[1] \leftarrow 27855475$; spec_atan $[2] \leftarrow 14718068$; spec_atan $[3] \leftarrow 7471121$; spec_atan $[4] \leftarrow 3750058$;
spec_atan $[5] \leftarrow 1876857$; spec_atan $[6] \leftarrow 938658$; spec_atan $[7] \leftarrow 469357$; spec_atan $[8] \leftarrow 234682$;
spec_atan $[9] \leftarrow 117342$; spec_atan $[10] \leftarrow 58671$; spec_atan $[11] \leftarrow 29335$; spec_atan $[12] \leftarrow 14668$;
spec_atan $[13] \leftarrow 7334$; spec_atan $[14] \leftarrow 3667$; spec_atan $[15] \leftarrow 1833$; spec_atan $[16] \leftarrow 917$;
spec_atan $[17] \leftarrow 458 ;$ spec_atan $[18] \leftarrow 229$; spec_atan $[19] \leftarrow 115$; spec_atan $[20] \leftarrow 57$; spec_atan $[21] \leftarrow 29$;
spec_atan $[22] \leftarrow 14$; spec_atan $[23] \leftarrow 7$; spec_atan $[24] \leftarrow 4 ;$ spec_atan $[25] \leftarrow 2$; spec_atan $[26] \leftarrow 1$;

139．Given integers x and y ，not both zero，the $n_{\text {＿arg }}$ function returns the angle whose tangent points in the direction (x, y) ．This subroutine first determines the correct octant，then solves the problem for $0 \leq y \leq x$ ，then converts the result appropriately to return an answer in the range－one＿eighty＿deg $\leq \theta \leq$ one＿eighty＿deg．（The answer is＋one＿eighty＿deg if $y=0$ and $x<0$ ，but an answer of - one＿eighty＿deg is possible if，for example，$y=-1$ and $x=-2^{30}$ ．）

The octants are represented in a＂Gray code，＂since that turns out to be computationally simplest．
define negate＿$x=1$
define negate＿$y=2$
define switch＿x＿and＿y $=4$
define first＿octant $=1$
define second＿octant $=$ first＿octant + switch＿x＿and＿y
define third＿octant $=$ first＿octant + switch＿x＿and＿y + negate＿x
define fourth＿octant $=$ first＿octant + negate＿x
define fifth＿octant $=$ first＿octant + negate＿$x+$ negate＿y
define sixth＿octant $=$ first＿octant + switch＿x＿and＿$y+$ negate＿$x+$ negate＿y
define seventh＿octant $=$ first＿octant + switch＿x＿and＿y + negate＿y
define eighth＿octant $=$ first＿octant + negate＿y
function $n _a r g(x, y:$ integer $)$ ：angle；
var z ：angle；\｛ auxiliary register \}
t ：integer；\｛ temporary storage \} k ：small＿number；\｛loop counter \} octant：first＿octant ．．sixth＿octant；\｛ octant code \}
begin if $x \geq 0$ then octant \leftarrow first＿octant
else begin negate (x) ；octant \leftarrow first＿octant + negate＿x ； end；
if $y<0$ then
begin negate (y) ；octant \leftarrow octant + negate＿y ；
end；
if $x<y$ then
begin $t \leftarrow y ; y \leftarrow x ; x \leftarrow t$ ；octant \leftarrow octant + switch＿x＿and＿y；
end；
if $x=0$ then 〈Handle undefined arg 140〉
else begin 〈Set variable z to the arg of $(x, y) 142\rangle$ ；
〈Return an appropriate answer based on z and octant 141〉； end；
end；
140．\langle Handle undefined arg 140$\rangle \equiv$

end
This code is used in section 139.
141. 〈Return an appropriate answer based on z and octant 141$\rangle \equiv$
case octant of
first_octant: $n_{-} a r g \leftarrow z$;
second_octant: n_{-}arg \leftarrow ninety_deg $-z$;
third_octant: n_{-}arg \leftarrow ninety_deg $+z$;
fourth_octant: n_{-}arg \leftarrow one_eighty_deg $-z$;
fifth_octant: n_{-}arg $\leftarrow z-$ one_eighty_deg;
sixth_octant: n_{-}arg $\leftarrow-z-$ ninety_deg;
seventh_octant: n_arg $\leftarrow z-$ ninety_deg;
eighth_octant: n_{-}arg $\leftarrow-z$;
end \{ there are no other cases \}
This code is used in section 139.
142. At this point we have $x \geq y \geq 0$, and $x>0$. The numbers are scaled up or down until $2^{28} \leq x<2^{29}$, so that accurate fixed-point calculations will be made.
\langle Set variable z to the \arg of $(x, y) 142\rangle \equiv$
while $x \geq$ fraction_two do
begin $x \leftarrow \operatorname{half}(x) ; y \leftarrow \operatorname{half}(y)$;
end;
$z \leftarrow 0$;
if $y>0$ then
begin while $x<$ fraction_one do
begin double (x); double (y);
end;
\langle Increase z to the arg of $(x, y) 143\rangle$;
end
This code is used in section 139.
143. During the calculations of this section, variables x and y represent actual coordinates $\left(x, 2^{-k} y\right)$. We will maintain the condition $x \geq y$, so that the tangent will be at most 2^{-k}. If $x<2 y$, the tangent is greater than 2^{-k-1}. The transformation $(a, b) \mapsto(a+b \tan \phi, b-a \tan \phi)$ replaces (a, b) by coordinates whose angle has decreased by ϕ; in the special case $a=x, b=2^{-k} y$, and $\tan \phi=2^{-k-1}$, this operation reduces to the particularly simple iteration shown here. [Cf. John E. Meggitt, IBM Journal of Research and Development 6 (1962), 210-226.]

The initial value of x will be multiplied by at most $\left(1+\frac{1}{2}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{32}\right) \cdots \approx 1.7584$; hence there is no chance of integer overflow.

```
\(\langle\) Increase \(z\) to the arg of \((x, y) 143\rangle \equiv\)
    \(k \leftarrow 0 ;\)
    repeat double (y);incr ( \(k\) );
        if \(y>x\) then
            begin \(z \leftarrow z+\) spec_atan \([k] ; t \leftarrow x ; x \leftarrow x+(y \operatorname{div}\) two_to_the \([k+k]) ; y \leftarrow y-t\);
            end;
    until \(k=15\);
    repeat double (y);incr ( \(k\) );
        if \(y>x\) then
            begin \(z \leftarrow z+\) spec_atan \([k] ; y \leftarrow y-x\);
            end;
    until \(k=26\)
This code is used in section 142.
```

144. Conversely, the n_{-}sin_cos routine takes an angle and produces the sine and cosine of that angle. The results of this routine are stored in global integer variables $n_{-} \sin$ and $n_{-} \cos$.
\langle Global variables 13$\rangle+\equiv$
n_{-}sin, n_{-}cos: fraction; $\left\{\right.$results computed by $n_{\text {_ }}$ sin_cos $\}$
145. Given an integer z that is 2^{20} times an angle θ in degrees, the purpose of $n_{-} \sin$ _ $\cos (z)$ is to set $x=r \cos \theta$ and $y=r \sin \theta$ (approximately), for some rather large number r. The maximum of x and y will be between 2^{28} and 2^{30}, so that there will be hardly any loss of accuracy. Then x and y are divided by r.
procedure n_{-}sin_cos $(z:$ angle $) ; \quad\{$ computes a multiple of the sine and cosine \}
var k : small_number; \{loop control variable \}
$q: 0 . .7 ; \quad\{$ specifies the quadrant $\}$
r : fraction; \{ magnitude of (x, y) \}
x, y, t : integer; \{ temporary registers $\}$
begin while $z<0$ do $z \leftarrow z+$ three_sixty_deg;
$z \leftarrow z \bmod$ three_sixty_deg; \quad \{ now $0 \leq z<$ three_sixty_deg \}
$q \leftarrow z \operatorname{div}$ forty_five_deg; $z \leftarrow z \bmod$ forty_five_deg; $x \leftarrow$ fraction_one $; y \leftarrow x$;
if \neg odd (q) then $z \leftarrow$ forty_five_deg $-z$;
〈Subtract angle z from $(x, y) 147\rangle$;
\langle Convert (x, y) to the octant determined by $q 146\rangle$;
$r \leftarrow$ pyth_add $(x, y) ; n_{_} \cos \leftarrow$ make_fraction $(x, r) ; n_{_} \sin \leftarrow \operatorname{make}$ _fraction $(y, r) ;$
end;
146. In this case the octants are numbered sequentially.
\langle Convert (x, y) to the octant determined by $q 146\rangle \equiv$

case q of

0: do_nothing;
1: begin $t \leftarrow x ; x \leftarrow y ; y \leftarrow t$; end;
: begin $t \leftarrow x ; x \leftarrow-y ; y \leftarrow t$; end;
3: negate (x);
: begin negate (x); negate (y); end;
: begin $t \leftarrow x ; x \leftarrow-y ; y \leftarrow-t$; end;
: begin $t \leftarrow x ; x \leftarrow y ; y \leftarrow-t$; end;
7: negate (y);
end \{ there are no other cases \}
This code is used in section 145.
147. The main iteration of n_{-}sin_cos is similar to that of n_{-}arg but applied in reverse. The values of spec_atan $[k]$ decrease slowly enough that this loop is guaranteed to terminate before the (nonexistent) value spec_atan [27] would be required.
\langle Subtract angle z from $(x, y) 147\rangle \equiv$
$k \leftarrow 1 ;$
while $z>0$ do
begin if $z \geq$ spec_atan $[k]$ then
begin $z \leftarrow z-$ spec_atan $[k] ; t \leftarrow x$;
$x \leftarrow t+y$ div two_to_the $[k] ; y \leftarrow y-t \operatorname{div}$ two_to_the $[k]$;
end;
incr (k);
end;
if $y<0$ then $y \leftarrow 0 \quad$ \{ this precaution may never be needed \}
This code is used in section 145.
148. And now let's complete our collection of numeric utility routines by considering random number generation. METAFONT generates pseudo-random numbers with the additive scheme recommended in Section 3.6 of The Art of Computer Programming; however, the results are random fractions between 0 and fraction_one - 1 , inclusive.
There's an auxiliary array randoms that contains 55 pseudo-random fractions. Using the recurrence $x_{n}=\left(x_{n-55}-x_{n-24}\right) \bmod 2^{28}$, we generate batches of 55 new x_{n} 's at a time by calling new_randoms. The global variable j_random tells which element has most recently been consumed.
\langle Global variables 13$\rangle+\equiv$
randoms: array [$0 . .54]$ of fraction; \{ the last 55 random values generated \}
j_random: $0 . .54 ;$ \{ the number of unused randoms $\}$
149. To consume a random fraction, the program below will say 'next_random' and then it will fetch randoms [j_random]. The next_random macro actually accesses the numbers backwards; blocks of $55 x$'s are essentially being "flipped." But that doesn't make them less random.

```
define next_random \(\equiv\)
    if \(j_{\text {_random }}=0\) then new_randoms
    else decr (j_random)
procedure new_randoms;
    var \(k: 0 . .54 ; \quad\{\) index into randoms \(\}\)
        \(x\) : fraction; \{ accumulator \}
    begin for \(k \leftarrow 0\) to 23 do
        begin \(x \leftarrow\) randoms \([k]-\) randoms \([k+31]\);
        if \(x<0\) then \(x \leftarrow x+\) fraction_one;
        randoms \([k] \leftarrow x\);
        end;
    for \(k \leftarrow 24\) to 54 do
        begin \(x \leftarrow\) randoms \([k]-\) randoms \([k-24]\);
        if \(x<0\) then \(x \leftarrow x+\) fraction_one;
        randoms \([k] \leftarrow x\);
        end;
    j_random \(\leftarrow 54\);
    end;
```

150. To initialize the randoms table, we call the following routine.
procedure init_randoms (seed: scaled);
var $j, j j, k$: fraction; $\{$ more or less random integers $\}$
$i: 0 . .54 ; \quad$ \{index into randoms $\}$
begin $j \leftarrow$ abs (seed);
while $j \geq$ fraction_one do $j \leftarrow \operatorname{half}(j)$;
$k \leftarrow 1$;
for $i \leftarrow 0$ to 54 do
begin $j j \leftarrow k ; k \leftarrow j-k ; j \leftarrow j j$;
if $k<0$ then $k \leftarrow k+$ fraction_one;
randoms $[(i * 21) \bmod 55] \leftarrow j$;
end;
new_randoms; new_randoms; new_randoms; \{ "warm up" the array \}
end;
151. To produce a uniform random number in the range $0 \leq u<x$ or $0 \geq u>x$ or $0=u=x$, given a scaled value x, we proceed as shown here.

Note that the call of take_fraction will produce the values 0 and x with about half the probability that it will produce any other particular values between 0 and x, because it rounds its answers.

```
function unif_rand ( \(x:\) scaled \()\) : scaled;
    var \(y\) : scaled; \{ trial value \}
    begin next_random; \(y \leftarrow\) take_fraction(abs \((x)\), randoms[j_random]);
    if \(y=a b s(x)\) then unif_rand \(\leftarrow 0\)
    else if \(x>0\) then unif_rand \(\leftarrow y\)
        else unif_rand \(\leftarrow-y\);
    end;
```

152. Finally, a normal deviate with mean zero and unit standard deviation can readily be obtained with the ratio method (Algorithm 3.4.1R in The Art of Computer Programming).
function norm_rand: scaled;
var x, u, l : integer; $\quad\left\{\right.$ what the book would call $2^{16} X, 2^{28} U$, and $\left.-2^{24} \ln U\right\}$
begin repeat repeat next_random; $x \leftarrow$ take_fraction(112429, randoms [j_random] - fraction_half); $\left\{2^{16} \sqrt{8 / e} \approx 112428.82793\right\}$
next_random; $u \leftarrow$ randoms[j_random];
until abs $(x)<u$;
$x \leftarrow$ make_fraction $(x, u) ; l \leftarrow 139548960-m_{-} \log (u) ; \quad\left\{2^{24} \cdot 12 \ln 2 \approx 139548959.6165\right\}$
until ab_vs_cd $(1024, l, x, x) \geq 0$;
norm_rand $\leftarrow x$;
end;
153. Packed data. In order to make efficient use of storage space, METAFONT bases its major data structures on a memory_word, which contains either a (signed) integer, possibly scaled, or a small number of fields that are one half or one quarter of the size used for storing integers.

If x is a variable of type memory_word, it contains up to four fields that can be referred to as follows:

$$
\begin{aligned}
x . i n t & \text { (an integer) } \\
x . s c & \text { (a scaled integer) } \\
x . h h . l h, x . h h . r h & \text { (two halfword fields) } \\
x . h h . b 0, x . h h . b 1, x . h h . r h & \text { (two quarterword fields, one halfword field) } \\
x . q q q q . b 0, x . q q q q . b 1, x . q q q q . b 2, x . q q q q . b 3 & \text { (four quarterword fields) }
\end{aligned}
$$

This is somewhat cumbersome to write, and not very readable either, but macros will be used to make the notation shorter and more transparent. The Pascal code below gives a formal definition of memory_word and its subsidiary types, using packed variant records. METAFONT makes no assumptions about the relative positions of the fields within a word.

Since we are assuming 32 -bit integers, a halfword must contain at least 16 bits, and a quarterword must contain at least 8 bits. But it doesn't hurt to have more bits; for example, with enough 36-bit words you might be able to have mem_max as large as 262142.
N.B.: Valuable memory space will be dreadfully wasted unless METAFONT is compiled by a Pascal that packs all of the memory_word variants into the space of a single integer. Some Pascal compilers will pack an integer whose subrange is ' 0.255 ' into an eight-bit field, but others insist on allocating space for an additional sign bit; on such systems you can get 256 values into a quarterword only if the subrange is '-128 . . 127’.

The present implementation tries to accommodate as many variations as possible, so it makes few assumptions. If integers having the subrange 'min_quarterword . . max_quarterword' can be packed into a quarterword, and if integers having the subrange 'min_halfword . . max_halfword' can be packed into a halfword, everything should work satisfactorily.

It is usually most efficient to have min_quarterword $=$ min_halfword $=0$, so one should try to achieve this unless it causes a severe problem. The values defined here are recommended for most 32 -bit computers.
define min_quarterword $=0 \quad\{$ smallest allowable value in a quarterword $\}$
define max_quarterword $=255 \quad$ \{largest allowable value in a quarterword $\}$
define min_halfword $\equiv 0 \quad\{$ smallest allowable value in a halfword $\}$
define max_halfword $\equiv 65535 \quad$ \{ largest allowable value in a halfword $\}$
154. Here are the inequalities that the quarterword and halfword values must satisfy (or rather, the inequalities that they mustn't satisfy):

```
\(\langle\) Check the "constant" values for consistency 14\(\rangle+\equiv\)
    init if mem_max \(\neq\) mem_top then \(b a d \leftarrow 10\);
    tini
    if mem_max \(<\) mem_top then bad \(\leftarrow 10\);
    if (min_quarterword \(>0) \vee(\) max_quarterword \(<127)\) then \(b a d \leftarrow 11\);
    if \((\) min_halfword \(>0) \vee(\) max_halfword \(<32767)\) then bad \(\leftarrow 12\);
    if (min_quarterword \(<\) min_halfword \() \vee(\) max_quarterword \(>\) max_halfword \()\) then bad \(\leftarrow 13\);
    if \((\) mem_min \(<\) min_halfword \() \vee(\) mem_max \(\geq\) max_halfword \()\) then \(b a d \leftarrow 14\);
    if max_strings \(>\) max_halfword then bad \(\leftarrow 15\);
    if buf_size > max_halfword then bad \(\leftarrow 16\);
    if ( max_quarterword - min_quarterword \(<255) \vee(\) max_halfword - min_halfword \(<65535)\) then
        \(b a d \leftarrow 17\);
```

155. The operation of subtracting min_halfword occurs rather frequently in METAFONT, so it is convenient to abbreviate this operation by using the macro ho defined here. METAFONT will run faster with respect to compilers that don't optimize the expression ' $x-0$ ', if this macro is simplified in the obvious way when min_halfword $=0$. Similarly, $q i$ and $q o$ are used for input to and output from quarterwords.
define $h o(\#) \equiv \#-$ min_halfword $\quad\{$ to take a sixteen-bit item from a halfword $\}$
define $q o(\#) \equiv \#-$ min_quarterword $\quad\{$ to read eight bits from a quarterword $\}$
define $q i(\#) \equiv \#+$ min_quarterword $\quad\{$ to store eight bits in a quarterword $\}$
156. The reader should study the following definitions closely:
define $s c \equiv$ int $\quad\{$ scaled data is equivalent to integer $\}$
\langle Types in the outer block 18〉+三
quarterword $=$ min_quarterword.. max_quarterword; $\{1 / 4$ of a word $\}$
halfword $=$ min_halfword.. max_halfword; $\quad\{1 / 2$ of a word $\}$
two_choices $=1 . .2 ; \quad$ \{ used when there are two variants in a record $\}$
three_choices $=1 \ldots 3 ; \quad$ \{ used when there are three variants in a record $\}$
two_halves $=$ packed record r : : halfword;
case two_choices of
1: (lh : halfword);
2: (b0 : quarterword; b1 : quarterword);
end;
four_quarters $=$ packed record b0: quarterword;
b1: quarterword;
b2: quarterword;
b3: quarterword;
end;
memory_word $=$ record
case three_choices of
1: (int : integer);
2: (hh : two_halves);
3: (qqqq : four_quarters); end;
word_file $=$ file of memory_word;
157. When debugging, we may want to print a memory_word without knowing what type it is; so we print it in all modes.
debug procedure print_word(w : memory_word); \{prints w in all ways $\}$
begin print_int(w.int); print_char("ь");
print_scaled(w.sc); print_char("ч"); print_scaled(w.sc div '10000); print_ln;
print_int(w.hh.lh); print_char("="); print_int(w.hh.b0); print_char(":"); print_int(w.hh.b1);
print_char(";"); print_int(w.hh.rh); print_char("ப");
print_int(w.qqqq.b0); print_char(":"); print_int(w.qqqq.b1); print_char(":"); print_int(w.qqqq.b2);
print_char(":"); print_int(w.qqqq.b3);
end;
gubed
158. Dynamic memory allocation. The METAFONT system does nearly all of its own memory allocation, so that it can readily be transported into environments that do not have automatic facilities for strings, garbage collection, etc., and so that it can be in control of what error messages the user receives. The dynamic storage requirements of METAFONT are handled by providing a large array mem in which consecutive blocks of words are used as nodes by the METAFONT routines.
Pointer variables are indices into this array, or into another array called eqtb that will be explained later. A pointer variable might also be a special flag that lies outside the bounds of mem, so we allow pointers to assume any halfword value. The minimum memory index represents a null pointer.
define pointer \equiv halfword $\quad\{$ a flag or a location in mem or eqtb $\}$
define null \equiv mem_min $\quad\{$ the null pointer $\}$
159. The mem array is divided into two regions that are allocated separately, but the dividing line between these two regions is not fixed; they grow together until finding their "natural" size in a particular job. Locations less than or equal to lo_mem_max are used for storing variable-length records consisting of two or more words each. This region is maintained using an algorithm similar to the one described in exercise 2.5-19 of The Art of Computer Programming. However, no size field appears in the allocated nodes; the program is responsible for knowing the relevant size when a node is freed. Locations greater than or equal to hi_mem_min are used for storing one-word records; a conventional AVAIL stack is used for allocation in this region.

Locations of mem between mem_min and mem_top may be dumped as part of preloaded base files, by the INIMF preprocessor. Production versions of METAFONT may extend the memory at the top end in order to provide more space; these locations, between mem_top and mem_max, are always used for single-word nodes.
The key pointers that govern mem allocation have a prescribed order:

$$
\text { null }=\text { mem_min }<\text { lo_mem_max }<\text { hi_mem_min }<\text { mem_top } \leq m e m_{-} e n d \leq m e m _m a x .
$$

\langle Global variables 13$\rangle+\equiv$
mem: array [mem_min .. mem_max] of memory_word; \{the big dynamic storage area
lo_mem_max: pointer; \{ the largest location of variable-size memory in use \}
hi_mem_min: pointer; \{ the smallest location of one-word memory in use \}
160. Users who wish to study the memory requirements of specific applications can use optional special features that keep track of current and maximum memory usage. When code between the delimiters stat ... tats is not "commented out," METAFONT will run a bit slower but it will report these statistics when tracing_stats is positive.
\langle Global variables 13$\rangle+\equiv$
var_used, dyn_used: integer; \{ how much memory is in use \}

161．Let＇s consider the one－word memory region first，since it＇s the simplest．The pointer variable mem＿end holds the highest－numbered location of mem that has ever been used．The free locations of mem that occur between hi＿mem＿min and mem＿end，inclusive，are of type two＿halves，and we write $\operatorname{info}(p)$ and $\operatorname{link}(p)$ for the $l h$ and $r h$ fields of $\operatorname{mem}[p]$ when it is of this type．The single－word free locations form a linked list

$$
\text { avail, } \operatorname{link}(\text { avail }), \operatorname{link}(\operatorname{link}(a v a i l)), \ldots
$$

terminated by null．
define $\operatorname{link}(\#) \equiv \operatorname{mem}[\#] \cdot h h . r h \quad\{$ the link field of a memory word $\}$
define info $(\#) \equiv \operatorname{mem}[\#] . h h . l h \quad\{$ the info field of a memory word $\}$
\langle Global variables 13$\rangle+\equiv$
avail：pointer；\｛ head of the list of available one－word nodes \}
mem＿end：pointer；\｛ the last one－word node used in mem \}
162．If one－word memory is exhausted，it might mean that the user has forgotten a token like＇enddef＇ or＇endfor＇．We will define some procedures later that try to help pinpoint the trouble．
〈Declare the procedure called show＿token＿list 217〉
〈Declare the procedure called runaway 665 〉
163．The function get＿avail returns a pointer to a new one－word node whose link field is null．However， METAFONT will halt if there is no more room left．
function get＿avail：pointer；\｛single－word node allocation \}
var p ：pointer；\｛ the new node being got \}
begin $p \leftarrow$ avail；\quad \｛ get top location in the avail stack \}
if $p \neq$ null then avail $\leftarrow \operatorname{link}($ avail $) \quad$ \｛and pop it off \}
else if mem＿end＜mem＿max then $\{$ or go into virgin territory $\}$
begin incr（mem＿end）；$p \leftarrow$ mem＿end；
end
else begin decr（hi＿mem＿min）；$p \leftarrow h i _m e m _m i n ;$
if hi＿mem＿min \leq lo＿mem＿max then
begin runaway；\｛if memory is exhausted，display possible runaway text \}
overflow（＂main \llcorner memoryபsize＂，mem＿max +1 －mem＿min）；\quad quit；all one－word nodes are busy \}
end；
end；
$\operatorname{link}(p) \leftarrow$ null；\quad \｛ provide an oft－desired initialization of the new node \}
stat incr（dyn＿used）；tats \｛ maintain statistics \}
get＿avail $\leftarrow p$ ；
end；
164．Conversely，a one－word node is recycled by calling free＿avail．
define free＿avail $(\#) \equiv$ \｛single－word node liberation $\}$
begin $\operatorname{link}(\#) \leftarrow$ avail；avail $\leftarrow \#$ ；
stat decr（dyn＿used）；tats
end
165. There's also a fast_get_avail routine, which saves the procedure-call overhead at the expense of extra programming. This macro is used in the places that would otherwise account for the most calls of get_avail.

```
define fast_get_avail(\#) \(\equiv\)
    begin \# \(\leftarrow\) avail; \(\quad\) \{ avoid get_avail if possible, to save time \(\}\)
    if \# = null then \(\# \leftarrow\) get_avail
    else begin avail \(\leftarrow \operatorname{link}(\#) ; \operatorname{link}(\#) \leftarrow\) null;
        stat incr (dyn_used); tats
        end;
    end
```

166. The available-space list that keeps track of the variable-size portion of mem is a nonempty, doublylinked circular list of empty nodes, pointed to by the roving pointer rover.

Each empty node has size 2 or more; the first word contains the special value max_halfword in its link field and the size in its info field; the second word contains the two pointers for double linking.

Each nonempty node also has size 2 or more. Its first word is of type two_halves, and its link field is never equal to max_halfword. Otherwise there is complete flexibility with respect to the contents of its other fields and its other words.
(We require mem_max < max_halfword because terrible things can happen when max_halfword appears in the link field of a nonempty node.)
define empty_flag \equiv max_halfword $\quad\{$ the link of an empty variable-size node $\}$
define $i_{\text {__empty }}(\#) \equiv(\operatorname{link}(\#)=$ empty_flag $) \quad\{$ tests for empty node $\}$
define node_size \equiv info $\quad\{$ the size field in empty variable-size nodes $\}$
define $\operatorname{llink}(\#) \equiv \operatorname{info}(\#+1) \quad\{$ left link in doubly-linked list of empty nodes $\}$
define $\operatorname{rlink}(\#) \equiv \operatorname{link}(\#+1) \quad\{$ right link in doubly-linked list of empty nodes $\}$
\langle Global variables 13$\rangle+\equiv$
rover: pointer; \{ points to some node in the list of empties \}

167．A call to get＿node with argument s returns a pointer to a new node of size s ，which must be 2 or more．The link field of the first word of this new node is set to null．An overflow stop occurs if no suitable space exists．

If get＿node is called with $s=2^{30}$ ，it simply merges adjacent free areas and returns the value max＿halfword．
function get＿node（ s ：integer）：pointer；\｛variable－size node allocation \}
label found，exit，restart；
var p ：pointer；\｛the node currently under inspection \}
q ：pointer；$\quad\{$ the node physically after node $p\}$
r ：integer；\｛ the newly allocated node，or a candidate for this honor \}
$t, t t$ ：integer；\｛temporary registers \}
begin restart：$p \leftarrow$ rover；\｛ start at some free node in the ring \}
repeat \langle Try to allocate within node p and its physical successors，and goto found if allocation was possible 169〉；
$p \leftarrow \operatorname{rlink}(p) ; \quad\{$ move to the next node in the ring \}
until $p=$ rover；$\quad\{$ repeat until the whole list has been traversed $\}$
if $s={ }^{\prime} 10000000000$ then
begin get＿node \leftarrow max＿halfword；return； end；
if lo＿mem＿max $+2<$ hi＿mem＿min then
if lo＿mem＿max $+2 \leq$ mem＿min + max＿halfword then
〈 Grow more variable－size memory and goto restart 168〉；
overflow（＂main ${ }_{\llcorner }$memoryபsize＂，mem＿max +1 －mem＿min）；$\quad\{$ sorry，nothing satisfactory is left $\}$
found： $\operatorname{link}(r) \leftarrow$ null；\quad \｛ this node is now nonempty \}
stat var＿used \leftarrow var＿used $+s ; \quad$ \｛ maintain usage statistics $\}$
tats
get＿node $\leftarrow r$ ；
exit：end；
168．The lower part of mem grows by 1000 words at a time，unless we are very close to going under．When it grows，we simply link a new node into the available－space list．This method of controlled growth helps to keep the mem usage consecutive when METAFONT is implemented on＂virtual memory＂systems．
\langle Grow more variable－size memory and goto restart 168$\rangle \equiv$
begin if hi＿mem＿min－lo＿mem＿max ≥ 1998 then $t \leftarrow$ lo＿mem＿max +1000
else $t \leftarrow$ lo＿mem＿max $+1+\left(h i _m e m _m i n ~-~ l o _m e m _m a x\right) ~ d i v ~ 2 ; ~\left\{l o _m e m _m a x ~+~ 2 \leq t<h i _m e m _m i n ~\right\} ~$
if $t>$ mem＿min＋max＿halfword then $t \leftarrow$ mem＿min＋max＿halfword；
$p \leftarrow$ llink $($ rover $) ; q \leftarrow$ lo＿mem＿max； $\operatorname{rlink}(p) \leftarrow q$ ；llink $($ rover $) \leftarrow q$ ；
$r l i n k(q) \leftarrow$ rover $;$ llink $(q) \leftarrow p ;$ link $(q) \leftarrow$ empty＿flag；node＿size $(q) \leftarrow t$－lo＿mem＿max；
lo＿mem＿max $\leftarrow t$ ；link $($ lo＿mem＿max $) \leftarrow$ null；info $($ lo＿mem＿max $) \leftarrow$ null；rover $\leftarrow q$ ；goto restart；
end
This code is used in section 167.
169. < Try to allocate within node p and its physical successors, and goto found if allocation was possible 169$\rangle \equiv$
$q \leftarrow p+$ node_size $(p) ; \quad\{$ find the physical successor $\}$
while is_empty (q) do $\{$ merge node p with node $q\}$
begin $t \leftarrow \operatorname{rlink}(q) ; \quad t t \leftarrow \operatorname{llink}(q)$;
if $q=$ rover then rover $\leftarrow t$;
$\operatorname{llink}(t) \leftarrow t t ; \operatorname{rlink}(t t) \leftarrow t ;$
$q \leftarrow q+$ node_size $(q) ;$
end;
$r \leftarrow q-s ;$
if $r>p+1$ then 〈Allocate from the top of node p and goto found 170\rangle;
if $r=p$ then
if $\operatorname{rlink}(p) \neq p$ then \langle Allocate entire node p and goto found 171\rangle;
node_size $(p) \leftarrow q-p \quad\{$ reset the size in case it grew $\}$
This code is used in section 167.
170. 〈Allocate from the top of node p and goto found 170$\rangle \equiv$
begin node_size $(p) \leftarrow r-p ; \quad\{$ store the remaining size \}
rover $\leftarrow p ; \quad$ \{ start searching here next time $\}$
goto found;
end
This code is used in section 169.
171. Here we delete node p from the ring, and let rover rove around.
\langle Allocate entire node p and goto found 171$\rangle \equiv$
begin rover $\leftarrow \operatorname{rlink}(p) ; t \leftarrow \operatorname{llink}(p) ; \operatorname{llink}($ rover $) \leftarrow t ; \operatorname{rlink}(t) \leftarrow \operatorname{rover} ;$ goto found;
end
This code is used in section 169.
172. Conversely, when some variable-size node p of size s is no longer needed, the operation free_node (p, s) will make its words available, by inserting p as a new empty node just before where rover now points.
procedure free_node (p : pointer; s : halfword); \{ variable-size node liberation $\}$
$\operatorname{var} q$: pointer; $\quad\{\operatorname{llink}($ rover $)\}$
begin node_size $(p) \leftarrow s ; \operatorname{link}(p) \leftarrow e m p t y _f l a g ; q \leftarrow \operatorname{llink}(\operatorname{rover}) ; \operatorname{llink}(p) \leftarrow q ; \operatorname{rlink}(p) \leftarrow \operatorname{rover} ;$ \{ set both links $\}$
$\operatorname{llink}($ rover $) \leftarrow p ; \operatorname{rlink}(q) \leftarrow p ; \quad\{$ insert p into the ring $\}$
stat var_used \leftarrow var_used $-s$; tats $\quad\{$ maintain statistics \}
end;
173. Just before INIMF writes out the memory, it sorts the doubly linked available space list. The list is probably very short at such times, so a simple insertion sort is used. The smallest available location will be pointed to by rover, the next-smallest by rlink(rover), etc.

```
init procedure sort_avail; \{sorts the available variable-size nodes by location \}
var \(p, q, r:\) pointer; \(\quad\{\) indices into mem \(\}\)
        old_rover: pointer; \{ initial rover setting \}
begin \(p \leftarrow\) get_node ('10000000000); \{ merge adjacent free areas \}
\(p \leftarrow\) rlink \((\) rover \() ;\) rlink \((\) rover \() \leftarrow\) max_halfword; old_rover \(\leftarrow\) rover;
while \(p \neq\) old_rover do 〈Sort \(p\) into the list starting at rover and advance \(p\) to \(\operatorname{rlink}(p) 174\rangle\);
\(p \leftarrow\) rover;
while rlink \((p) \neq\) max_halfword do
    begin \(\operatorname{llink}(\operatorname{rlink}(p)) \leftarrow p ; p \leftarrow \operatorname{rlink}(p)\);
    end;
\(\operatorname{rlink}(p) \leftarrow \operatorname{rover} ; \operatorname{llink}(\) rover \() \leftarrow p ;\)
end;
tini
```

174. The following while loop is guaranteed to terminate, since the list that starts at rover ends with max_halfword during the sorting procedure.
\langle Sort p into the list starting at rover and advance p to $\operatorname{rlink}(p) 174\rangle \equiv$
if $p<$ rover then
begin $q \leftarrow p ; p \leftarrow \operatorname{rlink}(q) ; \operatorname{rlink}(q) \leftarrow$ rover $;$ rover $\leftarrow q$;
end
else begin $q \leftarrow$ rover;
while $\operatorname{rlink}(q)<p$ do $q \leftarrow \operatorname{rlink}(q)$;
$r \leftarrow \operatorname{rlink}(p) ; \operatorname{rlink}(p) \leftarrow \operatorname{rlink}(q) ; \operatorname{rlink}(q) \leftarrow p ; p \leftarrow r ;$
end
This code is used in section 173.
175. Memory layout. Some areas of mem are dedicated to fixed usage, since static allocation is more efficient than dynamic allocation when we can get away with it. For example, locations mem_min to mem_min +2 are always used to store the specification for null pen coordinates that are ' $(0,0)$ '. The following macro definitions accomplish the static allocation by giving symbolic names to the fixed positions. Static variable-size nodes appear in locations mem_min through lo_mem_stat_max, and static single-word nodes appear in locations hi_mem_stat_min through mem_top, inclusive.
```
define null_coords \(\equiv\) mem_min \(\quad\{\) specification for pen offsets of \((0,0)\}\)
define null_pen \(\equiv\) null_coords \(+3 \quad\{\) we will define coord_node_size \(=3\}\)
define dep_head \(\equiv\) null_pen \(+10 \quad\{\) and pen_node_size \(=10\}\)
define zero_val \(\equiv\) dep_head \(+2 \quad\{\) two words for a permanently zero value \(\}\)
define temp_val \(\equiv\) zero_val \(+2 \quad\{\) two words for a temporary value node \(\}\)
define end_attr \(\equiv\) temp_val \(\quad\) \{ we use end_attr +2 only \(\}\)
define inf_val \(\equiv\) end_attr \(+2 \quad\{\) and inf_val +1 only \(\}\)
define bad_vardef \(\equiv\) inf_val \(+2 \quad\) \{two words for vardef error recovery \(\}\)
define lo_mem_stat_max \(\equiv\) bad_vardef \(+1 \quad\) \{largest statically allocated word in the variable-size mem \}
define sentinel \(\equiv\) mem_top \(\quad\{\) end of sorted lists \(\}\)
define temp_head \(\equiv\) mem_top \(-1 \quad\{\) head of a temporary list of some kind \(\}\)
define hold_head \(\equiv\) mem_top \(-2 \quad\{\) head of a temporary list of another kind \(\}\)
define hi_mem_stat_min \(\equiv\) mem_top \(-2 \quad\) \{smallest statically allocated word in the one-word mem \}
```

176. The following code gets the dynamic part of mem off to a good start, when METAFONT is initializing itself the slow way.
\langle Initialize table entries (done by INIMF only) 176$\rangle \equiv$
rover \leftarrow lo_mem_stat_max $+1 ; \quad$ \{ initialize the dynamic memory $\}$
$\operatorname{link}($ rover $) \leftarrow$ empty_flag; node_size $($ rover $) \leftarrow 1000 ; \quad$ \{ which is a 1000 -word available node \}
llink $($ rover $) \leftarrow$ rover $;$ rlink $($ rover $) \leftarrow$ rover $;$
lo_mem_max \leftarrow rover +1000 ; link $\left(l o _m e m _m a x\right) ~ \leftarrow$ null; info $\left(l o _m e m _m a x\right) ~ \leftarrow$ null;
for $k \leftarrow h i$ _mem_stat_min to mem_top do mem $[k] \leftarrow$ mem [lo_mem_max]; \quad \{clear list heads $\}$
avail \leftarrow null $;$ mem_end \leftarrow mem_top; hi_mem_min $\leftarrow h i _m e m _s t a t _m i n ; ~ ;$
\{ initialize the one-word memory \}
var_used \leftarrow lo_mem_stat_max $+1-$ mem_min $;$ dyn_used \leftarrow mem_top $+1-$ hi_mem_min $;$
\{ initialize statistics \}
See also sections $193,203,229,324,475,587,702,759,911,1116,1127$, and 1185.
This code is used in section 1210.
177. The procedure flush_list (p) frees an entire linked list of one-word nodes that starts at a given position, until coming to sentinel or a pointer that is not in the one-word region. Another procedure, flush_node_list, frees an entire linked list of one-word and two-word nodes, until coming to a null pointer.
procedure flush_list (p : pointer); \{ makes list of single-word nodes available \}
label done;
var q, r : pointer; \{ list traversers \}
begin if $p \geq$ hi_mem_min then
if $p \neq$ sentinel then
begin $r \leftarrow p$;
repeat $q \leftarrow r ; r \leftarrow \operatorname{link}(r)$;
stat decr(dyn_used); tats
if $r<h i$ _mem_min then goto done;
until $r=$ sentinel;
done: $\quad\{$ now q is the last node on the list $\}$
$\operatorname{link}(q) \leftarrow$ avail ; avail $\leftarrow p$;
end;
end;
procedure flush_node_list (p : pointer);
var q : pointer; $\quad\{$ the node being recycled $\}$
begin while $p \neq$ null do
$\operatorname{begin} q \leftarrow p ; p \leftarrow \operatorname{link}(p)$;
if $q<h i _m e m _m i n$ then free_node $(q, 2)$ else free_avail (q);
end;
end;
178. If METAFONT is extended improperly, the mem array might get screwed up. For example, some pointers might be wrong, or some "dead" nodes might not have been freed when the last reference to them disappeared. Procedures check_mem and search_mem are available to help diagnose such problems. These procedures make use of two arrays called free and was_free that are present only if METAFONT's debugging routines have been included. (You may want to decrease the size of mem while you are debugging.)
\langle Global variables 13$\rangle+\equiv$
debug free: packed array [mem_min .. mem_max] of boolean; \{free cells \}
was_free: packed array [mem_min . . mem_max] of boolean; \{ previously free cells \}
was_mem_end, was_lo_max, was_hi_min: pointer; \{ previous mem_end, lo_mem_max, and hi_mem_min \} panicking: boolean; \{ do we want to check memory constantly? \}

gubed

179. 〈Set initial values of key variables 21$\rangle+\equiv$
debug was_mem_end \leftarrow mem_min; \{indicate that everything was previously free \}
was_lo_max \leftarrow mem_min; was_hi_min \leftarrow mem_max ; panicking \leftarrow false;
gubed

180．Procedure check＿mem makes sure that the available space lists of mem are well formed，and it optionally prints out all locations that are reserved now but were free the last time this procedure was called．
debug procedure check＿mem（print＿locs ：boolean）；
label done1，done2；\｛ loop exits $\}$
var $p, q, r:$ pointer；$\{$ current locations of interest in mem \} clobbered：boolean；$\quad\{$ is something amiss？\}
begin for $p \leftarrow$ mem＿min to lo＿mem＿max do free $[p] \leftarrow$ false；$\quad\{$ you can probably do this faster $\}$
for $p \leftarrow$ hi＿mem＿min to mem＿end do free $[p] \leftarrow$ false；$\{$ ditto $\}$
〈Check single－word avail list 181〉；
〈Check variable－size avail list 182〉；
〈 Check flags of unavailable nodes 183〉；
〈 Check the list of linear dependencies 617〉；
if print＿locs then 〈Print newly busy locations 184\rangle ；
for $p \leftarrow$ mem＿min to lo＿mem＿max do was＿free $[p] \leftarrow$ free $[p]$ ；
for $p \leftarrow h i _m e m _m i n$ to mem＿end do was＿free $[p] \leftarrow$ free $[p] ; \quad\{$ was＿free \leftarrow free might be faster \}
was＿mem＿end \leftarrow mem＿end；was＿lo＿max \leftarrow lo＿mem＿max；was＿hi＿min \leftarrow hi＿mem＿min ；
end；
gubed
181．〈Check single－word avail list 181$\rangle \equiv$
$p \leftarrow$ avail；$q \leftarrow$ null；clobbered \leftarrow false；
while $p \neq$ null do
begin if $(p>$ mem＿end $) \vee\left(p<h i _m e m _m i n\right)$ then clobbered \leftarrow true
else if free $[p]$ then clobbered \leftarrow true；
if clobbered then
begin print＿nl（＂AVAIL $\operatorname{lil}_{\sqcup}$ ist $_{\sqcup}$ clobberedபatப＂）；print＿int（q）；goto done1；
end；
free $[p] \leftarrow$ true $; q \leftarrow p ; p \leftarrow \operatorname{link}(q) ;$
end；
done1：
This code is used in section 180.
182．〈Check variable－size avail list 182$\rangle \equiv$
$p \leftarrow$ rover $; q \leftarrow$ null；clobbered \leftarrow false $;$
repeat if $(p \geq$ lo＿mem＿max $) \vee(p<$ mem＿min $)$ then clobbered \leftarrow true
else if $($ rlink $(p) \geq$ lo＿mem＿max $) \vee(r l i n k ~(p)<$ mem＿min $)$ then clobbered \leftarrow true else if $\neg($ is＿empty $(p)) \vee($ node＿size $(p)<2) \vee(p+$ node＿size $(p)>$ lo＿mem＿max $) \vee$ $(\operatorname{llink}(\operatorname{rlink}(p)) \neq p)$ then clobbered \leftarrow true；

if clobbered then

begin print＿nl（＂Double－AVAIL list $_{\bullet}$ clobberedபatப＂）；print＿int（q）；goto done2； end；
for $q \leftarrow p$ to $p+$ node＿size $(p)-1$ do $\quad\{$ mark all locations free \}
begin if free $[q]$ then

end；
free $[q] \leftarrow$ true；
end；
$q \leftarrow p ; p \leftarrow \operatorname{rlink}(p) ;$
until $p=$ rover；
done2：
This code is used in section 180 ．

183．〈Check flags of unavailable nodes 183$\rangle \equiv$
$p \leftarrow$ mem＿min；
while $p \leq l o _m e m _m a x ~ d o ~\{$ node p should not be empty \}
begin if is＿empty $^{(p)}$ then
begin print＿nl（＂Bad」flag」at」＂）；print＿int（p）；
end；
while $\left(p \leq l o _m e m _m a x\right) \wedge \neg f r e e[p]$ do $\operatorname{incr}(p)$ ；
while $\left(p \leq l o _\right.$mem＿max $) \wedge$ free $[p]$ do $\operatorname{incr}(p)$ ；
end
This code is used in section 180.
184．〈Print newly busy locations 184$\rangle \equiv$
begin print＿nl（＂New＿busyபlocs：＂）；
for $p \leftarrow$ mem＿min to lo＿mem＿max do
if \neg free $[p] \wedge((p>$ was＿lo＿max $) \vee$ was＿free $[p])$ then
begin print＿char（＂Ч＂）；print＿int（p）；
end；
for $p \leftarrow h i _m e m _m i n ~ t o ~ m e m _e n d ~ d o ~$
if \neg free $[p] \wedge((p<$ was＿hi＿min $) \vee(p>$ was＿mem＿end $) \vee$ was＿free $[p])$ then
begin print＿char（＂Ч＂）；print＿int（p）；
end；
end
This code is used in section 180.
185．The search＿mem procedure attempts to answer the question＂Who points to node p ？＂In doing so，it fetches link and info fields of mem that might not be of type two＿halves．Strictly speaking，this is undefined in Pascal，and it can lead to＂false drops＂（words that seem to point to p purely by coincidence）．But for debugging purposes，we want to rule out the places that do not point to p ，so a few false drops are tolerable．

```
debug procedure search_mem ( \(p\) : pointer); \(\quad\{\) look for pointers to \(p\}\)
var \(q\) : integer; \{ current position being searched \}
begin for \(q \leftarrow\) mem_min to lo_mem_max do
    begin if \(\operatorname{link}(q)=p\) then
        begin print_nl("LINK("); print_int(q); print_char(")");
        end;
    if \(\operatorname{info}(q)=p\) then
        begin print_nl("INFO("); print_int(q); print_char(")");
        end;
    end;
```



```
    begin if \(\operatorname{link}(q)=p\) then
        begin print_nl("LINK("); print_int(q); print_char(")");
        end;
    if \(\operatorname{info}(q)=p\) then
        begin print_nl("INFO("); print_int(q); print_char(")");
        end;
    end;
```

〈Search eqtb for equivalents equal to p 209〉;
end;
gubed
186. The command codes. Before we can go much further, we need to define symbolic names for the internal code numbers that represent the various commands obeyed by METAFONT. These codes are somewhat arbitrary, but not completely so. For example, some codes have been made adjacent so that case statements in the program need not consider cases that are widely spaced, or so that case statements can be replaced by if statements. A command can begin an expression if and only if its code lies between min_primary_command and max_primary_command, inclusive. The first token of a statement that doesn't begin with an expression has a command code between min_command and max_statement_command, inclusive. The ordering of the highest-numbered commands (comma $<$ semicolon $<$ end_group $<$ stop) is crucial for the parsing and error-recovery methods of this program.

At any rate, here is the list, for future reference.

```
define \(i f\) _test \(=1 \quad\{\) conditional text (if) \(\}\)
define \(f_{\_}\)or_else \(=2 \quad\{\) delimiters for conditionals (elseif, else, fi) \(\}\)
define input \(=3 \quad\{\) input a source file (input, endinput) \(\}\)
define iteration \(=4 \quad\{\) iterate (for, forsuffixes, forever, endfor) \(\}\)
define repeat_loop \(=5 \quad\{\) special command substituted for endfor \(\}\)
define exit_test \(=6 \quad\{\) premature exit from a loop (exitif) \(\}\)
define relax \(=7 \quad\{\) do nothing \((\backslash)\}\)
define scan_tokens \(=8\) \{put a string into the input buffer \(\}\)
define expand_after \(=9 \quad\{\) look ahead one token \(\}\)
define defined_macro \(=10 \quad\) \{ a macro defined by the user \(\}\)
define min_command \(=\) defined_macro +1
define display_command \(=11 \quad\{\) online graphic output (display) \(\}\)
define save_command \(=12 \quad\{\) save a list of tokens (save) \(\}\)
define interim_command \(=13 \quad\{\) save an internal quantity (interim) \(\}\)
define let_command \(=14 \quad\{\) redefine a symbolic token (let) \(\}\)
define new_internal \(=15 \quad\{\) define a new internal quantity (newinternal) \(\}\)
define macro_def \(=16 \quad\{\) define a macro (def, vardef, etc.) \(\}\)
define ship_out_command \(=17 \quad\) \{output a character (shipout) \(\}\)
define add_to_command \(=18 \quad\{\) add to edges (addto) \(\}\)
define cull_command \(=19 \quad\{\) cull and normalize edges (cull) \(\}\)
define tfm_command \(=20 \quad\{\) command for font metric info (ligtable, etc.) \(\}\)
define protection_command \(=21 \quad\{\) set protection flag (outer, inner) \(\}\)
define show_command \(=22 \quad\) \{diagnostic output (show, showvariable, etc.) \(\}\)
define mode_command \(=23\) \{set interaction level (batchmode, etc.) \}
define random_seed \(=24 \quad\{\) initialize random number generator (randomseed) \(\}\)
define message_command \(=25 \quad\{\) communicate to user (message, errmessage) \(\}\)
define every_job_command \(=26 \quad\{\) designate a starting token (everyjob) \(\}\)
define delimiters \(=27 \quad\{\) define a pair of delimiters (delimiters) \(\}\)
define open_window \(=28 \quad\{\) define a window on the screen (openwindow) \(\}\)
define special_command \(=29 \quad\{\) output special info (special, numspecial) \(\}\)
define type_name \(=30 \quad\{\) declare a type (numeric, pair, etc.) \(\}\)
define max_statement_command \(=\) type_name
define min_primary_command \(=\) type_name
define left_delimiter \(=31 \quad\{\) the left delimiter of a matching pair \(\}\)
define begin_group \(=32 \quad\{\) beginning of a group (begingroup) \(\}\)
define nullary \(=33 \quad\{\) an operator without arguments (e.g., normaldeviate) \(\}\)
define unary \(=34 \quad\{\) an operator with one argument (e.g., sqrt) \(\}\)
define str_op \(=35 \quad\{\) convert a suffix to a string (str) \(\}\)
define cycle \(=36 \quad\{\) close a cyclic path (cycle) \(\}\)
define primary_binary \(=37 \quad\) \{binary operation taking 'of' (e.g., point) \(\}\)
define capsule_token \(=38 \quad\{\) a value that has been put into a token list \(\}\)
define string_token \(=39 \quad\{\) a string constant (e.g., "hello") \(\}\)
```

define internal_quantity $=40 \quad\{$ internal numeric parameter (e.g., pausing) $\}$
define min_suffix_token $=$ internal_quantity
define tag_token $=41 \quad\{$ a symbolic token without a primitive meaning $\}$
define numeric_token $=42 \quad\{$ a numeric constant (e.g., 3.14159) $\}$
define max_suffix_token $=$ numeric_token
define plus_or_minus $=43 \quad\{$ either ' + ' or ' - ' $\}$
define max_primary_command $=$ plus_or_minus $\quad\{$ should also be numeric_token +1$\}$
define min_tertiary_command $=$ plus_or_minus
define tertiary_secondary_macro $=44 \quad\{$ a macro defined by secondarydef $\}$
define tertiary_binary $=45 \quad\{$ an operator at the tertiary level (e.g., '++') $\}$
define max_tertiary_command $=$ tertiary_binary
define left_brace $=46 \quad\{$ the operator ' $\{$ ' $\}$
define min_expression_command $=$ left_brace
define path_join $=47 \quad\{$ the operator '. .' $\}$
define ampersand $=48 \quad\{$ the operator ' $\&$ ' $\}$
define expression_tertiary_macro $=49 \quad\{$ a macro defined by tertiarydef $\}$
define expression_binary $=50 \quad\{$ an operator at the expression level (e.g., '<') $\}$
define equals $=51 \quad$ \{ the operator ' $=$ ' $\}$
define max_expression_command $=$ equals
define and_command $=52 \quad$ \{ the operator 'and'\}
define min_secondary_command $=$ and_command
define secondary_primary_macro $=53 \quad\{$ a macro defined by primarydef $\}$
define slash $=54 \quad\{$ the operator '/' $\}$
define secondary_binary $=55 \quad\{$ an operator at the binary level (e.g., shifted) $\}$
define max_secondary_command $=$ secondary_binary
define param_type $=56 \quad\{$ type of parameter (primary, expr, suffix, etc.) $\}$
define controls $=57 \quad\{$ specify control points explicitly (controls) $\}$
define tension $=58 \quad\{$ specify tension between knots (tension) $\}$
define at_least $=59 \quad\{$ bounded tension value (atleast) $\}$
define curl_command $=60 \quad\{$ specify curl at an end knot (curl) $\}$
define macro_special $=61 \quad\{$ special macro operators (quote, \#@, etc.) $\}$
define right_delimiter $=62 \quad\{$ the right delimiter of a matching pair $\}$
define left_bracket $=63 \quad\{$ the operator ' $[$ ' $\}$
define right_bracket $=64$ \{the operator ']'\}
define right_brace $=65 \quad\{$ the operator ' $\}$ ' $\}$
define with_option $=66 \quad\{$ option for filling (withpen, withweight) $\}$
define cull_op $=67$ \{ the operator 'keeping' or 'dropping' \}
define thing_to_add $=68 \quad\{$ variant of addto (contour, doublepath, also) $\}$
define of_token $=69$ \{ the operator 'of' $\}$
define from_token $=70 \quad\{$ the operator 'from'\}
define to_token $=71 \quad\{$ the operator 'to' $\}$
define at_token $=72 \quad\{$ the operator 'at' $\}$
define in_window $=73$ \{ the operator 'inwindow' $\}$
define step_token $=74 \quad\{$ the operator 'step' $\}$
define until_token $=75 \quad$ \{ the operator 'until'\}
define lig_kern_token $=76$ \{ the operators 'kern' and ' $=$:' and '=: |', etc. $\}$
define assignment $=77 \quad\{$ the operator ': $=$ ' $\}$
define skip_to $=78$ \{ the operation 'skipto'\}
define bchar_label $=79 \quad\{$ the operator ' $| |: '\}$
define double_colon $=80$ \{the operator ': :'\}
define colon $=81 \quad\{$ the operator ':'\}
define comma $=82 \quad\{$ the operator ',', must be colon +1$\}$
define end_of_statement \equiv cur_cmd $>$ comma
define semicolon $=83 \quad\{$ the operator ';', must be comma +1$\}$
define end_group $=84$ \{end a group (endgroup), must be semicolon +1$\}$
define stop $=85 \quad\{$ end a job (end, dump), must be end_group +1$\}$
define max_command_code $=$ stop
define outer_tag = max_command_code $+1 \quad\{$ protection code added to command code $\}$
\langle Types in the outer block 18$\rangle+\equiv$
command_code $=1$. . max_command_code;
187. Variables and capsules in METAFONT have a variety of "types," distinguished by the following code numbers:
define undefined $=0 \quad$ \{no type has been declared $\}$
define unknown_tag $=1 \quad\{$ this constant is added to certain type codes below $\}$
define vacuous $=1 \quad\{$ no expression was present $\}$
define boolean_type $=2 \quad\{$ boolean with a known value $\}$
define unknown_boolean $=$ boolean_type + unknown_tag
define string_type $=4 \quad\{$ string with a known value $\}$
define unknown_string $=$ string_type + unknown_tag
define pen_type $=6 \quad$ \{pen with a known value $\}$
define unknown_pen $=$ pen_type + unknown_tag
define future_pen $=8$ \{subexpression that will become a pen at a higher level $\}$
define path_type $=9 \quad\{$ path with a known value $\}$
define unknown_path $=$ path_type + unknown_tag
define picture_type $=11 \quad\{$ picture with a known value $\}$
define unknown_picture $=$ picture_type + unknown_tag
define transform_type $=13 \quad$ \{ transform variable or capsule \}
define pair_type $=14 \quad$ \{pair variable or capsule $\}$
define numeric_type $=15 \quad$ \{variable that has been declared numeric but not used $\}$
define known $=16 \quad$ \{numeric with a known value \}
define dependent $=17 \quad\{$ a linear combination with fraction coefficients $\}$
define proto_dependent $=18$ \{ a linear combination with scaled coefficients \}
define independent $=19 \quad$ \{ numeric with unknown value \}
define token_list $=20 \quad$ \{variable name or suffix argument or text argument \}
define structured $=21 \quad$ \{ variable with subscripts and attributes $\}$
define unsuffixed_macro $=22 \quad\{$ variable defined with vardef but no @\# $\}$
define suffixed_macro $=23$ \{variable defined with vardef and @\# \}
define unknown_types \equiv unknown_boolean, unknown_string, unknown_pen, unknown_picture, unknown_path
\langle Basic printing procedures 57$\rangle+\equiv$
procedure print_type (t : small_number);
begin case t of
vacuous: print("vacuous");
boolean_type: print("boolean");
unknown_boolean: print("unknown \llcorner boolean");
string_type: print("string");
unknown_string: print("unknown ${ }_{\sqcup}$ string");
pen_type: print("pen");
unknown_pen: print("unknown $_$pen");
future_pen: print("future $\iota_{\llcorner }$pen");
path_type: print("path");
unknown_path: print("unknown ®path");
picture_type: print("picture");
unknown_picture: print("unknown \lrcorner picture");
transform_type: print("transform");
pair_type: print("pair");
known: print("known nnumeric"); $^{\text {n }}$
dependent: print("dependent");
proto_dependent: print("proto-dependent");
numeric_type: print("numeric");
independent: print("independent");
token_list: print("token」list");
structured: print("structured");

```
unsuffixed_macro: print("unsuffixed_macro");
suffixed_macro: print("suffixed\sqcupmacro");
othercases print("undefined")
endcases;
end;
```

188. Values inside METAFONT are stored in two-word nodes that have a name_type as well as a type. The possibilities for name_type are defined here; they will be explained in more detail later.
define root $=0 \quad$ \{name_type at the top level of a variable $\}$
define saved_root $=1 \quad\{$ same, when the variable has been saved $\}$
define structured_root $=2 \quad$ \{name_type where a structured branch occurs \}
define subscr $=3 \quad\{$ name_type in a subscript node $\}$
define attr $=4 \quad\{$ name_type in an attribute node $\}$
define x_{-}part_sector $=5 \quad\{$ name_type in the xpart of a node $\}$
define $y_{\text {_part_sector }}=6 \quad\{$ name_type in the ypart of a node $\}$
define $x x_{\text {_p }}$ part_sector $=7 \quad\{$ name_type in the xxpart of a node $\}$
define $x y_{-}$part_sector $=8 \quad\{$ name_type in the xypart of a node $\}$
define $y x$ _part_sector $=9 \quad\{$ name_type in the yxpart of a node $\}$
define $y y_{-}$part_sector $=10 \quad\{$ name_type in the yypart of a node $\}$
define capsule $=11 \quad\{$ name_type in stashed-away subexpressions $\}$
define token $=12 \quad\{$ name_type in a numeric token or string token $\}$
189. Primitive operations that produce values have a secondary identification code in addition to their command code; it's something like genera and species. For example, ' $*$ ' has the command code primary_binary, and its secondary identification is times. The secondary codes start at 30 so that they don't overlap with the type codes; some type codes (e.g., string_type) are used as operators as well as type identifications.
```
define true_code \(=30 \quad\) \{operation code for true \}
define false_code \(=31 \quad\{\) operation code for false \(\}\)
define null_picture_code \(=32 \quad\) \{operation code for nullpicture \(\}\)
define null_pen_code \(=33 \quad\) \{operation code for nullpen \(\}\)
define job_name_op \(=34\) \{operation code for jobname \}
define read_string_op \(=35\) \{operation code for readstring \}
define pen_circle \(=36 \quad\) \{operation code for pencircle \}
define normal_deviate \(=37 \quad\{\) operation code for normaldeviate \(\}\)
define odd_op \(=38 \quad\) \{ operation code for odd \(\}\)
define known_op \(=39\) \{operation code for known \}
define unknown_op \(=40 \quad\) \{operation code for unknown \}
define not_op \(=41 \quad\{\) operation code for not \(\}\)
define decimal \(=42 \quad\{\) operation code for decimal \(\}\)
define reverse \(=43 \quad\) \{operation code for reverse \(\}\)
define make_path_op \(=44 \quad\) \{operation code for makepath \(\}\)
define make_pen_op \(=45\) \{operation code for makepen \}
define total_weight_op \(=46\) \{operation code for totalweight \}
define oct_op \(=47 \quad\) \{operation code for oct \}
define hex_op \(=48 \quad\{\) operation code for hex \(\}\)
define ASCII_op \(=49 \quad\{\) operation code for ASCII \(\}\)
define char_op \(=50 \quad\) \{operation code for char \}
define length_op \(=51 \quad\) \{operation code for length \}
define turning_op \(=52\) \{operation code for turningnumber \}
define \(x_{-}\)part \(=53 \quad\) \{operation code for xpart \}
define \(y\) _part \(=54 \quad\) \{ operation code for ypart \}
define xx_part \(=55 \quad\) \{operation code for xxpart \}
define \(x y\) _part \(=56 \quad\) \{ operation code for xypart \}
define yx_part \(=57 \quad\) \{ operation code for yxpart \}
define yy_part \(=58 \quad\{\) operation code for yypart \(\}\)
define sqrt_op \(=59 \quad\) \{operation code for sqrt \}
define \(m_{-}\)exp_op \(=60 \quad\) \{operation code for mexp \}
define \(m_{\text {_log_op }}=61 \quad\) \{operation code for mlog \}
define sin_d_op \(=62 \quad\) \{operation code for sind \(\}\)
define cos_d_op \(=63 \quad\{\) operation code for cosd \(\}\)
define floor_op \(=64 \quad\) \{operation code for floor \}
define uniform_deviate \(=65\) \{operation code for uniformdeviate \(\}\)
define char_exists_op \(=66\) \{operation code for charexists \}
define angle_op \(=67 \quad\) \{operation code for angle \}
define cycle_op \(=68 \quad\) \{operation code for cycle \(\}\)
define plus \(=69 \quad\{\) operation code for +\(\}\)
define minus \(=70 \quad\{\) operation code for -\(\}\)
define times \(=71 \quad\{\) operation code for \(*\}\)
define over \(=72 \quad\{\) operation code for \(/\}\)
define pythag_add \(=73 \quad\{\) operation code for ++\(\}\)
define pythag_sub \(=74 \quad\) \{operation code for +-+\(\}\)
define or_op \(=75 \quad\{\) operation code for or \(\}\)
define and_op \(=76 \quad\{\) operation code for and \(\}\)
define less_than \(=77 \quad\{\) operation code for \(<\}\)
```

```
    define less_or_equal \(=78 \quad\{\) operation code for \(<=\}\)
    define greater_than \(=79 \quad\{\) operation code for \(>\) \}
    define greater_or_equal \(=80 \quad\) \{operation code for \(>=\}\)
    define equal_to \(=81 \quad\{\) operation code for \(=\}\)
    define unequal_to \(=82 \quad\{\) operation code for \(<>\}\)
    define concatenate \(=83 \quad\{\) operation code for \(\&\}\)
    define rotated_by \(=84 \quad\{\) operation code for rotated \(\}\)
    define slanted_by \(=85 \quad\) \{operation code for slanted \(\}\)
    define scaled_by \(=86\) \{operation code for scaled\}
    define shifted_by \(=87 \quad\{\) operation code for shifted \}
    define transformed_by \(=88 \quad\) \{operation code for transformed \}
    define \(x_{-}\)scaled \(=89 \quad\) \{operation code for xscaled
    define \(y_{-}\)scaled \(=90 \quad\) \{operation code for yscaled \(\}\)
    define \(z_{-}\)scaled \(=91 \quad\{\) operation code for zscaled \(\}\)
    define intersect \(=92 \quad\) \{operation code for intersectiontimes \(\}\)
    define double_dot \(=93\) \{operation code for improper .. \}
    define substring_of \(=94 \quad\) \{operation code for substring \}
    define min_of \(=\) substring_of
    define subpath_of \(=95 \quad\) \{operation code for subpath \(\}\)
    define direction_time_of \(=96\) \{operation code for directiontime \(\}\)
    define point_of \(=97 \quad\) \{operation code for point \}
    define precontrol_of \(=98 \quad\) \{operation code for precontrol \(\}\)
    define postcontrol_of \(=99 \quad\) \{operation code for postcontrol \(\}\)
    define pen_offset_of \(=100 \quad\) \{operation code for penoffset \(\}\)
procedure print_op(c:quarterword);
    begin if \(c \leq\) numeric_type then print_type \((c)\)
    else case \(c\) of
        true_code: print("true");
        false_code: print("false");
        null_picture_code: print("nullpicture");
        null_pen_code: print("nullpen");
        job_name_op: print("jobname");
        read_string_op: print("readstring");
        pen_circle: print("pencircle");
        normal_deviate: print("normaldeviate");
        odd_op: print("odd");
        known_op: print("known");
        unknown_op: print("unknown");
        not_op: print("not");
        decimal: print("decimal");
        reverse: print("reverse");
        make_path_op: print("makepath");
        make_pen_op: print("makepen");
        total_weight_op: print("totalweight");
        oct_op: print("oct");
        hex_op: print("hex");
        ASCII_op: print("ASCII");
        char_op: print("char");
        length_op: print("length");
        turning_op: print("turningnumber");
        x_part: print("xpart");
        y_part: print("ypart");
```

```
    xx_part: print("xxpart");
    xy_part: print("xypart");
    yx_part: print("yxpart");
    yy_part: print("yypart");
    sqrt_op: print("sqrt");
    m_exp_op: print("mexp");
    m_log_op: print("mlog");
    sin_d_op: print("sind");
    cos_d_op: print("cosd");
    floor_op: print("floor");
    uniform_deviate: print("uniformdeviate");
    char_exists_op: print("charexists");
    angle_op: print("angle");
    cycle_op: print("cycle");
    plus: print_char("+");
    minus: print_char("-");
    times: print_char("*");
    over: print_char("/");
    pythag_add: print("++");
    pythag_sub: print("+-+");
    or_op: print("or");
    and_op: print("and");
    less_than: print_char("<");
    less_or_equal: print("<=");
    greater_than: print_char(">");
    greater_or_equal: print(">=");
    equal_to: print_char("=");
    unequal_to: print("<>");
    concatenate: print("&");
    rotated_by: print("rotated");
    slanted_by: print("slanted");
    scaled_by: print("scaled");
    shifted_by: print("shifted");
    transformed_by: print("transformed");
    x_scaled: print("xscaled");
    y_scaled: print("yscaled");
    z_scaled: print("zscaled");
    intersect: print("intersectiontimes");
    substring_of: print("substring");
    subpath_of: print("subpath");
    direction_time_of: print("directiontime");
    point_of: print("point");
    precontrol_of: print("precontrol");
    postcontrol_of: print("postcontrol");
    pen_offset_of: print("penoffset");
    othercases print("..")
    endcases;
end;
```

190. METAFONT also has a bunch of internal parameters that a user might want to fuss with. Every such parameter has an identifying code number, defined here.
```
    define tracing_titles \(=1 \quad\) \{ show titles online when they appear \(\}\)
    define tracing_equations \(=2 \quad\) \{show each variable when it becomes known \(\}\)
    define tracing_capsules \(=3 \quad\{\) show capsules too \(\}\)
    define tracing_choices \(=4 \quad\) \{show the control points chosen for paths \(\}\)
    define tracing_specs \(=5 \quad\{\) show subdivision of paths into octants before digitizing \}
    define tracing_pens \(=6 \quad\) \{show details of pens that are made \(\}\)
    define tracing_commands \(=7 \quad\) \{show commands and operations before they are performed \(\}\)
    define tracing_restores \(=8 \quad\) \{show when a variable or internal is restored \(\}\)
    define tracing_macros \(=9 \quad\{\) show macros before they are expanded \(\}\)
    define tracing_edges \(=10 \quad\{\) show digitized edges as they are computed \(\}\)
    define tracing_output \(=11\) \{show digitized edges as they are output \(\}\)
    define tracing_stats \(=12 \quad\) \{show memory usage at end of job \}
    define tracing_online \(=13 \quad\) \{show long diagnostics on terminal and in the log file \(\}\)
    define year \(=14 \quad\{\) the current year (e.g., 1984) \(\}\)
    define month \(=15 \quad\{\) the current month (e.g., \(3 \equiv\) March) \(\}\)
    define day \(=16 \quad\) \{ the current day of the month \}
    define time \(=17 \quad\{\) the number of minutes past midnight when this job started \(\}\)
    define char_code \(=18 \quad\{\) the number of the next character to be output \(\}\)
    define char_ext \(=19 \quad\) \{ the extension code of the next character to be output \}
    define char_wd \(=20 \quad\) \{the width of the next character to be output \(\}\)
    define char_ht \(=21 \quad\{\) the height of the next character to be output \(\}\)
    define char_dp=22 \{ the depth of the next character to be output \(\}\)
    define char_ic \(=23 \quad\{\) the italic correction of the next character to be output \(\}\)
    define char_ \(d x=24 \quad\{\) the device's \(x\) movement for the next character, in pixels \(\}\)
    define char_dy \(=25 \quad\{\) the device's \(y\) movement for the next character, in pixels \(\}\)
    define design_size \(=26 \quad\{\) the unit of measure used for char_wd ..char_ic, in points \(\}\)
    define \(h p p p=27 \quad\) \{ the number of horizontal pixels per point \(\}\)
    define \(v p p p=28 \quad\) \{ the number of vertical pixels per point \(\}\)
    define \(x_{-}\)offset \(=29 \quad\{\) horizontal displacement of shipped-out characters \(\}\)
    define \(y_{-}\)offset \(=30 \quad\) \{ vertical displacement of shipped-out characters \(\}\)
    define pausing \(=31 \quad\) \{positive to display lines on the terminal before they are read \(\}\)
    define showstopping \(=32 \quad\{\) positive to stop after each show command \(\}\)
    define fontmaking \(=33 \quad\) \{positive if font metric output is to be produced \(\}\)
    define proofing \(=34 \quad\) \{ positive for proof mode, negative to suppress output \}
    define smoothing \(=35 \quad\) \{positive if moves are to be "smoothed" \}
    define autorounding \(=36\) \{ controls path modification to "good" points \}
    define granularity \(=37 \quad\) \{autorounding uses this pixel size \}
    define fillin \(=38 \quad\) \{ extra darkness of diagonal lines \(\}\)
    define turning_check \(=39 \quad\{\) controls reorientation of clockwise paths \(\}\)
    define warning_check \(=40 \quad\{\) controls error message when variable value is large \(\}\)
    define boundary_char \(=41 \quad\) \{the boundary character for ligatures \(\}\)
    define max_given_internal \(=41\)
```

\langle Global variables 13$\rangle+\equiv$
internal: array [1.. max_internal] of scaled; \{ the values of internal quantities \} int_name: array [1 . . max_internal] of str_number; \{their names \}
int_ptr: max_given_internal . . max_internal; \{ the maximum internal quantity defined so far \}
191. 〈Set initial values of key variables 21$\rangle+\equiv$
for $k \leftarrow 1$ to max_given_internal do internal $[k] \leftarrow 0$;
int_ptr \leftarrow max_given_internal;
192. The symbolic names for internal quantities are put into METAFONT's hash table by using a routine called primitive, which will be defined later. Let us enter them now, so that we don't have to list all those names again anywhere else.

```
\(\langle\) Put each of METAFONT's primitives into the hash table 192\(\rangle \equiv\)
    primitive("tracingtitles", internal_quantity, tracing_titles);
    primitive("tracingequations", internal_quantity, tracing_equations);
    primitive("tracingcapsules", internal_quantity, tracing_capsules);
    primitive("tracingchoices", internal_quantity, tracing_choices);
    primitive("tracingspecs", internal_quantity,tracing_specs);
    primitive("tracingpens", internal_quantity, tracing_pens);
    primitive("tracingcommands", internal_quantity,tracing_commands);
    primitive("tracingrestores", internal_quantity,tracing_restores);
    primitive("tracingmacros", internal_quantity, tracing_macros);
    primitive("tracingedges", internal_quantity,tracing_edges);
    primitive("tracingoutput", internal_quantity,tracing_output);
    primitive("tracingstats", internal_quantity,tracing_stats);
    primitive("tracingonline", internal_quantity, tracing_online);
    primitive("year", internal_quantity, year);
    primitive("month", internal_quantity, month);
    primitive("day", internal_quantity, day);
    primitive("time", internal_quantity, time);
    primitive("charcode", internal_quantity, char_code);
    primitive ("charext", internal_quantity, char_ext);
    primitive("charwd", internal_quantity, char_wd);
    primitive("charht", internal_quantity, char_ht);
    primitive("chardp", internal_quantity, char_dp);
    primitive ("charic", internal_quantity, char_ic);
    primitive("chardx", internal_quantity, char_dx);
    primitive("chardy", internal_quantity, char_dy);
    primitive("designsize", internal_quantity, design_size);
    primitive ("hppp", internal_quantity, hppp);
    primitive ("vppp", internal_quantity, vppp);
    primitive("xoffset", internal_quantity, x_offset);
    primitive("yoffset", internal_quantity, y_offset);
    primitive("pausing", internal_quantity, pausing);
    primitive("showstopping", internal_quantity, showstopping);
    primitive("fontmaking", internal_quantity,fontmaking);
    primitive("proofing", internal_quantity, proofing);
    primitive("smoothing", internal_quantity, smoothing);
    primitive("autorounding", internal_quantity, autorounding);
    primitive("granularity", internal_quantity, granularity);
    primitive("fillin", internal_quantity, fillin);
    primitive("turningcheck", internal_quantity, turning_check);
    primitive("warningcheck", internal_quantity, warning_check);
    primitive("boundarychar", internal_quantity, boundary_char);
```

See also sections $211,683,688,695,709,740,893,1013,1018,1024,1027,1037,1052,1079,1101,1108$, and 1176.
This code is used in section 1210.
193. Well, we do have to list the names one more time, for use in symbolic printouts.
\langle Initialize table entries (done by INIMF only) 176$\rangle+\equiv$
int_name $[$ tracing_titles $] \leftarrow$ "tracingtitles"; int_name[tracing_equations $] \leftarrow$ "tracingequations";
int_name[tracing_capsules] \leftarrow "tracingcapsules"; int_name[tracing_choices] \leftarrow "tracingchoices";
int_name[tracing_specs] \leftarrow "tracingspecs"; int_name[tracing_pens] \leftarrow "tracingpens";
int_name[tracing_commands] \leftarrow "tracingcommands"; int_name[tracing_restores] \leftarrow "tracingrestores";
int_name[tracing_macros] \leftarrow "tracingmacros"; int_name[tracing_edges] \leftarrow "tracingedges";
int_name [tracing_output $] \leftarrow$ "tracingoutput"; int_name $[$ tracing_stats $] \leftarrow$ "tracingstats";
int_name $[$ tracing_online $] \leftarrow$ "tracingonline"; int_name $[$ year $] \leftarrow$ "year"; int_name $[$ month $] \leftarrow$ "month";
int_name $[$ day $] \leftarrow$ "day"; int_name $[$ time $] \leftarrow$ "time"; int_name $[$ char_code $] \leftarrow$ "charcode";
int_name $[$ char_ext $] \leftarrow$ "charext"; int_name $[$ char_wd $] \leftarrow$ "charwd"; int_name $[$ char_ht $] \leftarrow$ "charht";
int_name $[$ char_dp] \leftarrow "chardp"; int_name $[$ char_ic] \leftarrow "charic"; int_name $[$ char_dx] \leftarrow "chardx";
int_name $[$ char_dy] \leftarrow "chardy"; int_name $[$ design_size $] \leftarrow$ "designsize"; int_name $[h p p p] \leftarrow$ "hppp";
int_name $[v p p p] \leftarrow$ "vppp"; int_name $\left[x_{-} o f f s e t\right] \leftarrow$ "xoffset"; int_name $\left[y_{-}\right.$offset $] \leftarrow$ "yoffset";
int_name[pausing] \leftarrow "pausing"; int_name[showstopping] \leftarrow "showstopping";
int_name[fontmaking] \leftarrow "fontmaking"; int_name $[$ proofing] \leftarrow "proofing";
int_name $[$ smoothing $] \leftarrow$ "smoothing"; int_name[autorounding] \leftarrow "autorounding";
int_name $[$ granularity $] \leftarrow$ "granularity"; int_name $[$ fillin $] \leftarrow$ "fillin";
int_name[turning_check] \leftarrow "turningcheck"; int_name[warning_check] \leftarrow "warningcheck";
int_name[boundary_char] \leftarrow "boundarychar";
194. The following procedure, which is called just before METAFONT initializes its input and output, establishes the initial values of the date and time. Since standard Pascal cannot provide such information, something special is needed. The program here simply assumes that suitable values appear in the global variables sys_time, sys_day, sys_month, and sys_year (which are initialized to noon on 4 July 1776, in case the implementor is careless).
Note that the values are scaled integers. Hence METAFONT can no longer be used after the year 32767.
procedure fix_date_and_time;
begin sys_time $\leftarrow 12 * 60$; sys_day $\leftarrow 4$; sys_month $\leftarrow 7$; sys_year $\leftarrow 1776$; \quad \{self-evident truths \}
internal $[$ time $] \leftarrow$ sys_time $*$ unity; $\quad\{$ minutes since midnight $\}$
internal $[$ day $] \leftarrow$ sys_day $*$ unity; $\quad\{$ day of the month $\}$
internal $[$ month $] \leftarrow$ sys_month $*$ unity; $\quad\{$ month of the year $\}$
internal[year $] \leftarrow$ sys_year $*$ unity $; \quad$ \{ Anno Domini \}
end;
195. METAFONT is occasionally supposed to print diagnostic information that goes only into the transcript file, unless tracing_online is positive. Now that we have defined tracing_online we can define two routines that adjust the destination of print commands:
〈Basic printing procedures 57$\rangle+\equiv$
procedure begin_diagnostic; \{prepare to do some tracing \}
begin old_setting \leftarrow selector;
if $($ internal $[$ tracing_online $] \leq 0) \wedge($ selector $=$ term_and_log $)$ then
begin decr(selector);
if history $=$ spotless then history \leftarrow warning_issued;
end;
end;
procedure end_diagnostic(blank_line : boolean); \{restore proper conditions after tracing \} begin print_nl("");
if blank_line then print_ln;
selector \leftarrow old_setting;
end;

196．Of course we had better declare a few more global variables，if the previous routines are going to work．
\langle Global variables 13$\rangle+\equiv$
old＿setting： 0 ．．max＿selector；
sys＿time，sys＿day，sys＿month，sys＿year：integer；\｛ date and time supplied by external system \}
197．We will occasionally use begin＿diagnostic in connection with line－number printing，as follows．（The parameter s is typically＂Path＂or＂Cycle $\mathrm{e}_{\sqcup} \mathrm{spec} "$ ，etc．）
〈Basic printing procedures 57$\rangle+\equiv$
procedure print＿diagnostic（ s, t ：str＿number；nuline ：boolean）；
begin begin＿diagnostic；
if nuline then print＿nl（s）else print（s）；
print（＂чаt」line」＂）；print＿int（line）；print（t）；print＿char（＂：＂）；
end；
198．The 256 ASCII＿code characters are grouped into classes by means of the char＿class table．Individual class numbers have no semantic or syntactic significance，except in a few instances defined here．There＇s also max＿class，which can be used as a basis for additional class numbers in nonstandard extensions of METAFONT．
define digit＿class $=0 \quad\{$ the class number of 0123456789$\}$
define period＿class $=1 \quad\{$ the class number of＇. ＇$\}$
define space＿class $=2 \quad\{$ the class number of spaces and nonstandard characters $\}$
define percent＿class $=3 \quad\{$ the class number of＇$\%$＇$\}$
define string＿class $=4 \quad\{$ the class number of＇＂＇$\}$
define right＿paren＿class $=8 \quad\{$ the class number of＇$)$＇$\}$
define isolated＿classes $\equiv 5,6,7,8 \quad\{$ characters that make length－one tokens only $\}$
define letter＿class $=9 \quad\{$ letters and the underline character $\}$
define left＿bracket＿class $=17 \quad\left\{{ }^{\prime}[\right.$＇$\}$
define right＿bracket＿class $=18 \quad\left\{{ }^{\prime}\right]$＇$\}$
define invalid＿class $=20 \quad\{$ bad character in the input $\}$
define max＿class $=20 \quad$ \｛ the largest class number $\}$
\langle Global variables 13$\rangle+\equiv$
char＿class：array［ASCII＿code］of 0 ．．max＿class；\｛ the class numbers \}
199. If changes are made to accommodate non-ASCII character sets, they should follow the guidelines in Appendix C of The METAFONT book.
\langle Set initial values of key variables 21$\rangle+\equiv$
for $k \leftarrow$ "0" to "9" do char_class $[k] \leftarrow$ digit_class;
char_class ["."] \leftarrow period_class $;$ char_class $[" \cup "] \leftarrow$ space_class $;$ char_class $[" \% "] \leftarrow$ percent_class;
char_class[""""] \leftarrow string_class;
char_class $[", "] \leftarrow 5$; char_class $[" ; "] \leftarrow 6$; char_class $["("] \leftarrow 7$; char_class $[") "] \leftarrow$ right_paren_class;
for $k \leftarrow$ "A" to "Z" do char_class $[k] \leftarrow$ letter_class;
for $k \leftarrow$ "a" to "z" do char_class $[k] \leftarrow$ letter_class;
char_class ["_"] \leftarrow letter_class;
char_class $["<"] \leftarrow 10 ;$ char_class $["="] \leftarrow 10$; char_class $[">"] \leftarrow 10$; char_class $[": "] \leftarrow 10$;
char_class $[" \mid "] \leftarrow 10$;
char_class["`"] $\leftarrow 11$; char_class[" -n$] \leftarrow 11$;
char_class $["+"] \leftarrow 12$; char_class $["-"] \leftarrow 12$;
char_class["/"] $\leftarrow 13$; char_class ["*"] $\leftarrow 13$; char_class["\"] $\leftarrow 13$;
char_class["!"] $\leftarrow 14$; char_class["?"] $\leftarrow 14$;
char_class["\#"] $\leftarrow 15$; char_class $[" \& "] \leftarrow 15$; char_class["@"] $\leftarrow 15$; char_class $[" \$ "] \leftarrow 15$;
char_class["^"] $\leftarrow 16$; char_class $[" \sim "] \leftarrow 16$;
char_class [" ["] \leftarrow left_bracket_class; char_class ["] "] \leftarrow right_bracket_class;
char_class $["\{"] \leftarrow 19$; char_class["\}"] $\leftarrow 19$;
for $k \leftarrow 0$ to " $\mathrm{\cup}$ " -1 do char_class $[k] \leftarrow$ invalid_class;
for $k \leftarrow 127$ to 255 do char_class $[k] \leftarrow$ invalid_class;
200. The hash table. Symbolic tokens are stored and retrieved by means of a fairly standard hash table algorithm called the method of "coalescing lists" (cf. Algorithm 6.4C in The Art of Computer Programming). Once a symbolic token enters the table, it is never removed.

The actual sequence of characters forming a symbolic token is stored in the str_pool array together with all the other strings. An auxiliary array hash consists of items with two halfword fields per word. The first of these, called $\operatorname{next}(p)$, points to the next identifier belonging to the same coalesced list as the identifier corresponding to p; and the other, called $\operatorname{text}(p)$, points to the str_start entry for p 's identifier. If position p of the hash table is empty, we have $\operatorname{text}(p)=0$; if position p is either empty or the end of a coalesced hash list, we have $\operatorname{next}(p)=0$.

An auxiliary pointer variable called hash_used is maintained in such a way that all locations $p \geq$ hash_used are nonempty. The global variable st_count tells how many symbolic tokens have been defined, if statistics are being kept.

The first 256 locations of hash are reserved for symbols of length one.
There's a parallel array called eqtb that contains the current equivalent values of each symbolic token. The entries of this array consist of two halfwords called eq_type (a command code) and equiv (a secondary piece of information that qualifies the eq_type).
define next $(\#) \equiv$ hash $[\#]$.lh \quad \{ link for coalesced lists \}
define text $(\#) \equiv$ hash $[\#]$.rh \quad \{string number for symbolic token name $\}$
define eq_type $(\#) \equiv$ eqtb $[\#]$.lh $\quad\{$ the current "meaning" of a symbolic token $\}$
define equiv $(\#) \equiv \operatorname{eqtb}[\#]$.rh \quad \{parametric part of a token's meaning \}
define hash_base $=257 \quad$ \{ hashing actually starts here $\}$
define hash_is_full \equiv (hash_used $=$ hash_base $) \quad$ \{ are all positions occupied? $\}$
\langle Global variables 13$\rangle+\equiv$
hash_used: pointer; \{ allocation pointer for hash \}
st_count: integer; \{ total number of known identifiers \}
201. Certain entries in the hash table are "frozen" and not redefinable, since they are used in error recovery.
define hash_top \equiv hash_base + hash_size $\quad\{$ the first location of the frozen area $\}$
define frozen_inaccessible \equiv hash_top $\quad\{$ hash location to protect the frozen area $\}$
define frozen_repeat_loop \equiv hash_top $+1 \quad$ \{ hash location of a loop-repeat token \}
define frozen_right_delimiter \equiv hash_top $+2 \quad$ \{ hash location of a permanent ')'\}
define frozen_left_bracket \equiv hash_top +3 \{ hash location of a permanent '['\}
define frozen_slash \equiv hash_top $+4 \quad\{$ hash location of a permanent ' $/$ ' $\}$
define frozen_colon \equiv hash_top $+5 \quad$ \{ hash location of a permanent ' $:$ '\}
define frozen_semicolon \equiv hash_top $+6 \quad$ \{ hash location of a permanent ';'\}
define frozen_end_for \equiv hash_top $+7 \quad$ \{hash location of a permanent endfor \}
define frozen_end_def \equiv hash_top $+8 \quad\{$ hash location of a permanent enddef $\}$
define frozen_fi \equiv hash_top $+9 \quad\{$ hash location of a permanent fi \}
define frozen_end_group \equiv hash_top $+10 \quad$ \{ hash location of a permanent 'endgroup'\}
define frozen_bad_vardef \equiv hash_top $+11 \quad$ \{ hash location of 'a bad variable'\}
define frozen_undefined \equiv hash_top $+12 \quad$ \{ hash location that never gets defined $\}$
define hash_end \equiv hash_top $+12 \quad\{$ the actual size of the hash and eqtb arrays \}
\langle Global variables 13$\rangle+\equiv$
hash: array [1..hash_end] of two_halves; \{ the hash table \}
eqtb: array [$1 .$. hash_end] of two_halves; \{ the equivalents \}
202. 〈Set initial values of key variables 21$\rangle+\equiv$
next $(1) \leftarrow 0$; text $(1) \leftarrow 0$; eq_type $(1) \leftarrow$ tag_token; equiv $(1) \leftarrow$ null;
for $k \leftarrow 2$ to hash_end do
begin hash $[k] \leftarrow$ hash $[1]$; eqtb $[k] \leftarrow$ eqtb $[1]$;
end;

203．\langle Initialize table entries（done by INIMF only） 176$\rangle+\equiv$
hash＿used \leftarrow frozen＿inaccessible $; \quad\{$ nothing is used $\}$
st＿count $\leftarrow 0$ ；
text $($ frozen＿bad＿vardef $) \leftarrow$＂a」bad」variable＂；text $($ frozen＿fi $) \leftarrow$＂fi＂；
text $($ frozen＿end＿group $) \leftarrow$＂endgroup＂；text $($ frozen＿end＿def $) \leftarrow$＂enddef＂；
text $($ frozen＿end＿for $) \leftarrow$＂endfor＂；
text $($ frozen＿semicolon $) \leftarrow " ; " ;$ text $($ frozen＿colon $) \leftarrow ": " ;$ text $($ frozen＿slash $) \leftarrow " / " ;$
text $($ frozen＿left＿bracket $) \leftarrow$＂［＂；text $($ frozen＿right＿delimiter $) \leftarrow ") " ;$
text $($ frozen＿inaccessible $) \leftarrow$＂INACCESSIBLE＂；
eq＿type $($ frozen＿right＿delimiter $) \leftarrow$ right＿delimiter $;$
204．〈Check the＂constant＂values for consistency 14$\rangle+\equiv$
if hash＿end＋max＿internal $>$ max＿halfword then bad $\leftarrow 21$ ；
205．Here is the subroutine that searches the hash table for an identifier that matches a given string of length l appearing in buffer $[j \ldots(j+l-1)]$ ．If the identifier is not found，it is inserted；hence it will always be found，and the corresponding hash table address will be returned．
function id＿lookup $(j, l$ ：integer $)$ ：pointer；\｛ search the hash table \}
label found；\｛ go here when you＇ve found it \}
var h ：integer；\｛ hash code \}
$p:$ pointer；\｛ index in hash array \}
k ：pointer；\｛index in buffer array \}
begin if $l=1$ then 〈Treat special case of length 1 and goto found 206〉；
〈 Compute the hash code $h 208$ ；
$p \leftarrow h+h a s h _b a s e ; \quad\left\{\right.$ we start searching here；note that $\left.0 \leq h<h a s h _p r i m e\right\}$
loop begin if $\operatorname{text}(p)>0$ then
if length $(\operatorname{text}(p))=l$ then
if str＿$_{-} e q_{-} b u f(t e x t(p), j)$ then goto found； if $\operatorname{next}(p)=0$ then
\langle Insert a new symbolic token after p ，then make p point to it and goto found 207〉； $p \leftarrow \operatorname{next}(p)$ ； end；
found：id＿lookup $\leftarrow p$ ；
end；
206．〈Treat special case of length 1 and goto found 206$\rangle \equiv$
begin $p \leftarrow$ buffer $[j]+1$ ；text $(p) \leftarrow p-1$ ；goto found；
end
This code is used in section 205.
207. 〈Insert a new symbolic token after p, then make p point to it and goto found 207$\rangle \equiv$
begin if $\operatorname{text}(p)>0$ then
begin repeat if hash_is_full then overflow("hash_size", hash_size); decr(hash_used);
until text (hash_used) $=0 ; \quad$ \{ search for an empty location in hash $\}$
next $(p) \leftarrow$ hash_used; $p \leftarrow$ hash_used;
end;
str_room (l);
for $k \leftarrow j$ to $j+l-1$ do append_char (buffer $[k]$);
text $(p) \leftarrow$ make_string; str_ref $[$ text $(p)] \leftarrow$ max_str_ref;
stat incr (st_count); tats
goto found;
end
This code is used in section 205.
208. The value of hash_prime should be roughly 85% of hash_size, and it should be a prime number. The theory of hashing tells us to expect fewer than two table probes, on the average, when the search is successful. [See J. S. Vitter, Journal of the ACM 30 (1983), 231-258.]
\langle Compute the hash code $h 208\rangle \equiv$

```
\(h \leftarrow\) buffer \([j]\);
for \(k \leftarrow j+1\) to \(j+l-1\) do
    begin \(h \leftarrow h+h+\) buffer \([k]\);
    while \(h \geq\) hash_prime do \(h \leftarrow h\)-hash_prime;
    end
```

This code is used in section 205.
209. 〈Search eqtb for equivalents equal to $p 209\rangle \equiv$
for $q \leftarrow 1$ to hash_end do
begin if $\operatorname{equiv}(q)=p$ then
begin print_nl("EQUIV("); print_int(q); print_char(")");
end;
end
This code is used in section 185.
210. We need to put METAFONT's "primitive" symbolic tokens into the hash table, together with their command code (which will be the eq_type) and an operand (which will be the equiv). The primitive procedure does this, in a way that no METAFONT user can. The global value cur_sym contains the new eqtb pointer after primitive has acted.
init procedure primitive ($s:$ str_number $; c:$ halfword; $o:$ halfword $)$;
var k : pool_pointer; \{index into str_pool \}
j : small_number; $\quad\{$ index into buffer $\}$
l : small_number; \{length of the string \}
begin $k \leftarrow$ str_start $[s] ; l \leftarrow$ str_start $[s+1]-k ; \quad\{$ we will move s into the (empty) buffer $\}$
for $j \leftarrow 0$ to $l-1$ do buffer $[j] \leftarrow$ so (str_pool $[k+j])$;
cur_sym \leftarrow id_lookup $(0, l)$;
if $s \geq 256$ then $\quad\{$ we don't want to have the string twice \}
begin flush_string $($ str_ptr -1$)$; text $($ cur_sym $) \leftarrow s$;
end;
eq_type $($ cur_sym $) \leftarrow c$; equiv $($ cur_sym $) \leftarrow o$;
end;
tini

211．Many of METAFONT＇s primitives need no equiv，since they are identifiable by their eq＿type alone． These primitives are loaded into the hash table as follows：

```
〈Put each of METAFONT's primitives into the hash table 192〉+三
    primitive(" . . ", path_join, 0);
    primitive (" [", left_bracket, 0 ); eqtb[frozen_left_bracket] \(\leftarrow\) eqtb \([\) cur_sym];
    primitive("] ", right_bracket, 0);
    primitive("\}", right_brace, 0);
    primitive(" \(\{\) ", left_brace, 0 );
    primitive(":", colon,0); eqtb[frozen_colon] \(\leftarrow\) eqtb [cur_sym];
    primitive(": :", double_colon,0);
    primitive("II:", bchar_label,0);
    primitive(":=", assignment, 0);
    primitive(", ", comma, 0);
    primitive(";", semicolon, 0); eqtb[frozen_semicolon] \(\leftarrow\) eqtb[cur_sym];
    primitive("\", relax, 0);
    primitive("addto", add_to_command, 0);
    primitive("at", at_token, 0);
    primitive("atleast", at_least, 0);
    primitive("begingroup", begin_group, 0 ); bg_loc \(\leftarrow\) cur_sym;
    primitive("controls", controls, 0);
    primitive("cull", cull_command,0);
    primitive("curl", curl_command, 0 );
    primitive("delimiters", delimiters, 0);
    primitive("display", display_command,0);
    primitive ("endgroup", end_group, 0 ); eqtb[frozen_end_group] \(\leftarrow\) eqtb[cur_sym]; eg_loc \(\leftarrow\) cur_sym;
    primitive("everyjob", every_job_command, 0);
    primitive("exitif", exit_test, 0);
    primitive("expandafter", expand_after,0);
    primitive("from", from_token, 0);
    primitive("inwindow", in_window,0);
    primitive("interim", interim_command,0);
    primitive("let", let_command,0);
    primitive("newinternal", new_internal, 0);
    primitive(" of ", of_token, 0);
    primitive("openwindow", open_window, 0);
    primitive("randomseed", random_seed, 0);
    primitive("save", save_command, 0 );
    primitive("scantokens", scan_tokens,0);
    primitive("shipout", ship_out_command,0);
    primitive("skipto", skip_to, 0);
    primitive ("step", step_token, 0);
    primitive("str", str_op,0);
    primitive("tension", tension, 0);
    primitive("to", to_token, 0);
    primitive("until", until_token, 0);
```

212. Each primitive has a corresponding inverse, so that it is possible to display the cryptic numeric contents of eqtb in symbolic form. Every call of primitive in this program is therefore accompanied by some straightforward code that forms part of the print_cmd_mod routine explained below.
\langle Cases of print_cmd_mod for symbolic printing of primitives 212$\rangle \equiv$
add_to_command: print("addto");
assignment: print(":=");
at_least: print("atleast");
at_token: print("at");
bchar_label: print("|।:");
begin_group: print("begingroup");
colon: print(":");
comma: print(",");
controls: print("controls");
cull_command: print("cull");
curl_command: print("curl");
delimiters: print("delimiters");
display_command: print("display");
double_colon: print("::");
end_group: print("endgroup");
every_job_command: print("everyjob");
exit_test: print("exitif");
expand_after: print("expandafter");
from_token: print("from");
in_window: print("inwindow");
interim_command: print("interim");
left_brace: print("\{");
left_bracket: print(" [");
let_command: print("let");
new_internal: print("newinternal");
of_token: print("of");
open_window: print("openwindow");
path_join: print("..");
random_seed: print("randomseed");
relax: print_char("\");
right_brace: print("\}");
right_bracket: print("]");
save_command: print("save");
scan_tokens: print("scantokens");
semicolon: print(";");
ship_out_command: print("shipout");
skip_to: print("skipto");
step_token: print("step");
str_op: print("str");
tension: print("tension");
to_token: print("to");
until_token: print("until");
See also sections 684, 689, 696, 710, 741, 894, 1014, 1019, 1025, 1028, 1038, 1043, 1053, 1080, 1102, 1109, and 1180.
This code is used in section 625 .
213. We will deal with the other primitives later, at some point in the program where their eq_type and equiv values are more meaningful. For example, the primitives for macro definitions will be loaded when we consider the routines that define macros. It is easy to find where each particular primitive was treated by looking in the index at the end; for example, the section where "def" entered eqtb is listed under 'def primitive'.
214. Token lists. A METAFONT token is either symbolic or numeric or a string, or it denotes a macro parameter or capsule; so there are five corresponding ways to encode it internally: (1) A symbolic token whose hash code is p is represented by the number p, in the info field of a single-word node in mem. (2) A numeric token whose scaled value is v is represented in a two-word node of mem; the type field is known, the name_type field is token, and the value field holds v. The fact that this token appears in a two-word node rather than a one-word node is, of course, clear from the node address. (3) A string token is also represented in a two-word node; the type field is string_type, the name_type field is token, and the value field holds the corresponding str_number. (4) Capsules have name_type $=$ capsule, and their type and value fields represent arbitrary values (in ways to be explained later). (5) Macro parameters are like symbolic tokens in that they appear in info fields of one-word nodes. The k th parameter is represented by expr_base $+k$ if it is of type expr, or by suffix_base $+k$ if it is of type suffix, or by text_base $+k$ if it is of type text. (Here $0 \leq k<$ param_size.) Actual values of these parameters are kept in a separate stack, as we will see later. The constants expr_base, suffix_base, and text_base are, of course, chosen so that there will be no confusion between symbolic tokens and parameters of various types.

It turns out that value $($ null $)=0$, because $n u l l=$ null_coords; we will make use of this coincidence later.
Incidentally, while we're speaking of coincidences, we might note that the 'type' field of a node has nothing to do with "type" in a printer's sense. It's curious that the same word is used in such different ways.
define type $(\#) \equiv \operatorname{mem}[\#] . h h . b 0 \quad$ \{identifies what kind of value this is $\}$
define name_type $(\#) \equiv \operatorname{mem}[\#] . h h . b 1 \quad\{$ a clue to the name of this value $\}$
define token_node_size $=2 \quad\{$ the number of words in a large token node $\}$
define value_loc $(\#) \equiv \#+1 \quad\{$ the word that contains the value field $\}$
define value $(\#) \equiv$ mem[value_loc(\#)].int $\quad\{$ the value stored in a large token node $\}$
define expr_base \equiv hash_end $+1 \quad$ \{code for the zeroth expr parameter $\}$
define suffix_base \equiv expr_base + param_size $\quad\{$ code for the zeroth suffix parameter $\}$
define text_base \equiv suffix_base + param_size $\quad\{$ code for the zeroth text parameter $\}$
\langle Check the "constant" values for consistency 14$\rangle+\equiv$
if text_base + param_size $>$ max_halfword then $b a d \leftarrow 22$;
215. A numeric token is created by the following trivial routine.
function new_num_tok (v : scaled): pointer;
var p : pointer; \{ the new node \}
begin $p \leftarrow$ get_node $($ token_node_size $) ;$ value $(p) \leftarrow v ;$ type $(p) \leftarrow k n o w n ;$ name_type $(p) \leftarrow$ token; $n e w _n u m _t o k \leftarrow p$;
end;

216．A token list is a singly linked list of nodes in mem，where each node contains a token and a link． Here＇s a subroutine that gets rid of a token list when it is no longer needed．

```
procedure token_recycle; forward;
procedure flush_token_list(p : pointer);
    var q: pointer; { the node being recycled}
    begin while p\not= null do
        begin }q\leftarrowp;p\leftarrow\operatorname{link}(p)
        if q\geqhi_mem_min then free_avail(q)
        else begin case type(q) of
            vacuous, boolean_type, known: do_nothing;
            string_type:delete_str_ref(value(q));
            unknown_types, pen_type, path_type, future_pen, picture_type, pair_type, transform_type, dependent,
                proto_dependent,independent: begin g_pointer }\leftarrowq;\mathrm{ token_recycle;
                end;
            othercases confusion("token")
            endcases;
            free_node(q,token_node_size);
            end;
        end;
    end;
```

217．The procedure show＿token＿list，which prints a symbolic form of the token list that starts at a given node p ，illustrates these conventions．The token list being displayed should not begin with a reference count． However，the procedure is intended to be fairly robust，so that if the memory links are awry or if p is not really a pointer to a token list，almost nothing catastrophic can happen．

An additional parameter q is also given；this parameter is either null or it points to a node in the token list where a certain magic computation takes place that will be explained later．（Basically，q is non－null when we are printing the two－line context information at the time of an error message；q marks the place corresponding to where the second line should begin．）

The generation will stop，and＇ETC．＇will be printed，if the length of printing exceeds a given limit l ；the length of printing upon entry is assumed to be a given amount called null＿tally．（Note that show＿token＿list sometimes uses itself recursively to print variable names within a capsule．）

Unusual entries are printed in the form of all－caps tokens preceded by a space，e．g．，＇BAD＇．
\langle Declare the procedure called show＿token＿list 217$\rangle \equiv$
procedure print＿capsule；forward；
procedure show＿token＿list（ p, q ：integer；l，null＿tally ：integer）；
label exit；
var class，c：small＿number；\｛ the char＿class of previous and new tokens \} $r, v:$ integer；\｛temporary registers \}
begin class \leftarrow percent＿class；tally \leftarrow null＿tally；
while $(p \neq$ null $) \wedge($ tally $<l)$ do begin if $p=q$ then 〈Do magic computation 646〉；
〈Display token p and set c to its class；but return if there are problems 218〉；
class $\leftarrow c ; p \leftarrow \operatorname{link}(p)$ ；
end；
if $p \neq$ null then $\operatorname{print}("\llcorner E T C . ")$ ；
exit：end；
This code is used in section 162.

218．〈Display token p and set c to its class；but return if there are problems 218$\rangle \equiv$
$c \leftarrow$ letter＿class $; \quad\{$ the default $\}$
if $\left(p<m e m_{-} m i n\right) \vee\left(p>m_{\text {men }} e n d\right)$ then
begin print（＂\sqcup CLOBBERED＂）；return；
end；
if $p<h i _m e m _m i n$ then \langle Display two－word token 219〉
else begin $r \leftarrow \operatorname{info}(p)$ ；
if $r \geq$ expr＿base then 〈Display a parameter token 222〉
else if $r<1$ then
if $r=0$ then 〈Display a collective subscript 221〉
else print（＂பIMPOSSIBLE＂）
else begin $r \leftarrow \operatorname{text}(r)$ ；
if $(r<0) \vee\left(r \geq s t r _p t r\right)$ then $p r i n t\left(" _N O N E X I S T E N T "\right)$
else \langle Print string r as a symbolic token and set c to its class 223〉；
end；
end
This code is used in section 217.
219．\langle Display two－word token 219$\rangle \equiv$
if name＿type $(p)=$ token then
if type $(p)=$ known then \langle Display a numeric token 220\rangle
else if type $(p) \neq$ string＿type $^{\text {then }} \operatorname{print}(" \sqcup \mathrm{BAD} ")$
else begin print＿char（＂＂＂＂）；slow＿print $(v a l u e(p)) ;$ print＿char（＂＂＂＂）；c \leftarrow string＿class；
end
else if $($ name＿type $(p) \neq$ capsule $) \vee($ type $(p)<$ vacuous $) \vee($ type $(p)>$ independent $)$ then print $(" \sqcup B A D ")$
else begin g_{-}pointer $\leftarrow p ;$ print＿capsule $; c \leftarrow$ right＿paren＿class；
end
This code is used in section 218.

220．〈Display a numeric token 220$\rangle \equiv$
begin if class $=$ digit＿class then print＿char（＂ப＂）；
$v \leftarrow$ value (p) ；
if $v<0$ then
begin if class $=$ left＿bracket＿class then print＿char（＂ь＂）；
print＿char（＂［＂）；print＿scaled $(v) ;$ print＿char（＂］＂）；$c \leftarrow$ right＿bracket＿class；
end
else begin print＿scaled $(v) ; c \leftarrow$ digit＿class；
end；
end
This code is used in section 219.

221．Strictly speaking，a genuine token will never have $\operatorname{info}(p)=0$ ．But we will see later（in the definition of attribute nodes）that it is convenient to let $\operatorname{info}(p)=0$ stand for＇［］＇．
\langle Display a collective subscript 221$\rangle \equiv$
begin if class $=$ left＿bracket＿class then print＿char（＂ப＂）；
print（＂［］＂）；$c \leftarrow$ right＿bracket＿class；
end
This code is used in section 218.
222. 〈Display a parameter token 222$\rangle \equiv$
begin if $r<$ suffix_base then
begin print("(EXPR"); $r \leftarrow r-($ expr_base $)$;
end
else if $r<t e x t$ _base then begin $\operatorname{print}($ " (SUFFIX"); $r \leftarrow r-$ (suffix_base); end
else begin print(" (TEXT"); $r \leftarrow r-($ text_base $)$; end;
print_int $(r) ;$ print_char(")"); $c \leftarrow$ right_paren_class;
end
This code is used in section 218.
223. \langle Print string r as a symbolic token and set c to its class 223$\rangle \equiv$
begin $c \leftarrow$ char_class $[$ so(str_pool $[$ str_start $[r]])]$;
if $c=$ class then
case c of
letter_class: print_char(".");
isolated_classes: do_nothing;
othercases print_char("ப")
endcases;
slow_print (r);
end
This code is used in section 218.
224. The following procedures have been declared forward with no parameters, because the author dislikes Pascal's convention about forward procedures with parameters. It was necessary to do something, because show_token_list is recursive (although the recursion is limited to one level), and because flush_token_list is syntactically (but not semantically) recursive.
\langle Declare miscellaneous procedures that were declared forward 224$\rangle \equiv$
procedure print_capsule;
begin print_char(" ("); print_exp(g_pointer, 0); print_char(")");
end;
procedure token_recycle;
begin recycle_value(g_pointer);
end;
This code is used in section 1202.
225. 〈Global variables 13$\rangle+\equiv$
g_pointer: pointer; \{(global) parameter to the forward procedures \}
226. Macro definitions are kept in METAFONT's memory in the form of token lists that have a few extra one-word nodes at the beginning.

The first node contains a reference count that is used to tell when the list is no longer needed. To emphasize the fact that a reference count is present, we shall refer to the info field of this special node as the ref_count field.

The next node or nodes after the reference count serve to describe the formal parameters. They consist of zero or more parameter tokens followed by a code for the type of macro.
define ref_count \equiv info $\quad\{$ reference count preceding a macro definition or pen header \}
define add_mac_ref(\#) \equiv incr (ref_count(\#)) \quad \{make a new reference to a macro list $\}$
define general_macro $=0 \quad\{$ preface to a macro defined with a parameter list $\}$
define primary_macro $=1 \quad\{$ preface to a macro with a primary parameter $\}$
define secondary_macro $=2 \quad$ \{preface to a macro with a secondary parameter $\}$
define tertiary_macro $=3 \quad\{$ preface to a macro with a tertiary parameter $\}$
define expr_macro $=4 \quad\{$ preface to a macro with an undelimited expr parameter $\}$
define of_macro $=5 \quad$ \{preface to a macro with undelimited 'expr x of y ' parameters \}
define suffix_macro $=6 \quad\{$ preface to a macro with an undelimited suffix parameter $\}$
define text_macro $=7 \quad\{$ preface to a macro with an undelimited text parameter $\}$
procedure delete_mac_ref (p : pointer);
$\{p$ points to the reference count of a macro list that is losing one reference $\}$
begin if ref_count $(p)=$ null then flush_token_list (p)
else decr (ref_count $(p))$;
end;
227. The following subroutine displays a macro, given a pointer to its reference count.

〈Declare the procedure called print_cmd_mod 625〉
procedure show_macro (p : pointer; $q, l:$ integer $)$;
label exit;
var r : pointer; \{temporary storage \}
begin $p \leftarrow \operatorname{link}(p) ; \quad$ \{bypass the reference count $\}$
while $\operatorname{info}(p)>$ text_macro do
begin $r \leftarrow \operatorname{link}(p) ; \operatorname{link}(p) \leftarrow$ null; show_token_list $(p, \operatorname{null}, l, 0) ; \operatorname{link}(p) \leftarrow r ; p \leftarrow r ;$ if $l>0$ then $l \leftarrow l$-tally else return;
end; \{ control printing of 'ETC.'\}
tally $\leftarrow 0$;
case info (p) of
general_macro: print("->");
primary_macro, secondary_macro, tertiary_macro: begin print_char("<");
print_cmd_mod(param_type, info (p)); print(">->");
end;
expr_macro: print("<expr>->");
of_macro: print("<expr>of<primary>->");
suffix_macro: print("<suffix>->");
text_macro: print("<text>->");
end; \{ there are no other cases \}
show_token_list $(\operatorname{link}(p), q, l-t a l l y, 0)$;
exit: end;
228. Data structures for variables. The variables of METAFONT programs can be simple, like ' x ', or they can combine the structural properties of arrays and records, like 'x20a.b'. A METAFONT user assigns a type to a variable like x20a.b by saying, for example, 'boolean $x[] \mathrm{a} . \mathrm{b}$ '. It's time for us to study how such things are represented inside of the computer.

Each variable value occupies two consecutive words, either in a two-word node called a value node, or as a two-word subfield of a larger node. One of those two words is called the value field; it is an integer, containing either a scaled numeric value or the representation of some other type of quantity. (It might also be subdivided into halfwords, in which case it is referred to by other names instead of value.) The other word is broken into subfields called type, name_type, and link. The type field is a quarterword that specifies the variable's type, and name_type is a quarterword from which METAFONT can reconstruct the variable's name (sometimes by using the link field as well). Thus, only 1.25 words are actually devoted to the value itself; the other three-quarters of a word are overhead, but they aren't wasted because they allow METAFONT to deal with sparse arrays and to provide meaningful diagnostics.

In this section we shall be concerned only with the structural aspects of variables, not their values. Later parts of the program will change the type and value fields, but we shall treat those fields as black boxes whose contents should not be touched.

However, if the type field is structured, there is no value field, and the second word is broken into two pointer fields called attr_head and subscr_head. Those fields point to additional nodes that contain structural information, as we shall see.

```
define subscr_head_loc \((\#) \equiv \#+1 \quad\) \{ where value, subscr_head, and attr_head are \}
define attr_head \((\#) \equiv\) info(subscr_head_loc(\#)) \(\quad\) \{ pointer to attribute info \}
define subscr_head \((\#) \equiv\) link (subscr_head_loc \((\#)) \quad\) \{ pointer to subscript info \(\}\)
define value_node_size \(=2 \quad\{\) the number of words in a value node \(\}\)
```

229. An attribute node is three words long. Two of these words contain type and value fields as described above, and the third word contains additional information: There is an attr_loc field, which contains the hash address of the token that names this attribute; and there's also a parent field, which points to the value node of structured type at the next higher level (i.e., at the level to which this attribute is subsidiary). The name_type in an attribute node is 'attr'. The link field points to the next attribute with the same parent; these are arranged in increasing order, so that $\operatorname{attr}_{-} \operatorname{loc}(\operatorname{link}(p))>\operatorname{attr} \quad \operatorname{loc}(p)$. The final attribute node links to the constant end_attr, whose attr_loc field is greater than any legal hash address. The attr_head in the parent points to a node whose name_type is structured_root; this node represents the null attribute, i.e., the variable that is relevant when no attributes are attached to the parent. The attr_head node has the fields of either a value node, a subscript node, or an attribute node, depending on what the parent would be if it were not structured; but the subscript and attribute fields are ignored, so it effectively contains only the data of a value node. The link field in this special node points to an attribute node whose attr_loc field is zero; the latter node represents a collective subscript '[]' attached to the parent, and its link field points to the first non-special attribute node (or to end_attr if there are none).

A subscript node likewise occupies three words, with type and value fields plus extra information; its name_type is subscr. In this case the third word is called the subscript field, which is a scaled integer. The link field points to the subscript node with the next larger subscript, if any; otherwise the link points to the attribute node for collective subscripts at this level. We have seen that the latter node contains an upward pointer, so that the parent can be deduced.

The name_type in a parent-less value node is root, and the link is the hash address of the token that names this value.

In other words, variables have a hierarchical structure that includes enough threads running around so that the program is able to move easily between siblings, parents, and children. An example should be helpful: (The reader is advised to draw a picture while reading the following description, since that will help to firm up the ideas.) Suppose that ' x ' and ' $x . a$ ' and ' $x[] b$ ' and ' $x 5$ ' and ' $x 20 b$ ' have been mentioned in a user's program, where x[] b has been declared to be of boolean type. Let $h(x)$, $h(a)$, and $h(b)$ be the hash addresses of x , a, and b . Then eq_type $(h(x))=\operatorname{tag}_{-}$token and equiv $(h(x))=p$, where p is a two-word value node with name_type $(p)=$ root and $\operatorname{link}(p)=h(x)$. We have type $(p)=$ structured, attr _head $(p)=q$, and subscr_head $(p)=r$, where q points to a value node and r to a subscript node. (Are you still following this? Use a pencil to draw a diagram.) The lone variable ' x ' is represented by type (q) and value (q); furthermore name_type $(q)=$ structured_root and link $(q)=q 1$, where $q 1$ points to an attribute node representing 'x[]'. Thus name_type $(q 1)=\operatorname{attr}, \operatorname{attr} \quad l o c(q 1)=$ collective_subscript $=0$, $\operatorname{parent}(q 1)=p$, type $(q 1)=$ structured, attr_head $(q 1)=q q$, and subscr_head $(q 1)=q q 1 ; q q$ is a three-word "attribute-as-value" node with type $(q q)=$ numeric_type (assuming that x 5 is numeric, because $q q$ represents ' x[] ' with no further attributes), name_type $(q q)=\operatorname{structured_ root,~} \operatorname{attr}_{-} l o c(q q)=0$, parent $(q q)=p$, and $\operatorname{link}(q q)=q q 1$. (Now pay attention to the next part.) Node qq1 is an attribute node representing ' x[][] ', which has never yet occurred; its type field is undefined, and its value field is undefined. We have name_type $(q q 1)=$ attr, $\operatorname{attr}_{-} l o c(q q 1)=$ collective_subscript, $\operatorname{parent}(q q 1)=q 1$, and $\operatorname{link}(q q 1)=q q 2$. Since $q q^{2}$ represents ' x[] b ', type $\left(q q_{2}\right)=$ unknown_boolean; also $\operatorname{attr}-l o c(q q 2)=h(b)$, parent $(q q 2)=q 1$, name_type $\left(q q^{2}\right)=$ attr, $\operatorname{link}\left(q q^{2}\right)=$ end_attr. (Maybe colored lines will help untangle your picture.) Node r is a subscript node with type and value representing ' x 5 '; name_type $(r)=$ subscr, subscript $(r)=5.0$, and $\operatorname{link}(r)=r 1$ is another subscript node. To complete the picture, see if you can guess what link(r1) is; give up? It's q1. Furthermore subscript $(r 1)=20.0$, name_type $(r 1)=$ subscr, type $(r 1)=$ structured, attr_head $(r 1)=q q q$, subscr_head $(r 1)=q q q 1$, and we finish things off with three more nodes $q q q, q q q 1$, and $q q q 2$ hung onto $r 1$. (Perhaps you should start again with a larger sheet of paper.) The value of variable 'x20b' appears in node $q q q 2=\operatorname{link}(q q q 1)$, as you can well imagine. Similarly, the value of 'x. a' appears in node $q 2=\operatorname{link}(q 1)$, where $\operatorname{attr} _l o c(q 2)=h(a)$ and $\operatorname{parent}(q 2)=p$.

If the example in the previous paragraph doesn't make things crystal clear, a glance at some of the simpler subroutines below will reveal how things work out in practice.

The only really unusual thing about these conventions is the use of collective subscript attributes. The idea is to avoid repeating a lot of type information when many elements of an array are identical macros (for which distinct values need not be stored) or when they don't have all of the possible attributes. Branches
of the structure below collective subscript attributes do not carry actual values except for macro identifiers; branches of the structure below subscript nodes do not carry significant information in their collective subscript attributes.

```
    define attr_loc_loc \((\#) \equiv \#+2 \quad\{\) where the attr_loc and parent fields are \(\}\)
    define \(\operatorname{attr}\) _loc \((\#) \equiv \operatorname{info}(\) attr_loc_loc(\#)) \(\quad\{\) hash address of this attribute \(\}\)
    define parent \((\#) \equiv \operatorname{link}\left(\right.\) attr_loc_loc \(\left.\left._{-} \#\right)\right) \quad\{\) pointer to structured variable \(\}\)
    define subscript_loc \((\#) \equiv \#+2 \quad\) \{where the subscript field lives \(\}\)
    define subscript \((\#) \equiv\) mem \([\) subscript_loc \((\#)] . s c \quad\{\) subscript of this variable \(\}\)
    define attr_node_size \(=3 \quad\) \{ the number of words in an attribute node \(\}\)
    define subscr_node_size \(=3 \quad\{\) the number of words in a subscript node \(\}\)
    define collective_subscript \(=0 \quad\{\) code for the attribute '[]' \}
\(\langle\) Initialize table entries (done by INIMF only) 176\(\rangle+\equiv\)
    attr_loc \((\) end_attr \() \leftarrow\) hash_end \(+1 ;\) parent \((\) end_attr \() \leftarrow\) null;
```

230. Variables of type pair will have values that point to four-word nodes containing two numeric values. The first of these values has name_type $=x$ _part_sector and the second has name_type $=y_{\text {_ }}$ part_sector ; the link in the first points back to the node whose value points to this four-word node.

Variables of type transform are similar, but in this case their value points to a 12 -word node containing six values, identified by x_part_sector, y_part_sector, xx_part_sector, xy_part_sector, yx_part_sector, and yy_part_sector.

When an entire structured variable is saved, the root indication is temporarily replaced by saved_root.
Some variables have no name; they just are used for temporary storage while expressions are being evaluated. We call them capsules.
define x _part_loc $(\#) \equiv \# \quad\{$ where the xpart is found in a pair or transform node $\}$
define y_{-}part_loc $(\#) \equiv \#+2 \quad\{$ where the ypart is found in a pair or transform node \}
define xx_part_loc (\#) $\equiv \#+4 \quad\{$ where the xxpart is found in a transform node $\}$
define xy_part_loc $(\#) \equiv \#+6 \quad$ \{where the xypart is found in a transform node \}
define yx_part_loc (\#) $\equiv \#+8 \quad\{$ where the yxpart is found in a transform node $\}$
define $y y_{-} \operatorname{part}$ _loc $(\#) \equiv \#+10 \quad\{$ where the yypart is found in a transform node $\}$
define pair_node_size $=4 \quad\{$ the number of words in a pair node $\}$
define transform_node_size $=12 \quad\{$ the number of words in a transform node $\}$
\langle Global variables 13$\rangle+\equiv$
big_node_size: array [transform_type . . pair_type] of small_number;
231. The big_node_size array simply contains two constants that METAFONT occasionally needs to know.
\langle Set initial values of key variables 21$\rangle+\equiv$
big_node_size[transform_type] \leftarrow transform_node_size $;$ big_node_size[pair_type] \leftarrow pair_node_size;
232. If type $(p)=$ pair_type or transform_type and if $\operatorname{value}(p)=$ null, the procedure call init_big_node (p) will allocate a pair or transform node for p. The individual parts of such nodes are initially of type independent.
procedure init_big_node (p : pointer);
var q : pointer; \{ the new node \}
s: small_number; \{its size \}
begin $s \leftarrow$ big_node_size $[$ type $(p)] ; q \leftarrow$ get_node (s);
repeat $s \leftarrow s-2$; 〈Make variable $q+s$ newly independent 586\rangle;
name_type $(q+s) \leftarrow$ half $(s)+x_{-}$part_sector; $\operatorname{link}(q+s) \leftarrow$ null;
until $s=0$;
$\operatorname{link}(q) \leftarrow p ; \operatorname{value}(p) \leftarrow q ;$
end;
233. The $i d$ _transform function creates a capsule for the identity transformation.
function id_transform: pointer;
var $p, q, r:$ pointer; $\quad\{$ list manipulation registers $\}$
begin $p \leftarrow$ get_node (value_node_size); type $(p) \leftarrow$ transform_type; name_type $(p) \leftarrow$ capsule;
value $(p) \leftarrow$ null; init_big_node $(p) ; q \leftarrow$ value $(p) ; r \leftarrow q+$ transform_node_size;
repeat $r \leftarrow r-2 ;$ type $(r) \leftarrow$ known; value $(r) \leftarrow 0$;
until $r=q$;
$\operatorname{value}\left(x x _p a r t _l o c(q)\right) \leftarrow$ unity $;$ value $\left(y y _p a r t _l o c(q)\right) \leftarrow$ unity; id_transform $\leftarrow p$;
end;
234. Tokens are of type tag_token when they first appear, but they point to null until they are first used as the root of a variable. The following subroutine establishes the root node on such grand occasions.

```
procedure new_root( \(x\) : pointer);
    var \(p:\) pointer; \(\quad\{\) the new node \(\}\)
    begin \(p \leftarrow\) get_node \((\) value_node_size \()\); type \((p) \leftarrow\) undefined; name_type \((p) \leftarrow \operatorname{root} ; \operatorname{link}(p) \leftarrow x\);
    \(\operatorname{equiv}(x) \leftarrow p\);
    end;
```

235. These conventions for variable representation are illustrated by the print_variable_name routine, which displays the full name of a variable given only a pointer to its two-word value packet.
procedure print_variable_name (p : pointer);
label found, exit;
var q : pointer; \{ a token list that will name the variable's suffix \} r : pointer; \{ temporary for token list creation \}
begin while name_type $(p) \geq x$ _part_sector do
\langle Preface the output with a part specifier; return in the case of a capsule 237〉;
$q \leftarrow$ null;
while name_type $(p)>$ saved_root do
\langle Ascend one level, pushing a token onto list q and replacing p by its parent 236\rangle;
$r \leftarrow$ get_avail $; \operatorname{info}(r) \leftarrow \operatorname{link}(p) ; \operatorname{link}(r) \leftarrow q ;$
if name_type $(p)=$ saved_root then print (" (SAVED)");
show_token_list(r, null, el_gordo, tally); flush_token_list(r);
exit: end;
236. \langle Ascend one level, pushing a token onto list q and replacing p by its parent 236$\rangle \equiv$
begin if name_type $(p)=$ subscr then
begin $r \leftarrow$ new_num_tok $($ subscript $(p))$;
repeat $p \leftarrow \operatorname{link}(p)$;
until name_type $(p)=$ attr;
end
else if name_type $(p)=$ structured_root then
begin $p \leftarrow \operatorname{link}(p)$; goto found;
end
else begin if name_type $(p) \neq$ attr then confusion("var");
$r \leftarrow$ get_avail; $\operatorname{info}(r) \leftarrow \operatorname{attr}$ _loc (p); end;
$\operatorname{link}(r) \leftarrow q ; q \leftarrow r ;$
found: $p \leftarrow \operatorname{parent}(p)$;
end
This code is used in section 235.
237. 〈Preface the output with a part specifier; return in the case of a capsule 237$\rangle \equiv$
begin case name_type (p) of
x_part_sector: print_char("x");
y_part_sector: print_char("y");
xx_part_sector: print("xx");
xy_part_sector: print("xy");
yx_part_sector: print("yx");
yy_part_sector: print("yy");
capsule: begin $\operatorname{print}(" \%$ CAPSULE" $) ; ~ p r i n t _i n t(~ p-n u l l) ; ~ r e t u r n ; ~$
end;
end; \{ there are no other cases $\}$
print ("partப"); $p \leftarrow \operatorname{link}\left(p-2 *\left(n a m e _t y p e(p)-x _p a r t _s e c t o r\right)\right) ;$
end
This code is used in section 235.
238. The interesting function returns true if a given variable is not in a capsule, or if the user wants to trace capsules.
function interesting (p : pointer): boolean;
var t : small_number; \{a name_type \}
begin if internal[tracing_capsules] >0 then interesting \leftarrow true
else begin $t \leftarrow$ name_type (p);
if $t \geq x$ _part_sector then
if $t \neq$ capsule then $t \leftarrow$ name_type $(\operatorname{link}(p-2 *(t-x$ _part_sector $)))$;
interesting $\leftarrow(t \neq$ capsule $)$;
end;
end;
239. Now here is a subroutine that converts an unstructured type into an equivalent structured type, by inserting a structured node that is capable of growing. This operation is done only when name_type $(p)=$ root, subscr, or attr.
The procedure returns a pointer to the new node that has taken node p 's place in the structure. Node p itself does not move, nor are its value or type fields changed in any way.
function new_structure (p : pointer): pointer;
var $q, r:$ pointer; \{ list manipulation registers \}
begin case name_type (p) of
root: begin $q \leftarrow \operatorname{link}(p) ; r \leftarrow$ get_node(value_node_size); equiv $(q) \leftarrow r$;

end;

subscr: 〈Link a new subscript node r in place of node $p 240\rangle$;
attr: \langle Link a new attribute node r in place of node $p 241\rangle$;
othercases confusion("struct")
endcases;
$\operatorname{link}(r) \leftarrow \operatorname{link}(p) ;$ type $(r) \leftarrow$ structured $;$ name_type $(r) \leftarrow$ name_type $(p) ;$ attr_head $(r) \leftarrow p$;
name_type $(p) \leftarrow$ structured_root;
$q \leftarrow$ get_node $($ attr_node_size $) ; \operatorname{link}(p) \leftarrow q ;$ subscr_head $(r) \leftarrow q ;$ parent $(q) \leftarrow r ;$ type $(q) \leftarrow$ undefined;
name_type $(q) \leftarrow$ attr; link $(q) \leftarrow$ end_attr; attr_loc $(q) \leftarrow$ collective_subscript; new_structure $\leftarrow r$;
end;
240. 〈Link a new subscript node r in place of node $p 240\rangle \equiv$
begin $q \leftarrow p$;
repeat $q \leftarrow \operatorname{link}(q)$;
until name_type $(q)=$ attr;
$q \leftarrow$ parent $(q) ; r \leftarrow$ subscr_head_loc $(q) ; \quad\{\operatorname{link}(r)=\operatorname{subscr}$ _head $(q)\}$
repeat $q \leftarrow r ; r \leftarrow \operatorname{link}(r)$;
until $r=p$;
$r \leftarrow$ get_node (subscr_node_size); link $(q) \leftarrow r ;$ subscript $(r) \leftarrow \operatorname{subscript}(p) ;$
end
This code is used in section 239.
241. If the attribute is collective_subscript, there are two pointers to node p, so we must change both of them.
\langle Link a new attribute node r in place of node $p 241\rangle \equiv$
begin $q \leftarrow \operatorname{parent}(p)$; $r \leftarrow \operatorname{attr_ head}(q)$;
repeat $q \leftarrow r ; r \leftarrow \operatorname{link}(r)$;
until $r=p$;
$r \leftarrow$ get_node $($ attr_node_size $) ; \operatorname{link}(q) \leftarrow r ;$
mem $[$ attr_loc_loc $(r)] \leftarrow$ mem $[$ attr_loc_loc $(p)] ; \quad\{$ copy attr_loc and parent $\}$
if attr _loc $(p)=$ collective_subscript then
begin $q \leftarrow$ subscr_head_loc $($ parent $(p))$;
while $\operatorname{link}(q) \neq p$ do $q \leftarrow \operatorname{link}(q)$;
$\operatorname{link}(q) \leftarrow r$;
end;
end
This code is used in section 239.
242. The find_variable routine is given a pointer t to a nonempty token list of suffixes; it returns a pointer to the corresponding two-word value. For example, if t points to token x followed by a numeric token containing the value 7, find_variable finds where the value of x 7 is stored in memory. This may seem a simple task, and it usually is, except when x 7 has never been referenced before. Indeed, x may never have even been subscripted before; complexities arise with respect to updating the collective subscript information.
If a macro type is detected anywhere along path t, or if the first item on t isn't a tag_token, the value null is returned. Otherwise p will be a non-null pointer to a node such that undefined $<\operatorname{type}(p)<\operatorname{structured}$.
define abort_find \equiv
begin find_variable \leftarrow null; return; end
function find_variable (t : pointer): pointer;
label exit;
var p, q, r, s : pointer; $\{$ nodes in the "value" line \}
$p p, q q, r r, s s:$ pointer; $\quad\{$ nodes in the "collective" line \}
n : integer; $\{$ subscript or attribute \}
save_word: memory_word; \{ temporary storage for a word of mem \}
begin $p \leftarrow \operatorname{info}(t) ; t \leftarrow \operatorname{link}(t)$;
if eq_type $(p) \bmod$ outer_tag \neq tag_token then abort_find;
if $\operatorname{equiv}(p)=$ null then new_root (p);
$p \leftarrow \operatorname{equiv}(p) ; p p \leftarrow p ;$
while $t \neq$ null do
begin \langle Make sure that both nodes p and $p p$ are of structured type 243〉;
if $t<h i _m e m _m i n$ then \langle Descend one level for the subscript value $(t) 244\rangle$
else \langle Descend one level for the attribute $\operatorname{info}(t) 245\rangle$;
$t \leftarrow \operatorname{link}(t)$;
end;
if type $(p p) \geq$ structured then
if type $(p p)=$ structured then $p p \leftarrow \operatorname{attr}$ _head $(p p)$ else abort_find;
if type $(p)=$ structured then $p \leftarrow \operatorname{attr}$ _head (p);
if type $(p)=$ undefined then
begin if type $(p p)=$ undefined then
begin type $(p p) \leftarrow$ numeric_type; value $(p p) \leftarrow$ null;
end;
type $(p) \leftarrow$ type $(p p)$; value $(p) \leftarrow$ null;
end;
find_variable $\leftarrow p$;
exit: end;
243. Although $p p$ and p begin together, they diverge when a subscript occurs; $p p$ stays in the collective line while p goes through actual subscript values.
\langle Make sure that both nodes p and $p p$ are of structured type 243$\rangle \equiv$
if type $(p p) \neq$ structured then
begin if type $(p p)>$ structured then abort_find;
$s s \leftarrow$ new_structure $(p p)$;
if $p=p p$ then $p \leftarrow s s$;
$p p \leftarrow s s ;$
end; $\{$ now type $(p p)=$ structured $\}$
if type $(p) \neq$ structured then $\{$ it cannot be $>$ structured $\}$
$p \leftarrow$ new_structure $(p) \quad$ \{now type $(p)=\operatorname{structured}\}$
This code is used in section 242.
244. We want this part of the program to be reasonably fast, in case there are lots of subscripts at the same level of the data structure. Therefore we store an "infinite" value in the word that appears at the end of the subscript list, even though that word isn't part of a subscript node.
\langle Descend one level for the subscript value $(t) 244\rangle \equiv$
begin $n \leftarrow$ value $(t) ; p p \leftarrow \operatorname{link}\left(\operatorname{attr} _\right.$head $\left.(p p)\right) ; \quad$ \{now attr_loc $(p p)=$ collective_subscript $\}$
$q \leftarrow \operatorname{link}(\operatorname{attr}$ _head $(p))$; save_word \leftarrow mem $[$ subscript_loc $(q)]$; subscript $(q) \leftarrow$ el_gordo;
$s \leftarrow \operatorname{subscr}$ _head_loc $(p) ; \quad\{\operatorname{link}(s)=\operatorname{subscr}$ _head $(p)\}$
repeat $r \leftarrow s ; s \leftarrow \operatorname{link}(s)$;
until $n \leq \operatorname{subscript}(s)$;
if $n=\operatorname{subscript}(s)$ then $p \leftarrow s$
else begin $p \leftarrow$ get_node (subscr_node_size); $\operatorname{link}(r) \leftarrow p ; \operatorname{link}(p) \leftarrow s ; \operatorname{subscript}(p) \leftarrow n$;
name_type $(p) \leftarrow$ subscr; type $(p) \leftarrow$ undefined;
end;
mem $[$ subscript_loc $(q)] \leftarrow$ save_word;
end
This code is used in section 242.
245. 〈Descend one level for the attribute $\operatorname{info}(t) 245\rangle \equiv$
begin $n \leftarrow$ info (t); ss \leftarrow attr_head (pp);
repeat $r r \leftarrow s s ;$ ss $\leftarrow \operatorname{link}(s s)$;
until $n \leq$ attr_loc(ss);
if $n<\operatorname{attr}_{-}$loc (ss) then
begin $q q \leftarrow$ get_node(attr_node_size); $\operatorname{link}(r r) \leftarrow q q ; \operatorname{link}(q q) \leftarrow s s ;$ attr_loc $(q q) \leftarrow n$; name_type $(q q) \leftarrow$ attr; type $(q q) \leftarrow$ undefined; parent $(q q) \leftarrow p p ; s s \leftarrow q q$;
end;
if $p=p p$ then
begin $p \leftarrow s s ; p p \leftarrow s s$;
end
else begin $p p \leftarrow s s ; s \leftarrow \operatorname{attr}$ _head (p);
repeat $r \leftarrow s ; s \leftarrow \operatorname{link}(s)$;
until $n \leq \operatorname{attr}$ _loc(s);
if $n=\operatorname{attr}_{-} l o c(s)$ then $p \leftarrow s$
else begin $q \leftarrow$ get_node $($ attr_node_size $) ; \operatorname{link}(r) \leftarrow q ; \operatorname{link}(q) \leftarrow s ;$ attr_loc $(q) \leftarrow n$;
name_type $(q) \leftarrow \operatorname{attr} ;$ type $(q) \leftarrow$ undefined $;$ parent $(q) \leftarrow p ; p \leftarrow q$;
end;
end;
end
This code is used in section 242.

246．Variables lose their former values when they appear in a type declaration，or when they are defined to be macros or let equal to something else．A subroutine will be defined later that recycles the storage asso－ ciated with any particular type or value；our goal now is to study a higher level process called flush＿variable， which selectively frees parts of a variable structure．
This routine has some complexity because of examples such as＇numeric $\mathrm{x}[\mathrm{a}[\mathrm{c}] \mathrm{b}$＇，which recycles all variables of the form $\mathrm{x}[\mathrm{i}] \mathrm{a}[\mathrm{j}] \mathrm{b}$（and no others），while＇vardef $\mathrm{x}[\mathrm{]a}[]=\ldots$＇discards all variables of the form $\mathrm{x}[\mathrm{i}] \mathrm{a}[\mathrm{j}]$ followed by an arbitrary suffix，except for the collective node x[] a[] itself．The obvious way to handle such examples is to use recursion；so that＇s what we do．

Parameter p points to the root information of the variable；parameter t points to a list of one－word nodes that represent suffixes，with info $=$ collective＿subscript for subscripts．

```
〈Declare subroutines for printing expressions 257 〉
〈Declare basic dependency-list subroutines 594〉
〈Declare the recycling subroutines 268〉
〈Declare the procedure called flush_cur_exp 808〉
〈Declare the procedure called flush_below_variable 247〉
procedure flush_variable ( \(p, t\) : pointer; discard_suffixes : boolean);
    label exit;
    var \(q, r\) : pointer; \{ list manipulation \}
        \(n\) : halfword; \(\{\) attribute to match \}
    begin while \(t \neq\) null do
        begin if type \((p) \neq\) structured then return;
        \(n \leftarrow \operatorname{info}(t) ; t \leftarrow \operatorname{link}(t)\);
        if \(n=\) collective_subscript then
            begin \(r \leftarrow\) subscr_head_loc \((p) ; q \leftarrow \operatorname{link}(r) ; \quad\{q=\operatorname{subscr}\) _head \((p)\}\)
            while name_type \((q)=\) subscr do
                    begin flush_variable ( \(q, t\), discard_suffixes);
                    if \(t=\) null then
                        if type \((q)=\) structured then \(r \leftarrow q\)
                        else begin link \((r) \leftarrow \operatorname{link}(q)\); free_node( \(q\), subscr_node_size);
                        end
                    else \(r \leftarrow q\);
                    \(q \leftarrow \operatorname{link}(r) ;\)
                    end;
            end;
        \(p \leftarrow \operatorname{attr}\) _head \((p)\);
        repeat \(r \leftarrow p ; p \leftarrow \operatorname{link}(p)\);
        until \(\operatorname{attr}-\operatorname{loc}(p) \geq n\);
        if \(\operatorname{attr} r_{-} \operatorname{loc}(p) \neq n\) then return;
        end;
    if discard_suffixes then flush_below_variable ( \(p\) )
    else begin if type \((p)=\) structured then \(p \leftarrow \operatorname{attr}\) _head \((p)\);
        recycle_value ( \(p\) );
        end;
exit: end;
```

247. The next procedure is simpler; it wipes out everything but p itself, which becomes undefined.
\langle Declare the procedure called flush_below_variable 247$\rangle \equiv$
procedure flush_below_variable (p : pointer);
var q, r : pointer; \{list manipulation registers \}
begin if type $(p) \neq$ structured then recycle_value $(p) \quad\{$ this sets type $(p)=$ undefined $\}$
else begin $q \leftarrow$ subscr_head (p);
while name_type $(q)=$ subscr do
begin flush_below_variable $(q) ; r \leftarrow q ; q \leftarrow \operatorname{link}(q)$; free_node $(r$, subscr_node_size $)$;
end;
$r \leftarrow$ attr_head $(p) ; q \leftarrow \operatorname{link}(r) ;$ recycle_value $(r) ;$
if name_type $(p) \leq$ saved_root then free_node (r, value_node_size)
else free_node (r,subscr_node_size); \{ we assume that subscr_node_size $=$ attr_node_size $\}$
repeat flush_below_variable $(q) ; r \leftarrow q ; q \leftarrow \operatorname{link}(q) ;$ free_node $\left(r, \operatorname{attr_ node_ size);~}\right.$
until $q=$ end_attr;
type $(p) \leftarrow$ undefined;
end;
end;
This code is used in section 246.
248. Just before assigning a new value to a variable, we will recycle the old value and make the old value undefined. The und_type routine determines what type of undefined value should be given, based on the current type before recycling.
function und_type (p : pointer $)$: small_number;
begin case type (p) of
undefined, vacuous: und_type \leftarrow undefined;
boolean_type, unknown_boolean: und_type \leftarrow unknown_boolean;
string_type, unknown_string: und_type \leftarrow unknown_string;
pen_type, unknown_pen, future_pen: und_type \leftarrow unknown_pen;
path_type, unknown_path: und_type \leftarrow unknown_path;
picture_type, unknown_picture: und_type \leftarrow unknown_picture;
transform_type, pair_type, numeric_type: und_type \leftarrow type (p);
known, dependent, proto_dependent, independent: und_type \leftarrow numeric_type;
end; \{ there are no other cases \}
end;
249. The clear_symbol routine is used when we want to redefine the equivalent of a symbolic token. It must remove any variable structure or macro definition that is currently attached to that symbol. If the saving parameter is true, a subsidiary structure is saved instead of destroyed.
procedure clear_symbol (p : pointer; saving : boolean $)$;
var q : pointer; $\{\operatorname{equiv}(p)\}$
begin $q \leftarrow \operatorname{equiv}(p)$;
case eq_type (p) mod outer_tag of
defined_macro, secondary_primary_macro, tertiary_secondary_macro, expression_tertiary_macro: if \neg saving then delete_mac_ref (q);
tag_token: if $q \neq$ null then
if saving then name_type $(q) \leftarrow$ saved_root
else begin flush_below_variable (q); free_node (q, value_node_size);
end;
othercases do_nothing
endcases;
eqtb $[p] \leftarrow$ eqtb[frozen_undefined];
end;
250. Saving and restoring equivalents. The nested structure provided by begingroup and endgroup allows eqtb entries to be saved and restored, so that temporary changes can be made without difficulty. When the user requests a current value to be saved, METAFONT puts that value into its "save stack." An appearance of endgroup ultimately causes the old values to be removed from the save stack and put back in their former places.
The save stack is a linked list containing three kinds of entries, distinguished by their info fields. If p points to a saved item, then
$\operatorname{info}(p)=0$ stands for a group boundary; each begingroup contributes such an item to the save stack and each endgroup cuts back the stack until the most recent such entry has been removed.
$\operatorname{info}(p)=q$, where $1 \leq q \leq$ hash_end, means that mem $[p+1]$ holds the former contents of eqtb $[q]$. Such save stack entries are generated by save commands.
$\operatorname{info}(p)=$ hash_end $+q$, where $q>0$, means that $\operatorname{value}(p)$ is a scaled integer to be restored to internal parameter number q. Such entries are generated by interim commands.
The global variable save_ptr points to the top item on the save stack.
define save_node_size $=2 \quad$ \{ number of words per non-boundary save-stack node $\}$
define saved_equiv $(\#) \equiv \operatorname{mem}[\#+1] . h h \quad\{$ where an eqtb entry gets saved $\}$
define save_boundary_item (\#) \equiv
begin $\# \leftarrow$ get_avail; info $(\#) \leftarrow 0 ; \operatorname{link}(\#) \leftarrow$ save_ptr $;$ save_ptr $\leftarrow \# ;$
end
\langle Global variables 13$\rangle+\equiv$
save_ptr: pointer; \{ the most recently saved item \}
251. 〈Set initial values of key variables 21$\rangle+\equiv$
save_ptr \leftarrow null;
252. The save_variable routine is given a hash address q; it salts this address away in the save stack, together with its current equivalent, then makes token q behave as though it were brand new.

Nothing is stacked when save_ptr = null, however; there's no way to remove things from the stack when the program is not inside a group, so there's no point in wasting the space.

```
procedure save_variable( \(q\) : pointer);
    var \(p:\) pointer ; \{ temporary register \}
    begin if save_ptr \(\neq\) null then
        begin \(p \leftarrow\) get_node (save_node_size); info \((p) \leftarrow q ; \operatorname{link}(p) \leftarrow\) save_ptr; saved_equiv \((p) \leftarrow\) eqtb \([q]\);
        save_ptr \(\leftarrow p\);
        end;
    clear_symbol \((q,(\) save_ptr \(\neq\) null \())\);
    end;
```

253. Similarly, save_internal is given the location q of an internal quantity like tracing_pens. It creates a save stack entry of the third kind.
```
procedure save_internal( \(q\) : halfword);
    var \(p\) : pointer; \{ new item for the save stack \}
    begin if save_ptr \(\neq\) null then
        begin \(p \leftarrow\) get_node (save_node_size); info \((p) \leftarrow\) hash_end \(+q\); link \((p) \leftarrow\) save_ptr;
        value \((p) \leftarrow\) internal \([q]\); save_ptr \(\leftarrow p\);
        end;
    end;
```

254. At the end of a group, the unsave routine restores all of the saved equivalents in reverse order. This routine will be called only when there is at least one boundary item on the save stack.
```
procedure unsave;
    var \(q\) : pointer; \{ index to saved item \}
        p: pointer; \{temporary register \}
    begin while info (save_ptr) \(\neq 0\) do
        begin \(q \leftarrow\) info(save_ptr);
        if \(q>\) hash_end then
            begin if internal[tracing_restores] \(>0\) then
                begin begin_diagnostic; print_nl("\{restoringь"); slow_print(int_name[q - (hash_end)]);
                print_char("="); print_scaled(value(save_ptr)); print_char("\}"); end_diagnostic(false);
                end;
            internal \([q-(\) hash_end \()] \leftarrow\) value (save_ptr);
            end
        else begin if internal[tracing_restores] \(>0\) then
            begin begin_diagnostic; print_nl("\{restoringப"); slow_print(text(q)); print_char("\}");
                end_diagnostic(false);
                end;
            clear_symbol ( \(q\), false \() ;\) eqtb \([q] \leftarrow\) saved_equiv(save_ptr);
            if eq_type \((q)\) mod outer_tag \(=\) tag_token then
                begin \(p \leftarrow \operatorname{equiv}(q)\);
                    if \(p \neq\) null then name_type \((p) \leftarrow\) root;
                    end;
            end;
        \(p \leftarrow\) link(save_ptr); free_node(save_ptr, save_node_size); save_ptr \(\leftarrow p ;\)
        end;
    \(p \leftarrow\) link(save_ptr); free_avail(save_ptr); save_ptr \(\leftarrow p ;\)
    end;
```

255. Data structures for paths. When a METAFONT user specifies a path, METAFONT will create a list of knots and control points for the associated cubic spline curves. If the knots are $z_{0}, z_{1}, \ldots, z_{n}$, there are control points z_{k}^{+}and z_{k+1}^{-}such that the cubic splines between knots z_{k} and z_{k+1} are defined by Bézier's formula

$$
\begin{aligned}
z(t) & =B\left(z_{k}, z_{k}^{+}, z_{k+1}^{-}, z_{k+1} ; t\right) \\
& =(1-t)^{3} z_{k}+3(1-t)^{2} t z_{k}^{+}+3(1-t) t^{2} z_{k+1}^{-}+t^{3} z_{k+1}
\end{aligned}
$$

for $0 \leq t \leq 1$.
There is a 7 -word node for each knot z_{k}, containing one word of control information and six words for the x and y coordinates of z_{k}^{-}and z_{k} and z_{k}^{+}. The control information appears in the left_type and right_type fields, which each occupy a quarter of the first word in the node; they specify properties of the curve as it enters and leaves the knot. There's also a halfword link field, which points to the following knot.

If the path is a closed contour, knots 0 and n are identical; i.e., the link in knot $n-1$ points to knot 0 . But if the path is not closed, the left_type of knot 0 and the right_type of knot n are equal to endpoint. In the latter case the link in knot n points to knot 0 , and the control points z_{0}^{-}and z_{n}^{+}are not used.

$$
\begin{aligned}
& \text { define left_type }(\#) \equiv \text { mem }[\#] . \text { hh.b0 } \quad \text { \{characterizes the path entering this knot \} } \\
& \text { define right_type }(\#) \equiv \text { mem }[\#] . \text {.hh. } 61 \quad\{\text { characterizes the path leaving this knot }\} \\
& \text { define endpoint }=0 \quad\{\text { left_type at path beginning and right_type at path end }\} \\
& \text { define } x_{c} \operatorname{coord}(\#) \equiv \text { mem }[\#+1] . s c \quad\{\text { the } x \text { coordinate of this knot }\} \\
& \text { define } y_{-} \operatorname{coord}(\#) \equiv \operatorname{mem}[\#+2] . s c \quad\{\text { the } y \text { coordinate of this knot }\} \\
& \text { define left_ } x(\#) \equiv \operatorname{mem}[\#+3] . s c \quad\{\text { the } x \text { coordinate of previous control point }\} \\
& \text { define left_y }(\#) \equiv \operatorname{mem}[\#+4] . s c \quad\{\text { the } y \text { coordinate of previous control point }\} \\
& \text { define right_x }(\#) \equiv \text { mem }[\#+5] . s c \quad\{\text { the } x \text { coordinate of next control point }\} \\
& \text { define right_y }(\#) \equiv \operatorname{mem}[\#+6] \text {.sc } \quad\{\text { the } y \text { coordinate of next control point }\} \\
& \text { define knot_node_size }=7 \quad \text { \{ number of words in a knot node \}}
\end{aligned}
$$

256. Before the Bézier control points have been calculated, the memory space they will ultimately occupy is taken up by information that can be used to compute them. There are four cases:

- If right_type $=$ open, the curve should leave the knot in the same direction it entered; METAFONT will figure out a suitable direction.
- If right_type $=$ curl, the curve should leave the knot in a direction depending on the angle at which it enters the next knot and on the curl parameter stored in right_curl.
- If right_type $=$ given, the curve should leave the knot in a nonzero direction stored as an angle in right_given.
- If right_type $=$ explicit , the Bézier control point for leaving this knot has already been computed; it is in the right_x and right_y fields.
The rules for left_type are similar, but they refer to the curve entering the knot, and to left fields instead of right fields.
Non-explicit control points will be chosen based on "tension" parameters in the left_tension and right_tension fields. The 'atleast' option is represented by negative tension values.

For example, the METAFONT path specification

```
z0..z1..tension atleast 1..{curl 2}z2..z3{-1,-2}..tension 3 and 4..p,
```

where p is the path ' $z 4$..controls $z 45$ and $z 54 . . z 5$ ', will be represented by the six knots

left_type	left info	x_{-}coord, y_coord	right_type	right info
endpoint	,--	x_{0}, y_{0}	curl	$1.0,1.0$
open	,- 1.0	x_{1}, y_{1}	open	,--1.0
curl	$2.0,-1.0$	x_{2}, y_{2}	curl	$2.0,1.0$
given	$d, 1.0$	x_{3}, y_{3}	given	$d, 3.0$
open	,- 4.0	x_{4}, y_{4}	explicit	x_{45}, y_{45}
explicit	x_{54}, y_{54}	x_{5}, y_{5}	endpoint	,--

Here d is the angle obtained by calling n_arg (-unity,-two). Of course, this example is more complicated than anything a normal user would ever write.
These types must satisfy certain restrictions because of the form of METAFONT's path syntax: (i) open type never appears in the same node together with endpoint, given, or curl. (ii) The right_type of a node is explicit if and only if the left_type of the following node is explicit. (iii) endpoint types occur only at the ends, as mentioned above.

257．Here is a diagnostic routine that prints a given knot list in symbolic form．It illustrates the conventions discussed above，and checks for anomalies that might arise while METAFONT is being debugged．
\langle Declare subroutines for printing expressions 257$\rangle \equiv$
procedure print＿path（ h ：pointer；$s:$ str＿number；nuline ：boolean）；
label done，done1；
var $p, q:$ pointer；；for list traversal \}
begin print＿diagnostic（＂Path＂，s ，nuline）；print＿ln；$p \leftarrow h$ ；
repeat $q \leftarrow \operatorname{link}(p)$ ；
if $(p=n u l l) \vee(q=$ null $)$ then
begin print＿nl（＂？？？＂）；goto done；\｛ this won＇t happen \}
end；
\langle Print information for adjacent knots p and q 258〉；
$p \leftarrow q$ ；
if $(p \neq h) \vee($ left＿type $(h) \neq$ endpoint $)$ then 〈Print two dots，followed by given or curl if present 259\rangle ；
until $p=h$ ；
if left＿type $(h) \neq$ endpoint then print（＂cycle＂）；
done：end＿diagnostic（true）；
end；
See also sections 332，388，473，589，801，and 807.
This code is used in section 246.
258．\langle Print information for adjacent knots p and $q 258\rangle \equiv$
print＿two $\left(x_{-} \operatorname{coord}(p), y_{-} \operatorname{coord}(p)\right)$ ；
case right＿type（ p ）of
endpoint：begin if left＿type $(p)=$ open then $\operatorname{print}($＂\｛open？\}"); \{ can't happen $\}$
if $($ left＿type $(q) \neq$ endpoint $) \vee(q \neq h)$ then $q \leftarrow$ null；$\quad\{$ force an error $\}$
goto done1；
end；
explicit：〈Print control points between p and q ，then goto done1 261〉；
open：〈Print information for a curve that begins open 262〉；
curl，given：〈Print information for a curve that begins curl or given 263〉；
othercases print（＂？？？＂）\｛ can＇t happen \}
endcases；
if left＿type $(q) \leq$ explicit then $\operatorname{print}("$ ．．control？＂）\｛can＇t happen \}
else if $($ right＿tension $(p) \neq$ unity $) \vee($ left＿tension $(q) \neq$ unity $)$ then \langle Print tension between p and $q 260\rangle$ ； done1：
This code is used in section 257.
259．Since n_{-}sin＿cos produces fraction results，which we will print as if they were scaled，the magnitude of a given direction vector will be 4096.
\langle Print two dots，followed by given or curl if present 259$\rangle \equiv$
begin print＿nl（＂ப．．＂）；
if left＿type $(p)=$ given then
begin n＿sin＿cos（left＿given $(p))$ ；print＿char（＂\｛＂）；print＿scaled（n＿cos）；print＿char（＂，＂）；
print＿scaled（n＿sin）；print＿char（＂\}");

end

else if left＿type $(p)=$ curl then
begin print（＂\｛curl」＂）；print＿scaled（left＿curl（p））；print＿char（＂\}"); end；
end
This code is used in section 257.
260. \langle Print tension between p and $q 260\rangle \equiv$
begin print("..tension ${ }^{\bullet}$ ");
if right_tension $(p)<0$ then print("atleast");
print_scaled (abs(right_tension $(p)))$;
if right_tension $(p) \neq$ left_tension (q) then
begin print ("பandப");
if left_tension $(q)<0$ then print("atleast");
print_scaled (abs (left_tension $(q))$);
end;
end
This code is used in section 258 .
261. 〈Print control points between p and q, then goto done1 261$\rangle \equiv$
begin $\operatorname{print}\left(\right.$ ". . controls $\mathbf{s}_{\llcorner }$"); print_two $\left(\operatorname{right}_{-} x(p)\right.$, right_y $\left.(p)\right) ;$ print ("чandப");
if left_type $(q) \neq$ explicit then $\operatorname{print}($ "??") $\{$ can't happen $\}$
else p rint_two (left_x (q), left_y $(q))$;
goto done1;
end
This code is used in section 258.
262. \langle Print information for a curve that begins open 262$\rangle \equiv$
if $($ left_type $(p) \neq \operatorname{explicit}) \wedge($ left_type $(p) \neq$ open $)$ then $\operatorname{print}("\{o p e n ?\} ") \quad\{$ can’t happen $\}$
This code is used in section 258.
263. A curl of 1 is shown explicitly, so that the user sees clearly that METAFONT's default curl is present.
\langle Print information for a curve that begins curl or given 263$\rangle \equiv$
begin if left_type $(p)=$ open then $\operatorname{print}($ "??"); \{ can't happen $\}$
if right_type $(p)=$ curl then
begin print("\{curl⿺"); print_scaled(right_curl $(p))$;
end
else begin n_{-}sin_cos $($right_given $(p)) ;$ print_char("\{"); print_scaled (n_cos); print_char(", ");
print_scaled (n_sin);
end;
print_char("\}");
end
This code is used in section 258.
264. If we want to duplicate a knot node, we can say copy_knot:
function copy_knot (p : pointer): pointer;
var q : pointer; \{ the copy \}
$k: 0 \ldots k n o t _n o d e _s i z e-1 ; \quad$ \{runs through the words of a knot node \}
begin $q \leftarrow$ get_node(knot_node_size);
for $k \leftarrow 0$ to $k n o t _n o d e _s i z e ~-~ 1 ~ d o ~ m e m ~[q+k] \leftarrow \operatorname{mem}[p+k]$;
copy_knot $\leftarrow q$;
end;
265. The copy_path routine makes a clone of a given path.

```
function copy_path(p: pointer): pointer;
    label exit;
    var q, pp,qq: pointer; {for list manipulation }
    begin q\leftarrowget_node(knot_node_size); { this will correspond to p}
    qq\leftarrowq; pp\leftarrowp;
    loop begin left_type }(qq)\leftarrow\mathrm{ left_type }(pp); right_type (qq)\leftarrow right_type (pp)
        x_coord (qq) \leftarrow x_coord (pp); y_coord (qq) \leftarrow y_coord (pp);
        left_x (qq)}\leftarrowleft_x (pp); left_y (qq) \leftarrow left_y (pp)
        right_x }(qq)\leftarrowright_x (pp); right_y (qq) \leftarrowright_y (pp)
        if link}(pp)=p\mathrm{ then
            begin link (qq)}\leftarrowq; copy_path \leftarrowq; return;
            end;
        link (qq)}\leftarrow\mathrm{ get_node(knot_node_size); qq }\leftarrow\operatorname{link}(qq);pp\leftarrowlink(pp)
        end;
exit: end;
```

266. Similarly, there's a way to copy the reverse of a path. This procedure returns a pointer to the first node of the copy, if the path is a cycle, but to the final node of a non-cyclic copy. The global variable path_tail will point to the final node of the original path; this trick makes it easier to implement 'doublepath'.

All node types are assumed to be endpoint or explicit only.

```
function htap_ypoc ( \(p\) : pointer): pointer;
    label exit;
    var \(q, p p, q q, r r\) : pointer; \{for list manipulation \}
    begin \(q \leftarrow\) get_node(knot_node_size); \(\quad\{\) this will correspond to \(p\}\)
    \(q q \leftarrow q ; p p \leftarrow p ;\)
    loop begin right_type \((q q) \leftarrow\) left_type \((p p)\); left_type \((q q) \leftarrow\) right_type \((p p)\);
        \(x_{-}\)coord \((q q) \leftarrow x_{-}\)coord \((p p) ; y_{-} \operatorname{coord}(q q) \leftarrow y_{-} \operatorname{coord}(p p)\);
        right_ \(x(q q) \leftarrow\) left_ \(x(p p) ;\) right_ \(y(q q) \leftarrow\) left_ \(y(p p)\);
        left_ \(x(q q) \leftarrow\) right_ \(x(p p) ;\) left_ \(y(q q) \leftarrow\) right_y \((p p)\);
        if \(\operatorname{link}(p p)=p\) then
            begin \(\operatorname{link}(q) \leftarrow q q ;\) path_tail \(\leftarrow p p ;\) htap_ypoc \(\leftarrow q\); return;
            end;
        \(r r \leftarrow\) get_node \(\left(k n o t \_n o d e \_s i z e\right) ; \operatorname{link}(r r) \leftarrow q q ; q q \leftarrow r r ; p p \leftarrow \operatorname{link}(p p) ;\)
        end;
exit: end;
```

267. 〈Global variables 13$\rangle+\equiv$
path_tail: pointer; \{ the node that links to the beginning of a path \}
268. When a cyclic list of knot nodes is no longer needed, it can be recycled by calling the following subroutine.
\langle Declare the recycling subroutines 268$\rangle \equiv$
procedure toss_knot_list(p : pointer);
var q : pointer; \{ the node being freed $\}$
$r:$ pointer; $\{$ the next node $\}$
begin $q \leftarrow p$;
repeat $r \leftarrow$ link (q); free_node $\left(q, k n o t _n o d e _s i z e\right) ; ~ q \leftarrow r$;
until $q=p$;
end;
See also sections 385, 487, 620, and 809.
This code is used in section 246.

269．Choosing control points．Now we must actually delve into one of METAFONT＇s more difficult routines，the make＿choices procedure that chooses angles and control points for the splines of a curve when the user has not specified them explicitly．The parameter to make＿choices points to a list of knots and path information，as described above．

A path decomposes into independent segments at＂breakpoint＂knots，which are knots whose left and right angles are both prespecified in some way（i．e．，their left＿type and right＿type aren＇t both open）．
〈Declare the procedure called solve＿choices 284〉
procedure make＿choices（knots ：pointer）；
label done；
var h ：pointer；\｛ the first breakpoint \}
p, q ：pointer；\｛consecutive breakpoints being processed \}
〈Other local variables for make＿choices 280〉
begin check＿arith；$\quad\{$ make sure that arith＿error $=$ false $\}$
if internal［tracing＿choices］>0 then print＿path（knots，＂，பbefore ${ }_{\llcorner }$choices＂，true）；
〈 If consecutive knots are equal，join them explicitly 271\rangle ；
〈Find the first breakpoint，h ，on the path；insert an artificial breakpoint if the path is an unbroken cycle 272\rangle ；
$p \leftarrow h ;$
repeat \langle Fill in the control points between p and the next breakpoint，then advance p to that breakpoint 273〉；
until $p=h$ ；
if internal［tracing＿choices］＞ 0 then print＿path（knots，＂，பafter＿choices＂，true）；
if arith＿error then 〈Report an unexpected problem during the choice－making 270\rangle ；
end；
270．〈Report an unexpected problem during the choice－making 270$\rangle \equiv$

end
This code is used in section 269.
271. Two knots in a row with the same coordinates will always be joined by an explicit "curve" whose control points are identical with the knots.
\langle If consecutive knots are equal, join them explicitly 271$\rangle \equiv$

```
    \(p \leftarrow k n o t s\);
    repeat \(q \leftarrow \operatorname{link}(p)\);
        if \(x_{-} \operatorname{coord}(p)=x_{-} \operatorname{coord}(q)\) then
            if \(y_{-} \operatorname{coord}(p)=y_{-} \operatorname{coord}(q)\) then
            if right_type \((p)>\) explicit then
                begin right_type \((p) \leftarrow\) explicit;
                if left_type \((p)=\) open then
                begin left_type \((p) \leftarrow\) curl; left_curl \((p) \leftarrow\) unity;
                end;
                    left_type \((q) \leftarrow\) explicit;
                    if right_type \((q)=\) open then
                            begin right_type \((q) \leftarrow\) curl; right_curl \((q) \leftarrow\) unity;
                        end;
                    right_x \((p) \leftarrow x\) _coord \((p)\); left_x \((q) \leftarrow x\) _coord \((p)\);
                    right_y \((p) \leftarrow y_{-}\)coord \((p)\); left_ \(y(q) \leftarrow y_{-} \operatorname{coord}(p)\);
                    end;
        \(p \leftarrow q ;\)
    until \(p=k n o t s\)
```

This code is used in section 269.
272. If there are no breakpoints, it is necessary to compute the direction angles around an entire cycle. In this case the left_type of the first node is temporarily changed to end_cycle.
define end_cycle $=$ open +1
\langle Find the first breakpoint, h, on the path; insert an artificial breakpoint if the path is an unbroken
cycle 272$\rangle \equiv$
$h \leftarrow k n o t s ;$
loop begin if left_type $(h) \neq$ open then goto done;
if right_type $(h) \neq$ open then goto done;
$h \leftarrow \operatorname{link}(h)$;
if $h=$ knots then
begin left_type $(h) \leftarrow$ end_cycle; goto done;
end;
end;
done:
This code is used in section 269.
273. If right _type $(p)<$ given and $q=\operatorname{link}(p)$, we must have right_{-}type $(p)=$ left_type $(q)=$ explicit or endpoint.
\langle Fill in the control points between p and the next breakpoint, then advance p to that breakpoint 273$\rangle \equiv$

```
\(q \leftarrow \operatorname{link}(p)\);
if right_type \((p) \geq\) given then
        begin while \((\) left_type \((q)=\) open \() \wedge(\) right_type \((q)=\) open \()\) do \(q \leftarrow \operatorname{link}(q)\);
        〈Fill in the control information between consecutive breakpoints \(p\) and \(q\) 278〉;
        end;
    \(p \leftarrow q\)
```

This code is used in section 269.
274. Before we can go further into the way choices are made, we need to consider the underlying theory. The basic ideas implemented in make_choices are due to John Hobby, who introduced the notion of "mock curvature" at a knot. Angles are chosen so that they preserve mock curvature when a knot is passed, and this has been found to produce excellent results.

It is convenient to introduce some notations that simplify the necessary formulas. Let $d_{k, k+1}=\left|z_{k+1}-z_{k}\right|$ be the (nonzero) distance between knots k and $k+1$; and let

$$
\frac{z_{k+1}-z_{k}}{z_{k}-z_{k-1}}=\frac{d_{k, k+1}}{d_{k-1, k}} e^{i \psi_{k}}
$$

so that a polygonal line from z_{k-1} to z_{k} to z_{k+1} turns left through an angle of ψ_{k}. We assume that $\left|\psi_{k}\right| \leq 180^{\circ}$. The control points for the spline from z_{k} to z_{k+1} will be denoted by

$$
\begin{aligned}
z_{k}^{+} & =z_{k}+\frac{1}{3} \rho_{k} e^{i \theta_{k}}\left(z_{k+1}-z_{k}\right), \\
z_{k+1}^{-} & =z_{k+1}-\frac{1}{3} \sigma_{k+1} e^{-i \phi_{k+1}}\left(z_{k+1}-z_{k}\right),
\end{aligned}
$$

where ρ_{k} and σ_{k+1} are nonnegative "velocity ratios" at the beginning and end of the curve, while θ_{k} and ϕ_{k+1} are the corresponding "offset angles." These angles satisfy the condition

$$
\begin{equation*}
\theta_{k}+\phi_{k}+\psi_{k}=0 \tag{*}
\end{equation*}
$$

whenever the curve leaves an intermediate knot k in the direction that it enters.
275. Let α_{k} and β_{k+1} be the reciprocals of the "tension" of the curve at its beginning and ending points. This means that $\rho_{k}=\alpha_{k} f\left(\theta_{k}, \phi_{k+1}\right)$ and $\sigma_{k+1}=\beta_{k+1} f\left(\phi_{k+1}, \theta_{k}\right)$, where $f(\theta, \phi)$ is METAFONT's standard velocity function defined in the velocity subroutine. The cubic spline $B\left(z_{k}, z_{k}^{+}, z_{k+1}^{-}, z_{k+1} ; t\right)$ has curvature

$$
\frac{2 \sigma_{k+1} \sin \left(\theta_{k}+\phi_{k+1}\right)-6 \sin \theta_{k}}{\rho_{k}^{2} d_{k, k+1}} \quad \text { and } \quad \frac{2 \rho_{k} \sin \left(\theta_{k}+\phi_{k+1}\right)-6 \sin \phi_{k+1}}{\sigma_{k+1}^{2} d_{k, k+1}}
$$

at $t=0$ and $t=1$, respectively. The mock curvature is the linear approximation to this true curvature that arises in the limit for small θ_{k} and ϕ_{k+1}, if second-order terms are discarded. The standard velocity function satisfies

$$
f(\theta, \phi)=1+O\left(\theta^{2}+\theta \phi+\phi^{2}\right) ;
$$

hence the mock curvatures are respectively

$$
\begin{equation*}
\frac{2 \beta_{k+1}\left(\theta_{k}+\phi_{k+1}\right)-6 \theta_{k}}{\alpha_{k}^{2} d_{k, k+1}} \quad \text { and } \quad \frac{2 \alpha_{k}\left(\theta_{k}+\phi_{k+1}\right)-6 \phi_{k+1}}{\beta_{k+1}^{2} d_{k, k+1}} . \tag{**}
\end{equation*}
$$

276. The turning angles ψ_{k} are given, and equation $(*)$ above determines ϕ_{k} when θ_{k} is known, so the task of angle selection is essentially to choose appropriate values for each θ_{k}. When equation (*) is used to eliminate ϕ variables from $(* *)$, we obtain a system of linear equations of the form

$$
A_{k} \theta_{k-1}+\left(B_{k}+C_{k}\right) \theta_{k}+D_{k} \theta_{k+1}=-B_{k} \psi_{k}-D_{k} \psi_{k+1}
$$

where

$$
A_{k}=\frac{\alpha_{k-1}}{\beta_{k}^{2} d_{k-1, k}}, \quad B_{k}=\frac{3-\alpha_{k-1}}{\beta_{k}^{2} d_{k-1, k}}, \quad C_{k}=\frac{3-\beta_{k+1}}{\alpha_{k}^{2} d_{k, k+1}}, \quad D_{k}=\frac{\beta_{k+1}}{\alpha_{k}^{2} d_{k, k+1}}
$$

The tensions are always $\frac{3}{4}$ or more, hence each α and β will be at most $\frac{4}{3}$. It follows that $B_{k} \geq \frac{5}{4} A_{k}$ and $C_{k} \geq \frac{5}{4} D_{k}$; hence the equations are diagonally dominant; hence they have a unique solution. Moreover, in most cases the tensions are equal to 1 , so that $B_{k}=2 A_{k}$ and $C_{k}=2 D_{k}$. This makes the solution numerically stable, and there is an exponential damping effect: The data at knot $k \pm j$ affects the angle at knot k by a factor of $O\left(2^{-j}\right)$.
277. However, we still must consider the angles at the starting and ending knots of a non-cyclic path. These angles might be given explicitly, or they might be specified implicitly in terms of an amount of "curl."

Let's assume that angles need to be determined for a non-cyclic path starting at z_{0} and ending at z_{n}. Then equations of the form

$$
A_{k} \theta_{k-1}+\left(B_{k}+C_{k}\right) \theta_{k}+D_{k} \theta_{k+1}=R_{k}
$$

have been given for $0<k<n$, and it will be convenient to introduce equations of the same form for $k=0$ and $k=n$, where

$$
A_{0}=B_{0}=C_{n}=D_{n}=0
$$

If θ_{0} is supposed to have a given value E_{0}, we simply define $C_{0}=1, D_{0}=0$, and $R_{0}=E_{0}$. Otherwise a curl parameter, γ_{0}, has been specified at z_{0}; this means that the mock curvature at z_{0} should be γ_{0} times the mock curvature at z_{1}; i.e.,

$$
\frac{2 \beta_{1}\left(\theta_{0}+\phi_{1}\right)-6 \theta_{0}}{\alpha_{0}^{2} d_{01}}=\gamma_{0} \frac{2 \alpha_{0}\left(\theta_{0}+\phi_{1}\right)-6 \phi_{1}}{\beta_{1}^{2} d_{01}}
$$

This equation simplifies to

$$
\left(\alpha_{0} \chi_{0}+3-\beta_{1}\right) \theta_{0}+\left(\left(3-\alpha_{0}\right) \chi_{0}+\beta_{1}\right) \theta_{1}=-\left(\left(3-\alpha_{0}\right) \chi_{0}+\beta_{1}\right) \psi_{1}
$$

where $\chi_{0}=\alpha_{0}^{2} \gamma_{0} / \beta_{1}^{2}$; so we can set $C_{0}=\chi_{0} \alpha_{0}+3-\beta_{1}, D_{0}=\left(3-\alpha_{0}\right) \chi_{0}+\beta_{1}, R_{0}=-D_{0} \psi_{1}$. It can be shown that $C_{0}>0$ and $C_{0} B_{1}-A_{1} D_{0}>0$ when $\gamma_{0} \geq 0$, hence the linear equations remain nonsingular.

Similar considerations apply at the right end, when the final angle ϕ_{n} may or may not need to be determined. It is convenient to let $\psi_{n}=0$, hence $\theta_{n}=-\phi_{n}$. We either have an explicit equation $\theta_{n}=E_{n}$, or we have

$$
\left(\left(3-\beta_{n}\right) \chi_{n}+\alpha_{n-1}\right) \theta_{n-1}+\left(\beta_{n} \chi_{n}+3-\alpha_{n-1}\right) \theta_{n}=0, \quad \chi_{n}=\frac{\beta_{n}^{2} \gamma_{n}}{\alpha_{n-1}^{2}}
$$

When make_choices chooses angles, it must compute the coefficients of these linear equations, then solve the equations. To compute the coefficients, it is necessary to compute arctangents of the given turning angles ψ_{k}. When the equations are solved, the chosen directions θ_{k} are put back into the form of control points by essentially computing sines and cosines.

278．OK，we are ready to make the hard choices of make＿choices．Most of the work is relegated to an auxiliary procedure called solve＿choices，which has been introduced to keep make＿choices from being extremely long．
\langle Fill in the control information between consecutive breakpoints p and $q 278\rangle \equiv$
〈 Calculate the turning angles ψ_{k} and the distances $d_{k, k+1}$ ；set n to the length of the path 281〉；
\langle Remove open types at the breakpoints 282\rangle ；
solve＿choices (p, q, n)
This code is used in section 273.
279．It＇s convenient to precompute quantities that will be needed several times later．The values of delta＿x $[k]$ and delta＿y $[k]$ will be the coordinates of $z_{k+1}-z_{k}$ ，and the magnitude of this vector will be delta $[k]=d_{k, k+1}$ ．The path angle ψ_{k} between $z_{k}-z_{k-1}$ and $z_{k+1}-z_{k}$ will be stored in $p s i[k]$ ．
\langle Global variables 13$\rangle+\equiv$
delta＿x，delta＿y，delta：array $[0 \ldots$ path＿size $]$ of scaled；$\{$ knot differences $\}$
psi：array $[1 .$. path＿size $]$ of angle；\｛turning angles \}
280．〈Other local variables for make＿choices 280$\rangle \equiv$
$k, n: 0 .$. path＿size；$\quad\{$ current and final knot numbers \}
$s, t:$ pointer；$\quad\{$ registers for list traversal $\}$
delx，dely：scaled；\｛directions where open meets explicit \} sine，cosine：fraction；\｛trig functions of various angles \}
This code is used in section 269.
281．〈Calculate the turning angles ψ_{k} and the distances $d_{k, k+1}$ ；set n to the length of the path 281$\rangle \equiv$ $k \leftarrow 0 ; s \leftarrow p ; n \leftarrow$ path＿size $;$
repeat $t \leftarrow$ link (s) ；delta＿x $[k] \leftarrow x _$coord $(t)-x _\operatorname{coord}(s) ;$ delta＿y $[k] \leftarrow y_{-} \operatorname{coord}(t)-y_{-} \operatorname{coord}(s)$ ；
delta $[k] \leftarrow$ pyth＿add（delta＿x $[k]$ ，delta＿y $[k])$ ；
if $k>0$ then
begin sine \leftarrow make＿fraction（delta＿y $[k-1]$ ，delta $[k-1]$ ）；
cosine \leftarrow make＿fraction（delta＿x $[k-1]$ ，delta $[k-1]$ ）；
$p s i[k] \leftarrow n_{_}$arg $($take＿fraction $($delta＿x $[k]$ ，cosine $)+$ take＿fraction（delta＿y $[k]$, sine $)$,
take＿fraction（delta＿y $[k]$ ，cosine $)$－take＿fraction（delta＿x $[k]$ ，sine $)$ ）；
end；
incr $(k) ; s \leftarrow t ;$
if $k=$ path＿size then overflow（＂path Sisize＂，path＿size）；
if $s=q$ then $n \leftarrow k$ ；
until $(k \geq n) \wedge($ left＿type $(s) \neq$ end＿cycle $)$ ；
if $k=n$ then $p s i[n] \leftarrow 0$ else $p s i[k] \leftarrow p s i[1]$
This code is used in section 278.
282. When we get to this point of the code, right _type (p) is either given or curl or open. If it is open, we must have left_type $(p)=$ end_cycle or left_type $(p)=$ explicit. In the latter case, the open type is converted to given; however, if the velocity coming into this knot is zero, the open type is converted to a curl, since we don't know the incoming direction.

Similarly, left_type (q) is either given or curl or open or end_cycle. The open possibility is reduced either to given or to curl.
\langle Remove open types at the breakpoints 282$\rangle \equiv$
if left_type $(q)=$ open then
begin delx \leftarrow right_ $x(q)-x _$coord $(q) ;$ dely \leftarrow right_y $(q)-y_{\text {_coord }}(q)$;
if $($ delx $=0) \wedge($ dely $=0)$ then
begin left_type $(q) \leftarrow$ curl; left_curl $(q) \leftarrow$ unity;
end
else begin left_type $(q) \leftarrow$ given; left_given $(q) \leftarrow n _a r g(d e l x$, dely);
end;
end;
if $($ right_type $(p)=$ open $) \wedge($ left_type $(p)=$ explicit $)$ then
begin delx $\leftarrow x$ _coord $(p)-$ left_x (p); dely $\leftarrow y_{-} \operatorname{coord}(p)-l e f t _y(p)$;
if $($ delx $=0) \wedge($ dely $=0)$ then
begin right_type $(p) \leftarrow$ curl; right_curl $(p) \leftarrow$ unity; end
else begin right_type $(p) \leftarrow$ given; right_given $(p) \leftarrow n _a r g(d e l x$, dely $)$; end;
end
This code is used in section 278.
283. Linear equations need to be solved whenever $n>1$; and also when $n=1$ and exactly one of the breakpoints involves a curl. The simplest case occurs when $n=1$ and there is a curl at both breakpoints; then we simply draw a straight line.

But before coding up the simple cases, we might as well face the general case, since we must deal with it sooner or later, and since the general case is likely to give some insight into the way simple cases can be handled best.

When there is no cycle, the linear equations to be solved form a tri-diagonal system, and we can apply the standard technique of Gaussian elimination to convert that system to a sequence of equations of the form

$$
\theta_{0}+u_{0} \theta_{1}=v_{0}, \quad \theta_{1}+u_{1} \theta_{2}=v_{1}, \quad \ldots, \quad \theta_{n-1}+u_{n-1} \theta_{n}=v_{n-1}, \quad \theta_{n}=v_{n} .
$$

It is possible to do this diagonalization while generating the equations. Once θ_{n} is known, it is easy to determine $\theta_{n-1}, \ldots, \theta_{1}, \theta_{0}$; thus, the equations will be solved.

The procedure is slightly more complex when there is a cycle, but the basic idea will be nearly the same. In the cyclic case the right-hand sides will be $v_{k}+w_{k} \theta_{0}$ instead of simply v_{k}, and we will start the process off with $u_{0}=v_{0}=0, w_{0}=1$. The final equation will be not $\theta_{n}=v_{n}$ but $\theta_{n}+u_{n} \theta_{1}=v_{n}+w_{n} \theta_{0}$; an appropriate ending routine will take account of the fact that $\theta_{n}=\theta_{0}$ and eliminate the w 's from the system, after which the solution can be obtained as before.

When u_{k}, v_{k}, and w_{k} are being computed, the three pointer variables r, s, t will point respectively to knots $k-1, k$, and $k+1$. The u 's and w 's are scaled by 2^{28}, i.e., they are of type fraction; the θ 's and v 's are of type angle.
\langle Global variables 13$\rangle+\equiv$
theta: array $[0 .$. path_size $]$ of angle; $\left\{\right.$ values of $\left.\theta_{k}\right\}$
uu: array $[0 \ldots$ path_size $]$ of fraction; $\left\{\right.$ values of $\left.u_{k}\right\}$
vv: array $[0 \ldots$ path_size $]$ of angle; $\left\{\right.$ values of $\left.v_{k}\right\}$
$w w$: array $[0 \ldots$ path_size $]$ of fraction; $\left\{\right.$ values of $\left.w_{k}\right\}$

284．Our immediate problem is to get the ball rolling by setting up the first equation or by realizing that no equations are needed，and to fit this initialization into a framework suitable for the overall computation．
\langle Declare the procedure called solve＿choices 284$\rangle \equiv$
〈Declare subroutines needed by solve＿choices 296〉
procedure solve＿choices（ $p, q:$ pointer $; n:$ halfword $)$ ；
label found，exit；
var k： $0 \ldots$ path＿size；\｛ current knot number \}
r, s, t ：pointer；\｛registers for list traversal \}
〈Other local variables for solve＿choices 286〉
begin $k \leftarrow 0$ ；$s \leftarrow p$ ；
loop begin $t \leftarrow \operatorname{link}(s)$ ；
if $k=0$ then 〈Get the linear equations started；or return with the control points in place，if linear equations needn＇t be solved 285＞
else case left＿type（s）of
end＿cycle，open：〈Set up equation to match mock curvatures at z_{k} ；then goto found with θ_{n} adjusted to equal θ_{0} ，if a cycle has ended 287\rangle ；
curl：$\left\langle\right.$ Set up equation for a curl at θ_{n} and goto found 295〉；
given：〈Calculate the given value of θ_{n} and goto found 292\rangle ；
end；\｛ there are no other cases \}
$r \leftarrow s ; s \leftarrow t ; \operatorname{incr}(k) ;$
end；
found：〈Finish choosing angles and assigning control points 297〉；
exit：end；
This code is used in section 269.
285．On the first time through the loop，we have $k=0$ and r is not yet defined．The first linear equation， if any，will have $A_{0}=B_{0}=0$ ．
＜Get the linear equations started；or return with the control points in place，if linear equations needn＇t be solved 285$\rangle \equiv$
case right＿type（s）of
given：if left＿type $(t)=$ given then \langle Reduce to simple case of two givens and return 301〉
else 〈Set up the equation for a given value of $\left.\theta_{0} 293\right\rangle$ ；
curl：if left＿type $(t)=$ curl then \langle Reduce to simple case of straight line and return 302\rangle
else 〈Set up the equation for a curl at $\left.\theta_{0} 294\right\rangle$ ；
open：begin $u u[0] \leftarrow 0 ; v v[0] \leftarrow 0 ; w w[0] \leftarrow$ fraction＿one；
end；\｛ this begins a cycle $\}$
end \｛ there are no other cases \}
This code is used in section 284.

286．The general equation that specifies equality of mock curvature at z_{k} is

$$
A_{k} \theta_{k-1}+\left(B_{k}+C_{k}\right) \theta_{k}+D_{k} \theta_{k+1}=-B_{k} \psi_{k}-D_{k} \psi_{k+1},
$$

as derived above．We want to combine this with the already－derived equation $\theta_{k-1}+u_{k-1} \theta_{k}=v_{k-1}+w_{k-1} \theta_{0}$ in order to obtain a new equation $\theta_{k}+u_{k} \theta_{k+1}=v_{k}+w_{k} \theta_{0}$ ．This can be done by dividing the equation

$$
\left(B_{k}-u_{k-1} A_{k}+C_{k}\right) \theta_{k}+D_{k} \theta_{k+1}=-B_{k} \psi_{k}-D_{k} \psi_{k+1}-A_{k} v_{k-1}-A_{k} w_{k-1} \theta_{0}
$$

by $B_{k}-u_{k-1} A_{k}+C_{k}$ ．The trick is to do this carefully with fixed－point arithmetic，avoiding the chance of overflow while retaining suitable precision．
The calculations will be performed in several registers that provide temporary storage for intermediate quantities．
〈Other local variables for solve＿choices 286$\rangle \equiv$
$a a, b b, c c, f f, a c c:$ fraction；\｛ temporary registers \}
$d d$ ，ee：scaled；\｛likewise，but scaled \}
$l t, r t:$ scaled；\｛tension values \}
This code is used in section 284.
287．〈Set up equation to match mock curvatures at z_{k} ；then goto found with θ_{n} adjusted to equal θ_{0} ，if a cycle has ended 287$\rangle \equiv$
begin $\left\langle\right.$ Calculate the values $a a=A_{k} / B_{k}, b b=D_{k} / C_{k}, d d=\left(3-\alpha_{k-1}\right) d_{k, k+1}$ ，ee $=\left(3-\beta_{k+1}\right) d_{k-1, k}$ ， and $\left.c c=\left(B_{k}-u_{k-1} A_{k}\right) / B_{k} 288\right\rangle ;$
$\left\langle\right.$ Calculate the ratio $\left.\mathrm{ff}=C_{k} /\left(C_{k}+B_{k}-u_{k-1} A_{k}\right) 289\right\rangle ;$
$u u[k] \leftarrow$ take＿fraction $(f f, b b) ;\left\langle\right.$ Calculate the values of v_{k} and $\left.w_{k} 290\right\rangle$ ；
if left＿type $(s)=$ end＿cycle then $\left\langle\right.$ Adjust θ_{n} to equal θ_{0} and goto found 291〉；
end
This code is used in section 284.
288．Since tension values are never less than $3 / 4$ ，the values $a a$ and $b b$ computed here are never more than $4 / 5$ ．
$\left\langle\right.$ Calculate the values $a a=A_{k} / B_{k}, b b=D_{k} / C_{k}, d d=\left(3-\alpha_{k-1}\right) d_{k, k+1}$, ee $=\left(3-\beta_{k+1}\right) d_{k-1, k}$ ，and $\left.c c=\left(B_{k}-u_{k-1} A_{k}\right) / B_{k} \quad 288\right\rangle \equiv$
if abs $($ right＿tension $(r))=$ unity then begin $a a \leftarrow$ fraction＿half；$d d \leftarrow 2 *$ delta $[k]$ ； end
else begin $a a \leftarrow$ make＿fraction（unity， $3 *$ abs（right＿tension $(r))$－unity）； $d d \leftarrow$ take＿fraction（delta $[k]$ ，fraction＿three－make＿fraction（unity，abs（right＿tension $(r))$ ））； end；
if abs $($ left＿tension $(t))=$ unity then
begin $b b \leftarrow$ fraction＿half；ee $\leftarrow 2 *$ delta $[k-1]$ ；
end
else begin $b b \leftarrow$ make＿fraction（unity， $3 *$ abs（left＿tension $(t))$－unity）； $e e \leftarrow$ take＿fraction $($ delta $[k-1]$ ，fraction＿three－make＿fraction（unity，abs（left＿tension $(t)))$ ）； end；
$c c \leftarrow$ fraction＿one－take＿fraction $(u u[k-1], a a)$
This code is used in section 287.
289. The ratio to be calculated in this step can be written in the form

$$
\frac{\beta_{k}^{2} \cdot e e}{\beta_{k}^{2} \cdot e e+\alpha_{k}^{2} \cdot c c \cdot d d}
$$

because of the quantities just calculated. The values of $d d$ and $e e$ will not be needed after this step has been performed.
$\left\langle\right.$ Calculate the ratio $\left.f f=C_{k} /\left(C_{k}+B_{k}-u_{k-1} A_{k}\right) 289\right\rangle \equiv$
$d d \leftarrow t a k e _f r a c t i o n(d d, c c) ; l t \leftarrow a b s\left(l e f t _t e n s i o n(s)\right) ; r t \leftarrow a b s($ right_tension $(s))$;
if $l t \neq r t$ then $\left\{\beta_{k}^{-1} \neq \alpha_{k}^{-1}\right\}$
if $l t<r t$ then
begin ff \leftarrow make_fraction (lt,rt); ff \leftarrow take_fraction(ff, ff); $\left\{\alpha_{k}^{2} / \beta_{k}^{2}\right\}$
$d d \leftarrow$ take_fraction (dd, ff);
end
else begin $f f \leftarrow$ make_fraction $(r t, l t)$; ff \leftarrow take_fraction(ff, ff); $\left\{\beta_{k}^{2} / \alpha_{k}^{2}\right\}$
$e e \leftarrow t a k e-f r a c t i o n(e e, f f)$;
end;
$f f \leftarrow$ make_fraction $(e e, e e+d d)$
This code is used in section 287.
290. The value of u_{k-1} will be ≤ 1 except when $k=1$ and the previous equation was specified by a curl. In that case we must use a special method of computation to prevent overflow.
Fortunately, the calculations turn out to be even simpler in this "hard" case. The curl equation makes $w_{0}=0$ and $v_{0}=-u_{0} \psi_{1}$, hence $-B_{1} \psi_{1}-A_{1} v_{0}=-\left(B_{1}-u_{0} A_{1}\right) \psi_{1}=-c c \cdot B_{1} \psi_{1}$.
$\left\langle\right.$ Calculate the values of v_{k} and $\left.w_{k} 290\right\rangle \equiv$
$a c c \leftarrow-$ take_fraction $(p s i[k+1], u u[k])$;
if right_type $(r)=$ curl then
begin $w w[k] \leftarrow 0$; $v v[k] \leftarrow$ acc - take_fraction (psi [1], fraction_one -ff);
end
else begin ff \leftarrow make_fraction(fraction_one - ff,$c c$); $\quad\left\{\right.$ this is $\left.B_{k} /\left(C_{k}+B_{k}-u_{k-1} A_{k}\right)<5\right\}$
$a c c \leftarrow a c c-t a k e _$fraction $(p s i[k], f f) ; f f \leftarrow$ take_fraction $(f f, a a) ; \quad\left\{\right.$ this is $\left.A_{k} /\left(C_{k}+B_{k}-u_{k-1} A_{k}\right)\right\}$
$v v[k] \leftarrow a c c-t a k e _$fraction $(v v[k-1], f f)$;
if $w w[k-1]=0$ then $w w[k] \leftarrow 0$
else $w w[k] \leftarrow-$ take_fraction $(w w[k-1]$,ff $)$;
end
This code is used in section 287.
291. When a complete cycle has been traversed, we have $\theta_{k}+u_{k} \theta_{k+1}=v_{k}+w_{k} \theta_{0}$, for $1 \leq k \leq n$. We would like to determine the value of θ_{n} and reduce the system to the form $\theta_{k}+u_{k} \theta_{k+1}=v_{k}$ for $0 \leq k<n$, so that the cyclic case can be finished up just as if there were no cycle.

The idea in the following code is to observe that

$$
\begin{aligned}
\theta_{n} & =v_{n}+w_{n} \theta_{0}-u_{n} \theta_{1}=\cdots \\
& =v_{n}+w_{n} \theta_{0}-u_{n}\left(v_{1}+w_{1} \theta_{0}-u_{1}\left(v_{2}+\cdots-u_{n-2}\left(v_{n-1}+w_{n-1} \theta_{0}-u_{n-1} \theta_{0}\right) \ldots\right)\right)
\end{aligned}
$$

so we can solve for $\theta_{n}=\theta_{0}$.
$\left\langle\right.$ Adjust θ_{n} to equal θ_{0} and goto found 291$\rangle \equiv$
begin $a a \leftarrow 0 ; b b \leftarrow$ fraction_one $; \quad$ \{ we have $k=n$ \}
repeat $\operatorname{decr}(k)$;
if $k=0$ then $k \leftarrow n$;
$a a \leftarrow v v[k]-\operatorname{tak} e_{-}$fraction $(a a, u u[k]) ; b b \leftarrow w w[k]-\operatorname{take} e_{-}$fraction $(b b, u u[k]) ;$
until $k=n ; \quad\left\{\right.$ now $\left.\theta_{n}=a a+b b \cdot \theta_{n}\right\}$
$a a \leftarrow$ make_fraction $(a a$, fraction_one $-b b) ;$ theta $[n] \leftarrow a a ; v v[0] \leftarrow a a$;
for $k \leftarrow 1$ to $n-1$ do $v v[k] \leftarrow v v[k]+\operatorname{take}$ _fraction $(a a, w w[k])$;
goto found;
end
This code is used in section 287.
292. define reduce_angle $(\#) \equiv$

> if $a b s(\#)>$ one_eighty_deg then
> if $\#>0$ then $\# \leftarrow \#-$ three_sixty_deg else $\# \leftarrow \#+$ three_sixty_deg
$\left\langle\right.$ Calculate the given value of θ_{n} and goto found 292$\rangle \equiv$
begin theta $[n] \leftarrow$ left_given $(s)-n_{-}$arg $($delta_x $[n-1]$, delta_ $y[n-1])$; reduce_angle (theta $\left.[n]\right)$; goto found; end
This code is used in section 284.
293. 〈Set up the equation for a given value of $\left.\theta_{0} \quad 293\right\rangle \equiv$
begin $v v[0] \leftarrow$ right_given $(s)-n_{-}$arg $($delta_x $[0]$, delta_y $[0]) ;$ reduce_angle $(v v[0]) ; u u[0] \leftarrow 0 ; w w[0] \leftarrow 0$; end
This code is used in section 285.
294. $\left\langle\right.$ Set up the equation for a curl at $\left.\theta_{0} 294\right\rangle \equiv$
begin $c c \leftarrow$ right_curl (s); lt $\leftarrow a b s\left(l e f t _t e n s i o n ~(t)\right) ; r t \leftarrow a b s($ right_tension $(s))$;
if $(r t=u n i t y) \wedge(l t=u n i t y)$ then $u u[0] \leftarrow$ make_fraction $(c c+c c+u n i t y, c c+t w o)$
else $u u[0] \leftarrow$ curl_ratio $(c c, r t, l t)$;
$v v[0] \leftarrow-$ take_fraction $($ psi $[1], u u[0]) ; w w[0] \leftarrow 0$;
end
This code is used in section 285.
295. $\left\langle\right.$ Set up equation for a curl at θ_{n} and goto found 295$\rangle \equiv$
begin $c c \leftarrow$ left_curl $(s) ; l t \leftarrow a b s\left(l e f t _t e n s i o n ~(s)\right) ; r t \leftarrow \operatorname{abs}($ right_tension $(r))$;
if $(r t=u n i t y) \wedge(l t=$ unity $)$ then $f f \leftarrow$ make_fraction $(c c+c c+u n i t y, c c+t w o)$
else $f f \leftarrow c$ curl_ratio $(c c, l t, r t)$;
theta $[n] \leftarrow-m a k e_{-}$fraction (take_fraction $(v v[n-1]$, ff), fraction_one - take_fraction (ff , uu $\left.n-1]\right)$);
goto found;
end
This code is used in section 284.
296. The curl_ratio subroutine has three arguments, which our previous notation encourages us to call γ, α^{-1}, and β^{-1}. It is a somewhat tedious program to calculate

$$
\frac{(3-\alpha) \alpha^{2} \gamma+\beta^{3}}{\alpha^{3} \gamma+(3-\beta) \beta^{2}},
$$

with the result reduced to 4 if it exceeds 4 . (This reduction of curl is necessary only if the curl and tension are both large.) The values of α and β will be at most $4 / 3$.
\langle Declare subroutines needed by solve_choices 296$\rangle \equiv$
function curl_ratio(gamma, a_tension, b_tension : scaled): fraction;
var alpha, beta, num, denom, ff: fraction; \{registers \}
begin alpha \leftarrow make_fraction(unity, a_tension); beta \leftarrow make_fraction(unity, b_tension);
if alpha \leq beta then
begin $f f \leftarrow$ make_fraction (alpha, beta); ff \leftarrow take_fraction(ff, ff);
gamma \leftarrow take_fraction (gamma, ff);
beta \leftarrow beta div '10000; \{ convert fraction to scaled \}
denom \leftarrow take_fraction (gamma, alpha) + three - beta $;$
num \leftarrow take_fraction $($ gamma , fraction_three - alpha $)+$ beta;
end
else begin $f f \leftarrow$ make_fraction $($ beta, alpha $)$; $f f \leftarrow$ take_fraction $(f f, f f)$;
beta \leftarrow take_fraction(beta, ff) div '10000; \{ convert fraction to scaled \}
denom \leftarrow take_fraction $($ gamma alpha $)+\left(f f\right.$ div 1365) - beta; $\quad\left\{1365 \approx 2^{12} / 3\right\}$
num \leftarrow take_fraction $($ gamma, fraction_three - alpha $)+$ beta;
end;
if $n u m \geq$ denom + denom + denom + denom then curl_ratio \leftarrow fraction_four
else curl_ratio \leftarrow make_fraction(num, denom);
end;
See also section 299.
This code is used in section 284.
297. We're in the home stretch now.
\langle Finish choosing angles and assigning control points 297$\rangle \equiv$
for $k \leftarrow n-1$ downto 0 do theta $[k] \leftarrow v v[k]-\operatorname{take}-$ fraction $($ theta $a[k+1]$, $u u[k])$;
$s \leftarrow p ; k \leftarrow 0 ;$
repeat $t \leftarrow \operatorname{link}(s)$;
$n_{\text {_sin_cos }}($ theta $[k]) ;$ st $\leftarrow n_{\text {_sin }} ; c t \leftarrow n_{\text {_cos }} ;$
n_{-}sin_cos $(-p s i[k+1]-t h e t a[k+1]) ; s f \leftarrow n_{-} \sin ; c f \leftarrow n_{-} \cos ;$
set_controls (s, t, k);
incr $(k) ; s \leftarrow t$;
until $k=n$
This code is used in section 284.
298. The set_controls routine actually puts the control points into a pair of consecutive nodes p and q. Global variables are used to record the values of $\sin \theta, \cos \theta, \sin \phi$, and $\cos \phi$ needed in this calculation.
\langle Global variables 13$\rangle+\equiv$
st, $c t, s f, c f:$ fraction; $\quad\{$ sines and cosines $\}$
299. 〈Declare subroutines needed by solve_choices 296$\rangle+\equiv$
procedure set_controls ($p, q:$ pointer ; $k:$ integer $)$;
var $r r$, ss: fraction; \{velocities, divided by thrice the tension \} $l t, r t$: scaled; \{tensions \} sine: fraction; $\{\sin (\theta+\phi)\}$
begin $l t \leftarrow a b s\left(l e f t _t e n s i o n ~(q)\right) ; r t \leftarrow a b s($ right_tension $(p)) ; r r \leftarrow v e l o c i t y(s t, c t, s f, c f, r t)$;
$s s \leftarrow \operatorname{velocity}(s f, c f, s t, c t, l t)$;
if $($ right_tension $(p)<0) \vee($ left_tension $(q)<0)$ then
\langle Decrease the velocities, if necessary, to stay inside the bounding triangle 300\rangle;
right_x $(p) \leftarrow x_{-}$coord $(p)+$ take_fraction $\left(t a k e_{-}\right.$fraction $\left.\left(d e l t a _x[k], c t\right)-t a k e_{-} f r a c t i o n\left(d e l t a _y[k], s t\right), r r\right)$;
right_y $(p) \leftarrow y_{-} \operatorname{coord}(p)+$ take_fraction $\left(t a k e_{-}\right.$fraction $\left(d e l t a _y[k], c t\right)+$ take_fraction $\left(d e l t a _x[k], s t\right)$, rr $)$;
left_x $(q) \leftarrow x_{-} \operatorname{coord}(q)-t a k e_{-} f r a c t i o n\left(t a k e _f r a c t i o n\left(d e l t a _x[k], c f\right)+\right.$ take_fraction (delta_y $\left.[k], s f\right)$, ss);
left_y $(q) \leftarrow y_{-} \operatorname{coord}(q)-t a k e_{-} f r a c t i o n\left(t a k e _f r a c t i o n\left(d e l t a _y[k], c f\right)-t a k e_{-} f r a c t i o n\left(d e l t a _x[k], s f\right), s s\right)$;
right_type $(p) \leftarrow$ explicit; left_type $(q) \leftarrow$ explicit;
end;
300. The boundedness conditions $r r \leq \sin \phi / \sin (\theta+\phi)$ and $s s \leq \sin \theta / \sin (\theta+\phi)$ are to be enforced if $\sin \theta, \sin \phi$, and $\sin (\theta+\phi)$ all have the same sign. Otherwise there is no "bounding triangle."
\langle Decrease the velocities, if necessary, to stay inside the bounding triangle 300$\rangle \equiv$
if $((s t \geq 0) \wedge(s f \geq 0)) \vee((s t \leq 0) \wedge(s f \leq 0))$ then begin sine \leftarrow take_fraction $(a b s(s t), c f)+$ take_fraction $(a b s(s f), c t)$; if sine >0 then
begin sine \leftarrow take_fraction(sine, fraction_one + unity); \quad \{ safety factor $\}$ if right_tension $(p)<0$ then
if $a b_{-} v s_{-} c d(a b s(s f)$, fraction_one $, r r, \operatorname{sine})<0$ then $r r \leftarrow \operatorname{make}$ _fraction $(a b s(s f)$, sine $)$; if left_tension $(q)<0$ then
if $a b b_{-} v s _c d(a b s(s t)$, fraction_one, ss, sine $)<0$ then $s s \leftarrow \operatorname{make}$ _fraction $(a b s(s t)$, sine $)$; end; end
This code is used in section 299.
301. Only the simple cases remain to be handled.
\langle Reduce to simple case of two givens and return 301$\rangle \equiv$
begin $a a \leftarrow n_{-}$arg $($delta_x $[0]$, delta_y $[0])$;
n_{-}sin_cos $($right_given $(p)-a a) ; c t \leftarrow n_{-} \cos ;$ st $\leftarrow n_{-} s i n$;
n_{-}sin_cos $($left_given $(q)-a a) ; c f \leftarrow n_{-} \cos ; s f \leftarrow-n_{-} s i n ;$
set_controls $(p, q, 0)$; return;
end
This code is used in section 285.
302. \langle Reduce to simple case of straight line and return 302$\rangle \equiv$
begin right_type $(p) \leftarrow$ explicit; left_type $(q) \leftarrow$ explicit; lt \leftarrow abs $($ left_tension $(q))$;
$r t \leftarrow a b s($ right_tension $(p))$;
if $r t=$ unity then
begin if delta_x $[0] \geq 0$ then right_x $(p) \leftarrow x$ _coord $(p)+(($ delta_ $x[0]+1) \operatorname{div} 3)$ else right_ $x(p) \leftarrow x$ _coord $(p)+(($ delta_x $[0]-1) \operatorname{div} 3)$; if delta_y $[0] \geq 0$ then right_y $(p) \leftarrow y_{-} \operatorname{coord}(p)+(($ delta_- $[0]+1) \operatorname{div} 3)$ else $\operatorname{right} _y(p) \leftarrow y_{-} \operatorname{coord}(p)+(($ delta_y $[0]-1) \operatorname{div} 3)$; end
else begin $f f \leftarrow$ make_fraction(unity, $3 * r t$); $\{\alpha / 3\}$ right_x $(p) \leftarrow x_{-}$coord $(p)+$ take_fraction $\left(\right.$ delta_x $^{[0]}$, ff $)$; right_y $(p) \leftarrow y$ _coord $(p)+$ take_fraction $($ delta_y $[0], f f)$; end;
if $l t=$ unity then
begin if delta_x $[0] \geq 0$ then left_ $x(q) \leftarrow x$ _coord $(q)-(($ delta_x $[0]+1) \operatorname{div} 3)$ else left_x $(q) \leftarrow x _$coord $(q)-(($ delta_x $[0]-1) \operatorname{div} 3)$;
if delta_y $[0] \geq 0$ then left_y $(q) \leftarrow y_{-}$coord $(q)-(($ delta_ $y[0]+1) \operatorname{div} 3)$
else left_y $(q) \leftarrow y _\operatorname{coord}(q)-(($ delta_y $[0]-1) \operatorname{div} 3)$;
end
else begin $f f \leftarrow$ make_fraction (unity, $3 * l t$); $\{\beta / 3\}$ left_x $(q) \leftarrow x$ _coord $(q)-$ take_fraction (delta_x $[0]$, ff $)$; left_y $(q) \leftarrow y$ _coord $(q)-$ take_fraction (delta_y $[0]$, ff $)$; end;
return;
end
This code is used in section 285.
303. Generating discrete moves. The purpose of the next part of METAFONT is to compute discrete approximations to curves described as parametric polynomial functions $z(t)$. We shall start with the low level first, because an efficient "engine" is needed to support the high-level constructions.
Most of the subroutines are based on variations of a single theme, namely the idea of bisection. Given a Bernshteĭn polynomial

$$
B\left(z_{0}, z_{1}, \ldots, z_{n} ; t\right)=\sum_{k}\binom{n}{k} t^{k}(1-t)^{n-k} z_{k},
$$

we can conveniently bisect its range as follows:

1) Let $z_{k}^{(0)}=z_{k}$, for $0 \leq k \leq n$.
2) Let $z_{k}^{(j+1)}=\frac{1}{2}\left(z_{k}^{(j)}+z_{k+1}^{(j)}\right)$, for $0 \leq k<n-j$, for $0 \leq j<n$.

Then

$$
B\left(z_{0}, z_{1}, \ldots, z_{n} ; t\right)=B\left(z_{0}^{(0)}, z_{0}^{(1)}, \ldots, z_{0}^{(n)} ; 2 t\right)=B\left(z_{0}^{(n)}, z_{1}^{(n-1)}, \ldots, z_{n}^{(0)} ; 2 t-1\right) .
$$

This formula gives us the coefficients of polynomials to use over the ranges $0 \leq t \leq \frac{1}{2}$ and $\frac{1}{2} \leq t \leq 1$.
In our applications it will usually be possible to work indirectly with numbers that allow us to deduce relevant properties of the polynomials without actually computing the polynomial values. We will deal with coefficients $Z_{k}=2^{l}\left(z_{k}-z_{k-1}\right)$ for $1 \leq k \leq n$, instead of the actual numbers $z_{0}, z_{1}, \ldots, z_{n}$, and the value of l will increase by 1 at each bisection step. This technique reduces the amount of calculation needed for bisection and also increases the accuracy of evaluation (since one bit of precision is gained at each bisection). Indeed, the bisection process now becomes one level shorter:
1^{\prime}) Let $Z_{k}^{(1)}=Z_{k}$, for $1 \leq k \leq n$.
2^{\prime}) Let $Z_{k}^{(j+1)}=\frac{1}{2}\left(Z_{k}^{(j)}+Z_{k+1}^{(j)}\right)$, for $1 \leq k \leq n-j$, for $1 \leq j<n$.
The relevant coefficients $\left(Z_{1}^{\prime}, \ldots, Z_{n}^{\prime}\right)$ and $\left(Z_{1}^{\prime \prime}, \ldots, Z_{n}^{\prime \prime}\right)$ for the two subintervals after bisection are respectively $\left(Z_{1}^{(1)}, Z_{1}^{(2)}, \ldots, Z_{1}^{(n)}\right)$ and $\left(Z_{1}^{(n)}, Z_{2}^{(n-1)}, \ldots, Z_{n}^{(1)}\right)$. And the values of z_{0} appropriate for the bisected interval are $z_{0}^{\prime}=z_{0}$ and $z_{0}^{\prime \prime}=z_{0}+\left(Z_{1}^{\prime}+Z_{2}^{\prime}+\cdots+Z_{n}^{\prime}\right) / 2^{l+1}$.

Step 2^{\prime} involves division by 2 , which introduces computational errors of at most $\frac{1}{2}$ at each step; thus after l levels of bisection the integers Z_{k} will differ from their true values by at most $(n-1) l / 2$. This error rate is quite acceptable, considering that we have l more bits of precision in the Z 's by comparison with the z 's. Note also that the Z 's remain bounded; there's no danger of integer overflow, even though we have the identity $Z_{k}=2^{l}\left(z_{k}-z_{k-1}\right)$ for arbitrarily large l.

In fact, we can show not only that the Z 's remain bounded, but also that they become nearly equal, since they are control points for a polynomial of one less degree. If $\left|Z_{k+1}-Z_{k}\right| \leq M$ initially, it is possible to prove that $\left|Z_{k+1}-Z_{k}\right| \leq\left\lceil M / 2^{l}\right\rceil$ after l levels of bisection, even in the presence of rounding errors. Here's the proof [cf. Lane and Riesenfeld, IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-2 (1980), 35-46]: Assuming that $\left|Z_{k+1}-Z_{k}\right| \leq M$ before bisection, we want to prove that $\left|Z_{k+1}-Z_{k}\right| \leq\lceil M / 2\rceil$ afterward. First we show that $\left|Z_{k+1}^{(j)}-Z_{k}^{(j)}\right| \leq M$ for all j and k, by induction on j; this follows from the fact that

$$
\mid \text { half }(a+b)-\text { half }(b+c) \mid \leq \max (|a-b|,|b-c|)
$$

holds for both of the rounding rules half $(x)=\lfloor x / 2\rfloor$ and $\operatorname{half}(x)=\operatorname{sign}(x)\lfloor|x / 2|\rfloor$. (If $|a-b|$ and $|b-c|$ are equal, then $a+b$ and $b+c$ are both even or both odd. The rounding errors either cancel or round the numbers toward each other; hence

$$
\begin{aligned}
\mid \text { half }(a+b)-\text { half }(b+c) \mid & \leq\left|\frac{1}{2}(a+b)-\frac{1}{2}(b+c)\right| \\
& =\left|\frac{1}{2}(a-b)+\frac{1}{2}(b-c)\right| \leq \max (|a-b|,|b-c|),
\end{aligned}
$$

as required. A simpler argument applies if $|a-b|$ and $|b-c|$ are unequal.) Now it is easy to see that $\left|Z_{1}^{(j+1)}-Z_{1}^{(j)}\right| \leq\left\lfloor\frac{1}{2}\left|Z_{2}^{(j)}-Z_{1}^{(j)}\right|+\frac{1}{2}\right\rfloor \leq\left\lfloor\frac{1}{2}(M+1)\right\rfloor=\lceil M / 2\rceil$.
Another interesting fact about bisection is the identity

$$
Z_{1}^{\prime}+\cdots+Z_{n}^{\prime}+Z_{1}^{\prime \prime}+\cdots+Z_{n}^{\prime \prime}=2\left(Z_{1}+\cdots+Z_{n}+E\right)
$$

where E is the sum of the rounding errors in all of the halving operations $(|E| \leq n(n-1) / 4)$.
304. We will later reduce the problem of digitizing a complex cubic $z(t)=B\left(z_{0}, z_{1}, z_{2}, z_{3} ; t\right)$ to the following simpler problem: Given two real cubics $x(t)=B\left(x_{0}, x_{1}, x_{2}, x_{3} ; t\right)$ and $y(t)=B\left(y_{0}, y_{1}, y_{2}, y_{3} ; t\right)$ that are monotone nondecreasing, determine the set of integer points

$$
P=\{(\lfloor x(t)\rfloor,\lfloor y(t)\rfloor) \mid 0 \leq t \leq 1\} .
$$

Well, the problem isn't actually quite so clean as this; when the path goes very near an integer point (a, b), computational errors may make us think that P contains $(a-1, b)$ while in reality it should contain ($a, b-1$). Furthermore, if the path goes exactly through the integer points $(a-1, b-1)$ and (a, b), we will want P to contain one of the two points $(a-1, b)$ or $(a, b-1)$, so that P can be described entirely by "rook moves" upwards or to the right; no diagonal moves from $(a-1, b-1)$ to (a, b) will be allowed.

Thus, the set P we wish to compute will merely be an approximation to the set described in the formula above. It will consist of $\lfloor x(1)\rfloor-\lfloor x(0)\rfloor$ rightward moves and $\lfloor y(1)\rfloor-\lfloor y(0)\rfloor$ upward moves, intermixed in some order. Our job will be to figure out a suitable order.
The following recursive strategy suggests itself, when we recall that $x(0)=x_{0}, x(1)=x_{3}, y(0)=y_{0}$, and $y(1)=y_{3}:$

If $\left\lfloor x_{0}\right\rfloor=\left\lfloor x_{3}\right\rfloor$ then take $\left\lfloor y_{3}\right\rfloor-\left\lfloor y_{0}\right\rfloor$ steps up.
Otherwise if $\left\lfloor y_{0}\right\rfloor=\left\lfloor y_{3}\right\rfloor$ then take $\left\lfloor x_{3}\right\rfloor-\left\lfloor x_{0}\right\rfloor$ steps to the right.
Otherwise bisect the current cubics and repeat the process on both halves.
This intuitively appealing formulation does not quite solve the problem, because it may never terminate. For example, it's not hard to see that no steps will ever be taken if $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$! However, we can surmount this difficulty with a bit of care; so let's proceed to flesh out the algorithm as stated, before worrying about such details.
The bisect-and-double strategy discussed above suggests that we represent $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ by $\left(X_{1}, X_{2}, X_{3}\right)$, where $X_{k}=2^{l}\left(x_{k}-x_{k-1}\right)$ for some l. Initially $l=16$, since the x 's are scaled. In order to deal with other aspects of the algorithm we will want to maintain also the quantities $m=\left\lfloor x_{3}\right\rfloor-\left\lfloor x_{0}\right\rfloor$ and $R=2^{l}\left(x_{0} \bmod 1\right)$. Similarly, $\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ will be represented by $\left(Y_{1}, Y_{2}, Y_{3}\right), n=\left\lfloor y_{3}\right\rfloor-\left\lfloor y_{0}\right\rfloor$, and $S=2^{l}\left(y_{0} \bmod 1\right)$. The algorithm now takes the following form:

If $m=0$ then take n steps up.
Otherwise if $n=0$ then take m steps to the right.
Otherwise bisect the current cubics and repeat the process on both halves.
The bisection process for ($X_{1}, X_{2}, X_{3}, m, R, l$) reduces, in essence, to the following formulas:

$$
\begin{aligned}
& X_{2}^{\prime}=\text { half }\left(X_{1}+X_{2}\right), \quad X_{2}^{\prime \prime}=\text { half }\left(X_{2}+X_{3}\right), \quad X_{3}^{\prime}=\text { half }\left(X_{2}^{\prime}+X_{2}^{\prime \prime}\right), \\
& X_{1}^{\prime}=X_{1}, \quad X_{1}^{\prime \prime}=X_{3}^{\prime}, \quad X_{3}^{\prime \prime}=X_{3}, \\
& R^{\prime}=2 R, \quad T=X_{1}^{\prime}+X_{2}^{\prime}+X_{3}^{\prime}+R^{\prime}, \quad R^{\prime \prime}=T \bmod 2^{l+1}, \\
& m^{\prime}=\left\lfloor T / 2^{l+1}\right\rfloor, \quad m^{\prime \prime}=m-m^{\prime} .
\end{aligned}
$$

305. When $m=n=1$, the computation can be speeded up because we simply need to decide between two alternatives, (up, right) versus (right, up). There appears to be no simple, direct way to make the correct decision by looking at the values of $\left(X_{1}, X_{2}, X_{3}, R\right)$ and (Y_{1}, Y_{2}, Y_{3}, S); but we can streamline the bisection process, and we can use the fact that only one of the two descendants needs to be examined after each bisection. Furthermore, we observed earlier that after several levels of bisection the X 's and Y 's will be nearly equal; so we will be justified in assuming that the curve is essentially a straight line. (This, incidentally, solves the problem of infinite recursion mentioned earlier.)
It is possible to show that

$$
m=\left\lfloor\left(X_{1}+X_{2}+X_{3}+R+E\right) / 2^{l}\right\rfloor
$$

where E is an accumulated rounding error that is at most $3 \cdot\left(2^{l-16}-1\right)$ in absolute value. We will make sure that the X 's are less than 2^{28}; hence when $l=30$ we must have $m \leq 1$. This proves that the special case $m=n=1$ is bound to be reached by the time $l=30$. Furthermore $l=30$ is a suitable time to make the straight line approximation, if the recursion hasn't already died out, because the maximum difference between X 's will then be $<2^{14}$; this corresponds to an error of <1 with respect to the original scaling. (Stating this another way, each bisection makes the curve two bits closer to a straight line, hence 14 bisections are sufficient for 28 -bit accuracy.)

In the case of a straight line, the curve goes first right, then up, if and only if $\left(T-2^{l}\right)\left(2^{l}-S\right)>$ $\left(U-2^{l}\right)\left(2^{l}-R\right)$, where $T=X_{1}+X_{2}+X_{3}+R$ and $U=Y_{1}+Y_{2}+Y_{3}+S$. For the actual curve essentially runs from $\left(R / 2^{l}, S / 2^{l}\right)$ to $\left(T / 2^{l}, U / 2^{l}\right)$, and we are testing whether or not $(1,1)$ is above the straight line connecting these two points. (This formula assumes that $(1,1)$ is not exactly on the line.)
306. We have glossed over the problem of tie-breaking in ambiguous cases when the cubic curve passes exactly through integer points. METAFONT finesses this problem by assuming that coordinates (x, y) actually stand for slightly perturbed values $(x+\xi, y+\eta)$, where ξ and η are infinitesimals whose signs will determine what to do when x and/or y are exact integers. The quantities $\lfloor x\rfloor$ and $\lfloor y\rfloor$ in the formulas above should actually read $\lfloor x+\xi\rfloor$ and $\lfloor y+\eta\rfloor$.
If x is a scaled value, we have $\lfloor x+\xi\rfloor=\lfloor x\rfloor$ if $\xi>0$, and $\lfloor x+\xi\rfloor=\left\lfloor x-2^{-16}\right\rfloor$ if $\xi<0$. It is convenient to represent ξ by the integer xi_corr, defined to be 0 if $\xi>0$ and 1 if $\xi<0$; then, for example, the integer $\lfloor x+\xi\rfloor$ can be computed as floor_unscaled (x-xi_corr). Similarly, η is conveniently represented by eta_corr.
In our applications the sign of $\xi-\eta$ will always be the same as the sign of ξ. Therefore it turns out that the rule for straight lines, as stated above, should be modified as follows in the case of ties: The line goes first right, then up, if and only if $\left(T-2^{l}\right)\left(2^{l}-S\right)+\xi>\left(U-2^{l}\right)\left(2^{l}-R\right)$. And this relation holds iff $a b b_{-} v s_{-} c d\left(T-2^{l}, 2^{l}-S, U-2^{l}, 2^{l}-R\right)-x i _c o r r \geq 0$.

These conventions for rounding are symmetrical, in the sense that the digitized moves obtained from $\left(x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}, \xi, \eta\right)$ will be exactly complementary to the moves that would be obtained from $\left(-x_{3},-x_{2},-x_{1},-x_{0},-y_{3},-y_{2},-y_{1},-y_{0},-\xi,-\eta\right)$, if arithmetic is exact. However, truncation errors in the bisection process might upset the symmetry. We can restore much of the lost symmetry by adding xi_corr or eta_corr when halving the data.
307. One further possibility needs to be mentioned: The algorithm will be applied only to cubic polynomials $B\left(x_{0}, x_{1}, x_{2}, x_{3} ; t\right)$ that are nondecreasing as t varies from 0 to 1 ; this condition turns out to hold if and only if $x_{0} \leq x_{1}$ and $x_{2} \leq x_{3}$, and either $x_{1} \leq x_{2}$ or $\left(x_{1}-x_{2}\right)^{2} \leq\left(x_{1}-x_{0}\right)\left(x_{3}-x_{2}\right)$. If bisection were carried out with perfect accuracy, these relations would remain invariant. But rounding errors can creep in, hence the bisection algorithm can produce non-monotonic subproblems from monotonic initial conditions. This leads to the potential danger that m or n could become negative in the algorithm described above.
For example, if we start with $\left(x_{1}-x_{0}, x_{2}-x_{1}, x_{3}-x_{2}\right)=\left(X_{1}, X_{2}, X_{3}\right)=(7,-16,39)$, the corresponding polynomial is monotonic, because $16^{2}<7 \cdot 39$. But the bisection algorithm produces the left descendant $(7,-5,3)$, which is nonmonotonic; its right descendant is $(0,-1,3)$.

Fortunately we can prove that such rounding errors will never cause the algorithm to make a tragic mistake. At every stage we are working with numbers corresponding to a cubic polynomial $B\left(\tilde{x}_{0}, \tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right)$ that approximates some monotonic polynomial $B\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. The accumulated errors are controlled so that $\left|x_{k}-\tilde{x}_{k}\right|<\epsilon=3 \cdot 2^{-16}$. If bisection is done at some stage of the recursion, we have $m=\left\lfloor\tilde{x}_{3}\right\rfloor-\left\lfloor\tilde{x}_{0}\right\rfloor>0$, and the algorithm computes a bisection value \bar{x} such that $m^{\prime}=\lfloor\bar{x}\rfloor-\left\lfloor\tilde{x}_{0}\right\rfloor$ and $m^{\prime \prime}=\left\lfloor\tilde{x}_{3}\right\rfloor-\lfloor\bar{x}\rfloor$. We want to prove that neither m^{\prime} nor $m^{\prime \prime}$ can be negative. Since \bar{x} is an approximation to a value in the interval $\left[x_{0}, x_{3}\right]$, we have $\bar{x}>x_{0}-\epsilon$ and $\bar{x}<x_{3}+\epsilon$, hence $\bar{x}>\tilde{x}_{0}-2 \epsilon$ and $\bar{x}<\tilde{x}_{3}+2 \epsilon$. If m^{\prime} is negative we must have $\tilde{x}_{0} \bmod 1<2 \epsilon$; if $m^{\prime \prime}$ is negative we must have $\tilde{x}_{3} \bmod 1>1-2 \epsilon$. In either case the condition $\left\lfloor\tilde{x}_{3}\right\rfloor-\left\lfloor\tilde{x}_{0}\right\rfloor>0$ implies that $\tilde{x}_{3}-\tilde{x}_{0}>1-2 \epsilon$, hence $x_{3}-x_{0}>1-4 \epsilon$. But it can be shown that if $B\left(x_{0}, x_{1}, x_{2}, x_{3} ; t\right)$ is a monotonic cubic, then $B\left(x_{0}, x_{1}, x_{2}, x_{3} ; \frac{1}{2}\right)$ is always between $.06\left[x_{0}, x_{3}\right]$ and $.94\left[x_{0}, x_{3}\right]$; and it is impossible for \bar{x} to be within ϵ of such a number. Contradiction! (The constant .06 is actually $(2-\sqrt{3}) / 4$; the worst case occurs for polynomials like $B(0,2-\sqrt{3}, 1-\sqrt{3}, 3 ; t)$.)
308. OK, now that a long theoretical preamble has justified the bisection-and-doubling algorithm, we are ready to proceed with its actual coding. But we still haven't discussed the form of the output.
For reasons to be discussed later, we shall find it convenient to record the output as follows: Moving one step up is represented by appending a ' 1 ' to a list; moving one step right is represented by adding unity to the element at the end of the list. Thus, for example, the net effect of "(up, right, right, up, right)" is to append $(3,2)$.

The list is kept in a global array called move. Before starting the algorithm, METAFONT should check that move_ptr $+\left\lfloor y_{3}\right\rfloor-\left\lfloor y_{0}\right\rfloor \leq$ move_size, so that the list won't exceed the bounds of this array.
\langle Global variables 13$\rangle+\equiv$
move: array $[0 .$. move_size] of integer; \{ the recorded moves \} move_ptr: 0 . . move_size; $\{$ the number of items in the move list \}
309. When bisection occurs, we "push" the subproblem corresponding to the right-hand subinterval onto the bisect_stack while we continue to work on the left-hand subinterval. Thus, the bisect_stack will hold ($\left.X_{1}, X_{2}, X_{3}, R, m, Y_{1}, Y_{2}, Y_{3}, S, n, l\right)$ values for subproblems yet to be tackled.

At most 15 subproblems will be on the stack at once (namely, for $l=15,16, \ldots, 29$); but the stack is bigger than this, because it is used also for more complicated bisection algorithms.

\langle Global variables 13$\rangle+\equiv$
bisect_stack: array [0.. bistack_size] of integer;
bisect_ptr: 0 . . bistack_size;
310. 〈Check the "constant" values for consistency 14$\rangle+\equiv$ if $15 *$ move_increment $>$ bistack_size then $b a d \leftarrow 31$;

311．The make＿moves subroutine is given scaled values $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ and（ $y_{0}, y_{1}, y_{2}, y_{3}$ ）that represent monotone－nondecreasing polynomials；it makes $\left\lfloor x_{3}+\xi\right\rfloor-\left\lfloor x_{0}+\xi\right\rfloor$ rightward moves and $\left\lfloor y_{3}+\eta\right\rfloor-\left\lfloor y_{0}+\eta\right\rfloor$ upward moves，as explained earlier．（Here $\lfloor x+\xi\rfloor$ actually stands for $\left\lfloor x / 2^{16}-x i _c o r r\right\rfloor$ ，if x is regarded as an integer without scaling．）The unscaled integers x_{k} and y_{k} should be less than 2^{28} in magnitude．

It is assumed that move＿ptr $+\left\lfloor y_{3}+\eta\right\rfloor-\left\lfloor y_{0}+\eta\right\rfloor<$ move＿size when this procedure is called，so that the capacity of the move array will not be exceeded．
The variables r and s in this procedure stand respectively for $R-x i_{-}$corr and $S-$ eta＿corr in the theory discussed above．
procedure make＿moves（xx0，xx1，xx2 ，xx3 ，yy0，yy1，yy2，yy3 ：scaled；xi＿corr，eta＿corr ：small＿number）；
label continue，done，exit；
var $x 1, x 2, x 3, m, r, y 1, y 2, y 3, n, s, l$ ：integer；$\{$ bisection variables explained above $\}$
$q, t, u, x 2 a, x 3 a, y 2 a, y 3 a:$ integer；\｛ additional temporary registers \}
begin if $(x x 3<x x 0) \vee(y y 3<y y 0)$ then confusion $(" m$＂）；
$l \leftarrow 16$ ；bisect＿ptr $\leftarrow 0$ ；
$x 1 \leftarrow x x 1-x x 0 ; x 2 \leftarrow x x 2-x x 1 ; x 3 \leftarrow x x 3-x x 2$ ；
if $x x 0 \geq x i$ corr then $r \leftarrow\left(x x 0-x i _c o r r\right) \bmod$ unity
else $r \leftarrow$ unity $-1-((-x x 0+$ xi＿corr -1$) \bmod$ unity $)$ ；
$m \leftarrow(x x 3-x x 0+r)$ div unity；
$y 1 \leftarrow y y 1-y y 0 ; y 2 \leftarrow y y 2-y y 1 ; y 3 \leftarrow y y 3-y y 2 ;$
if yy $0 \geq$ eta＿corr then $s \leftarrow(y y 0-$ eta＿corr $) \bmod$ unity
else $s \leftarrow$ unity $-1-((-y y 0+$ eta＿corr -1$) \bmod$ unity $)$ ；
$n \leftarrow(y y 3-y y 0+s) \operatorname{div}$ unity；
if（xx3－xx0 \geq fraction＿one）\vee（yy3－yy0 \geq fraction＿one）then
〈Divide the variables by two，to avoid overflow problems 313〉；
loop begin continue：〈Make moves for current subinterval；if bisection is necessary，push the second subinterval onto the stack，and goto continue in order to handle the first subinterval 314\rangle ； if bisect＿ptr $=0$ then return； \langle Remove a subproblem for make＿moves from the stack 312〉； end；
exit：end；
312．〈Remove a subproblem for make＿moves from the stack 312$\rangle \equiv$
bisect＿ptr \leftarrow bisect＿ptr－move＿increment；
$x 1 \leftarrow$ stack＿x $1 ; x 2 \leftarrow$ stack＿x $2 ; x 3 \leftarrow$ stack＿x3 $; r \leftarrow$ stack＿$r ; m \leftarrow$ stack＿$m ;$
$y 1 \leftarrow$ stack＿y1；y2 \leftarrow stack＿y2；$y 3 \leftarrow$ stack＿y3 $; s \leftarrow$ stack＿s $; n \leftarrow$ stack＿n $;$
$l \leftarrow$ stack＿l
This code is used in section 311.
313．Our variables $\left(x 1, x 2, x_{3}\right)$ correspond to $\left(X_{1}, X_{2}, X_{3}\right)$ in the notation of the theory developed above． We need to keep them less than 2^{28} in order to avoid integer overflow in weird circumstances．For example， data like $x_{0}=-2^{28}+2^{16}-1$ and $x_{1}=x_{2}=x_{3}=2^{28}-1$ would otherwise be problematical．Hence this part of the code is needed，if only to thwart malicious users．
\langle Divide the variables by two，to avoid overflow problems 313$\rangle \equiv$

```
    begin \(x 1 \leftarrow\) half \((x 1+\) xi_corr \()\); \(x 2 \leftarrow\) half \(\left(x 2+x i \_c o r r\right) ; x 3 \leftarrow\) half \(\left(x 3+x i \_c o r r\right)\);
    \(r \leftarrow h a l f\left(r+x i \_c o r r\right)\);
    \(y 1 \leftarrow\) half \(\left(y 1+e t a \_c o r r\right) ; y 2 \leftarrow h a l f\left(y 2+e t a \_c o r r\right) ; y 3 \leftarrow h a l f\left(y 3+e t a \_c o r r\right) ; ~ s \leftarrow h a l f\left(s+e t a \_c o r r\right)\);
    \(l \leftarrow 15\);
    end
```

This code is used in section 311.

314．〈Make moves for current subinterval；if bisection is necessary，push the second subinterval onto the stack，and goto continue in order to handle the first subinterval 314$\rangle \equiv$
if $m=0$ then 〈Move upward n steps 315\rangle
else if $n=0$ then 〈Move to the right m steps 316〉
else if $m+n=2$ then 〈Make one move of each kind 317〉
else begin incr (l) ；stack＿$l \leftarrow l$ ；
stack＿x3 $\leftarrow x 3 ;$ stack＿x2 $\leftarrow \operatorname{half}(x 2+x 3+$ xi＿corr $) ;$ x2 $\leftarrow \operatorname{half}\left(x 1+x 2+x i _c o r r\right)$ ；
$x 3 \leftarrow$ half $(x 2+$ stack＿x2 + xi＿corr $) ;$ stack＿x $1 \leftarrow x 3$ ；
$r \leftarrow r+r+x i$＿corr $; t \leftarrow x 1+x 2+x 3+r ;$
$q \leftarrow t$ div two＿to＿the［l］；stack＿$r \leftarrow t$ mod two＿to＿the［l］；
stack＿m $\leftarrow m-q ; m \leftarrow q$ ；
stack＿y3 $\leftarrow y 3 ;$ stack＿y $2 \leftarrow$ half $(y 2+y 3+$ eta＿corr $) ; y 2 \leftarrow$ half $\left(y 1+y 2+e t a _c o r r\right)$ ；
$y 3 \leftarrow$ half $(y 2+$ stack＿y $2+$ eta＿corr $) ;$ stack＿y1 $\leftarrow y 3$ ；
$s \leftarrow s+s+$ eta＿corr $; u \leftarrow y 1+y 2+y 3+s ;$
$q \leftarrow u \boldsymbol{\operatorname { d i v }}$ two＿to＿the $[l] ;$ stack＿s $\leftarrow u \bmod$ two＿to＿the $[l]$ ；
stack＿$n \leftarrow n-q ; n \leftarrow q$ ；
bisect＿ptr \leftarrow bisect＿ptr + move＿increment；goto continue；
end
This code is used in section 311.
315．〈Move upward n steps 315$\rangle \equiv$
while $n>0$ do
begin incr（move＿ptr）；move［move＿ptr］$\leftarrow 1$ ；decr (n) ；
end
This code is used in section 314.
316．〈 Move to the right m steps 316$\rangle \equiv$ move $[$ move＿ptr $] \leftarrow$ move $[$ move＿ptr］$+m$
This code is used in section 314.

317．〈 Make one move of each kind 317$\rangle \equiv$
begin $r \leftarrow$ two＿to＿the $[l]-r ; s \leftarrow$ two＿to＿the $[l]-s$ ；
while $l<30$ do
begin $x 3 a \leftarrow x 3 ; x 2 a \leftarrow \operatorname{half}\left(x 2+x 3+x i _c o r r\right) ; x 2 \leftarrow \operatorname{half}\left(x 1+x 2+x i _c o r r\right)$ ；
$x 3 \leftarrow \operatorname{half}\left(x 2+x 2 a+x i _c o r r\right) ; t \leftarrow x 1+x 2+x 3 ; r \leftarrow r+r-x i _c o r r ;$
$y 3 a \leftarrow y 3 ; y 2 a \leftarrow$ half $(y 2+y 3+$ eta＿corr $) ; y 2 \leftarrow \operatorname{half}(y 1+y 2+$ eta＿corr $)$ ；
$y 3 \leftarrow$ half $(y 2+y 2 a+$ eta＿corr $) ; u \leftarrow y 1+y 2+y 3 ; s \leftarrow s+s-$ eta＿corr $;$
if $t<r$ then
if $u<s$ then 〈Switch to the right subinterval 318〉
else begin 〈Move up then right 320 〉；
goto done；
end
else if $u<s$ then
begin \langle Move right then up 319〉；
goto done；
end；
incr（ $($ ）；
end；
$r \leftarrow r$－xi＿corr $; s \leftarrow s$－eta＿corr $;$
if ab＿us＿cd $(x 1+x 2+x 3, s, y 1+y 2+y 3, r)-x i$＿corr ≥ 0 then 〈Move right then up 319〉
else 〈Move up then right 320\rangle ；

done：end

This code is used in section 314.
318．\langle Switch to the right subinterval 318$\rangle \equiv$
begin $x 1 \leftarrow x 3 ; x 2 \leftarrow x 2 a ; x 3 \leftarrow x 3 a ; r \leftarrow r-t ; y 1 \leftarrow y 3 ; y 2 \leftarrow y 2 a ; y 3 \leftarrow y 3 a ; s \leftarrow s-u$ ； end
This code is used in section 317.
319．〈Move right then up 319$\rangle \equiv$
begin incr（move［move＿ptr］）；incr（move＿ptr）；move［move＿ptr］$\leftarrow 1$ ；
end
This code is used in sections 317 and 317.
320．〈Move up then right 320$\rangle \equiv$
begin incr（move＿ptr）；move［move＿ptr］$\leftarrow 2$ ；
end
This code is used in sections 317 and 317.
321. After make_moves has acted, possibly for several curves that move toward the same octant, a "smoothing" operation might be done on the move array. This removes optical glitches that can arise even when the curve has been digitized without rounding errors.

The smoothing process replaces the integers $a_{0} \ldots a_{n}$ in move $[b \ldots t]$ by "smoothed" integers $a_{0}^{\prime} \ldots a_{n}^{\prime}$ defined as follows:

$$
a_{k}^{\prime}=a_{k}+\delta_{k+1}-\delta_{k} ; \quad \delta_{k}= \begin{cases}+1, & \text { if } 1<k<n \text { and } a_{k-2} \geq a_{k-1} \ll a_{k} \geq a_{k+1} \\ -1, & \text { if } 1<k<n \text { and } a_{k-2} \leq a_{k-1} \gg a_{k} \leq a_{k+1} \\ 0, & \text { otherwise }\end{cases}
$$

Here $a \ll b$ means that $a \leq b-2$, and $a \gg b$ means that $a \geq b+2$.
The smoothing operation is symmetric in the sense that, if $a_{0} \ldots a_{n}$ smooths to $a_{0}^{\prime} \ldots a_{n}^{\prime}$, then the reverse sequence $a_{n} \ldots a_{0}$ smooths to $a_{n}^{\prime} \ldots a_{0}^{\prime}$; also the complementary sequence $\left(m-a_{0}\right) \ldots\left(m-a_{n}\right)$ smooths to $\left(m-a_{0}^{\prime}\right) \cdots\left(m-a_{n}^{\prime}\right)$. We have $a_{0}^{\prime}+\cdots+a_{n}^{\prime}=a_{0}+\cdots+a_{n}$ because $\delta_{0}=\delta_{n+1}=0$.
procedure smooth_moves ($b, t:$ integer $)$;
var $k: 1$. . move_size; $\quad\{$ index into move \}
a, aa, aaa: integer; $\quad\{$ original values of move $[k]$, move $[k-1]$, move $[k-2]\}$
begin if $t-b \geq 3$ then
begin $k \leftarrow b+2 ;$ a $a \leftarrow$ move $[k-1]$; aaa \leftarrow move $[k-2]$;
repeat $a \leftarrow$ move $[k]$;
if $a b s(a-a a)>1$ then $\left\langle\right.$ Increase and decrease move $[k-1]$ and move $[k]$ by $\left.\delta_{k} 322\right\rangle$;
$\operatorname{incr}(k) ; a a a \leftarrow a a ; a a \leftarrow a ;$
until $k=t$;
end;
end;
322. 〈Increase and decrease move $[k-1]$ and move $[k]$ by $\left.\delta_{k} 322\right\rangle \equiv$
if $a>a a$ then begin if $a a a \geq a a$ then if $a \geq$ move $[k+1]$ then
begin $\operatorname{incr}($ move $[k-1])$; move $[k] \leftarrow a-1$; end;
end
else begin if $a a a \leq a a$ then if $a \leq$ move $[k+1]$ then
begin decr (move $[k-1]$); move $[k] \leftarrow a+1$; end;
end
This code is used in section 321.
323. Edge structures. Now we come to METAFONT's internal scheme for representing what the user can actually "see," the edges between pixels. Each pixel has an integer weight, obtained by summing the weights on all edges to its left. METAFONT represents only the nonzero edge weights, since most of the edges are weightless; in this way, the data storage requirements grow only linearly with respect to the number of pixels per point, even though two-dimensional data is being represented. (Well, the actual dependence on the underlying resolution is order $n \log n$, but the $\log n$ factor is buried in our implicit restriction on the maximum raster size.) The sum of all edge weights in each row should be zero.

The data structure for edge weights must be compact and flexible, yet it should support efficient updating and display operations. We want to be able to have many different edge structures in memory at once, and we want the computer to be able to translate them, reflect them, and/or merge them together with relative ease.
METAFONT's solution to this problem requires one single-word node per nonzero edge weight, plus one two-word node for each row in a contiguous set of rows. There's also a header node that provides global information about the entire structure.
324. Let's consider the edge-weight nodes first. The info field of such nodes contains both an m value and a weight w, in the form $8 m+w+c$, where c is a constant that depends on data found in the header. We shall consider c in detail later; for now, it's best just to think of it as a way to compensate for the fact that m and w can be negative, together with the fact that an info field must have a value between min_halfword and max_halfword. The m value is an unscaled x coordinate, so it satisfies $|m|<4096$; the w value is always in the range $1 \leq|w| \leq 3$. We can unpack the data in the info field by fetching ho $($ info $(p))=\operatorname{info}(p)-$ min_halfword and dividing this nonnegative number by 8 ; the constant c will be chosen so that the remainder of this division is $4+w$. Thus, for example, a remainder of 3 will correspond to the edge weight $w=-1$.

Every row of an edge structure contains two lists of such edge-weight nodes, called the sorted and unsorted lists, linked together by their link fields in the normal way. The difference between them is that we always have $\operatorname{info}(p) \leq \operatorname{info}(\operatorname{link}(p))$ in the sorted list, but there's no such restriction on the elements of the unsorted list. The reason for this distinction is that it would take unnecessarily long to maintain edge-weight lists in sorted order while they're being updated; but when we need to process an entire row from left to right in order of the m values, it's fairly easy and quick to sort a short list of unsorted elements and to merge them into place among their sorted cohorts. Furthermore, the fact that the unsorted list is empty can sometimes be used to good advantage, because it allows us to conclude that a particular row has not changed since the last time we sorted it.

The final link of the sorted list will be sentinel, which points to a special one-word node whose info field is essentially infinite; this facilitates the sorting and merging operations. The final link of the unsorted list will be either null or void, where void $=$ null +1 is used to avoid redisplaying data that has not changed: A void value is stored at the head of the unsorted list whenever the corresponding row has been displayed.
define zero_ $w=4$
define void \equiv null +1
\langle Initialize table entries (done by INIMF only) 176〉 $+\equiv$
info $($ sentinel $) \leftarrow$ max_halfword $; \quad\{\operatorname{link}($ sentinel $)=$ null $\}$
325. The rows themselves are represented by row header nodes that contain four link fields. Two of these four, sorted and unsorted, point to the first items of the edge-weight lists just mentioned. The other two, link and knil, point to the headers of the two adjacent rows. If p points to the header for row number n, then $\operatorname{link}(p)$ points up to the header for row $n+1$, and $\operatorname{knil}(p)$ points down to the header for row $n-1$. This double linking makes it convenient to move through consecutive rows either upward or downward; as usual, we have $\operatorname{link}(\operatorname{knil}(p))=\operatorname{knil}(\operatorname{link}(p))=p$ for all row headers p.

The row associated with a given value of n contains weights for edges that run between the lattice points (m, n) and ($m, n+1$).
define $k n i l \equiv$ info $\quad\{$ inverse of the link field, in a doubly linked list \}
define sorted_loc(\#) $\equiv \#+1 \quad\{$ where the sorted link field resides \}
define $\operatorname{sorted}(\#) \equiv \operatorname{link}\left(\operatorname{sorted} _l o c(\#)\right) \quad\{$ beginning of the list of sorted edge weights $\}$
define unsorted $(\#) \equiv \operatorname{info}(\#+1) \quad\{$ beginning of the list of unsorted edge weights $\}$
define row_node_size $=2$ \{number of words in a row header node $\}$
326. The main header node h for an edge structure has link and knil fields that link it above the topmost row and below the bottommost row. It also has fields called m_min, m_max, n_min, and n_max that bound the current extent of the edge data: All m values in edge-weight nodes should lie between $m _\min (h)-4096$ and m_max $(h)-4096$, inclusive. Furthermore the topmost row header, pointed to by knil (h), is for row number n_max $(h)-4096$; the bottommost row header, pointed to by $\operatorname{link}(h)$, is for row number n_min $(h)-4096$.

The offset constant c that's used in all of the edge-weight data is represented implicitly in m _offset (h); its actual value is

$$
c=\text { min_halfword }+ \text { zero_ } w+8 * \text { m_offset }(h) .
$$

Notice that it's possible to shift an entire edge structure by an amount ($\Delta m, \Delta n$) by adding Δn to $n _m i n(h)$ and $n _m a x(h)$, adding Δm to $m _m i n(h)$ and $m _\max (h)$, and subtracting Δm from $m _o f f s e t(h)$; none of the other edge data needs to be modified. Initially the m_offset field is 4096 , but it will change if the user requests such a shift. The contents of these five fields should always be positive and less than 8192; n_max should, in fact, be less than 8191. Furthermore m_min $+m _o f f s e t-4096$ and $m _m a x+m _o f f s e t-4096$ must also lie strictly between 0 and 8192, so that the info fields of edge-weight nodes will fit in a halfword.

The header node of an edge structure also contains two somewhat unusual fields that are called last_window(h) and last_window_time (h). When this structure is displayed in window k of the user's screen, after that window has been updated t times, METAFONT sets last_window $(h) \leftarrow k$ and last_window_time $(h) \leftarrow t$; it also sets unsorted $(p) \leftarrow$ void for all row headers p, after merging any existing unsorted weights with the sorted ones. A subsequent display in the same window will be able to avoid redisplaying rows whose unsorted list is still void, if the window hasn't been used for something else in the meantime.

A pointer to the row header of row n_{-}pos $(h)-4096$ is provided in $n_{_}$rover (h). Most of the algorithms that update an edge structure are able to get by without random row references; they usually access rows that are neighbors of each other or of the current n _pos row. Exception: If $\operatorname{link}(h)=h$ (so that the edge structure contains no rows), we have $n _$rover $(h)=h$, and $n _p o s(h)$ is irrelevant.
define zero_field $=4096 \quad\{$ amount added to coordinates to make them positive $\}$
define $n _m i n(\#) \equiv \operatorname{info}(\#+1) \quad\{$ minimum row number present, plus zero_field $\}$
define $n _m a x(\#) \equiv \operatorname{link}(\#+1) \quad\{$ maximum row number present, plus zero_field $\}$
define m_min $(\#) \equiv$ info $(\#+2) \quad\{$ minimum column number present, plus zero_field $\}$
define $\operatorname{m_ max}(\#) \equiv \operatorname{link}(\#+2) \quad\{$ maximum column number present, plus zero_field $\}$
define m_{-}offset $(\#) \equiv \operatorname{info}(\#+3) \quad\{$ translation of m data in edge-weight nodes $\}$
define last_window $(\#) \equiv \operatorname{link}(\#+3) \quad\{$ the last display went into this window $\}$
define last_window_time (\#) \equiv mem $[\#+4]$.int $\quad\{$ after this many window updates $\}$
define n_{-}pos $(\#) \equiv \operatorname{info}(\#+5) \quad\left\{\right.$ the row currently in n_{-}rover, plus zero_field $\}$
define $n_{-} \operatorname{rover}(\#) \equiv \operatorname{link}(\#+5) \quad\{$ a row recently referenced $\}$
define edge_header_size $=6 \quad\{$ number of words in an edge-structure header $\}$
define valid_range $(\#) \equiv($ abs $(\#-4096)<4096) \quad\{$ is \# strictly between 0 and 8192 ? $\}$
define empty_edges $(\#) \equiv \operatorname{link}(\#)=\# \quad\{$ are there no rows in this edge header? $\}$
procedure init_edges ($h:$ pointer); \quad \{initialize an edge header to null values $\}$
begin $k n i l(h) \leftarrow h ; \operatorname{link}(h) \leftarrow h$;
$n _m i n(h) \leftarrow$ zero_field +4095 ; n_max $(h) \leftarrow$ zero_field $-4095 ;$ m_min $(h) \leftarrow$ zero_field +4095 ;
m_max $(h) \leftarrow$ zero_field -4095 ; m_offset $(h) \leftarrow$ zero_field;
last_window $(h) \leftarrow 0$; last_window_time $(h) \leftarrow 0$;
n _rover $(h) \leftarrow h ; \quad n _p o s(h) \leftarrow 0$;
end;
327. When a lot of work is being done on a particular edge structure, we plant a pointer to its main header in the global variable cur_edges. This saves us from having to pass this pointer as a parameter over and over again between subroutines.

Similarly, cur_wt is a global weight that is being used by several procedures at once.
\langle Global variables 13$\rangle+\equiv$
cur_edges: pointer; \{ the edge structure of current interest \}
cur_wt: integer; \{ the edge weight of current interest \}
328. The fix_offset routine goes through all the edge-weight nodes of cur_edges and adds a constant to their info fields, so that m_offset(cur_edges) can be brought back to zero_field. (This is necessary only in unusual cases when the offset has gotten too large or too small.)

```
procedure fix_offset;
    var p,q: pointer; { list traversers }
        delta: integer; { the amount of change}
    begin delta \leftarrow8*(m_offset (cur_edges) - zero_field ); m_offset(cur_edges )}\leftarrow\mathrm{ zero_field;
    q\leftarrowlink(cur_edges);
    while q}=\mathrm{ cur_edges do
        begin }p\leftarrow\operatorname{sorted(q);
        while p\not= sentinel do
            begin info (p)\leftarrowinfo (p) - delta; p}\leftarrow\operatorname{link}(p)
            end;
        p\leftarrowunsorted (q);
        while p>void do
            begin info (p)\leftarrow\operatorname{info}(p)-delta; p}\leftarrow\operatorname{link}(p)
            end;
        q\leftarrow\operatorname{link(q);}
        end;
    end;
```

329. The edge_prep routine makes the cur_edges structure ready to accept new data whose coordinates satisfy $m l \leq m \leq m r$ and $n l \leq n \leq n r-1$, assuming that $-4096<m l \leq m r<4096$ and $-4096<n l \leq$ $n r<4096$. It makes appropriate adjustments to m_min, m_max, n_min, and n_max, adding new empty rows if necessary.
procedure edge_prep ($m l, m r, n l, n r:$ integer $)$;
var delta: halfword; \{ amount of change \}
$p, q:$ pointer; \{ for list manipulation \}
begin $m l \leftarrow m l+$ zero_field; $m r \leftarrow m r+$ zero_field; $n l \leftarrow n l+$ zero_field; $n r \leftarrow n r-1+$ zero_field;
if $m l<m _m i n($ cur_edges $)$ then $m _m i n\left(c u r_{-} e d g e s\right) ~ \leftarrow m l$;
if $m r>m _m a x($ cur_edges $)$ then $m_{_} \max ($ cur_edges $) \leftarrow m r$;
if \neg valid_range $\left(m_{_} m i n\left(c u r_{-} e d g e s\right)+m_{-} o f f s e t\left(c u r_{-} e d g e s\right)-z e r o_{-} f i e l d\right) \vee$
\neg valid_range $\left(m_{-} \max (\right.$ cur_edges $)+m_{-}$offset $($cur_edges $)-$zero_field $)$then fix_offset;
if empty_edges(cur_edges) then \{there are no rows \}
begin $n _m i n\left(c u r _e d g e s\right) \leftarrow n r+1 ; ~ n _m a x\left(c u r_{-} e d g e s\right) \leftarrow n r$;
end;
if $n l<n _m i n\left(c u r _e d g e s\right)$ then $\left\langle\right.$ Insert exactly $n _m i n($ cur_edges $)-n l$ empty rows at the bottom 330\rangle;
if $n r>n _m a x($ cur_edges $)$ then 〈Insert exactly $n r$ - n_max (cur_edges) empty rows at the top 331〉;
end;

330．〈Insert exactly $n _m i n\left(c u r _e d g e s\right)-n l$ empty rows at the bottom 330$\rangle \equiv$
begin delta $\leftarrow n_{-} \min \left(c u r_{-} e d g e s\right)-n l ; n_{-} \min \left(c u r_{-} e d g e s\right) \leftarrow n l ; p \leftarrow l i n k\left(c u r_{-} e d g e s\right)$ ；
repeat $q \leftarrow$ get＿node（row＿node＿size $) ; \operatorname{sorted}(q) \leftarrow \operatorname{sentinel;~unsorted~}(q) \leftarrow \operatorname{void} ; \operatorname{knil}(p) \leftarrow q$ ； $\operatorname{link}(q) \leftarrow p ; p \leftarrow q ; \operatorname{decr}($ delta $) ;$
until delta $=0$ ；
$k n i l(p) \leftarrow c u r _e d g e s ; \operatorname{link}\left(c u r _e d g e s\right) \leftarrow p ;$
if n＿rover $($ cur＿edges $)=$ cur＿edges then $n_{-} p o s\left(c u r_{-} e d g e s\right) \leftarrow n l-1$ ；
end
This code is used in section 329.
331．〈Insert exactly $\left.n r-n _m a x\left(c u r _e d g e s\right) ~ e m p t y ~ r o w s ~ a t ~ t h e ~ t o p ~ 331\right\rangle \equiv$
begin delta $\leftarrow n r-n _m a x\left(c u r_{-} e d g e s\right) ; n_{-} \max \left(c u r_{-} e d g e s\right) \leftarrow n r ; p \leftarrow k n i l\left(c u r_{-} e d g e s\right)$ ；
repeat $q \leftarrow$ get＿node（row＿node＿size $) ; \operatorname{sorted}(q) \leftarrow \operatorname{sentinel} ; \operatorname{unsorted}(q) \leftarrow \operatorname{void} ; \operatorname{link}(p) \leftarrow q$ ； $\operatorname{knil}(q) \leftarrow p ; p \leftarrow q ; \operatorname{decr}($ delta $) ;$
until delta $=0$ ；
$\operatorname{link}(p) \leftarrow c u r_{-} e d g e s ; k n i l\left(c u r_{-} e d g e s\right) \leftarrow p ;$
if n＿rover $($ cur＿edges $)=$ cur＿edges then n_{-}pos $($cur＿edges $) \leftarrow n r+1$ ；
end
This code is used in section 329.

332．The print＿edges subroutine gives a symbolic rendition of an edge structure，for use in＇show＇ commands．A rather terse output format has been chosen since edge structures can grow quite large．
\langle Declare subroutines for printing expressions 257$\rangle+\equiv$
〈Declare the procedure called print＿weight 333〉
procedure print＿edges（ s ：str＿number；nuline ：boolean；x＿off，y＿off ：integer）；
var p, q, r ：pointer；$\quad\{$ for list traversal $\}$
n ：integer；\｛ row number \}
begin print＿diagnostic（＂Edge＿பstructure＂，s ，nuline）；$p \leftarrow k n i l($ cur＿edges $)$ ；
$n \leftarrow n _m a x\left(c u r _e d g e s\right)-z e r o _f i e l d ;$
while $p \neq$ cur＿edges do
begin $q \leftarrow u n \operatorname{sorted}(p) ; r \leftarrow \operatorname{sorted}(p)$ ；
if $(q>$ void $) \vee(r \neq$ sentinel $)$ then
begin print＿nl（＂rowப＂）；print＿int（ $n+y$＿off ）；print＿char（＂：＂）；
while $q>$ void do
begin print＿weight $\left(q, x _o f f\right) ; q \leftarrow \operatorname{link}(q)$ ；
end；
print（＂ப｜＂）；
while $r \neq$ sentinel do
begin print＿weight $\left(r, x _o f f\right) ; r \leftarrow \operatorname{link}(r)$ ；
end；
end；
$p \leftarrow \operatorname{knil}(p) ; \operatorname{decr}(n)$ ；
end；
end＿diagnostic（true）；
end；
333. 〈Declare the procedure called print_weight 333$\rangle \equiv$
procedure print_weight (q : pointer ; x_off : integer);
var w, m : integer; \{ unpacked weight and coordinate \}
d : integer; \{temporary data register \}
begin $d \leftarrow h o(\operatorname{info}(q)) ; w \leftarrow d \bmod 8 ; m \leftarrow(d \operatorname{div} 8)-m_{-} o f f s e t\left(c u r _e d g e s\right)$;
if file_offset > max_print_line -9 then print_nl("ப")
else print_char("ப");
print_int ($m+x$ _off);
while $w>z e r o _w$ do
begin print_char("+"); decr (w);
end;
while $w<z e r o _w$ do
begin print_char("-"); incr (w); end;
end;
This code is used in section 332.
334. Here's a trivial subroutine that copies an edge structure. (Let's hope that the given structure isn't too gigantic.)
function copy_edges (h : pointer): pointer;
var p, r : pointer; $\quad\{$ variables that traverse the given structure \}
$h h, p p, q q, r r$, ss: pointer; \{variables that traverse the new structure \}
begin $h h \leftarrow$ get_node $($ edge_header_size $) ; \operatorname{mem}[h h+1] \leftarrow \operatorname{mem}[h+1] ; \operatorname{mem}[h h+2] \leftarrow m e m[h+2]$;
$\operatorname{mem}[h h+3] \leftarrow \operatorname{mem}[h+3] ; \operatorname{mem}[h h+4] \leftarrow \operatorname{mem}[h+4] ;$
\{ we've now copied $n_{-} \min , n_{-} \max , m_{-} \min , m_{-} \max , m_{-} o f f s e t$, last_window, and last_window_time \}
$n _p o s(h h) \leftarrow n _m a x(h h)+1 ; ~ n _$rover $(h h) \leftarrow h h ;$
$p \leftarrow \operatorname{link}(h) ; q q \leftarrow h h ;$
while $p \neq h$ do
begin $p p \leftarrow$ get_node (row_node_size) $; \operatorname{link}(q q) \leftarrow p p ; \operatorname{knil}(p p) \leftarrow q q$;
\langle Copy both sorted and unsorted lists of p to $p p 335\rangle$;
$p \leftarrow \operatorname{link}(p) ; q q \leftarrow p p ;$
end;
$\operatorname{link}(q q) \leftarrow h h ; k n i l(h h) \leftarrow q q ;$ copy_edges $\leftarrow h h ;$
end;
335. 〈Copy both sorted and unsorted lists of p to $p p 335\rangle \equiv$
$r \leftarrow \operatorname{sorted}(p) ; r r \leftarrow \operatorname{sorted} _l o c(p p) ; \quad\{\operatorname{link}(r r)=\operatorname{sorted}(p p)\}$
while $r \neq$ sentinel do
begin $s s \leftarrow$ get_avail; $\operatorname{link}(r r) \leftarrow s s ; r r \leftarrow s s ; \operatorname{info}(r r) \leftarrow \operatorname{info}(r)$;
$r \leftarrow \operatorname{link}(r)$;
end;
link $(r r) \leftarrow$ sentinel;
$r \leftarrow \operatorname{unsorted}(p) ; r r \leftarrow$ temp_head;
while $r>$ void do
begin $s s \leftarrow$ get_avail; $\operatorname{link}(r r) \leftarrow s s ; r r \leftarrow s s ; i n f o(r r) \leftarrow \operatorname{info}(r)$;
$r \leftarrow \operatorname{link}(r)$;
end;
$\operatorname{link}(r r) \leftarrow r ;$ unsorted $(p p) \leftarrow$ link $($ temp_head $)$
This code is used in sections 334 and 341.
336. Another trivial routine flips cur_edges about the x-axis (i.e., negates all the y coordinates), assuming that at least one row is present.
procedure y_reflect_edges;
var $p, q, r:$ pointer; $\quad\{$ list manipulation registers $\}$
begin $p \leftarrow n_{-}$min $($cur_edges $) ;$n_min $($cur_edges $) \leftarrow$ zero_field + zero_field $-1-n_{_}$max (cur_edges $)$;
n_max $($ cur_edges $) \leftarrow$ zero_field + zero_field $-1-p$;
$n _p o s($ cur_edges $) \leftarrow$ zero_field + zero_field $-1-n_{-}$pos (cur_edges $)$;
$p \leftarrow \operatorname{link}($ cur_edges) ; $q \leftarrow$ cur_edges $; \quad\{$ we assume that $p \neq q\}$
repeat $r \leftarrow \operatorname{link}(p) ; \operatorname{link}(p) \leftarrow q ; \operatorname{knil}(q) \leftarrow p ; q \leftarrow p ; p \leftarrow r$;
until $q=$ cur_edges;
last_window_time $($ cur_edges $) \leftarrow 0$;
end;
337. It's somewhat more difficult, yet not too hard, to reflect about the y-axis.
procedure x_reflect_edges;
var $p, q, r, s:$ pointer; ; list manipulation registers $\}$
m : integer; \{info fields will be reflected with respect to this number \}
begin $p \leftarrow m_{_}$min $($cur_edges $) ; ~ m _m i n\left(c u r _e d g e s ~\right) ~ \leftarrow z e r o _f i e l d ~+z e r o _f i e l d ~-m _m a x\left(c u r _e d g e s\right) ;$
m_{-}max $($cur_edges $) \leftarrow$ zero_field + zero_field $-p$;
$m \leftarrow\left(z e r o _f i e l d+m _o f f s e t(\right.$ cur_edges $\left.)\right) * 8+$ zero_ $w+$ min_halfword + zero_ $w+$ min_halfword $;$
$m _o f f s e t($ cur_edges $) \leftarrow$ zero_field $; p \leftarrow \operatorname{link}($ cur_edges $)$;
repeat \langle Reflect the edge-and-weight data in $\operatorname{sorted}(p) 339\rangle$;
\langle Reflect the edge-and-weight data in $\operatorname{unsorted}(p) 338\rangle$;
$p \leftarrow \operatorname{link}(p)$;
until $p=$ cur_edges;
last_window_time $($ cur_edges $) \leftarrow 0$;
end;
338. We want to change the sign of the weight as we change the sign of the x coordinate. Fortunately, it's easier to do this than to negate one without the other.
\langle Reflect the edge-and-weight data in $\operatorname{unsorted}(p) 338\rangle \equiv$

```
\(q \leftarrow \operatorname{unsorted}(p)\);
    while \(q>\) void do
        begin \(\operatorname{info}(q) \leftarrow m-\operatorname{info}(q) ; q \leftarrow \operatorname{link}(q) ;\)
        end
```

This code is used in section 337 .
339. Reversing the order of a linked list is best thought of as the process of popping nodes off one stack and pushing them on another. In this case we pop from stack q and push to stack r.

```
\(\langle\) Reflect the edge-and-weight data in \(\operatorname{sorted}(p) 339\rangle \equiv\)
    \(q \leftarrow \operatorname{sorted}(p) ; r \leftarrow\) sentinel;
    while \(q \neq\) sentinel do
        begin \(s \leftarrow \operatorname{link}(q) ; \operatorname{link}(q) \leftarrow r ; r \leftarrow q ; \operatorname{info}(r) \leftarrow m-\operatorname{info}(q) ; q \leftarrow s ;\)
        end;
    \(\operatorname{sorted}(p) \leftarrow r\)
```

This code is used in section 337.
340. Now let's multiply all the y coordinates of a nonempty edge structure by a small integer $s>1$:
procedure $y_{\text {_scale_edges (} s \text { : integer } \text {); }}$
var $p, q, p p, r, r r, s s:$ pointer; \{list manipulation registers \}
t : integer; \{replication counter \}
begin if $\left(s *\left(n_{-} m a x(\right.\right.$ cur_edges $)+1-$ zero_field $\left.) \geq 4096\right) \vee\left(s *\left(n _m i n\left(c u r _e d g e s\right)-z e r o _f i e l d\right) \leq-4096\right)$ then

end
else begin $n_{-} m a x($ cur_edges $) \leftarrow s *\left(n_{_} m a x(\right.$ cur_edges $\left.)+1-z e r o _f i e l d\right)-1+z e r o _f i e l d$;
$n _m i n($ cur_edges $) \leftarrow s *\left(n _m i n(\right.$ cur_edges $\left.)-z e r o _f i e l d\right)+$ zero_field $;$
\langle Replicate every row exactly s times 341\rangle;
last_window_time $($ cur_edges $) \leftarrow 0$;
end;
end;
341. 〈Replicate every row exactly s times 341$\rangle \equiv$
$p \leftarrow$ cur_edges ;
repeat $q \leftarrow p ; p \leftarrow \operatorname{link}(p)$;
for $t \leftarrow 2$ to s do
begin $p p \leftarrow g e t _n o d e\left(r o w _n o d e _\right.$size $) ; \operatorname{link}(q) \leftarrow p p ; \operatorname{knil}(p) \leftarrow p p ; \operatorname{link}(p p) \leftarrow p ; \operatorname{knil}(p p) \leftarrow q ;$ $q \leftarrow p p ;\langle$ Copy both sorted and unsorted lists of p to $p p 335\rangle$; end;
until $\operatorname{link}(p)=$ cur_edges
This code is used in section 340.
342. Scaling the x coordinates is, of course, our next task.
procedure $x_{\text {_scale_edges (} s: \text { integer }) \text {; }}$
var $p, q:$ pointer; \{ list manipulation registers \}
$t: 0 . .65535$; \{ unpacked info field \}
$w: 0 . .7$; \{ unpacked weight \}
delta: integer; \{ amount added to scaled info \}
begin if $\left(s *\left(m _m a x\left(c u r _e d g e s\right)-z e r o _f i e l d\right) \geq 4096\right) \vee\left(s *\left(m _m i n\left(c u r_{_}\right.\right.\right.$edges $)-$zero_field $\left.) \leq-4096\right)$

then

 end
else if $\left(m_{_} m a x(\right.$ cur_edges $) \neq$ zero_field $) \vee\left(m_{-}\right.$min $($cur_edges $) \neq$zero_field $)$then
begin m_{-}max $($cur_edges $) \leftarrow s *\left(\right.$ m_max $\left.\left(c u r _e d g e s\right)-z e r o _f i e l d\right)+z e r o _f i e l d ;$
$m_{-} m i n($ cur_edges $) \leftarrow s *\left(m_{-}\right.$min $($cur_edges $)-$zero_field $)+$zero_field;
delta $\leftarrow 8 *\left(\right.$ zero_field $\left.-s * m_{_} o f f s e t\left(c u r_{-} e d g e s\right)\right)+$ min_halfword $; m_{-} o f f s e t\left(c u r _e d g e s\right) \leftarrow z e r o _$field;
\langle Scale the x coordinates of each row by $s 343\rangle$;
last_window_time $($ cur_edges $) \leftarrow 0$;
end;
end;
343. The multiplications cannot overflow because we know that $s<4096$.
\langle Scale the x coordinates of each row by $s 343\rangle \equiv$

```
\(q \leftarrow\) link (cur_edges);
    repeat \(p \leftarrow \operatorname{sorted}(q)\);
        while \(p \neq\) sentinel do
            \(\operatorname{begin} t \leftarrow h o(\operatorname{info}(p)) ; w \leftarrow t \bmod 8 ; \operatorname{info}(p) \leftarrow(t-w) * s+w+\operatorname{delta} ; p \leftarrow \operatorname{link}(p)\);
            end;
    \(p \leftarrow \operatorname{unsorted}(q)\);
    while \(p>\) void do
            \(\operatorname{begin} t \leftarrow h o(\operatorname{info}(p)) ; w \leftarrow t \bmod 8 ; \operatorname{info}(p) \leftarrow(t-w) * s+w+\operatorname{delta} ; p \leftarrow \operatorname{link}(p) ;\)
            end;
    \(q \leftarrow \operatorname{link}(q) ;\)
    until \(q=\) cur_edges
```

This code is used in section 342 .
344. Here is a routine that changes the signs of all the weights, without changing anything else.
procedure negate_edges (h : pointer);
label done;
var p, q, r, s, t, u : pointer; \{structure traversers \}
$\operatorname{begin} p \leftarrow \operatorname{link}(h)$;
while $p \neq h$ do
begin $q \leftarrow$ unsorted (p);
while $q>$ void do
begin $\operatorname{info}(q) \leftarrow 8-2 *((h o(\operatorname{info}(q))) \bmod 8)+\operatorname{info}(q) ; q \leftarrow \operatorname{link}(q)$;
end;
$q \leftarrow \operatorname{sorted}(p)$;
if $q \neq$ sentinel then
begin repeat $\operatorname{info}(q) \leftarrow 8-2 *((h o(\operatorname{info}(q))) \bmod 8)+\operatorname{info}(q) ; q \leftarrow \operatorname{link}(q)$;
until $q=$ sentinel;
\langle Put the list $\operatorname{sorted}(p)$ back into sort 345\rangle;
end;
$p \leftarrow \operatorname{link}(p) ;$
end;
last_window_time $(h) \leftarrow 0$;
end;
345. METAFONT would work even if the code in this section were omitted, because a list of edge-andweight data that is sorted only by m but not w turns out to be good enough for correct operation. However, the author decided not to make the program even trickier than it is already, since negate_edges isn't needed very often. The simpler-to-state condition, "keep the sorted list fully sorted," is therefore being preserved at the cost of extra computation.
\langle Put the list $\operatorname{sorted}(p)$ back into sort 345$\rangle \equiv$

```
\(u \leftarrow \operatorname{sorted\_ loc}(p) ; q \leftarrow \operatorname{link}(u) ; r \leftarrow q ; s \leftarrow \operatorname{link}(r) ; \quad\{q=\operatorname{sorted}(p)\}\)
loop if info \((s)>\operatorname{info}(r)\) then
    begin \(\operatorname{link}(u) \leftarrow q\);
    if \(s=\) sentinel then goto done;
    \(u \leftarrow r ; q \leftarrow s ; r \leftarrow q ; s \leftarrow \operatorname{link}(r) ;\)
    end
    else begin \(t \leftarrow s ; s \leftarrow \operatorname{link}(t) ; \operatorname{link}(t) \leftarrow q ; q \leftarrow t\);
    end;
done: \(\operatorname{link}(r) \leftarrow\) sentinel
This code is used in section 344.
```

346. The unsorted edges of a row are merged into the sorted ones by a subroutine called sort_edges. It uses simple insertion sort, followed by a merge, because the unsorted list is supposedly quite short. However, the unsorted list is assumed to be nonempty.
procedure sort_edges (h : pointer); $\quad\{h$ is a row header $\}$
label done;
var k : halfword; $\quad\{$ key register that we compare to info $(q)\}$
p, q, r, s: pointer;
begin $r \leftarrow$ unsorted (h); unsorted $(h) \leftarrow$ null; $p \leftarrow \operatorname{link}(r) ; \operatorname{link}(r) \leftarrow \operatorname{sentinel;~link}($ temp_head $) \leftarrow r$;
while $p>$ void do \quad \{sort node p into the list that starts at temp_head $\}$
begin $k \leftarrow$ info $(p) ; q \leftarrow$ temp_head;
repeat $r \leftarrow q ; q \leftarrow \operatorname{link}(r)$;
until $k \leq \operatorname{info}(q)$;
$\operatorname{link}(r) \leftarrow p ; r \leftarrow \operatorname{link}(p) ; \operatorname{link}(p) \leftarrow q ; p \leftarrow r ;$
end;
\langle Merge the temp_head list into sorted (h) 347〉;
end;
347. In this step we use the fact that $\operatorname{sorted}(h)=\operatorname{link}\left(\operatorname{sorted} _l o c(h)\right)$.
\langle Merge the temp_head list into sorted $(h) 347\rangle \equiv$
begin $r \leftarrow \operatorname{sorted_ loc}(h) ; q \leftarrow \operatorname{link}(r) ; p \leftarrow$ link(temp_head);
loop begin $k \leftarrow \operatorname{info}(p)$;
while $k>\operatorname{info}(q)$ do
begin $r \leftarrow q ; q \leftarrow \operatorname{link}(r)$;
end;
$\operatorname{link}(r) \leftarrow p ; s \leftarrow \operatorname{link}(p) ; \operatorname{link}(p) \leftarrow q ;$
if $s=$ sentinel then goto done;
$r \leftarrow p ; p \leftarrow s ;$
end;
done: end
This code is used in section 346.

348．The cull＿edges procedure＂optimizes＂an edge structure by making all the pixel weights either w＿out or $w_{_} i n$ ．The weight will be $w_{_}$in after the operation if and only if it was in the closed interval $\left[w_{-} l o, w_{-} h i\right]$ before，where $w_{-} l o \leq w_{-} h i$ ．Either w_{-}out or $w_{-} i n$ is zero，while the other is $\pm 1, \pm 2$ ，or ± 3 ．The parameters will be such that zero－weight pixels will remain of weight zero．（This is fortunate，because there are infinitely many of them．）
The procedure also computes the tightest possible bounds on the resulting data，by updating m＿min， m＿max，n＿min，and n＿max．
procedure cull＿edges（w＿lo，w＿hi，w＿out，w＿in ：integer）；
label done；
var $p, q, r, s:$ pointer；$\quad\{$ for list manipulation $\}$
w ：integer；\｛new weight after culling \}
d ：integer；\｛ data register for unpacking \}
m ：integer；\｛ the previous column number，including m＿offset \}
$m m$ ：integer；\｛ the next column number，including $m_{\text {＿offset }}$ \}
ww：integer；\｛accumulated weight before culling \}
prev＿w：integer；\｛ value of w before column m \}
n, min＿n，max＿n：pointer；$\{$ current and extreme row numbers \}
min＿d，max＿d：pointer；\｛ extremes of the new edge－and－weight data \}
begin min＿d \leftarrow max＿halfword；max＿d \leftarrow min＿halfword；min＿n \leftarrow max＿halfword；
max＿n \leftarrow min＿halfword；
$p \leftarrow$ link（cur＿edges）；$n \leftarrow n _m i n\left(c u r _e d g e s\right) ;$
while $p \neq$ cur＿edges do
begin if $\operatorname{unsorted}(p)>v o i d$ then $\operatorname{sort_ edges~}(p)$ ；
if $\operatorname{sorted}(p) \neq$ sentinel then 〈Cull superfluous edge－weight entries from $\operatorname{sorted}(p) 349\rangle$ ；
$p \leftarrow \operatorname{link}(p) ; \operatorname{incr}(n)$ ；
end；
〈Delete empty rows at the top and／or bottom；update the boundary values in the header 352 〉；
last＿window＿time（cur＿edges）$\leftarrow 0$ ；
end；

349．The entire sorted list is returned to available memory in this step；a new list is built starting （temporarily）at temp＿head．Since several edges can occur at the same column，we need to be looking ahead of where the actual culling takes place．This means that it＇s slightly tricky to get the iteration started and stopped．
\langle Cull superfluous edge－weight entries from $\operatorname{sorted}(p) 349\rangle \equiv$
begin $r \leftarrow$ temp＿head；$q \leftarrow \operatorname{sorted}(p)$ ；ww $\leftarrow 0 ; m \leftarrow 1000000$ ；prev＿$w \leftarrow 0$ ；
loop begin if $q=$ sentinel then $m m \leftarrow 1000000$
else begin $d \leftarrow h o(\operatorname{info}(q)) ; m m \leftarrow d \operatorname{div} 8 ; w w \leftarrow w w+(d \bmod 8)-z e r o _w ;$ end；
if $m m>m$ then
begin \langle Insert an edge－weight for edge m ，if the new pixel weight has changed 350\rangle ；
if $q=$ sentinel then goto done；
end；
$m \leftarrow m m ;$
if $w w \geq w_{\leq} l o$ then
if $w w \leq w_{-} h i$ then $w \leftarrow w_{-} i n$
else $w \leftarrow w_{\text {＿out }}$
else $w \leftarrow w_{\text {＿out }}$ ；
$s \leftarrow$ link $(q) ;$ free＿avail $(q) ; q \leftarrow s ;$
end；
done： $\operatorname{link}(r) \leftarrow$ sentinel；sorted $(p) \leftarrow$ link（temp＿head）；
if $r \neq$ temp＿head then 〈Update the max／min amounts 351\rangle ；
end
This code is used in section 348.
350．〈 Insert an edge－weight for edge m ，if the new pixel weight has changed 350$\rangle \equiv$ if $w \neq$ prev＿w then
begin $s \leftarrow$ get＿avail； $\operatorname{link}(r) \leftarrow s ;$ info $(s) \leftarrow 8 * m+$ min＿halfword + zero＿$w+w-$ prev＿$w ; r \leftarrow s$ ； prev＿$w \leftarrow w$ ；
end
This code is used in section 349.
351．〈Update the max／min amounts 351$\rangle \equiv$
begin if min＿n $=$ max＿halfword then min＿$n \leftarrow n$ ；
max＿n $\leftarrow n$ ；
if min＿d $^{2}>$ info $\left(\right.$ link $\left.\left(t e m p _h e a d\right)\right)$ then min＿d $\leftarrow \operatorname{info(link(temp_ head));~}$
if max＿d $<$ info (r) then max＿$d \leftarrow \operatorname{info}(r)$ ；
end
This code is used in section 349 ．
352. 〈Delete empty rows at the top and/or bottom; update the boundary values in the header 352$\rangle \equiv$ if $\min _n>\max _n$ then \langle Delete all the row headers 353〉
else begin $n \leftarrow n_{-} \min ($ cur_edges $) ; n_{-} \min ($ cur_edges $) \leftarrow \min n$;
while $\min _n>n$ do
begin $p \leftarrow$ link $($ cur_edges $) ; \operatorname{link}\left(c u r_{-}\right.$edges $) \leftarrow \operatorname{link}(p) ; \operatorname{knil}(\operatorname{link}(p)) \leftarrow$ cur_edges; free_node (p, row_node_size); incr (n); end;
$n \leftarrow n _m a x($ cur_edges $) ; n_{-} \max \left(c u r_{-} e d g e s\right) \leftarrow \max _{-} n ; n_{-} p o s\left(c u r_{-} e d g e s\right) \leftarrow$ max_ $n+1$;
n_rover $($ cur_edges $) \leftarrow$ cur_edges;
while $\max _{-} n<n$ do
begin $p \leftarrow k n i l\left(c u r_{-}\right.$edges $) ;$knil $($cur_edges $) \leftarrow k n i l(p) ; \operatorname{link}(k n i l(p)) \leftarrow$ cur_edges;
free_node (p, row_node_size); decr (n);
end;
m_{-}min $($cur_edges $) \leftarrow\left(\left(h o\left(\right.\right.\right.$ min_d $\left.\left.\left._{-}\right)\right) \operatorname{div} 8\right)-m_{-} o f f s e t\left(c u r_{-} e d g e s\right)+$ zero_field ;
m_{-}max $($cur_edges $) \leftarrow\left(\left(h o\left(\right.\right.\right.$ max_d $\left.\left.\left._{-}\right)\right) \operatorname{div} 8\right)-m_{-} o f f s e t($ cur_edges $)+$ zero_field $;$
end
This code is used in section 348.
353. We get here if the edges have been entirely culled away.
\langle Delete all the row headers 353$\rangle \equiv$
begin $p \leftarrow$ link (cur_edges);
while $p \neq$ cur_edges do
begin $q \leftarrow \operatorname{link}(p)$; free_node $(p$, row_node_size); $p \leftarrow q$;
end;
init_edges(cur_edges);
end
This code is used in section 352.

354．The last and most difficult routine for transforming an edge structure－and the most interesting one！－is xy＿swap＿edges，which interchanges the rôles of rows and columns．Its task can be viewed as the job of creating an edge structure that contains only horizontal edges，linked together in columns，given an edge structure that contains only vertical edges linked together in rows；we must do this without changing the implied pixel weights．

Given any two adjacent rows of an edge structure，it is not difficult to determine the horizontal edges that lie＂between＂them：We simply look for vertically adjacent pixels that have different weight，and insert a horizontal edge containing the difference in weights．Every horizontal edge determined in this way should be put into an appropriate linked list．Since random access to these linked lists is desirable，we use the move array to hold the list heads．If we work through the given edge structure from top to bottom，the constructed lists will not need to be sorted，since they will already be in order．

The following algorithm makes use of some ideas suggested by John Hobby．It assumes that the edge structure is non－null，i．e．，that link（cur＿edges）\neq cur＿edges，hence $m_{-} m a x\left(c u r_{-}\right.$edges $) \geq m_{-}$min（cur＿edges）．
procedure $x y_{\text {＿swap＿edges；}} \quad\{$ interchange x and y in cur＿edges \}
label done；
var m＿magic，n＿magic：integer；\｛ special values that account for offsets \}
$p, q, r, s:$ pointer；\｛pointers that traverse the given structure \}
〈Other local variables for $x y$＿swap＿edges 357 〉
begin \langle Initialize the array of new edge list heads 356\rangle ；
〈Insert blank rows at the top and bottom，and set p to the new top row 355\rangle ；
\langle Compute the magic offset values 365\rangle ；
repeat $q \leftarrow k n i l(p)$ ；if unsorted $(q)>$ void then $\operatorname{sort_ edges~}(q)$ ；
〈 Insert the horizontal edges defined by adjacent rows p, q ，and destroy row p 358〉；
$p \leftarrow q ;$ n＿magic \leftarrow n＿magic－ 8 ；
until $k n i l(p)=$ cur＿edges；
free＿node（ p ，row＿node＿size）；\｛ now all original rows have been recycled \}
〈 Adjust the header to reflect the new edges 364〉；
end；
355．Here we don＇t bother to keep the link entries up to date，since the procedure looks only at the knil fields as it destroys the former edge structure．
\langle Insert blank rows at the top and bottom，and set p to the new top row 355$\rangle \equiv$
$p \leftarrow$ get＿node $($ row＿node＿size $)$ ；sorted $(p) \leftarrow$ sentinel；unsorted $(p) \leftarrow$ null；
$k n i l(p) \leftarrow$ cur＿edges $; k n i l($ link $($ cur＿edges $)) \leftarrow p ; \quad\{$ the new bottom row $\}$
$p \leftarrow$ get＿node $($ row＿node＿size $) ; \operatorname{sorted}(p) \leftarrow \operatorname{sentinel;} \operatorname{knil}(p) \leftarrow k n i l($ cur＿edges $) ; \quad\{$ the new top row $\}$
This code is used in section 354 ．
356．The new lists will become sorted lists later，so we initialize empty lists to sentinel．
\langle Initialize the array of new edge list heads 356$\rangle \equiv$
m_{-}spread $\leftarrow m_{\text {＿max }}($ cur＿edges $)-m _m i n\left(c u r _e d g e s\right) ; \quad\{$ this is ≥ 0 by assumption $\}$
if m_{-}spread $>$move＿size then overflow（＂move」table $\operatorname{l}^{\text {size＂，}}$ ，move＿size）；
for $j \leftarrow 0$ to $m_{\text {＿spread }}$ do move $[j] \leftarrow$ sentinel
This code is used in section 354.

357．〈 Other local variables for $x y_{-}$swap＿edges 357$\rangle \equiv$ m＿spread：integer；\｛ the difference between $m _m a x$ and $\left.m _m i n\right\}$
$j, j j: 0 \ldots$ move＿size；$\quad\{$ indices into move \}
$m, m m$ ：integer；$\{m$ values at vertical edges $\}$
$p d, r d$ ：integer；\｛ data fields from edge－and－weight nodes \}
$p m, r m$ ：integer；$\{m$ values from edge－and－weight nodes $\}$
w ：integer；\｛ the difference in accumulated weight \}
$w w$ ：integer；$\quad\{$ as much of w that can be stored in a single node $\}$
$d w$ ：integer；$\quad\{$ an increment to be added to $w\}$
See also section 363.
This code is used in section 354 ．
358．At the point where we test $w \neq 0$ ，variable w contains the accumulated weight from edges already passed in row p minus the accumulated weight from edges already passed in row q ．
\langle Insert the horizontal edges defined by adjacent rows p, q ，and destroy row $p 358\rangle \equiv$
$r \leftarrow \operatorname{sorted}(p) ;$ free＿node $(p$, row＿node＿size $) ; p \leftarrow r ;$
$p d \leftarrow h o(\operatorname{info}(p)) ; p m \leftarrow p d \operatorname{div} 8 ;$
$r \leftarrow \operatorname{sorted}(q) ; r d \leftarrow h o(\operatorname{info}(r)) ; r m \leftarrow r d \operatorname{div} 8 ; w \leftarrow 0 ;$
loop begin if $p m<r m$ then $m m \leftarrow p m$ else $m m \leftarrow r m$ ；
if $w \neq 0$ then 〈Insert horizontal edges of weight w between m and $m m 362\rangle$ ；
if $p d<r d$ then
begin $d w \leftarrow(p d \bmod 8)-z e r o _w ;$
\langle Advance pointer p to the next vertical edge，after destroying the previous one 360\rangle ； end
else begin if $r=$ sentinel then goto done；$\quad\{r d=p d=h o($ max＿halfword $)\}$
$d w \leftarrow-\left((r d \bmod 8)-z e r o _w\right) ;\langle$ Advance pointer r to the next vertical edge 359\rangle ；
end；
$m \leftarrow m m ; w \leftarrow w+d w ;$
end；
done：
This code is used in section 354 ．

359．〈Advance pointer r to the next vertical edge 359$\rangle \equiv$
$r \leftarrow \operatorname{link}(r) ; r d \leftarrow h o(\operatorname{info}(r)) ; r m \leftarrow r d \operatorname{div} 8$
This code is used in section 358.

360．\langle Advance pointer p to the next vertical edge，after destroying the previous one 360$\rangle \equiv$ $s \leftarrow \operatorname{link}(p) ;$ free＿avail $(p) ; p \leftarrow s ; p d \leftarrow h o(\operatorname{info}(p)) ; p m \leftarrow p d \operatorname{div} 8$
This code is used in section 358.

361．Certain＂magic＂values are needed to make the following code work，because of the various offsets in our data structure．For now，let＇s not worry about their precise values；we shall compute m＿magic and n＿magic later，after we see what the code looks like．
362. \langle Insert horizontal edges of weight w between m and $m m \quad 362\rangle \equiv$ if $m \neq m m$ then
begin if $m m-m _m a g i c \geq$ move_size then confusion("xy");
extras $\leftarrow(a b s(w)-1) \operatorname{div} 3$;
if extras >0 then
begin if $w>0$ then $x w \leftarrow+3$ else $x w \leftarrow-3$;
$w w \leftarrow w$-extras $* x w$;
end
else $w w \leftarrow w$;
repeat $j \leftarrow m-m_{-}$magic;
for $k \leftarrow 1$ to extras do
begin $s \leftarrow$ get_avail; $\operatorname{info}(s) \leftarrow n _m a g i c+x w ; \operatorname{link}(s) \leftarrow$ move $[j] ;$ move $[j] \leftarrow s ;$ end;
$s \leftarrow$ get_avail $; \operatorname{info}(s) \leftarrow n _m a g i c+w w ; \operatorname{link}(s) \leftarrow$ move $[j] ;$ move $[j] \leftarrow s ;$
incr (m);
until $m=m m$;
end

This code is used in section 358.
363. 〈Other local variables for $x y_{-}$swap_edges 357$\rangle+\equiv$
extras: integer; $\quad\{$ the number of additional nodes to make weights >3 \}
$x w:-3 \ldots 3 ; \quad\{$ the additional weight in extra nodes $\}$
k : integer; \{loop counter for inserting extra nodes $\}$
364. At the beginning of this step, move $\left[m_{-}\right.$spread $]=$sentinel, because no horizontal edges will extend to the right of column $m_{-} \max ($ cur_edges $)$.
\langle Adjust the header to reflect the new edges 364$\rangle \equiv$
move $[$ m_spread $] \leftarrow 0 ; j \leftarrow 0$;
while move $[j]=$ sentinel do $\operatorname{incr}(j)$;
if $j=m_{-}$spread then init_edges(cur_edges) $\quad\{$ all edge weights are zero $\}$
else begin $m m \leftarrow$ m_min $($ cur_edges $) ;$ m_min $\left(c u r_{-} e d g e s\right) \leftarrow$ n_min $\left(c u r_{-} e d g e s\right)$;
m_max $($ cur_edges $) \leftarrow n_{_} \max ($ cur_edges $)+1 ; m_{-}$offset $($cur_edges $) \leftarrow$ zero_field $; j j \leftarrow m_{_}$spread -1 ;
while move $[j j]=$ sentinel do $\operatorname{decr}(j j)$;
$n _m i n\left(c u r_{-} e d g e s\right) \leftarrow j+m m ; n_{-} \max ($ cur_edges $) \leftarrow j j+m m ; q \leftarrow$ cur_edges;
repeat $p \leftarrow$ get_node (row_node_size $) ; \operatorname{link}(q) \leftarrow p ; \operatorname{knil}(p) \leftarrow q ; \operatorname{sorted}(p) \leftarrow \operatorname{move}[j]$; unsorted $(p) \leftarrow$ null; incr $(j) ; q \leftarrow p ;$
until $j>j j$;
$\operatorname{link}(q) \leftarrow$ cur_edges $; k n i l\left(c u r_{-} e d g e s\right) \leftarrow q ;$ n_pos $\left(c u r _e d g e s\right) \leftarrow n _m a x\left(c u r _e d g e s\right)+1 ;$
n_rover $($ cur_edges $) \leftarrow$ cur_edges; last_window_time $($ cur_edges $) \leftarrow 0$;
end;
This code is used in section 354.
365. The values of m_magic and n_magic can be worked out by trying the code above on a small example; if they work correctly in simple cases, they should work in general.
\langle Compute the magic offset values 365$\rangle \equiv$
m_magic $\leftarrow m_{-}$min $($cur_edges $)+m_{-} o f f s e t\left(c u r _e d g e s\right)-z e r o _f i e l d ;$
$n _m a g i c \leftarrow 8 *$ n_max $($ cur_edges $)+8+$ zero_ $w+$ min_halfword
This code is used in section 354.
366. Now let's look at the subroutine that merges the edges from a given edge structure into cur_edges. The given edge structure loses all its edges.
procedure merge_edges (h : pointer);
label done;
var $p, q, r, p p, q q, r r:$ pointer; $\{$ list manipulation registers $\}$
n : integer; \{ row number \}
k : halfword; $\{$ key register that we compare to $\operatorname{info}(q)\}$
delta: integer; \{ change to the edge/weight data \}
begin if $\operatorname{link}(h) \neq h$ then
begin if $\left(m_{-}\right.$min $(h)<m_{-}$min $($cur_edges $\left.)\right) \vee\left(m_{_} \max (h)>m_{_} \max (\right.$ cur_edges $\left.)\right) \vee$
$\left(n _m i n(h)<n _m i n(\right.$ cur_edges $\left.)\right) \vee\left(n _m a x(h)>n _m a x\left(c u r _e d g e s\right)\right)$ then
edge_prep $\left(m_{-} \min (h)-z e r o-f i e l d, m_{-} \max (h)-z e r o _f i e l d, n_{-} \min (h)-z e r o _f i e l d, n _m a x(h)-z e r o _f i e l d+1\right)$;
if $m_{_}$offset $(h) \neq m_{\text {_offset }}($ cur_edges $)$ then
〈 Adjust the data of h to account for a difference of offsets 367\rangle;
$n \leftarrow n _m i n\left(c u r _e d g e s\right) ; p \leftarrow \operatorname{link}\left(c u r _e d g e s\right) ; p p \leftarrow \operatorname{link}(h)$;
while $n<n _\min (h)$ do
begin $\operatorname{incr}(n) ; p \leftarrow \operatorname{link}(p)$;
end;
repeat \langle Merge row $p p$ into row $p 368\rangle$;
$p p \leftarrow \operatorname{link}(p p) ; p \leftarrow \operatorname{link}(p) ;$
until $p p=h$;
end;
end;
367. 〈Adjust the data of h to account for a difference of offsets 367$\rangle \equiv$ begin $p p \leftarrow \operatorname{link}(h)$; delta $\leftarrow 8 *\left(m_{\text {_offset }}\left(c u r _e d g e s\right)-m _o f f s e t(h)\right)$;
repeat $q q \leftarrow \operatorname{sorted}(p p)$;
while $q q \neq$ sentinel do
begin $\operatorname{info}(q q) \leftarrow \operatorname{info}(q q)+$ delta; $q q \leftarrow \operatorname{link}(q q)$; end;
$q q \leftarrow u n s o r t e d(p p) ;$
while $q q>$ void do
begin $\operatorname{info}(q q) \leftarrow \operatorname{info}(q q)+$ delta; $q q \leftarrow \operatorname{link}(q q) ;$ end;
$p p \leftarrow \operatorname{link}(p p) ;$
until $p p=h$;
end
This code is used in section 366 .
368. The sorted and unsorted lists are merged separately. After this step, row $p p$ will have no edges remaining, since they will all have been merged into row p.
\langle Merge row $p p$ into row $p 368\rangle \equiv$

$$
q q \leftarrow \operatorname{unsorted}(p p) ;
$$

if $q q>$ void then
if $\operatorname{unsorted}(p) \leq \operatorname{void}$ then unsorted $(p) \leftarrow q q$
else begin while $\operatorname{link}(q q)>$ void do $q q \leftarrow \operatorname{link}(q q)$;
$\operatorname{link}(q q) \leftarrow \operatorname{unsorted}(p) ; \operatorname{unsorted}(p) \leftarrow \operatorname{unsorted}(p p)$;
end;
unsorted $(p p) \leftarrow$ null; $q q \leftarrow \operatorname{sorted}(p p)$;
if $q q \neq$ sentinel then
begin if $\operatorname{unsorted}(p)=\operatorname{void}$ then unsorted $(p) \leftarrow \operatorname{null}$;
$\operatorname{sorted}(p p) \leftarrow \operatorname{sentinel} ; r \leftarrow \operatorname{sorted} \operatorname{loc}(p) ; q \leftarrow \operatorname{link}(r) ; \quad\{q=\operatorname{sorted}(p)\}$
if $q=\operatorname{sentinel}$ then $\operatorname{sorted}(p) \leftarrow q q$
else loop begin $k \leftarrow \operatorname{info}(q q)$;
while $k>\operatorname{info}(q)$ do
begin $r \leftarrow q ; q \leftarrow \operatorname{link}(r)$;
end;
$\operatorname{link}(r) \leftarrow q q ; r r \leftarrow \operatorname{link}(q q) ; \operatorname{link}(q q) \leftarrow q ;$
if $r r=$ sentinel then goto done;
$r \leftarrow q q ; q q \leftarrow r r ;$
end;
end;
done:
This code is used in section 366.
369. The total_weight routine computes the total of all pixel weights in a given edge structure. It's not difficult to prove that this is the sum of $(-w)$ times x taken over all edges, where w and x are the weight and x coordinates stored in an edge. It's not necessary to worry that this quantity will overflow the size of an integer register, because it will be less than 2^{31} unless the edge structure has more than 174,762 edges. However, we had better not try to compute it as a scaled integer, because a total weight of almost 12×2^{12} can be produced by only four edges.
function total_weight (h : pointer $)$: integer; $\{h$ is an edge header $\}$
var $p, q:$ pointer; $\{$ variables that traverse the given structure \}
n : integer; $\{$ accumulated total so far \}
$m: 0 . .65535$; \{ packed x and w values, including offsets \}
begin $n \leftarrow 0 ; p \leftarrow \operatorname{link}(h)$;
while $p \neq h$ do
begin $q \leftarrow \operatorname{sorted}(p)$;
while $q \neq$ sentinel do 〈Add the contribution of node q to the total weight, and set $q \leftarrow \operatorname{link}(q) 370\rangle$; $q \leftarrow \operatorname{unsorted}(p)$;
while $q>$ void do 〈Add the contribution of node q to the total weight, and set $q \leftarrow \operatorname{link}(q) 370\rangle$;
$p \leftarrow \operatorname{link}(p)$; end;
total_weight $\leftarrow n$;
end;
370. It's not necessary to add the offsets to the x coordinates, because an entire edge structure can be shifted without affecting its total weight. Similarly, we don't need to subtract zero_field.
\langle Add the contribution of node q to the total weight, and set $q \leftarrow \operatorname{link}(q) 370\rangle \equiv$
begin $m \leftarrow h o(\operatorname{info}(q)) ; n \leftarrow n-\left((m \bmod 8)-z e r o _w\right) *(m \operatorname{div} 8) ; q \leftarrow \operatorname{link}(q)$;
end
This code is used in sections 369 and 369.
371. So far we've done lots of things to edge structures assuming that edges are actually present, but we haven't seen how edges get created in the first place. Let's turn now to the problem of generating new edges.
METAFONT will display new edges as they are being computed, if tracing_edges is positive. In order to keep such data reasonably compact, only the points at which the path makes a 90° or 180° turn are listed.
The tracing algorithm must remember some past history in order to suppress unnecessary data. Three variables trace_x, trace_y, and trace_yy provide this history: The last coordinates printed were (trace_x, trace_y), and the previous edge traced ended at (trace_x, trace_yy). Before anything at all has been traced, trace_x $=$ -4096.
\langle Global variables 13$\rangle+\equiv$
trace_x: integer; $\{x$ coordinate most recently shown in a trace $\}$
trace_y: integer ; $\{y$ coordinate most recently shown in a trace $\}$
trace_yy: integer $; \quad\{y$ coordinate most recently encountered $\}$
372. Edge tracing is initiated by the begin_edge_tracing routine, continued by the trace_a_corner routine, and terminated by the end_edge_tracing routine.

```
procedure begin_edge_tracing;
    begin print_diagnostic("Tracingபedges", " ", true); print("ь(weight \(\sqcup ") ;\) print_int (cur_wt);
    print_char(")"); trace_x \(\leftarrow-4096\);
    end;
procedure trace_a_corner;
    begin if file_offset > max_print_line - 13 then print_nl("");
    print_char("("); print_int(trace_x); print_char(","); print_int(trace_yy); print_char(")");
    trace_y \(\leftarrow\) trace_y ;
    end;
procedure end_edge_tracing;
    begin if trace_x \(=-4096\) then print_nl("(No Newew edges \(_{\llcorner }\)added.)")
    else begin trace_a_corner; print_char(".");
        end;
    end_diagnostic(true);
    end;
```

373. Just after a new edge weight has been put into the info field of node r, in row n, the following routine continues an ongoing trace.
procedure trace_new_edge (r : pointer ; n : integer $)$;
var d : integer; \{temporary data register \}
$w:-3 \ldots 3 ; \quad\{$ weight associated with an edge transition \}
$m, n 0, n 1$: integer; \{ column and row numbers \}
begin $d \leftarrow h o(\operatorname{info}(r)) ; w \leftarrow(d \bmod 8)-z e r o _w ; m \leftarrow(d \operatorname{div} 8)-m_{-} o f f s e t\left(c u r _e d g e s\right)$;
if $w=$ cur_ $w t$ then
begin $n 0 \leftarrow n+1 ; n 1 \leftarrow n$;
end
else begin $n 0 \leftarrow n ; n 1 \leftarrow n+1$;
end; $\quad\{$ the edges run from $(m, n 0)$ to $(m, n 1)\}$
if $m \neq$ trace_ x then
begin if trace_x $=-4096$ then
begin print_nl(""); trace_yy $\leftarrow n 0$;
end
else if trace_yy $\neq n 0$ then print_char("?") \{shouldn't happen \}
else trace_a_corner;
trace_x $\leftarrow m$; trace_a_corner;
end
else begin if $n 0 \neq$ trace_yy then print_char("!"); \{ shouldn't happen
if $((n 0<n 1) \wedge($ trace_y $>$ trace_yy $)) \vee\left((n 0>n 1) \wedge\left(\right.\right.$ trace_ $\left.\left.y<t r a c e _y y\right)\right)$ then trace_a_corner; end;
trace_yy $\leftarrow n 1$;
end;
374. One way to put new edge weights into an edge structure is to use the following routine, which simply draws a straight line from $(x 0, y 0)$ to $(x 1, y 1)$. More precisely, it introduces weights for the edges of the discrete path $\left(\left\lfloor t\left[x_{0}, x_{1}\right]+\frac{1}{2}+\epsilon\right\rfloor,\left\lfloor t\left[y_{0}, y_{1}\right]+\frac{1}{2}+\epsilon \delta\right\rfloor\right)$, as t varies from 0 to 1 , where ϵ and δ are extremely small positive numbers.
The structure header is assumed to be cur_edges; downward edge weights will be cur_wt, while upward ones will be -cur_wt.

Of course, this subroutine will be called only in connection with others that eventually draw a complete cycle, so that the sum of the edge weights in each row will be zero whenever the row is displayed.

```
procedure line_edges ( \(x 0, y 0, x 1, y 1:\) scaled);
    label done, done1;
    var \(m 0, n 0, m 1, n 1\) : integer; \{rounded and unscaled coordinates \}
        delx, dely: scaled; \{ the coordinate differences of the line \}
        yt: scaled; \(\quad\{\) smallest \(y\) coordinate that rounds the same as \(y 0\}\)
        \(t x\) : scaled; \{ tentative change in \(x\) \}
        \(p, r:\) pointer; \(\{\) list manipulation registers \}
        base: integer; \{ amount added to edge-and-weight data \}
        \(n\) : integer; \{ current row number \}
    begin \(n 0 \leftarrow\) round_unscaled \((y 0)\); \(n 1 \leftarrow\) round_unscaled \((y 1)\);
    if \(n 0 \neq n 1\) then
        begin \(m 0 \leftarrow\) round_unscaled \((x 0) ; m 1 \leftarrow\) round_unscaled \((x 1)\); delx \(\leftarrow x 1-x 0 ;\) dely \(\leftarrow y 1-y 0\);
        \(y t \leftarrow n 0 * u n i t y-h a l f-u n i t ; y 0 \leftarrow y 0-y t ; y 1 \leftarrow y 1-y t\);
        if \(n 0<n 1\) then 〈Insert upward edges for a line 375\(\rangle\)
        else \(\langle\) Insert downward edges for a line 376\(\rangle\);
        \(n_{-}\)rover \((\)cur_edges \() \leftarrow p ; \quad n_{-}\)pos \((\)cur_edges \() \leftarrow n+\) zero_field;
        end;
    end;
```

375. Here we are careful to cancel any effect of rounding error.
```
\(\langle\) Insert upward edges for a line 375\(\rangle \equiv\)
    begin base \(\leftarrow 8 *\) m_offset(cur_edges) + min_halfword + zero_w - cur_wt;
    if \(m 0 \leq m 1\) then edge_prep \((m 0, m 1, n 0, n 1)\) else \(\operatorname{edge\_ prep~}(m 1, m 0, n 0, n 1)\);
    \(\langle\) Move to row \(n 0\), pointed to by \(p 377\rangle\);
    \(y 0 \leftarrow\) unity \(-y 0\);
    loop begin \(r \leftarrow\) get_avail; link \((r) \leftarrow \operatorname{unsorted}(p)\); unsorted \((p) \leftarrow r\);
        \(t x \leftarrow t a k e_{-} f r a c t i o n(d e l x\), make_fraction (y0, dely));
        if ab_vs_cd (delx,y0,dely,tx)<0 then decr \((t x) ; \quad\{\) now \(t x=\lfloor y 0 \cdot d e l x /\) dely \(\rfloor\}\)
        \(\operatorname{info}(r) \leftarrow 8 *\) round_unscaled \((x 0+t x)+\) base;
        \(y 1 \leftarrow y 1\) - unity;
        if internal[tracing_edges] \(>0\) then trace_new_edge \((r, n)\);
        if \(y 1<\) unity then goto done;
        \(p \leftarrow \operatorname{link}(p) ; y 0 \leftarrow y 0+\) unity \(; \operatorname{incr}(n) ;\)
        end;
done: end
```

This code is used in section 374 .

376．〈Insert downward edges for a line 376$\rangle \equiv$
begin base $\leftarrow 8 * m_{-}$offset $($cur＿edges $)+$min＿halfword + zero＿$w+c u r _w t$ ；
if $m 0 \leq m 1$ then edge＿prep $(m 0, m 1, n 1, n 0)$ else $\operatorname{edge_ prep~}(m 1, m 0, n 1, n 0)$ ；
$\operatorname{decr}(n 0) ;$ 〈Move to row $n 0$ ，pointed to by $p 377\rangle$ ；
loop begin $r \leftarrow$ get＿avail； $\operatorname{link}(r) \leftarrow \operatorname{unsorted}(p) ; \operatorname{unsorted}(p) \leftarrow r$ ；
$t x \leftarrow$ take＿fraction（delx，make＿fraction $(y 0$ ，dely $)$ ）；
if ab＿vs＿cd $($ delx,$y 0$, dely,$t x)<0$ then $\operatorname{incr}(t x) ; \quad\{$ now $t x=\lceil y 0 \cdot d e l x /$ dely \rceil ，since dely $<0\}$
info $(r) \leftarrow 8 *$ round＿unscaled $(x 0-t x)+$ base；
$y 1 \leftarrow y 1+$ unity；
if internal［tracing＿edges］>0 then trace＿new＿edge (r, n) ；
if $y 1 \geq 0$ then goto done 1 ；
$p \leftarrow \operatorname{knil}(p) ; y 0 \leftarrow y 0+$ unity $; \operatorname{decr}(n)$ ；
end；
done1：end
This code is used in section 374 ．
377．〈Move to row $n 0$ ，pointed to by $p 377\rangle \equiv$

if $n \neq n 0$ then
if $n<n 0$ then
repeat $\operatorname{incr}(n) ; p \leftarrow \operatorname{link}(p)$ ；
until $n=n 0$
else repeat $\operatorname{decr}(n) ; p \leftarrow \operatorname{knil}(p)$ ；
until $n=n 0$
This code is used in sections $375,376,381,382,383$ ，and 384.

378．METAFONT inserts most of its edges into edge structures via the move＿to＿edges subroutine，which uses the data stored in the move array to specify a sequence of＂rook moves．＂The starting point $(m 0, n 0)$ and finishing point $(m 1, n 1)$ of these moves，as seen from the standpoint of the first octant，are supplied as parameters；the moves should，however，be rotated into a given octant．（We＇re going to study octant transformations in great detail later；the reader may wish to come back to this part of the program after mastering the mysteries of octants．）

The rook moves themselves are defined as follows，from a first＿octant point of view：＂Go right move $[k]$ steps，then go up one，for $0 \leq k<n 1-n 0$ ；then go right move $n 1-n 0]$ steps and stop．＂The sum of move $[k]$ for $0 \leq k \leq n 1-n 0$ will be equal to $m 1-m 0$ ．

As in the line＿edges routine，we use + cur＿wt as the weight of all downward edges and $-c u r_{-} w t$ as the weight of all upward edges，after the moves have been rotated to the proper octant direction．

There are two main cases to consider：fast＿case is for moves that travel in the direction of octants 1,4, 5 ，and 8 ，while slow＿case is for moves that travel toward octants $2,3,6$ ，and 7 ．The latter directions are comparatively cumbersome because they generate more upward or downward edges；a curve that travels horizontally doesn＇t produce any edges at all，but a curve that travels vertically touches lots of rows．

```
    define fast_case_up \(=60 \quad\{\) for octants 1 and 4\(\}\)
    define fast_case_down \(=61 \quad\{\) for octants 5 and 8\(\}\)
    define slow_case_up \(=62 \quad\{\) for octants 2 and 3\(\}\)
    define slow_case_down \(=63 \quad\{\) for octants 6 and 7\(\}\)
procedure move_to_edges ( \(m 0, n 0, m 1, n 1\) : integer \()\);
    label fast_case_up, fast_case_down, slow_case_up, slow_case_down, done;
    var delta: 0 .. move_size; \{ extent of move data \}
        \(k: 0\). move_size; \{index into move \}
        \(p, r:\) pointer; \{ list manipulation registers \}
        \(d x\) : integer; \{ change in edge-weight info when \(x\) changes by 1\(\}\)
        edge_and_weight: integer; \{info to insert \}
        \(j\) : integer; \{ number of consecutive vertical moves \}
        \(n\) : integer; \(\quad\{\) the current row pointed to by \(p\}\)
    debug sum: integer; gubed
    begin delta \(\leftarrow n 1-n 0\);
    debug sum \(\leftarrow\) move \([0]\);
    for \(k \leftarrow 1\) to delta do sum \(\leftarrow\) sum + abs (move \([k]\) );
    if sum \(\neq m 1-m 0\) then confusion("0");
    gubed
    \(\langle\) Prepare for and switch to the appropriate case, based on octant 380\(\rangle\);
fast_case_up: 〈Add edges for first or fourth octants, then goto done 381〉;
fast_case_down: 〈Add edges for fifth or eighth octants, then goto done 382\(\rangle\);
slow_case_up: 〈Add edges for second or third octants, then goto done 383\(\rangle\);
slow_case_down: 〈Add edges for sixth or seventh octants, then goto done 384〉;
done: \(n \_p o s(\) cur_edges \() \leftarrow n+z e r o \_f i e l d ; ~ n \_r o v e r ~\left(c u r \_e d g e s ~\right) ~ \leftarrow p ;\)
    end;
```

379．The current octant code appears in a global variable．If，for example，we have octant＝third＿octant， it means that a curve traveling in a north to north－westerly direction has been rotated for the purposes of internal calculations so that the move data travels in an east to north－easterly direction．We want to unrotate as we update the edge structure．
\langle Global variables 13$\rangle+\equiv$
octant：first＿octant ．．sixth＿octant；\｛ the current octant of interest \}

380．〈Prepare for and switch to the appropriate case，based on octant 380$\rangle \equiv$ case octant of
first＿octant：begin $d x \leftarrow 8$ ；edge＿prep $(m 0, m 1, n 0, n 1)$ ；goto fast＿case＿up； end；
second＿octant：begin $d x \leftarrow 8$ ；edge＿prep $(n 0, n 1, m 0, m 1)$ ；goto slow＿case＿up； end；
third＿octant：begin $d x \leftarrow-8$ ；edge＿prep $(-n 1,-n 0, m 0, m 1)$ ；negate $(n 0)$ ；goto slow＿case＿up； end；
fourth＿octant：begin $d x \leftarrow-8$ ；edge＿prep $(-m 1,-m 0, n 0, n 1)$ ；negate $(m 0)$ ；goto fast＿case＿up； end；
fifth＿octant：begin $d x \leftarrow-8$ ；edge＿prep $(-m 1,-m 0,-n 1,-n 0)$ ；negate $(m 0)$ ；goto fast＿case＿down； end；
sixth＿octant：begin $d x \leftarrow-8$ ；edge＿prep $(-n 1,-n 0,-m 1,-m 0)$ ；negate $(n 0)$ ；goto slow＿case＿down； end；
seventh＿octant：begin $d x \leftarrow 8 ; \operatorname{edge_ prep}(n 0, n 1,-m 1,-m 0)$ ；goto slow＿case＿down； end；
eighth＿octant：begin $d x \leftarrow 8$ ；edge＿prep $(m 0, m 1,-n 1,-n 0)$ ；goto fast＿case＿down； end；
end；\｛ there are only eight octants $\}$
This code is used in section 378.
381．〈Add edges for first or fourth octants，then goto done 381$\rangle \equiv$
〈 Move to row $n 0$ ，pointed to by $p 377\rangle$ ；
if delta >0 then
begin $k \leftarrow 0 ;$ edge＿and＿weight $\leftarrow 8 *\left(m 0+m_{-} o f f s e t\left(c u r_{-} e d g e s\right)\right)+$ min＿halfword + zero＿$w-c u r_{-} w t ;$
repeat edge＿and＿weight \leftarrow edge＿and＿weight $+d x *$ move $[k] ;$ fast＿get＿avail $(r) ;$ link $(r) \leftarrow \operatorname{unsorted}(p)$ ；
info $(r) \leftarrow$ edge＿and＿weight；
if internal［tracing＿edges］>0 then trace＿new＿edge (r, n) ；
unsorted $(p) \leftarrow r ; p \leftarrow \operatorname{link}(p) ; \operatorname{incr}(k) ; \operatorname{incr}(n)$ ；
until $k=$ delta；
end；
goto done
This code is used in section 378 ．

382．〈Add edges for fifth or eighth octants，then goto done 382$\rangle \equiv$
$n 0 \leftarrow-n 0-1 ;\langle$ Move to row $n 0$ ，pointed to by $p 377\rangle$ ；
if delta >0 then
begin $k \leftarrow 0 ;$ edge＿and＿weight $\leftarrow 8 *\left(m 0+m_{-} o f f s e t\left(c u r_{-} e d g e s\right)\right)+$ min＿halfword $+z e r o_{-} w+c u r_{-} w t ;$
repeat edge＿and＿weight \leftarrow edge＿and＿weight $+d x *$ move $[k] ;$ fast＿get＿avail $(r) ;$ link $(r) \leftarrow u n s o r t e d(p)$ ；
info $(r) \leftarrow$ edge＿and＿weight；
if internal［tracing＿edges］>0 then trace＿new＿edge (r, n) ；
$\operatorname{unsorted}(p) \leftarrow r ; p \leftarrow \operatorname{knil}(p) ; \operatorname{incr}(k) ; \operatorname{decr}(n)$ ；
until $k=$ delta；
end；
goto done
This code is used in section 378.

383．〈Add edges for second or third octants，then goto done 383$\rangle \equiv$
edge＿and＿weight $\leftarrow 8 *\left(n 0+m _o f f s e t\left(c u r _e d g e s\right)\right)+$ min＿halfword $+z e r o _w-c u r _w t ; n 0 \leftarrow m 0 ; k \leftarrow 0$ ；〈 Move to row $n 0$ ，pointed to by $p 377\rangle$ ；
repeat $j \leftarrow$ move $[k]$ ；
while $j>0$ do
begin fast＿get＿avail $(r) ; \operatorname{link}(r) \leftarrow \operatorname{unsorted}(p) ; \operatorname{info}(r) \leftarrow$ edge＿and＿weight；
if internal［tracing＿edges］>0 then trace＿new＿edge (r, n) ；
unsorted $(p) \leftarrow r ; p \leftarrow \operatorname{link}(p) ; \operatorname{decr}(j) ; \operatorname{incr}(n)$ ；
end；
edge＿and＿weight \leftarrow edge＿and＿weight $+d x$ ；incr (k) ；
until $k>$ delta；
goto done
This code is used in section 378.
384．〈Add edges for sixth or seventh octants，then goto done 384$\rangle \equiv$
edge＿and＿weight $\leftarrow 8 *\left(n 0+m_{-}\right.$offset $($cur＿edges $\left.)\right)+$min＿halfword $+z e r r_{-} w+$ cur＿wt；n0 $\leftarrow-m 0-1$ ；
$k \leftarrow 0$ ；〈Move to row $n 0$ ，pointed to by $p 377\rangle$ ；
repeat $j \leftarrow$ move $[k]$ ；
while $j>0$ do
begin fast＿get＿avail (r) ；link $(r) \leftarrow \operatorname{unsorted}(p)$ ；info $(r) \leftarrow$ edge＿and＿weight；
if internal［tracing＿edges］>0 then trace＿new＿edge (r, n) ；
unsorted $(p) \leftarrow r ; p \leftarrow \operatorname{knil}(p) ; \operatorname{decr}(j) ; \operatorname{decr}(n)$ ；
end；
edge＿and＿weight \leftarrow edge＿and＿weight $+d x$ ；incr (k) ；
until $k>$ delta；
goto done
This code is used in section 378.
385．All the hard work of building an edge structure is undone by the following subroutine．
\langle Declare the recycling subroutines 268$\rangle+\equiv$
procedure toss＿edges（ h ：pointer）；
var $p, q:$ pointer；$\quad\{$ for list manipulation $\}$
begin $q \leftarrow \operatorname{link}(h)$ ；
while $q \neq h$ do
begin flush＿list（sorted（q））；
if unsorted $(q)>$ void then flush＿list（unsorted $(q))$ ；
$p \leftarrow q ; q \leftarrow \operatorname{link}(q) ;$ free＿node $(p$, row＿node＿size）；
end；
free＿node（ h ，edge＿header＿size）；
end；
386. Subdivision into octants. When METAFONT digitizes a path, it reduces the problem to the special case of paths that travel in "first octant" directions; i.e., each cubic $z(t)=(x(t), y(t))$ being digitized will have the property that $0 \leq y^{\prime}(t) \leq x^{\prime}(t)$. This assumption makes digitizing simpler and faster than if the direction of motion has to be tested repeatedly.
When $z(t)$ is cubic, $x^{\prime}(t)$ and $y^{\prime}(t)$ are quadratic, hence the four polynomials $x^{\prime}(t), y^{\prime}(t), x^{\prime}(t)-y^{\prime}(t)$, and $x^{\prime}(t)+y^{\prime}(t)$ cross through 0 at most twice each. If we subdivide the given cubic at these places, we get at most nine subintervals in each of which $x^{\prime}(t), y^{\prime}(t), x^{\prime}(t)-y^{\prime}(t)$, and $x^{\prime}(t)+y^{\prime}(t)$ all have a constant sign. The curve can be transformed in each of these subintervals so that it travels entirely in first octant directions, if we reflect $x \leftrightarrow-x, y \leftrightarrow-y$, and/or $x \leftrightarrow y$ as necessary. (Incidentally, it can be shown that a cubic such that $x^{\prime}(t)=16(2 t-1)^{2}+2(2 t-1)-1$ and $y^{\prime}(t)=8(2 t-1)^{2}+4(2 t-1)$ does indeed split into nine subintervals.)
387. The transformation that rotates coordinates, so that first octant motion can be assumed, is defined by the skew subroutine, which sets global variables cur_x and cur_y to the values that are appropriate in a given octant. (Octants are encoded as they were in the n_arg subroutine.)

This transformation is "skewed" by replacing (x, y) by $(x-y, y)$, once first octant motion has been established. It turns out that skewed coordinates are somewhat better to work with when curves are actually digitized.

```
    define set_two_end (\#) \(\equiv\) cur_y \(\leftarrow\) \#; end
    define set_two (\#) \(\equiv\)
    begin cur_x \(\leftarrow \#\); set_two_end
procedure skew (x,y: scaled; octant : small_number);
    begin case octant of
    first_octant: set_two \((x-y)(y)\);
    second_octant: \(\operatorname{set}^{2} t w o(y-x)(x)\);
    third_octant: set_two \((y+x)(-x)\);
    fourth_octant: set_two \((-x-y)(y)\);
    fifth_octant: set_two \((-x+y)(-y)\);
    sixth_octant: set_two \((-y+x)(-x)\);
    seventh_octant: set_two \((-y-x)(x)\);
    eighth_octant: set_two \((x+y)(-y)\);
    end; \(\{\) there are no other cases \(\}\)
    end;
```

388. Conversely, the following subroutine sets cur_x and cur_y to the original coordinate values of a point, given an octant code and the point's coordinates (x, y) after they have been mapped into the first octant and skewed.
\langle Declare subroutines for printing expressions 257$\rangle+\equiv$
procedure unskew (x,y: scaled; octant : small_number); begin case octant of
first_octant: set_two $(x+y)(y)$; second_octant: set _two $(y)(x+y)$; third_octant: set_two $(-y)(x+y)$; fourth_octant: set_two $(-x-y)(y)$; fifth_octant: set_two $(-x-y)(-y)$; sixth_octant: set_two $(-y)(-x-y)$; seventh_octant: set_two $(y)(-x-y)$; eighth_octant: set_two $(x+y)(-y)$;
end; \{ there are no other cases \}
end;

389．〈Global variables 13$\rangle+\equiv$
cur＿x，cur＿y：scaled；\｛outputs of skew，unskew，and a few other routines \}
390．The conversion to skewed and rotated coordinates takes place in stages，and at one point in the transformation we will have negated the x and／or y coordinates so as to make curves travel in the first quadrant．At this point the relevant＂octant＂code will be either first＿octant（when no transformation has been done），or fourth＿octant $=$ first＿octant + negate＿x（when x has been negated），or fifth＿octant $=$ first＿octant + negate＿$x+$ negate＿y（when both have been negated），or eighth＿octant $=$ first＿octant + negate＿y （when y has been negated）．The abnegate routine is sometimes needed to convert from one of these transformations to another．
procedure abnegate（ x, y ：scaled；octant＿before，octant＿after ：small＿number）；
begin if odd（octant＿before）$=$ odd（octant＿after） then cur＿$x \leftarrow x$
else cur＿$x \leftarrow-x$ ；
if $($ octant＿before $>$ negate＿y $)=\left(\right.$ octant＿after $>$ negate＿y $\left.^{\prime}\right)$ then cur＿$y \leftarrow y$
else cur＿$-y \leftarrow-y$ ；
end；
391．Now here＇s a subroutine that＇s handy for subdivision：Given a quadratic polynomial $B(a, b, c ; t)$ ，the crossing＿point function returns the unique fraction value t between 0 and 1 at which $B(a, b, c ; t)$ changes from positive to negative，or returns $t=$ fraction＿one +1 if no such value exists．If $a<0$（so that $B(a, b, c ; t)$ is already negative at $t=0$ ），crossing＿point returns the value zero．

```
define no_crossing \(\equiv\)
    begin crossing_point \(\leftarrow\) fraction_one +1 ; return;
    end
define one_crossing \(\equiv\)
    begin crossing_point \(\leftarrow\) fraction_one; return;
    end
define zero_crossing \(\equiv\)
    begin crossing_point \(\leftarrow 0\); return;
    end
function crossing_point ( \(a, b, c:\) integer \()\) : fraction;
    label exit;
    var \(d\) : integer; \{recursive counter \}
        \(x, x x, x 0, x 1, x 2:\) integer; \(\quad\{\) temporary registers for bisection \}
    begin if \(a<0\) then zero_crossing;
    if \(c \geq 0\) then
        begin if \(b \geq 0\) then
            if \(c>0\) then no_crossing
            else if \((a=0) \wedge(b=0)\) then no_crossing
                else one_crossing;
        if \(a=0\) then zero_crossing;
        end
    else if \(a=0\) then
        if \(b \leq 0\) then zero_crossing;
    〈Use bisection to find the crossing point, if one exists 392 〉;
exit: end;
```

392. The general bisection method is quite simple when $n=2$, hence crossing_point does not take much time. At each stage in the recursion we have a subinterval defined by l and j such that $B\left(a, b, c ; 2^{-l}(j+t)\right)=$ $B\left(x_{0}, x_{1}, x_{2} ; t\right)$, and we want to "zero in" on the subinterval where $x_{0} \geq 0$ and $\min \left(x_{1}, x_{2}\right)<0$.

It is convenient for purposes of calculation to combine the values of l and j in a single variable $d=2^{l}+j$, because the operation of bisection then corresponds simply to doubling d and possibly adding 1 . Furthermore it proves to be convenient to modify our previous conventions for bisection slightly, maintaining the variables $X_{0}=2^{l} x_{0}, X_{1}=2^{l}\left(x_{0}-x_{1}\right)$, and $X_{2}=2^{l}\left(x_{1}-x_{2}\right)$. With these variables the conditions $x_{0} \geq 0$ and $\min \left(x_{1}, x_{2}\right)<0$ are equivalent to $\max \left(X_{1}, X_{1}+X_{2}\right)>X_{0} \geq 0$.

The following code maintains the invariant relations $0 \leq x 0<\max (x 1, x 1+x 2),|x 1|<2^{30},|x 2|<2^{30}$; it has been constructed in such a way that no arithmetic overflow will occur if the inputs satisfy $a<2^{30}$, $|a-b|<2^{30}$, and $|b-c|<2^{30}$.
\langle Use bisection to find the crossing point, if one exists 392$\rangle \equiv$
$d \leftarrow 1 ; x 0 \leftarrow a ; x 1 \leftarrow a-b ; x 2 \leftarrow b-c ;$
repeat $x \leftarrow \operatorname{half}(x 1+x 2)$;
if $x 1-x 0>x 0$ then
begin $x \mathcal{2} \leftarrow x$; double $(x 0)$; double (d);
end
else begin $x x \leftarrow x 1+x-x 0$;
if $x x>x 0$ then
begin $x 2 \leftarrow x$; double $(x 0)$; double (d);
end
else begin $x 0 \leftarrow x 0-x x$;
if $x \leq x 0$ then
if $x+x 2 \leq x 0$ then no_crossing;
$x 1 \leftarrow x ; d \leftarrow d+d+1 ;$
end;
end;
until $d \geq$ fraction_one;
crossing_point $\leftarrow d$-fraction_one
This code is used in section 391.
393. Octant subdivision is applied only to cycles, i.e., to closed paths. A "cycle spec" is a data structure that contains specifications of cubic curves and octant mappings for the cycle that has been subdivided into segments belonging to single octants. It is composed entirely of knot nodes, similar to those in the representation of paths; but the explicit type indications have been replaced by positive numbers that give further information. Additional endpoint data is also inserted at the octant boundaries.
Recall that a cubic polynomial is represented by four control points that appear in adjacent nodes p and q of a knot list. The x coordinates are $x_{-} \operatorname{coord}(p)$, right_x (p), left_x (q), and $x_{-} \operatorname{coord}(q)$; the y coordinates are similar. We shall call this "the cubic following p " or "the cubic between p and q " or "the cubic preceding q."

Cycle specs are circular lists of cubic curves mixed with octant boundaries. Like cubics, the octant boundaries are represented in consecutive knot nodes p and q. In such cases right_type $(p)=$ left_type $(q)=$ endpoint, and the fields right_x (p), right_ $y(p)$, left_ $x(q)$, and left_ $y(q)$ are replaced by other fields called right_octant (p), right_transition (p), left_octant (q), and left_transition (q), respectively. For example, when the curve direction moves from the third octant to the fourth octant, the boundary nodes say right_octant $(p)=$ third_octant, left_octant $(q)=$ fourth_octant, and right_transition $(p)=$ left_transition $(q)=$ diagonal. A diagonal transition occurs when moving between octants $1 \& 2,3 \& 4,5 \& 6$, or $7 \& 8$; an axis transition occurs when moving between octants $8 \& 1,2 \& 3,4 \& 5,6 \& 7$. (Such transition information is redundant but convenient.) Fields $x_{-} \operatorname{coord}(p)$ and $y_{\text {_ }} \operatorname{coord}(p)$ will contain coordinates of the transition point after rotation from third octant to first octant; i.e., if the true coordinates are (x, y), the coordinates $(y,-x)$ will appear in node p. Similarly, a fourth-octant transformation will have been applied after the transition, so we will have $x_{-} \operatorname{coord}(q)=-x$ and $y_{_} \operatorname{coord}(q)=y$.
The cubic between p and q will contain positive numbers in the fields right_type (p) and left_type (q); this makes cubics distinguishable from octant boundaries, because endpoint $=0$. The value of right_type (p) will be the current octant code, during the time that cycle specs are being constructed; it will refer later to a pen offset position, if the envelope of a cycle is being computed. A cubic that comes from some subinterval of the k th step in the original cyclic path will have left_type $(q)=k$.

```
define right_octant \equiv right_x { the octant code before a transition }
define left_octant \equivleft_x { the octant after a transition }
define right_transition \equivright_y { the type of transition }
define left_transition \equivleft_y { ditto, either axis or diagonal }
define axis =0 {a transition across the }\mp@subsup{x}{}{\prime}\mathrm{ - or }\mp@subsup{y}{}{\prime}\mathrm{ -axis }
define diagonal =1 { a transition where }\mp@subsup{y}{}{\prime}=\pm\mp@subsup{x}{}{\prime}
```

394．Here＇s a routine that prints a cycle spec in symbolic form，so that it is possible to see what subdivision has been made．The point coordinates are converted back from METAFONT＇s internal＂rotated＂form to the external＂true＂form．The global variable cur＿spec should point to a knot just after the beginning of an octant boundary，i．e．，such that left＿type（cur＿spec）$=$ endpoint．
define print＿two＿true $(\#) \equiv$ unskew（\＃，octant）；print＿two（cur＿x，cur＿y）
procedure print＿spec（s ：str＿number）；
label not＿found，done；
var p, q ：pointer；$\quad\{$ for list traversal $\}$ octant：small＿number；\｛ the current octant code $\}$
begin print＿diagnostic（＂Cycle＿spec＂，s，true）；$p \leftarrow$ cur＿spec；octant \leftarrow left＿octant (p) ；print＿ln；

loop begin print（octant＿dir［octant］）；print＿char（＂－＂）；
loop begin $q \leftarrow \operatorname{link}(p)$ ；
if right＿type $(p)=$ endpoint then goto not＿found；
\langle Print the cubic between p and $q 397\rangle$ ；
$p \leftarrow q ;$
end；
not＿found：if $q=$ cur＿spec then goto done；
 end；
done：print＿nl（＂ப\＆\quad суcle＂）；end＿diagnostic（true）；
end；
395．Symbolic octant direction names are kept in the octant＿dir array．
\langle Global variables 13$\rangle+\equiv$
octant＿dir：array［first＿octant ．．sixth＿octant］of str＿number；
396．〈Set initial values of key variables 21$\rangle+\equiv$
octant＿dir［first＿octant］\leftarrow＂ENE＂；octant＿dir［second＿octant］\leftarrow＂NNE＂；octant＿dir［third＿octant］\leftarrow＂NNW＂； octant＿dir $[$ fourth＿octant $] \leftarrow$＂WNW＂；octant＿dir $[$ fifth＿octant $] \leftarrow$＂WSW＂；octant＿dir $[$ sixth＿octant $] \leftarrow$＂SSW＂； octant＿dir $[$ seventh＿octant $] \leftarrow$＂SSE＂；octant＿dir $[$ eighth＿octant $] \leftarrow$＂ESE＂；

397．\langle Print the cubic between p and $q 397\rangle \equiv$

print＿two＿true $\left(l e f t _x(q)\right.$ ，left＿y $\left.(q)\right) ;$ print＿nl（＂$\left.\sqcup . . "\right) ;$ print＿two＿true $\left(x_{-}\right.$coord $(q), y_{-}$coord $\left.(q)\right)$ ；
print（＂ぃ\％segment」＂）；print＿int（left＿type $(q)-1)$ ；
end
This code is used in section 394.

398．A much more compact version of a spec is printed to help users identify＂strange paths．＂
procedure print＿strange（s：str＿number）；
var p ：pointer；\｛ for list traversal \}
$f:$ pointer；$\{$ starting point in the cycle $\}$
q ：pointer；$\{$ octant boundary to be printed $\}$
t ：integer；\｛segment number，plus 1 \}
begin if interaction $=$ error＿stop＿mode then wake＿up＿terminal；
print＿nl（＂＞＂）；〈Find the starting point，f 399 〉；
\langle Determine the octant boundary q that precedes $f 400\rangle$ ；
$t \leftarrow 0$ ；
repeat if left＿type $(p) \neq$ endpoint then
begin if left＿type $(p) \neq t$ then
begin $t \leftarrow$ left＿type (p) ；print＿char（＂ь＂）；print＿int $(t-1)$ ； end；
if $q \neq$ null then
begin \langle Print the turns，if any，that start at q ，and advance $q 401\rangle$ ；
print＿char（＂ь＂）；print（octant＿dir［left＿octant $(q)]) ; q \leftarrow$ null；
end；
end
else if $q=$ null then $q \leftarrow p$ ；
$p \leftarrow \operatorname{link}(p)$ ；
until $p=f$ ；
print＿char（＂ப＂）；print＿int（left＿type（p）－1）；
if $q \neq$ null then 〈Print the turns，if any，that start at q ，and advance $q 401\rangle$ ；
print＿err（s）；
end；
399．If the segment numbers on the cycle are $t_{1}, t_{2}, \ldots, t_{m}$ ，and if $m \leq$ max＿quarterword，we have $t_{k-1} \leq t_{k}$ except for at most one value of k ．If there are no exceptions，f will point to t_{1} ；otherwise it will point to the exceptional t_{k} ．

There is at least one segment number（i．e．，we always have $m>0$ ），because print＿strange is never called upon to display an entirely＂dead＂cycle．
\langle Find the starting point，$f 399\rangle \equiv$
$p \leftarrow$ cur＿spec $; t \leftarrow$ max＿quarterword +1 ；
repeat $p \leftarrow \operatorname{link}(p)$ ；
if left＿type $(p) \neq$ endpoint then
begin if left＿type $(p)<t$ then $f \leftarrow p$ ；
$t \leftarrow$ left＿type (p) ；
end；
until $p=$ cur＿spec
This code is used in section 398.
400．\langle Determine the octant boundary q that precedes $f 400\rangle \equiv$
$p \leftarrow$ cur＿spec $; q \leftarrow p ;$
repeat $p \leftarrow \operatorname{link}(p)$ ；
if left＿type $(p)=$ endpoint then $q \leftarrow p$ ；
until $p=f$
This code is used in section 398.

401．When two octant boundaries are adjacent，the path is simply changing direction without moving． Such octant directions are shown in parentheses．
\langle Print the turns，if any，that start at q ，and advance $q 401\rangle \equiv$
if left＿type $($ link $(q))=$ endpoint then
begin print（＂ப（＂）；print（octant＿dir［left＿octant（ $q)]) ; q \leftarrow \operatorname{link}(q)$ ；
while left＿type $(\operatorname{link}(q))=$ endpoint do
begin print＿char（＂৬＂）；print（octant＿dir［left＿octant（q）］）；$q \leftarrow \operatorname{link}(q)$ ；
end；
print＿char（＂）＂）；
end
This code is used in sections 398 and 398.
402．The make＿spec routine is what subdivides paths into octants：Given a pointer cur＿spec to a cyclic path，make＿spec mungs the path data and returns a pointer to the corresponding cyclic spec．All＂dead＂ cubics（i．e．，cubics that don＇t move at all from their starting points）will have been removed from the result．
The idea of make＿spec is fairly simple：Each cubic is first subdivided，if necessary，into pieces belonging to single octants；then the octant boundaries are inserted．But some of the details of this transformation are not quite obvious．

If autorounding >0 ，the path will be adjusted so that critical tangent directions occur at＂good＂points with respect to the pen called cur＿pen．

The resulting spec will have all x and y coordinates at most 2^{28}－half＿unit－ 1 －safety＿margin in absolute value．The pointer that is returned will start some octant，as required by print＿spec．
〈Declare subroutines needed by make＿spec 405〉
function make＿spec（ h ：pointer；safety＿margin ：scaled；tracing ：integer $)$ ：pointer； \｛ converts a path to a cycle spec \}
label continue，done；
var $p, q, r, s:$ pointer；$\{$ for traversing the lists \}
k ：integer；$\{$ serial number of path segment，or octant code \}
chopped：integer；\｛ positive if data truncated，negative if data dangerously large \}
〈Other local variables for make＿spec 453〉
begin cur＿spec $\leftarrow h$ ；

max＿allowed \leftarrow fraction＿one－half＿unit－ 1 －safety＿margin；〈Truncate the values of all coordinates that exceed max＿allowed，and stamp segment numbers in each left＿type field 404〉；
quadrant＿subdivide；\quad subdivide each cubic into pieces belonging to quadrants \}
if $($ internal $[$ autorounding $]>0) \wedge($ chopped $=0)$ then $x y$＿round；
octant＿subdivide；\｛ complete the subdivision \}
if $($ internal $[$ autorounding $]>$ unity $) \wedge($ chopped $=0)$ then diag＿round；
\langle Remove dead cubics 447〉；
〈 Insert octant boundaries and compute the turning number 450〉；
while left＿type（cur＿spec）\neq endpoint do cur＿spec $\leftarrow \operatorname{link}($ cur＿spec $)$ ；
if tracing >0 then
if（internal $[$ autorounding $] \leq 0) \vee($ chopped $\neq 0)$ then print＿spec $(", \sqcup$ after \sqcup subdivision＂$)$
else if internal［autorounding］$>$ unity then
print＿spec（＂，$\left\llcorner\operatorname{after}_{\sqcup} \operatorname{subdivision}_{\lrcorner}\right.$and $_{\lrcorner}$double $_{\sqcup}$ autorounding＂）

make＿spec \leftarrow cur＿spec；
end；
403. The make_spec routine has an interesting side effect, namely to set the global variable turning_number to the number of times the tangent vector of the given cyclic path winds around the origin.

Another global variable cur_spec points to the specification as it is being made, since several subroutines must go to work on it.

And there are two global variables that affect the rounding decisions, as we'll see later; they are called cur_pen and cur_path_type. The latter will be double_path_code if make_spec is being applied to a double path.
define double_path_code $=0 \quad$ \{ command modifier for 'doublepath'\}
define contour_code $=1 \quad\{$ command modifier for 'contour' $\}$
define also_code $=2 \quad\{$ command modifier for 'also' $\}$
\langle Global variables 13$\rangle+\equiv$
cur_spec: pointer; \{ the principal output of make_spec $\}$
turning_number: integer; \{another output of make_spec \}
cur_pen: pointer; \{ an implicit input of make_spec, used in autorounding \}
cur_path_type: double_path_code . . contour_code; \{likewise \}
max_allowed: scaled; $\quad\{$ coordinates must be at most this big $\}$
404. First we do a simple preprocessing step. The segment numbers inserted here will propagate to all descendants of cubics that are split into subintervals. These numbers must be nonzero, but otherwise they are present merely for diagnostic purposes. The cubic from p to q that represents "time interval" $(t-1) \ldots t$ usually has left_type $(q)=t$, except when t is too large to be stored in a quarterword.

```
define procrustes \((\#) \equiv\) if \(a b s(\#) \geq d m a x\) then
    if abs(\#) > max_allowed then
        begin chopped \(\leftarrow 1\);
        if \# > 0 then \# \(\leftarrow\) max_allowed else \# \(\leftarrow-\) max_allowed;
        end
    else if chopped \(=0\) then chopped \(\leftarrow-1\)
```

< Truncate the values of all coordinates that exceed max_allowed, and stamp segment numbers in each
left_type field 404$\rangle \equiv$
$p \leftarrow$ cur_spec $; k \leftarrow 1$; chopped $\leftarrow 0 ;$ dmax \leftarrow half (max_allowed) ;
repeat procrustes $($ left_x $(p))$; procrustes $\left(l e f t _y(p)\right) ;$ procrustes $\left(x_{-}\right.$coord $\left.(p)\right)$; procrustes $\left(y_{-}\right.$coord $\left.(p)\right)$;
procrustes $($ right_x $(p))$; procrustes $($ right_y $(p))$;
$p \leftarrow \operatorname{link}(p) ;$ left_type $(p) \leftarrow k ;$
if $k<$ max_quarterword then $\operatorname{incr}(k)$ else $k \leftarrow 1$;
until $p=$ cur_spec;
if chopped >0 then
begin print_err("Curve ${ }_{\sqcup}$ out $_{\sqcup} \circ \mathrm{f}_{\sqcup}$ range");

end
This code is used in section 402.

405．We may need to get rid of constant＂dead＂cubics that clutter up the data structure and interfere with autorounding．
\langle Declare subroutines needed by make＿spec 405$\rangle \equiv$
procedure remove＿cubic（ p ：pointer）；$\{$ removes the cubic following $p\}$
var q ：pointer；\｛ the node that disappears \}
begin $q \leftarrow \operatorname{link}(p) ;$ right＿type $(p) \leftarrow \operatorname{right}$＿type $(q) ; \operatorname{link}(p) \leftarrow \operatorname{link}(q)$ ；
$x_{\text {＿coord }}(p) \leftarrow x_{\text {＿coord }}(q) ; y_{\text {＿coord }}(p) \leftarrow y_{\text {＿coord }}(q)$ ；
right＿x $(p) \leftarrow$ right＿$x(q) ;$ right＿$y(p) \leftarrow$ right＿$y(q) ;$
free＿node（q，knot＿node＿size）；
end；
See also sections $406,419,426,429,431,432,433,440$ ，and 451.
This code is used in section 402.
406．The subdivision process proceeds by first swapping $x \leftrightarrow-x$ ，if necessary，to ensure that $x^{\prime} \geq 0$ ；then swapping $y \leftrightarrow-y$ ，if necessary，to ensure that $y^{\prime} \geq 0$ ；and finally swapping $x \leftrightarrow y$ ，if necessary，to ensure that $x^{\prime} \geq y^{\prime}$ ．

Recall that the octant codes have been defined in such a way that，for example，third＿octant $=$ first＿octant + negate＿x＋switch＿x＿and＿y．The program uses the fact that negate＿x $<$ negate＿y $<$ switch＿x＿and＿y to handle＂double negation＂：If c is an octant code that possibly involves negate＿x and／or negate＿y，but not switch＿x＿and＿y，then negating y changes c either to $c+$ negate＿y or $c-$ negate＿y ，depending on whether $c \leq$ negate＿y or $c>$ negate＿y ．Octant codes are always greater than zero．
The first step is to subdivide on x and y only，so that horizontal and vertical autorounding can be done before we compare x^{\prime} to y^{\prime} ．
\langle Declare subroutines needed by make＿spec 405〉＋三
〈Declare the procedure called split＿cubic 410〉
procedure quadrant＿subdivide；
label continue，exit；
var $p, q, r, s, p p, q q:$ pointer；$\quad\{$ for traversing the lists $\}$
first＿x，first＿y：scaled；\｛ unnegated coordinates of node cur＿spec \}
del1，del2，del3，del，dmax：scaled；
\｛ proportional to the control points of a quadratic derived from a cubic \}
t ：fraction；\｛ where a quadratic crosses zero \}
dest＿x，dest＿y：scaled；\｛ final values of x and y in the current cubic $\}$
constant＿x：boolean；$\{$ is x constant between p and q ？$\}$
begin $p \leftarrow$ cur＿spec；first＿x $\leftarrow x_{\text {＿coord }}($ cur＿spec $) ;$ first＿y $\leftarrow y_{-}$coord（cur＿spec）；
repeat continue：$q \leftarrow \operatorname{link}(p)$ ；
〈Subdivide the cubic between p and q so that the results travel toward the right halfplane 407〉；
〈Subdivide all cubics between p and q so that the results travel toward the first quadrant；but return
or goto continue if the cubic from p to q was dead 413\rangle ；
$p \leftarrow q ;$
until $p=$ cur＿spec；
exit：end；

407．All three subdivision processes are similar，so it＇s possible to get the general idea by studying the first one（which is the simplest）．The calculation makes use of the fact that the derivatives of Bernshtein polynomials satisfy $B^{\prime}\left(z_{0}, z_{1}, \ldots, z_{n} ; t\right)=n B\left(z_{1}-z_{0}, \ldots, z_{n}-z_{n-1} ; t\right)$ ．

When this routine begins，right＿type (p) is explicit；we should set right＿type $(p) \leftarrow$ first＿octant．However， no assignment is made，because explicit $=$ first＿octant．The author apologizes for using such trickery here； it is really hard to do redundant computations just for the sake of purity．
〈Subdivide the cubic between p and q so that the results travel toward the right halfplane 407 〉 \equiv
if $q=$ cur＿spec then
begin dest＿$x \leftarrow$ first＿x ；dest＿$y \leftarrow$ first＿y ；
end
else begin dest＿$x \leftarrow x$＿coord (q) ；dest＿$y \leftarrow y _\operatorname{coord}(q)$ ；
end；
del1 $\leftarrow \operatorname{right} _x(p)-x$＿coord $(p) ;$ del2 \leftarrow left＿$x(q)-\operatorname{right}-x(p)$ ；
del3 \leftarrow dest＿x－left＿x (q) ；〈Scale up del1，del2，and del3 for greater accuracy；also set del to the first nonzero element of（del1，del2，del3）408〉；
if del $=0$ then constant＿$x \leftarrow$ true
else begin constant＿$x \leftarrow$ false；
if del＜ 0 then 〈Complement the x coordinates of the cubic between p and $q 409\rangle$ ；
$t \leftarrow$ crossing＿point（del1，del2，del3）；
if $t<$ fraction＿one then 〈Subdivide the cubic with respect to x^{\prime} ，possibly twice 411〉；
end
This code is used in section 406.
408．If del1 $=$ del2 $=$ del3 $=0$ ，it＇s impossible to obey the title of this section．We just set del $=0$ in that case．
〈Scale up del1，del2，and del3 for greater accuracy；also set del to the first nonzero element of （del1，del2，del3） 408$\rangle \equiv$
if del1 $\neq 0$ then del \leftarrow del 1
else if del2 $\neq 0$ then del \leftarrow del2
else del $\leftarrow d e l 3$ ；
if del $\neq 0$ then
begin $d m a x \leftarrow a b s($ del1 $)$ ；
if $\operatorname{abs}($ del2 $)>d m a x$ then $d m a x \leftarrow a b s($ del2）；
if $\operatorname{abs}($ del3 $)>d m a x$ then $d m a x \leftarrow a b s(d e l 3)$ ；
while dmax $<$ fraction＿half do
begin double（dmax）；double（del1）；double（del2）；double（del3）；
end；
end
This code is used in sections 407,413 ，and 420 ．
409．During the subdivision phases of make＿spec，the x_{-}coord and $y_{\text {＿coord }}$ fields of node q are not transformed to agree with the octant stated in right＿type (p) ；they remain consistent with right＿type (q) ． But left＿x (q) and left＿$y(q)$ are governed by right＿type (p) ．
\langle Complement the x coordinates of the cubic between p and $q 409\rangle \equiv$
begin negate $\left(x_{-} \operatorname{coord}(p)\right)$ ；negate（right＿x $\left.(p)\right)$ ；negate（left＿x $\left.(q)\right)$ ；
negate（del1）；negate（del2）；negate（del3）；
negate $($ dest＿x $)$ ；right＿type $(p) \leftarrow$ first＿octant + negate＿x ；
end
This code is used in section 407.
410. When a cubic is split at a fraction value t, we obtain two cubics whose Bézier control points are obtained by a generalization of the bisection process: The formula ' $z_{k}^{(j+1)}=\frac{1}{2}\left(z_{k}^{(j)}+z_{k+1}^{(j)}\right)$ ' becomes ${ }^{\prime} z_{k}^{(j+1)}=t\left[z_{k}^{(j)}, z_{k+1}^{(j)}\right]$ '.
It is convenient to define a WEB macro $t_{-} o f$ _the_way such that $t_{\text {_of_the_way }}(a)(b)$ expands to $a-(a-b) * t$, i.e., to $t[a, b]$.

If $0 \leq t \leq 1$, the quantity $t[a, b]$ is always between a and b, even in the presence of rounding errors. Our subroutines also obey the identity $t[a, b]+t[b, a]=a+b$.
define $t_{-} o f_{-} t h e_{-} w a y _e n d(\#) \equiv \#, t \square$
define t_of_the_way (\#) 三 \# - take_fraction () \# - t_of_the_way_end
\langle Declare the procedure called split_cubic 410$\rangle \equiv$
procedure split_cubic (p : pointer; $t:$ fraction $; x q, y q:$ scaled); $\quad\{$ splits the cubic after $p\}$
var $v:$ scaled; \{ an intermediate value $\}$
$q, r:$ pointer; $\{$ for list manipulation $\}$
begin $q \leftarrow \operatorname{link}(p) ; r \leftarrow$ get_node $\left(k n o t _n o d e _s i z e\right) ; \operatorname{link}(p) \leftarrow r ; \operatorname{link}(r) \leftarrow q$;
left_type $(r) \leftarrow$ left_type (q); right_type $(r) \leftarrow$ right_type (p);
$v \leftarrow t_{-} o f_{-} t h e _w a y\left(r i g h t _x(p)\right)\left(l e f t _x(q)\right) ; r i g h t _x(p) \leftarrow t_{-} o f_{-} t h e _w a y\left(x _c o o r d(p)\right)\left(r i g h t _x(p)\right)$;
left_x $(q) \leftarrow t_{-} o f$ _the_way $\left(l e f t _x(q)\right)(x q)$; left_x $(r) \leftarrow t _o f _t h e _w a y\left(r i g h t _x(p)\right)(v)$;
right_x $(r) \leftarrow t_{-} o f_{-}$the_way $(v)($ left_x $(q)) ;$ x_coord $(r) \leftarrow t_{-} o f_{-}$the_way $\left(l e f t _x(r)\right)($ right_x $(r))$;
$v \leftarrow t_{-} o f_{-} t h e _w a y\left(r i g h t _y(p)\right)\left(l e f t _y(q)\right) ;$ right_ $y(p) \leftarrow t_{-} o f_{-}$the_way $\left(y_{-}\right.$coord $\left.(p)\right)($ right_y $(p))$;
left_y $(q) \leftarrow t$ _of_the_way $\left(l e f t _y(q)\right)(y q) ;$ left_y $(r) \leftarrow t$ _of_the_way $\left(r i g h t _y(p)\right)(v)$;
right_y $(r) \leftarrow t_{-} o f_{-} t h e _w a y(v)\left(l e f t _y(q)\right) ; y_{-}$coord $(r) \leftarrow t_{-} o f_{-}$the_way $\left(l e f t _y(r)\right)\left(r i g h t _y(r)\right)$;
end;
This code is used in section 406.
411. Since $x^{\prime}(t)$ is a quadratic equation, it can cross through zero at most twice. When it does cross zero, we make doubly sure that the derivative is really zero at the splitting point, in case rounding errors have caused the split cubic to have an apparently nonzero derivative. We also make sure that the split cubic is monotonic.
$\left\langle\right.$ Subdivide the cubic with respect to x^{\prime}, possibly twice 411$\rangle \equiv$
begin split _cubic $(p, t$, dest_x, dest_y); $r \leftarrow \operatorname{link}(p)$;
if right_type $(r)>$ negate_ x then right_type $(r) \leftarrow$ first_octant
else right_type $(r) \leftarrow$ first_octant + negate_ x;
if $x_{-} \operatorname{coord}(r)<x_{\text {_coord }}(p)$ then $x_{_} \operatorname{coord}(r) \leftarrow x_{\text {_ }} \operatorname{coord}(p)$;
left_x $(r) \leftarrow x_{-}$coord (r);
if right_ $x(p)>x_{-}$coord (r) then right_ $x(p) \leftarrow x_{-} \operatorname{coord}(r) ; \quad\left\{\right.$ we always have $x_{-} \operatorname{coord}(p) \leq$ right_ $\left.x(p)\right\}$
negate $\left(x _c o o r d(r)\right) ;$ right_x $(r) \leftarrow x _c o o r d(r) ;$ negate $($ left_x $(q)) ;$ negate $($ dest_x $)$;
del2 \leftarrow t_of_the_way (del2)(del3); \{now 0, del2, del3 represent x^{\prime} on the remaining interval \}
if del2 >0 then del2 $\leftarrow 0$;
$t \leftarrow$ crossing_point $(0,-$ del2,- del3 $)$;
if $t<$ fraction_one then 〈Subdivide the cubic a second time with respect to $\left.x^{\prime} 412\right\rangle$
else begin if $x_{-} \operatorname{coord}(r)>$ dest_ x then
begin x_{-}coord $(r) \leftarrow$ dest_x; left_x $(r) \leftarrow-x_{-}$coord (r); right_x $(r) \leftarrow x_{-}$coord (r);
end;
if left_x $(q)>$ dest_x then left_ $x(q) \leftarrow$ dest_x
else if left_x $(q)<x_{_}$coord (r) then left_x $(q) \leftarrow x_{_} \operatorname{coord}(r)$;
end;
end
This code is used in section 407.

412．$\left\langle\right.$ Subdivide the cubic a second time with respect to $\left.x^{\prime} 412\right\rangle \equiv$
begin split＿cubic $(r, t$, dest＿x, dest＿y $) ; s \leftarrow \operatorname{link}(r)$ ；
if x_{-}coord $(s)<d e s t _x$ then x_{-}coord $(s) \leftarrow d e s t _x$ ；
if x_{-}coord $(s)<x_{-}$coord (r) then x_{-}coord $(s) \leftarrow x_{-}$coord (r) ；
right＿type $(s) \leftarrow$ right＿type $(p) ;$ left＿x $(s) \leftarrow x_{-} \operatorname{coord}(s) ; \quad\left\{\right.$ now $x_{-} \operatorname{coord}(r)=$ right＿x $\left.(r) \leq l e f t _x(s)\right\}$
if left＿x $(q)<$ dest＿x then left＿$x(q) \leftarrow-$ dest＿x
else if left＿x $(q)>x_{-}$coord (s) then left＿$x(q) \leftarrow-x_{-}$coord (s)
else negate（left＿x $(q))$ ；
negate $\left(x_{-}\right.$coord $\left.(s)\right) ;$ right＿x $(s) \leftarrow x_{-} \operatorname{coord}(s)$ ；
end
This code is used in section 411.
413．The process of subdivision with respect to y^{\prime} is like that with respect to x^{\prime} ，with the slight additional complication that two or three cubics might now appear between p and q ．
〈Subdivide all cubics between p and q so that the results travel toward the first quadrant；but return or
goto continue if the cubic from p to q was dead 413$\rangle \equiv$
$p p \leftarrow p ;$
repeat $q q \leftarrow \operatorname{link}(p p) ;$ abnegate $\left(x _\operatorname{coord}(q q)\right.$ ，y＿coord $(q q)$ ，right＿type $(q q)$ ，right＿type $\left.(p p)\right)$ ；
dest＿$x \leftarrow$ cur＿x $;$ dest＿$y \leftarrow c u r_{-} y ;$
del1 \leftarrow right＿y $(p p)-y_{-}$coord $(p p) ;$ del2 \leftarrow left＿$y(q q)-$ right＿$y(p p)$ ；
del3 \leftarrow dest＿y－left＿y $(q q) ;$ 〈Scale up del1，del2，and del3 for greater accuracy；also set del to the first nonzero element of（del1，del2，del3）408 \rangle ；
if $d e l \neq 0$ then $\{$ they weren＇t all zero $\}$
begin if del <0 then \langle Complement the y coordinates of the cubic between $p p$ and $q q 414\rangle$ ；
$t \leftarrow$ crossing＿point（del1，del2，del3）；
if $t<$ fraction＿one then $\left\langle\right.$ Subdivide the cubic with respect to y^{\prime} ，possibly twice 415\rangle ；
end
else \langle Do any special actions needed when y is constant；return or goto continue if a dead cubic from p to q is removed 417\rangle ；
$p p \leftarrow q q ;$
until $p p=q$ ；
if constant＿x then 〈Correct the octant code in segments with decreasing y 418〉
This code is used in section 406.
414．\langle Complement the y coordinates of the cubic between $p p$ and $q q 414\rangle \equiv$
begin negate $\left(y_{-}\right.$coord $\left.(p p)\right)$ ；negate $\left(\right.$ right＿$\left._{-}(p p)\right)$ ；negate $($ left＿$y(q q))$ ；
negate（del1）；negate（del2）；negate（del3）；
negate $($ dest＿y $) ;$ right＿type $(p p) \leftarrow$ right＿type $(p p)+$ negate＿$y ;$
end
This code is used in sections 413 and 417.
415. 〈Subdivide the cubic with respect to y^{\prime}, possibly twice 415$\rangle \equiv$
begin split_cubic $\left(p p, t, d_{\text {dest_ }} x\right.$, dest_y $) ; r \leftarrow \operatorname{link}(p p)$;
if right_type $(r)>$ negate_ y then right_type $(r) \leftarrow$ right_type (r) - negate_ y
else right_type $(r) \leftarrow$ right_type $(r)+$ negate_ y;
if $y_{-} \operatorname{coord}(r)<y_{-} \operatorname{coord}(p p)$ then $y_{-} \operatorname{coord}(r) \leftarrow y_{-} \operatorname{coord}(p p)$;
left_y $(r) \leftarrow y_{-}$coord (r);
if right_y $(p p)>y_{-}$coord (r) then right_y $(p p) \leftarrow y_{-}$coord (r);
$\left\{\right.$ we always have $\left.y_{-} \operatorname{coord}(p p) \leq r i g h t _y(p p)\right\}$
negate $\left(y_{-}\right.$coord $\left.(r)\right) ;$ right_y $(r) \leftarrow y _$coord $(r) ;$ negate $\left(l e f t _y(q q)\right) ;$ negate $($ dest_y $)$;
if x_{-}coord $(r)<x_{-}$coord $(p p)$ then x_{-}coord $(r) \leftarrow x_{-}$coord $(p p)$
else if $x_{-} \operatorname{coord}(r)>$ dest_ x then $x_{-} \operatorname{coord}(r) \leftarrow d e s t_{-} x$;
if left_x $(r)>x_{-}$coord (r) then
begin left_x $(r) \leftarrow x_{-}$coord (r);
if right_ $x(p p)>x_{-}$coord (r) then right_ $x(p p) \leftarrow x_{-}$coord (r);
end;
if right_x $(r)<x_{-}$coord (r) then
begin right_ $x(r) \leftarrow x_{-}$coord (r);
if left_x $(q q)<x _$coord (r) then left_ $x(q q) \leftarrow x_{-} \operatorname{coord}(r)$;
end;
del2 $\leftarrow t_{-}$of_the_way $($del2 $)($del3 $) ; \quad$ \{now 0, del2, del3 represent y^{\prime} on the remaining interval $\}$
if del2 >0 then del2 $\leftarrow 0$;
$t \leftarrow \operatorname{crossing}$ _point $(0,-$ del2,- del3 $)$;
if $t<$ fraction_one then $\left\langle\right.$ Subdivide the cubic a second time with respect to $\left.y^{\prime} 416\right\rangle$
else begin if y_{-}coord $(r)>d e s t _y$ then
begin y_{-}coord $(r) \leftarrow$ dest_y; left_y $(r) \leftarrow-y_{-}$coord (r); right_y $(r) \leftarrow y_{-}$coord (r); end;
if left_y $(q q)>$ dest_y then left_ $y(q q) \leftarrow$ dest_y
else if left_ $y(q q)<y_{-} \operatorname{coord}(r)$ then left_ $y(q q) \leftarrow y_{-} \operatorname{coord}(r)$;
end;

end

This code is used in section 413.

416．〈Subdivide the cubic a second time with respect to $\left.y^{\prime} 416\right\rangle \equiv$
begin split＿cubic（r，t，dest＿x，dest＿y）；$s \leftarrow \operatorname{link}(r)$ ；
if $y_{-} \operatorname{coord}(s)<d e s t _y$ then $y_{-} \operatorname{coord}(s) \leftarrow$ dest＿y；
if $y_{-} \operatorname{coord}(s)<y_{-} \operatorname{coord}(r)$ then $y_{-} \operatorname{coord}(s) \leftarrow y_{-} \operatorname{coord}(r)$ ；
right＿type $(s) \leftarrow$ right＿type $(p p) ;$ left＿y $(s) \leftarrow y_{-}$coord $(s) ; \quad\left\{\right.$ now $\left.y_{-} \operatorname{coord}(r)=r i g h t _y(r) \leq l e f t _y(s)\right\}$
if left＿y $(q q)<d e s t _y$ then left＿y $(q q) \leftarrow-$ dest＿y
else if left＿y $(q q)>y_{-}$coord (s) then left＿$y(q q) \leftarrow-y_{-} \operatorname{coord}(s)$ else negate（left＿y（qq））；
negate $\left(y_{-} \operatorname{coord}(s)\right) ;$ right＿y $(s) \leftarrow y_{-} \operatorname{coord}(s)$ ；
if x_{-}coord $(s)<x_{-}$coord (r) then x_{-}coord $(s) \leftarrow x_{-}$coord (r)
else if x_{-}coord $(s)>$ dest＿x then x_{-}coord $(s) \leftarrow$ dest＿x；
if left＿x $(s)>x_{\text {＿coord }}(s)$ then
begin left＿x $(s) \leftarrow x_{-}$coord (s) ；
if right＿x $(r)>x_{-}$coord (s) then right＿$x(r) \leftarrow x _$coord (s) ； end；
if right＿x $(s)<x_{-}$coord (s) then begin right＿x $(s) \leftarrow x_{-}$coord (s) ； if left＿x $(q q)<x_{-}$coord (s) then left＿x $(q q) \leftarrow x_{-} \operatorname{coord}(s)$ ； end；
end
This code is used in section 415.
417．If the cubic is constant in y and increasing in x ，we have classified it as traveling in the first octant．If the cubic is constant in y and decreasing in x ，it is desirable to classify it as traveling in the fifth octant（not the fourth），because autorounding will be consistent with respect to doublepaths only if the octant number changes by four when the path is reversed．Therefore we negate the y coordinates when they are constant but the curve is decreasing in x ；this gives the desired result except in pathological paths．
If the cubic is＂dead，＂i．e．，constant in both x and y ，we remove it unless it is the only cubic in the entire path．We goto continue if it wasn＇t the final cubic，so that the test $p=$ cur＿spec does not falsely imply that all cubics have been processed．
〈Do any special actions needed when y is constant；return or goto continue if a dead cubic from p to q is removed 417$\rangle \equiv$
if constant＿x then $\{p=p p, q=q q$ ，and the cubic is dead $\}$
begin if $q \neq p$ then
begin remove＿cubic $(p) ; \quad\{$ remove the dead cycle and recycle node $q\}$
if cur＿spec $\neq q$ then goto continue
else begin cur＿spec $\leftarrow p$ ；return；
end；$\{$ the final cubic was dead and is gone $\}$
end；
end
else if \neg odd（right＿type $(p p))$ then $\{$ the x coordinates were negated $\}$
〈Complement the y coordinates of the cubic between $p p$ and $q q 414$ 〉
This code is used in section 413.

418．A similar correction to octant codes deserves to be made when x is constant and y is decreasing．
\langle Correct the octant code in segments with decreasing y 418〉 \equiv
begin $p p \leftarrow p$ ；
repeat $q q \leftarrow \operatorname{link}(p p)$ ；
if right＿type $(p p)>$ negate＿y then $\quad\{$ the y coordinates were negated $\}$
begin right＿type $(p p) \leftarrow$ right＿type $(p p)+$ negate＿x；negate $\left(x _c o o r d(p p)\right) ;$ negate $($ right＿x $(p p))$ ；
negate（left＿x（qq））；
end；
$p p \leftarrow q q ;$
until $p p=q$ ；
end
This code is used in section 413.

419．Finally，the process of subdividing to make $x^{\prime} \geq y^{\prime}$ is like the other two subdivisions，with a few new twists．We skew the coordinates at this time．
\langle Declare subroutines needed by make＿spec 405$\rangle+\equiv$
procedure octant＿subdivide；
var p, q, r, s ：pointer；\｛ for traversing the lists \} del1，del2，del3，del，dmax：scaled；
\｛proportional to the control points of a quadratic derived from a cubic \}
t ：fraction；\｛ where a quadratic crosses zero \}
dest＿x，dest＿y：scaled；\｛final values of x and y in the current cubic $\}$
begin $p \leftarrow$ cur＿spec；
repeat $q \leftarrow \operatorname{link}(p)$ ；
x_{-}coord $(p) \leftarrow x_{-}$coord $(p)-y_{-} \operatorname{coord}(p) ;$ right＿$x(p) \leftarrow$ right＿$x(p)-$ right＿y (p) ；
left＿x $(q) \leftarrow$ left＿x $(q)-l e f t _y(q)$ ；
\langle Subdivide the cubic between p and q so that the results travel toward the first octant 420\rangle ；
$p \leftarrow q$ ；
until $p=$ cur＿spec；
end；
420．〈Subdivide the cubic between p and q so that the results travel toward the first octant 420$\rangle \equiv$
$\left\langle\right.$ Set up the variables（del1，del2，del3）to represent $\left.x^{\prime}-y^{\prime} 421\right\rangle$ ；
\langle Scale up del1，del2，and del3 for greater accuracy；also set del to the first nonzero element of （del1，del2，del3）408〉；
if $d e l \neq 0$ then $\{$ they weren＇t all zero $\}$
begin if del <0 then \langle Swap the x and y coordinates of the cubic between p and $q 423\rangle$ ；
$t \leftarrow$ crossing＿point（del1，del2，del3）；
if $t<$ fraction＿one then $\left\langle\right.$ Subdivide the cubic with respect to $x^{\prime}-y^{\prime}$ ，possibly twice 424\rangle ； end
This code is used in section 419.

421．〈 Set up the variables（del1，del2，del3）to represent $\left.x^{\prime}-y^{\prime} 421\right\rangle \equiv$
if $q=$ cur＿spec then begin unskew $\left(x_{-}\right.$coord (q) ，y＿coord (q) ，right＿type $\left.(q)\right)$ ；skew $($ cur＿x，cur＿y，right＿type $(p))$ ； dest＿$x \leftarrow$ cur＿$x ;$ dest＿$y \leftarrow$ cur＿y ； end
else begin abnegate $\left(x_{-} \operatorname{coord}(q), y_{-} \operatorname{coord}(q)\right.$ ，right＿type (q) ，right＿type $\left.(p)\right) ;$ dest＿$x \leftarrow$ cur＿$x-c u r_{-} y$ ； dest＿y \leftarrow cur＿y； end；
del1 \leftarrow right＿$x(p)-x_{-} \operatorname{coord}(p) ;$ del2 \leftarrow left＿$x(q)-r i g h t _x(p) ;$ del3 \leftarrow dest＿$x-l e f t _x(q)$
This code is used in section 420.
422. The swapping here doesn't simply interchange x and y values, because the coordinates are skewed. It turns out that this is easier than ordinary swapping, because it can be done in two assignment statements rather than three.
423. \langle Swap the x and y coordinates of the cubic between p and $q 423\rangle \equiv$
begin $y_{-} \operatorname{coord}(p) \leftarrow x_{-} \operatorname{coord}(p)+y_{-} \operatorname{coord}(p) ;$ negate $\left(x _\operatorname{coord}(p)\right)$;
right_y $(p) \leftarrow$ right_ $x(p)+$ right_y $(p) ;$ negate $($ right_ $x(p))$;
left_ $y(q) \leftarrow$ left_x $(q)+$ left_ $y(q) ;$ negate $($ left_ $x(q))$;
negate(del1); negate (del2); negate (del3);
dest_$y \leftarrow$ dest_ $x+$ dest_ $y ;$ negate $\left(\right.$ dest_ $\left._{-}\right)$;
right_type $(p) \leftarrow$ right_type $(p)+$ switch_x_and_ y;
end
This code is used in section 420.
424. A somewhat tedious case analysis is carried out here to make sure that nasty rounding errors don't destroy our assumptions of monotonicity.
$\left\langle\right.$ Subdivide the cubic with respect to $x^{\prime}-y^{\prime}$, possibly twice 424$\rangle \equiv$
begin split_cubic $(p, t$, dest_x, dest_y); $r \leftarrow \operatorname{link}(p)$;
if right_type $(r)>$ switch_x_and_y then right_type $(r) \leftarrow$ right_type (r) - switch_x_and_y
else right_type $(r) \leftarrow$ right_type $(r)+$ switch_x_and_y;
if $y_{-} \operatorname{coord}(r)<y_{-} \operatorname{coord}(p)$ then $y_{-} \operatorname{coord}(r) \leftarrow y_{-} \operatorname{coord}(p)$
else if $y_{-} \operatorname{coord}(r)>$ dest_y then $y_{\text {_coord }}(r) \leftarrow$ dest_y;
if x_{-}coord $(p)+y_{-}$coord $(r)>$ dest_ $x+$ dest_ y then $y_{-} \operatorname{coord}(r) \leftarrow d e s t _x+d e s t _y-x _c o o r d(p)$;
if left_y $(r)>y_{-} \operatorname{coord}(r)$ then
begin left_y $(r) \leftarrow y _\operatorname{coord}(r)$;
if right_y $(p)>y_{-} \operatorname{coord}(r)$ then right_y $(p) \leftarrow y_{-} \operatorname{coord}(r)$;
end;
if right_y $(r)<y_{-} \operatorname{coord}(r)$ then
begin right_y $(r) \leftarrow y$ _coord (r);
if left_y $(q)<y_{-} \operatorname{coord}(r)$ then left_y $(q) \leftarrow y_{-} \operatorname{coord}(r)$;
end;
if x_{-}coord $(r)<x_{-} \operatorname{coord}(p)$ then $x_{-} \operatorname{coord}(r) \leftarrow x_{-} \operatorname{coord}(p)$
else if x_{-}coord $(r)+y_{-}$coord $(r)>$ dest_ $x+$ dest_ y then $x_{_} \operatorname{coord}(r) \leftarrow$ dest_ $x+$ dest_ $y-y_{-}$coord (r);
left_x $(r) \leftarrow x_{-}$coord (r);
if $\operatorname{right} _x(p)>x$ _coord (r) then right_ $x(p) \leftarrow x$ _coord $(r) ; \quad\left\{\right.$ we always have x_{-}coord $(p) \leq$ right_x $\left.(p)\right\}$
y_{-}coord $(r) \leftarrow y_{-} \operatorname{coord}(r)+x_{-}$coord $(r) ;$ right_y $(r) \leftarrow$ right_ $y(r)+x_{-}$coord (r);
negate $\left(x _\right.$coord $\left.(r)\right) ;$ right_x $(r) \leftarrow x_{-}$coord (r);
left_y $(q) \leftarrow$ left_y $(q)+$ left_x $(q) ;$ negate $($ left_x $(q))$;
dest_$y \leftarrow$ dest_ $y+$ dest_ x; negate $($ dest_ $x)$;
if right_y $(r)<y_{-} \operatorname{coord}(r)$ then
begin right_y $(r) \leftarrow y$ _coord (r);
if left_y $(q)<y_{-}$coord (r) then left_y $(q) \leftarrow y_{-} \operatorname{coord}(r)$;
end;
del2 $\leftarrow t$ _of_the_way(del2)(del3); \{now 0, del2, del3 represent $x^{\prime}-y^{\prime}$ on the remaining interval \}
if del2 >0 then del2 $\leftarrow 0$;
$t \leftarrow$ crossing_point ($0,-$ del2,- del3 $)$;
if $t<$ fraction_one then 〈Subdivide the cubic a second time with respect to $\left.x^{\prime}-y^{\prime} 425\right\rangle$
else begin if $x_{\text {_coord }}(r)>$ dest_x then
begin x_{-}coord $(r) \leftarrow$ dest_x; left_x $(r) \leftarrow-x_{-}$coord (r); right_x $(r) \leftarrow x_{-}$coord (r); end;
if left_x $(q)>$ dest_ x then left_ $x(q) \leftarrow$ dest_x
else if left_ $x(q)<x_{-}$coord (r) then left_x $(q) \leftarrow x_{-} \operatorname{coord}(r)$;
end;
end
This code is used in section 420.
425. 〈Subdivide the cubic a second time with respect to $\left.x^{\prime}-y^{\prime} 425\right\rangle \equiv$
begin split_cubic $\left(r, t, d_{\text {dest_ }} x\right.$, dest_$\left._{-}\right) ; s \leftarrow \operatorname{link}(r)$;
if y_{-}coord $(s)<y_{-} \operatorname{coord}(r)$ then $y_{-} \operatorname{coord}(s) \leftarrow y_{-} \operatorname{coord}(r)$
else if $y_{-} \operatorname{coord}(s)>d e s t-y$ then $y_{-} \operatorname{coord}(s) \leftarrow d e s t _y$;
if x_{-}coord $(r)+y_{-}$coord $(s)>$ dest_ $x+d e s t _y$ then y_{-}coord $(s) \leftarrow d e s t _x+d e s t _y-x_{-}$coord (r);
if left_y $(s)>y_{-} \operatorname{coord}(s)$ then
begin left_y $(s) \leftarrow y_{-} \operatorname{coord}(s)$;
if right_y $(r)>y_{-} \operatorname{coord}(s)$ then right_ $y(r) \leftarrow y_{-} \operatorname{coord}(s)$;
end;
if right_y $(s)<y_{-} \operatorname{coord}(s)$ then
begin right_y $(s) \leftarrow y_{-} \operatorname{coord}(s)$;
if left_y $(q)<y_{-}$coord (s) then left_ $y(q) \leftarrow y_{-} \operatorname{coord}(s)$;
end;
if x_{-}coord $(s)+y_{-} \operatorname{coord}(s)>d e s t _x+d e s t_{-} y$ then $x_{-} \operatorname{coord}(s) \leftarrow d e s t _x+d e s t _y-y_{-}$coord (s)
else begin if x_{-}coord $(s)<$ dest_ x then $x_{-} \operatorname{coord}(s) \leftarrow d e s t _x$;
if x_{-}coord $(s)<x_{-}$coord (r) then x_{-}coord $(s) \leftarrow x_{-}$coord (r);
end;
right_type $(s) \leftarrow$ right_type $(p) ;$ left_x $(s) \leftarrow x_{-} \operatorname{coord}(s) ; \quad\left\{\right.$ now x_{-}coord $(r)=$ right_x $\left.(r) \leq l e f t _x(s)\right\}$
if left_x $(q)<$ dest_x then
begin left_ $y(q) \leftarrow$ left_ $y(q)+$ dest_x; left_ $x(q) \leftarrow-$ dest_ x; end
else if left_x $(q)>x_{-} \operatorname{coord}(s)$ then
begin left_ $y(q) \leftarrow$ left_ $y(q)+x_{-}$coord $(s) ;$ left_ $x(q) \leftarrow-x_{-} \operatorname{coord}(s)$; end
else begin left_y $(q) \leftarrow$ left_ $y(q)+$ left_x (q); negate $\left(l e f t _x(q)\right)$; end;
$y_{-} \operatorname{coord}(s) \leftarrow y_{-}$coord $(s)+x_{-}$coord $(s) ;$ right_ $y(s) \leftarrow$ right_ $y(s)+x_{-}$coord (s);
negate $\left(x_{-}\right.$coord $\left.(s)\right)$; right_x $(s) \leftarrow x_{-}$coord (s);
if right_y $(s)<y_{-} \operatorname{coord}(s)$ then
begin right_y $(s) \leftarrow y_{-} \operatorname{coord}(s)$;
if left_y $(q)<y_{-} \operatorname{coord}(s)$ then left_$y(q) \leftarrow y_{-} \operatorname{coord}(s)$;
end;
end
This code is used in section 424.
426. It's time now to consider "autorounding," which tries to make horizontal, vertical, and diagonal tangents occur at places that will produce appropriate images after the curve is digitized.

The first job is to fix things so that $x(t)$ plus the horizontal pen offset is an integer multiple of the current "granularity" when the derivative $x^{\prime}(t)$ crosses through zero. The given cyclic path contains regions where $x^{\prime}(t) \geq 0$ and regions where $x^{\prime}(t) \leq 0$. The quadrant_subdivide routine is called into action before any of the path coordinates have been skewed, but some of them may have been negated. In regions where $x^{\prime}(t) \geq 0$ we have right_type $=$ first_octant or right_type $=$ eighth_octant $;$ in regions where $x^{\prime}(t) \leq 0$, we have right_type $=$ fifth_octant or right_type $=$ fourth_octant .

Within any such region the transformed x values increase monotonically from, say, x_{0} to x_{1}. We want to modify things by applying a linear transformation to all x coordinates in the region, after which the x values will increase monotonically from $\operatorname{round}\left(x_{0}\right)$ to $\operatorname{round}\left(x_{1}\right)$.
This rounding scheme sounds quite simple, and it usually is. But several complications can arise that might make the task more difficult. In the first place, autorounding is inappropriate at cusps where x^{\prime} jumps discontinuously past zero without ever being zero. In the second place, the current pen might be unsymmetric in such a way that x coordinates should round differently in different parts of the curve. These considerations imply that round $\left(x_{0}\right)$ might be greater than round $\left(x_{1}\right)$, even though $x_{0} \leq x_{1}$; in such cases we do not want to carry out the linear transformation. Furthermore, it's possible to have round $\left(x_{1}\right)-\operatorname{round}\left(x_{0}\right)$ positive but much greater than $x_{1}-x_{0}$; then the transformation might distort the curve drastically, and again we want to avoid it. Finally, the rounded points must be consistent between adjacent regions, hence we can't transform one region without knowing about its neighbors.

To handle all these complications, we must first look at the whole cycle and choose rounded x values that are "safe." The following procedure does this: Given m values $\left(b_{0}, b_{1}, \ldots, b_{m-1}\right)$ before rounding and m corresponding values $\left(a_{0}, a_{1}, \ldots, a_{m-1}\right)$ that would be desirable after rounding, the make_safe routine sets a 's to b 's if necessary so that $0 \leq\left(a_{k+1}-a_{k}\right) /\left(b_{k+1}-b_{k}\right) \leq 2$ afterwards. It is symmetric under cyclic permutation, reversal, and/or negation of the inputs. (Instead of a, b, and m, the program uses the names after, before, and cur_rounding_ptr.)
\langle Declare subroutines needed by make_spec 405〉+三
procedure make_safe;
var k : $0 .$. max_wiggle; \{runs through the list of inputs \} all_safe: boolean; ; does everything look OK so far? \} next_a: scaled; $\{$ after $[k]$ before it might have changed $\}$ delta_a,delta_b: scaled; $\{$ after $[k+1]-$ after $[k]$ and before $[k+1]-$ before $[k]\}$
begin before $[$ cur_rounding_ptr $] \leftarrow$ before $[0]$; $\{$ wrap around $\}$
node_to_round $[$ cur_rounding_ptr] \leftarrow node_to_round $[0]$;
repeat after[cur_rounding_ptr] \leftarrow after $[0]$; all_safe \leftarrow true $;$ next_a \leftarrow after $[0]$;
for $k \leftarrow 0$ to cur_rounding_ptr - 1 do
begin delta_ $b \leftarrow$ before $[k+1]$ - before $[k]$;
if delta_ $b \geq 0$ then delta_ $a \leftarrow$ after $[k+1]-n e x t _a$
else delta_ $a \leftarrow$ next_ $a-$ after $[k+1]$;
next_ $a \leftarrow$ after $[k+1]$;
if $($ delta_a $<0) \vee($ delta_ $a>a b s($ delta_ $b+$ delta_b $b)$ then
begin all_safe \leftarrow false; after $[k] \leftarrow$ before $[k]$;
if $k=$ cur_rounding_ptr -1 then after $[0] \leftarrow$ before $[0]$
else after $[k+1] \leftarrow$ before $[k+1]$;
end;
end;
until all_safe;
end;

427．The global arrays used by make＿safe are accompanied by an array of pointers into the current knot list．
\langle Global variables 13$\rangle+\equiv$
before，after：array［0．．max＿wiggle］of scaled；\｛data for make＿safe \}
node＿to＿round：array［0．．．max＿wiggle］of pointer；\｛reference back to the path \}
cur＿rounding＿ptr： 0 ．．max＿wiggle；\｛ how many are being used \}
max＿rounding＿ptr： 0 ．．max＿wiggle；\｛ how many have been used \}
428．〈Set initial values of key variables 21$\rangle+\equiv$
max＿rounding＿ptr $\leftarrow 0$ ；
429．New entries go into the tables via the before＿and＿after routine：
\langle Declare subroutines needed by make＿spec 405$\rangle+\equiv$
procedure before＿and＿after（ $b, a: s c a l e d ; p: p o i n t e r)$ ；
begin if cur＿rounding＿ptr $=$ max＿rounding＿ptr then
if max＿rounding＿ptr＜max＿wiggle then incr（max＿rounding＿ptr）
else overflow（＂rounding」table $\boldsymbol{e}_{\llcorner }$size＂，max＿wiggle）；
after $[$ cur＿rounding＿ptr $] \leftarrow a$ ；before $[$ cur＿rounding＿ptr $] \leftarrow b ;$ node＿to＿round $[$ cur＿rounding＿ptr $] \leftarrow p$ ；
incr（cur＿rounding＿ptr）；
end；
430．A global variable called cur＿gran is used instead of internal［granularity］，because we want to work with a number that＇s guaranteed to be positive．
\langle Global variables 13$\rangle+\equiv$
cur＿gran：scaled；\｛ the current granularity（which normally is unity）\}
431．The good＿val function computes a number a that＇s as close as possible to b ，with the property that $a+o$ is a multiple of cur＿gran．

If we assume that cur＿gran is even（since it will in fact be a multiple of unity in all reasonable applications）， we have the identity good＿val $(-b-1,-o)=-\operatorname{good}$＿val (b, o) ．
\langle Declare subroutines needed by make＿spec 405〉＋三
function good＿val（ $(, o$ ：scaled）：scaled；
var a：scaled；\｛ accumulator \}
begin $a \leftarrow b+o$ ；
if $a \geq 0$ then $a \leftarrow a-(a \bmod$ cur＿gran $)-o$
else $a \leftarrow a+((-(a+1))$ mod cur＿gran $)-c u r _g r a n+1-o$ ；
if $b-a<a+$ cur＿gran $-b$ then good＿val $\leftarrow a$
else good＿val $\leftarrow a+$ cur＿gran；
end；
432．When we＇re rounding a doublepath，we might need to compromise between two opposing tendencies， if the pen thickness is not a multiple of the granularity．The following＂compromise＂adjustment，suggested by John Hobby，finds the best way out of the dilemma．（Only the value modulo cur＿gran is relevant in our applications，so the result turns out to be essentially symmetric in u and v ．）
\langle Declare subroutines needed by make＿spec 405$\rangle+\equiv$
function compromise（ $u, v:$ scaled）：scaled；
begin compromise \leftarrow half $($ good＿val $(u+u,-u-v)$ ）；
end；

433．Here，then，is the procedure that rounds x coordinates as described；it does the same for y coordinates too，independently．
\langle Declare subroutines needed by make＿spec 405$\rangle+\equiv$
procedure $x y$＿round；
var p, q ：pointer；\｛ list manipulation registers \}
b, a ：scaled；\｛before and after values \}
pen＿edge：scaled；\｛ offset that governs rounding \}
alpha：fraction；\｛ coefficient of linear transformation \}
begin cur＿gran \leftarrow abs（internal［granularity］）；
if cur＿gran $=0$ then cur＿gran \leftarrow unity；
$p \leftarrow$ cur＿spec；cur＿rounding＿ptr $\leftarrow 0$ ；
repeat $q \leftarrow \operatorname{link}(p)$ ；＜If node q is a transition point for x coordinates，compute and save its before－and－after coordinates 434\rangle ；
$p \leftarrow q ;$
until $p=$ cur＿spec；
if cur＿rounding＿ptr >0 then 〈Transform the x coordinates 436\rangle ；
$p \leftarrow$ cur＿spec；cur＿rounding＿ptr $\leftarrow 0$ ；
repeat $q \leftarrow \operatorname{link}(p)$ ；〈 If node q is a transition point for y coordinates，compute and save its before－and－after coordinates 437\rangle ；
$p \leftarrow q ;$
until $p=$ cur＿spec；
if cur＿rounding＿ptr＞>0 then 〈Transform the y coordinates 439\rangle ；
end；

434．When x has been negated，the octant codes are even．We allow for an error of up to ． 01 pixel（i．e．， 655 scaled units）in the derivative calculations at transition nodes．
\langle If node q is a transition point for x coordinates，compute and save its before－and－after coordinates 434$\rangle \equiv$ if odd $($ right＿type $(p)) \neq$ odd $($ right＿type $(q))$ then
begin if odd $($ right＿type $(q))$ then $b \leftarrow x_{-} \operatorname{coord}(q)$ else $b \leftarrow-x_{-} \operatorname{coord}(q)$ ；
if $\left(\operatorname{abs}\left(x_{-} \operatorname{coord}(q)-r i g h t _x(q)\right)<655\right) \vee\left(\operatorname{abs}\left(x_{-} \operatorname{coord}(q)+\right.\right.$ left＿x $\left.\left.(q)\right)<655\right)$ then
〈 Compute before－and－after x values based on the current pen 435\rangle
else $a \leftarrow b$ ；
if abs $(a)>$ max＿allowed then
if $a>0$ then $a \leftarrow$ max＿allowed else $a \leftarrow$－max＿allowed；
before＿and＿after (b, a, q) ；
end
This code is used in section 433.
435. When we study the data representation for pens, we'll learn that the x coordinate of the current pen's west edge is

$$
\text { y_coord }(\text { link }(\text { cur_pen }+ \text { seventh_octant })),
$$

and that there are similar ways to address other important offsets.
define north_edge (\#) \equiv y_coord (link (\# + fourth_octant $)$)
define south_edge $(\#) \equiv y_{-} \operatorname{coord}(\operatorname{link}(\#+$ first_octant $))$
define east_edge (\#) \equiv _ _coord (link (\# + second_octant) $)$
define west_edge $(\#) \equiv y_{-}$coord $(\operatorname{link}(\#+$ seventh_octant $))$
\langle Compute before-and-after x values based on the current pen 435$\rangle \equiv$
begin if cur_pen $=$ null_pen then pen_edge $\leftarrow 0$
else if cur_path_type $=$ double_path_code then
pen_edge \leftarrow compromise $($ east_edge (cur_pen), west_edge(cur_pen))
else if odd(right_type $(q))$ then pen_edge \leftarrow west_edge (cur_pen)
else pen_edge \leftarrow east_edge (cur_pen);
$a \leftarrow$ good_val(b, pen_edge $)$;
end
This code is used in section 434.
436. The monotone transformation computed here with fixed-point arithmetic is guaranteed to take consecutive before values (b, b^{\prime}) into consecutive after values (a, a^{\prime}), even in the presence of rounding errors, as long as $\left|b-b^{\prime}\right|<2^{28}$.
\langle Transform the x coordinates 436$\rangle \equiv$
begin make_safe;
repeat decr (cur_rounding_ptr);
if (after[cur_rounding_ptr] \neq before $[$ cur_rounding_ptr] $) \vee$
$($ after $[$ cur_rounding_ptr +1$] \neq$ before $[$ cur_rounding_ptr +1$])$ then
begin $p \leftarrow$ node_to_round[cur_rounding_ptr];
if odd(right_type $(p))$ then
begin $b \leftarrow$ before [cur_rounding_ptr]; $a \leftarrow$ after [cur_rounding_ptr];
end
else begin $b \leftarrow$-before[cur_rounding_ptr]; $a \leftarrow-$ after [cur_rounding_ptr];
end;
if before[cur_rounding_ptr] $=$ before [cur_rounding_ptr +1$]$ then alpha \leftarrow fraction_one
else alpha \leftarrow make_fraction(after[cur_rounding_ptr +1] - after [cur_rounding_ptr],
before[cur_rounding_ptr +1$]$ - before [cur_rounding_ptr]);
repeat $x_{\text {_coord }}(p) \leftarrow$ take_fraction $\left(a l p h a, x_{-} \operatorname{coord}(p)-b\right)+a$;
right_x $(p) \leftarrow$ take_fraction $($ alpha, right_ $x(p)-b)+a ; p \leftarrow \operatorname{link}(p)$;
left_x $(p) \leftarrow$ take_fraction (alpha, left_x $(p)-b)+a$;
until $p=$ node_to_round [cur_rounding_ptr +1 ;
end;
until cur_rounding_ptr $=0$;
end
This code is used in section 433 .

437．When y has been negated，the octant codes are＞negate＿y．Otherwise these routines are essentially identical to the routines for x coordinates that we have just seen．
\langle If node q is a transition point for y coordinates，compute and save its before－and－after coordinates 437$\rangle \equiv$
if $($ right＿type $(p)>$ negate＿$y) \neq($ right＿type $(q)>$ negate＿$y)$ then
begin if right＿type $(q) \leq$ negate＿y then $b \leftarrow y$＿coord (q) else $b \leftarrow-y$＿coord (q) ；
if $\left(a b s\left(y_{-} \operatorname{coord}(q)-r i g h t _y(q)\right)<655\right) \vee\left(a b s\left(y _c o o r d(q)+l e f t _y(q)\right)<655\right)$ then
〈Compute before－and－after y values based on the current pen 438〉
else $a \leftarrow b$ ；
if abs $(a)>$ max＿allowed then
if $a>0$ then $a \leftarrow$ max＿allowed else $a \leftarrow$－max＿allowed；
before＿and＿after (b, a, q) ；
end
This code is used in section 433.
438．〈 Compute before－and－after y values based on the current pen 438$\rangle \equiv$
begin if cur＿pen $=$ null＿pen then pen＿edge $\leftarrow 0$
else if cur＿path＿type $=$ double＿path＿code then
pen＿edge \leftarrow compromise（north＿edge（cur＿pen），south＿edge（cur＿pen））
else if right＿type $(q) \leq$ negate＿y then pen＿edge \leftarrow south＿edge（cur＿pen） else pen＿edge \leftarrow north＿edge（cur＿pen）；
$a \leftarrow$ good＿val（ b, pen＿edge）；
end
This code is used in section 437.
439．\langle Transform the y coordinates 439$\rangle \equiv$
begin make＿safe；
repeat decr（cur＿rounding＿ptr）；
if （after［cur＿rounding＿ptr］\neq before $[$ cur＿rounding＿ptr］$) \vee$
$($ after $[$ cur＿rounding＿ptr +1$] \neq$ before $[$ cur＿rounding＿ptr +1$])$ then
begin $p \leftarrow$ node＿to＿round［cur＿rounding＿ptr］；
if right＿type $(p) \leq$ negate＿y then
begin $b \leftarrow$ before［cur＿rounding＿ptr］；$a \leftarrow$ after［cur＿rounding＿ptr］；
end
else begin $b \leftarrow$－before［cur＿rounding＿ptr］；$a \leftarrow-$ after［cur＿rounding＿ptr］；
end；
if before［cur＿rounding＿ptr］$=$ before［cur＿rounding＿ptr +1$]$ then alpha \leftarrow fraction＿one
else alpha \leftarrow make＿fraction（after［cur＿rounding＿ptr +1 ］－after［cur＿rounding＿ptr］，
before［cur＿rounding＿ptr +1 ］－before［cur＿rounding＿ptr］）；
repeat $y_{-} \operatorname{coord}(p) \leftarrow$ take＿fraction $\left(\operatorname{alpha}, y_{-} \operatorname{coord}(p)-b\right)+a$ ；
right＿y $(p) \leftarrow$ take＿fraction $($ alpha，right＿y $(p)-b)+a ; p \leftarrow \operatorname{link}(p)$ ；
left＿$y(p) \leftarrow$ take＿fraction $($ alpha，left＿$y(p)-b)+a$ ；
until $p=$ node＿to＿round $[$ cur＿rounding＿ptr +1$]$ ；
end；
until cur＿rounding＿ptr $=0$ ；
end
This code is used in section 433.
440. Rounding at diagonal tangents takes place after the subdivision into octants is complete, hence after the coordinates have been skewed. The details are somewhat tricky, because we want to round to points whose skewed coordinates are halfway between integer multiples of the granularity. Furthermore, both coordinates change when they are rounded; this means we need a generalization of the make_safe routine, ensuring safety in both x and y.

In spite of these extra complications, we can take comfort in the fact that the basic structure of the routine is the same as before.
\langle Declare subroutines needed by make_spec 405$\rangle+\equiv$
procedure diag_round;
var $p, q, p p:$ pointer; \{ list manipulation registers \}
$b, a, b b, a a, d, c, d d, c c:$ scaled; \{before and after values \}
pen_edge: scaled; \{offset that governs rounding \}
alpha, beta: fraction; \{ coefficients of linear transformation \}
next_a: scaled; $\{$ after $[k]$ before it might have changed $\}$
all_safe: boolean; \{does everything look OK so far?\}
$k: 0$. . max_wiggle; \{runs through before-and-after values \}
first_x, first_y: scaled; \{ coordinates before rounding \}
begin $p \leftarrow$ cur_spec; cur_rounding_ptr $\leftarrow 0$;
repeat $q \leftarrow \operatorname{link}(p)$;
〈 If node q is a transition point between octants, compute and save its before-and-after coordinates 441\rangle; $p \leftarrow q ;$
until $p=$ cur_spec;
if cur_rounding_ptr >0 then 〈Transform the skewed coordinates 444\rangle;
end;
441. We negate the skewed x coordinates in the before-and-after table when the octant code is greater than switch_x_and_y.
\langle If node q is a transition point between octants, compute and save its before-and-after coordinates 441$\rangle \equiv$
if right_type $(p) \neq$ right_type (q) then
begin if right_type $(q)>$ switch_x_and_y then $b \leftarrow-x_{-}$coord (q)
else $b \leftarrow x$ _coord (q);
if abs $\left(\right.$ right_type $\left.(q)-r i g h t _t y p e ~(p)\right)=$ switch_x_and_y then
if $\left(\operatorname{abs}\left(x_{-} \operatorname{coord}(q)-r i g h t _x(q)\right)<655\right) \vee\left(\operatorname{abs}\left(x_{-} \operatorname{coord}(q)+l e f t _x(q)\right)<655\right)$ then
<Compute a good coordinate at a diagonal transition 442\rangle
else $a \leftarrow b$
else $a \leftarrow b$;
before_and_after (b, a, q);
end
This code is used in section 440.

442．In octants whose code number is even，x has been negated；we want to round ambiguous cases downward instead of upward，so that the rounding will be consistent with octants whose code number is odd．This downward bias can be achieved by subtracting 1 from the first argument of good＿val．
define diag＿offset $(\#) \equiv$＿＿coord $($ knil $(\operatorname{link}($ cur＿pen $+\#)))$
\langle Compute a good coordinate at a diagonal transition 442$\rangle \equiv$
begin if cur＿pen $=$ null＿pen then pen＿edge $\leftarrow 0$
else if cur＿path＿type $=$ double＿path＿code then \langle Compute a compromise pen＿edge 443〉
else if right＿type $(q) \leq$ switch＿x＿and＿y then pen＿edge $\leftarrow \operatorname{diag}$＿offset $($ right＿type $(q))$
else pen＿edge $\leftarrow-$ diag＿offset（right＿type $(q))$ ；
if odd（right＿type $(q))$ then $a \leftarrow$ good＿val $(b$, pen＿edge + half（cur＿gran $))$
else $a \leftarrow$ good＿val（ $b-1$ ，pen＿edge + half（cur＿gran $)$ ；
end
This code is used in section 441.
443．（It seems a shame to compute these compromise offsets repeatedly．The author would have stored them directly in the pen data structure，if the granularity had been constant．）
\langle Compute a compromise pen＿edge 443$\rangle \equiv$
case right＿type（q）of
first＿octant，second＿octant：pen＿edge \leftarrow compromise（diag＿offset（first＿octant），－diag＿offset（fifth＿octant））；
fifth＿octant，sixth＿octant：pen＿edge $\leftarrow-$ compromise（diag＿offset（first＿octant），－diag＿offset（fifth＿octant））；
third＿octant，fourth＿octant：pen＿edge \leftarrow compromise（diag＿offset（fourth＿octant），
－diag＿offset（eighth＿octant））；
seventh＿octant，eighth＿octant：pen＿edge $\leftarrow-$ compromise（diag＿offset（fourth＿octant）， －diag＿offset（eighth＿octant））；
end $\{$ there are no other cases $\}$
This code is used in section 442.
444．\langle Transform the skewed coordinates 444$\rangle \equiv$
begin $p \leftarrow$ node＿to＿round $[0]$ ；first＿$x \leftarrow x$＿coord (p) ；first＿y $\leftarrow y_{-} \operatorname{coord}(p)$ ；
〈Make sure that all the diagonal roundings are safe 446〉；
for $k \leftarrow 0$ to cur＿rounding＿ptr－ 1 do
begin $a \leftarrow$ after $[k] ; b \leftarrow$ before $[k] ;$ aa \leftarrow after $[k+1]$ ；bb \leftarrow before $[k+1]$ ；
if $(a \neq b) \vee(a a \neq b b)$ then
begin $p \leftarrow$ node＿to＿round $[k] ; p p \leftarrow$ node＿to＿round $[k+1]$ ；
〈Determine the before－and－after values of both coordinates 445〉；
if $b=b b$ then alph $a \leftarrow$ fraction＿one
else alph $a \leftarrow$ make＿fraction $(a a-a, b b-b)$ ；
if $d=d d$ then beta \leftarrow fraction＿one
else beta \leftarrow make＿fraction $(c c-c, d d-d)$ ；
repeat x_{-}coord $(p) \leftarrow$ take＿fraction $\left(a l p h a, x_{-} \operatorname{coord}(p)-b\right)+a$ ；
$y_{\text {＿coord }}(p) \leftarrow$ take＿fraction $\left(\right.$ beta，$\left.y_{_} \operatorname{coord}(p)-d\right)+c$ ；
right＿x $(p) \leftarrow$ take＿fraction $($ alpha, right＿$x(p)-b)+a ;$
right＿$y(p) \leftarrow$ take＿fraction（beta，right＿$y(p)-d)+c ; p \leftarrow \operatorname{link}(p)$ ；
left＿x $(p) \leftarrow$ take＿fraction $($ alpha，left＿$x(p)-b)+a$ ；left＿$y(p) \leftarrow t a k e_{-} f r a c t i o n\left(b e t a, l e f t _y(p)-d\right)+c$ ；
until $p=p p$ ；
end；
end；
end
This code is used in section 440.
445. In node p, the coordinates (b, d) will be rounded to (a, c); in node $p p$, the coordinates ($b b, d d$) will be rounded to $(a a, c c)$. (We transform the values from node $p p$ so that they agree with the conventions of node p.)

If $a a \neq b b$, we know that $a b s\left(\right.$ right_type $\left.(p)-r i g h t _t y p e ~(p p)\right)=s w i t c h _x _a n d _y$.
\langle Determine the before-and-after values of both coordinates 445$\rangle \equiv$
if $a a=b b$ then
begin if $p p=$ node_to_round $[0]$ then unskew (first_x, first_y, right_type $(p p)$)
else unskew ($x_{-} \operatorname{coord}(p p)$, $y_{-} \operatorname{coord}(p p)$, right_type ($\left.p p\right)$);
skew (cur_x, cur_y, right_type $(p)) ; b b \leftarrow c u r_{-} x ; a a \leftarrow b b ; d d \leftarrow c u r_{-} y ; c c \leftarrow d d ;$
if right_type $(p)>$ switch_x_and_y then
begin $b \leftarrow-b ; a \leftarrow-a$;
end;
end
else begin if right_type $(p)>$ switch_x_and_y then
begin $b b \leftarrow-b b ; a a \leftarrow-a a ; b \leftarrow-b ; a \leftarrow-a$;
end;
if $p p=$ node_to_round $[0]$ then $d d \leftarrow$ first_ $y-b b$ else $d d \leftarrow y_{-} \operatorname{coord}(p p)-b b$;
if $\operatorname{odd}(a a-b b)$ then
if right_type $(p)>$ switch_x_and_y then $c c \leftarrow d d-\operatorname{half}(a a-b b+1)$
else $c c \leftarrow d d-h a l f(a a-b b-1)$
else $c c \leftarrow d d-\operatorname{half}(a a-b b)$;
end;
$d \leftarrow y_{-} \operatorname{coord}(p)$;
if odd $(a-b)$ then
if right_type $(p)>$ switch_x_and_y then $c \leftarrow d-\operatorname{half}(a-b-1)$
else $c \leftarrow d-\operatorname{half}(a-b+1)$
else $c \leftarrow d-\operatorname{half}(a-b)$
This code is used in sections 444 and 446.
446. \langle Make sure that all the diagonal roundings are safe 446$\rangle \equiv$
before $[$ cur_rounding_ptr $] \leftarrow$ before $[0] ; \quad\{$ cf. make_safe $\}$
node_to_round [cur_rounding_ptr] \leftarrow node_to_round $[0]$;
repeat after [cur_rounding_ptr] \leftarrow after $[0]$; all_safe \leftarrow true $;$ next_ $a \leftarrow$ after $[0]$;
for $k \leftarrow 0$ to cur_rounding_ptr -1 do
begin $a \leftarrow$ next_ $a ; b \leftarrow$ before $[k] ;$ next_ $a \leftarrow$ after $[k+1] ;$ a $a \leftarrow$ next_a; $b b \leftarrow$ before $[k+1]$; if $(a \neq b) \vee(a a \neq b b)$ then
begin $p \leftarrow$ node_to_round $[k] ; p p \leftarrow$ node_to_round $[k+1]$;
\langle Determine the before-and-after values of both coordinates 445\rangle;
if $(a a<a) \vee(c c<c) \vee(a a-a>2 *(b b-b)) \vee(c c-c>2 *(d d-d))$ then
begin all_safe \leftarrow false ; after $[k] \leftarrow$ before $[k]$;
if $k=$ cur_rounding_ptr -1 then after $[0] \leftarrow$ before $[0]$
else after $[k+1] \leftarrow$ before $[k+1]$;
end;
end; end;
until all_safe
This code is used in section 444.
447. Here we get rid of "dead" cubics, i.e., polynomials that don't move at all when t changes, since the subdivision process might have introduced such things. If the cycle reduces to a single point, however, we are left with a single dead cubic that will not be removed until later.

```
\(\langle\) Remove dead cubics 447\(\rangle \equiv\)
    \(p \leftarrow\) cur_spec;
    repeat continue: \(q \leftarrow \operatorname{link}(p)\);
        if \(p \neq q\) then
            begin if \(x_{-} \operatorname{coord}(p)=\) right_ \(x(p)\) then
            if \(y_{-} \operatorname{coord}(p)=\) right- \(y(p)\) then
                    if \(x_{-} \operatorname{coord}(p)=\) left_ \(x(q)\) then
                if \(y_{-} \operatorname{coord}(p)=l e f t \_y(q)\) then
                        begin unskew \(\left(x_{-} \operatorname{coord}(q), y_{-} \operatorname{coord}(q)\right.\), right_type \(\left.(q)\right) ;\) skew \((\) cur_x, cur_y, right_type \((p))\);
                        if \(x_{-} \operatorname{coord}(p)=\) cur_x then
                            if \(y_{-} \operatorname{coord}(p)=\) cur_ \(y\) then
                            begin remove_cubic \((p) ; \quad\{\) remove the cubic following \(p\}\)
                                    if \(q \neq\) cur_spec then goto continue;
                                    cur_spec \(\leftarrow p ; q \leftarrow p\);
                                    end;
                                    end;
        end;
    \(p \leftarrow q ;\)
    until \(p=\) cur_spec;
```

This code is used in section 402.
448. Finally we come to the last steps of make_spec, when boundary nodes are inserted between cubics that move in different octants. The main complication remaining arises from consecutive cubics whose octants are not adjacent; we should insert more than one octant boundary at such sharp turns, so that the envelope-forming routine will work.

For this purpose, conversion tables between numeric and Gray codes for octants are desirable.
\langle Global variables 13$\rangle+\equiv$
octant_number: array [first_octant . . sixth_octant] of $1 \ldots 8$;
octant_code: array [1..8] of first_octant . . sixth_octant;
449. 〈Set initial values of key variables 21$\rangle+\equiv$
octant_code $[1] \leftarrow$ first_octant $;$ octant_code $[2] \leftarrow$ second_octant; octant_code $[3] \leftarrow$ third_octant;
octant_code $[4] \leftarrow$ fourth_octant $;$ octant_code $[5] \leftarrow$ fifth_octant; octant_code $[6] \leftarrow$ sixth_octant;
octant_code $[7] \leftarrow$ seventh_octant; octant_code $[8] \leftarrow$ eighth_octant;
for $k \leftarrow 1$ to 8 do octant_number[octant_code $[k]] \leftarrow k$;
450. The main loop for boundary insertion deals with three consecutive nodes p, q, r.
\langle Insert octant boundaries and compute the turning number 450$\rangle \equiv$
turning_number $\leftarrow 0 ; p \leftarrow$ cur_spec $; q \leftarrow \operatorname{link}(p)$;
repeat $r \leftarrow \operatorname{link}(q)$;
if (right_type $(p) \neq$ right_type $(q)) \vee(q=r)$ then
\langle Insert one or more octant boundary nodes just before $q 452\rangle$;
$p \leftarrow q ; q \leftarrow r ;$
until $p=$ cur_spec;
This code is used in section 402.

451．The new＿boundary subroutine comes in handy at this point．It inserts a new boundary node just after a given node p ，using a given octant code to transform the new node＇s coordinates．The＂transition＂ fields are not computed here．
\langle Declare subroutines needed by make＿spec 405$\rangle+\equiv$
procedure new＿boundary（ p ：pointer；octant ：small＿number）；
var q, r ：pointer；\｛for list manipulation \}
begin $q \leftarrow \operatorname{link}(p) ; \quad\{$ we assume that right＿type $(q) \neq$ endpoint $\}$
$r \leftarrow$ get＿node $\left(k n o t _n o d e _s i z e\right) ; \operatorname{link}(r) \leftarrow q ; \operatorname{link}(p) \leftarrow r ;$ left＿type $(r) \leftarrow$ left＿type (q) ；
$\{$ but possibly left＿type $(q)=$ endpoint $\}$
left＿x $(r) \leftarrow$ left＿x $(q) ;$ left＿$y(r) \leftarrow$ left＿$y(q) ;$ right＿type $(r) \leftarrow$ endpoint；left＿type $(q) \leftarrow$ endpoint；
right＿octant $(r) \leftarrow$ octant ；left＿octant $(q) \leftarrow$ right＿type (q) ；unskew $\left(x_{-}\right.$coord (q) ，y＿coord (q) ，right＿type $\left.(q)\right)$ ；
skew $($ cur＿x, cur＿y ，octant $) ; x_{-} \operatorname{coord}(r) \leftarrow$ cur＿x $; y_{-} \operatorname{coord}(r) \leftarrow c u r-y$ ；
end；
452．The case $q=r$ occurs if and only if $p=q=r=$ cur＿spec，when we want to turn 360° in eight steps and then remove a solitary dead cubic．The program below happens to work in that case，but the reader isn＇t expected to understand why．
〈Insert one or more octant boundary nodes just before $q 452\rangle \equiv$
begin new＿boundary $(p, \operatorname{right} t y p e(p)) ; s \leftarrow \operatorname{link}(p) ;$ o1 $\leftarrow \operatorname{octant_ number}[$ right＿type $(p)]$ ；
o2 \leftarrow octant＿number $[$ right＿type $(q)]$ ；
case $o 2-o 1$ of
$1,-7,7,-1$ ：goto done
2，－6：clockwise \leftarrow false；
$3,-5,4,-4,5,-3$ ：〈Decide whether or not to go clockwise 454\rangle ；
6，－2：clockwise \leftarrow true；
0 ：clockwise \leftarrow rev＿turns；
end；$\quad\{$ there are no other cases $\}$
\langle Insert additional boundary nodes，then goto done 458\rangle ；
done：if $q=r$ then
begin $q \leftarrow \operatorname{link}(q) ; r \leftarrow q ; p \leftarrow s ; \operatorname{link}(s) \leftarrow q ;$ left＿octant $(q) \leftarrow \operatorname{right}_{-}$octant (q) ；
left＿type $(q) \leftarrow$ endpoint；free＿node（cur＿spec，knot＿node＿size）；cur＿spec $\leftarrow q$ ；
end；
\langle Fix up the transition fields and adjust the turning number 459〉；
end
This code is used in section 450.

453．〈 Other local variables for make＿spec 453$\rangle \equiv$ o1，o2：small＿number；\｛ octant numbers \}
clockwise：boolean；\｛ should we turn clockwise？\}
$d x 1, d y 1, d x 2, d y 2:$ integer $; \quad\{$ directions of travel at a cusp $\}$
d max ，del：integer；$\quad\{$ temporary registers $\}$
This code is used in section 402.

454．A tricky question arises when a path jumps four octants．We want the direction of turning to be counterclockwise if the curve has changed direction by 180° ，or by something so close to 180° that the difference is probably due to rounding errors；otherwise we want to turn through an angle of less than 180° ． This decision needs to be made even when a curve seems to have jumped only three octants，since a curve may approach direction $(-1,0)$ from the fourth octant，then it might leave from direction $(+1,0)$ into the first．
The following code solves the problem by analyzing the incoming direction（dx1，dy1）and the outgoing direction（dx2，dy2）．
\langle Decide whether or not to go clockwise 454$\rangle \equiv$
begin 〈Compute the incoming and outgoing directions 457〉；
unskew $(d x 1$, dy1，right＿type $(p))$ ；del \leftarrow pyth＿add（cur＿x，cur＿y）；
$d x 1 \leftarrow$ make＿fraction $($ cur＿x, del $) ;$ dy $1 \leftarrow$ make＿fraction（cur＿y，del）；$\quad\left\{\cos \theta_{1}\right.$ and $\left.\sin \theta_{1}\right\}$
unskew $(d x 2$ ，dy2，right＿type $(q))$ ；del \leftarrow pyth＿add（cur＿x，cur＿y）；
$d x 2 \leftarrow$ make＿fraction $($ cur＿x, del $) ;$ dy $2 \leftarrow$ make＿fraction $($ cur＿y，del $) ; \quad\left\{\cos \theta_{2}\right.$ and $\left.\sin \theta_{2}\right\}$
del \leftarrow take＿fraction（dx1，dy2）－take＿fraction（dx2，dy1）；$\left\{\sin \left(\theta_{2}-\theta_{1}\right)\right\}$
if del >4684844 then clockwise \leftarrow false
else if del <-4684844 then clockwise \leftarrow true $\left\{2^{28} \cdot \sin 1^{\circ} \approx 4684844.68\right\}$
else clockwise \leftarrow rev＿turns；
end
This code is used in section 452.
455．Actually the turnarounds just computed will be clockwise，not counterclockwise，if the global variable rev＿turns is true；it is usually false．
\langle Global variables 13$\rangle+\equiv$
rev＿turns：boolean；\｛should we make U－turns in the English manner？\}
456．〈Set initial values of key variables 21$\rangle+\equiv$
rev＿turns \leftarrow false；
457. 〈Compute the incoming and outgoing directions 457$\rangle \equiv$
$d x 1 \leftarrow x _c o o r d(s)-l e f t _x(s) ; d y 1 \leftarrow y _\operatorname{coord}(s)-l e f t _y(s) ;$
if $d x 1=0$ then
if $d y 1=0$ then
begin $d x 1 \leftarrow x_{-} \operatorname{coord}(s)-r i g h t _x(p) ;$ dy1 $\leftarrow y_{-} \operatorname{coord}(s)-\operatorname{right} y(p)$; if $d x 1=0$ then
if $d y 1=0$ then
begin $d x 1 \leftarrow x_{_} \operatorname{coord}(s)-x _\operatorname{coord}(p) ; d y 1 \leftarrow y _\operatorname{coord}(s)-y_{-} \operatorname{coord}(p)$;
end; \{ and they can't both be zero \} end;
$d \max \leftarrow a b s(d x 1)$; if $a b s(d y 1)>d m a x$ then $d \max \leftarrow a b s(d y 1)$;
while dmax < fraction_one do
begin double(dmax); double(dx1); double(dy1);
end;
$d x 2 \leftarrow$ right_ $x(q)-x_{-} \operatorname{coord}(q) ;$ dy $2 \leftarrow r i g h t _y(q)-y_{-} \operatorname{coord}(q) ;$
if $d x 2=0$ then
if $d y 2=0$ then
begin $d x 2 \leftarrow$ left_x $(r)-x$ _coord (q); dy2 \leftarrow left_y $(r)-y_{-} \operatorname{coord}(q)$;
if $d x 2=0$ then
if $d y 2=0$ then
begin if right_type $(r)=$ endpoint then
begin cur_x $\leftarrow x_{-}$coord (r); cur_ $y \leftarrow y_{-} \operatorname{coord}(r)$;
end
else begin $\operatorname{unskew}\left(x _c o o r d(r), y _c o o r d(r)\right.$, right_type $\left.(r)\right)$; skew (cur_x, cur_y, right_type (q)); end;
$d x 2 \leftarrow c u r _x-x _\operatorname{coord}(q) ;$ dy2 $\leftarrow c u r _y-y _\operatorname{coord}(q) ;$
end; $\{$ and they can't both be zero $\}$ end;
$d \max \leftarrow a b s(d x 2)$; if $a b s(d y 2)>d m a x$ then $d m a x \leftarrow a b s(d y 2)$;
while dmax < fraction_one do
begin double(dmax); double(dx2); double(dy2);
end
This code is used in section 454.
458. 〈Insert additional boundary nodes, then goto done 458$\rangle \equiv$
loop begin if clockwise then
if $o 1=1$ then $o 1 \leftarrow 8$ else $\operatorname{decr}(o 1)$
else if $o 1=8$ then $o 1 \leftarrow 1$ else $\operatorname{incr}(o 1)$;
if $o 1=02$ then goto done;
new_boundary $(s$, octant_code $[o 1]) ; s \leftarrow \operatorname{link}(s) ;$ left_octant $(s) \leftarrow$ right_octant (s);
end
This code is used in section 452.
459. Now it remains to insert the redundant transition information into the left_transition and right_transition fields between adjacent octants, in the octant boundary nodes that have just been inserted between $\operatorname{link}(p)$ and q. The turning number is easily computed from these transitions.
\langle Fix up the transition fields and adjust the turning number 459$\rangle \equiv$
$p \leftarrow \operatorname{link}(p) ;$
repeat $s \leftarrow \operatorname{link}(p) ;$ o1 $\leftarrow \operatorname{octant_ number}\left[\operatorname{right_ octant}(p)\right] ;$ o $2 \leftarrow$ octant_number $[$ left_octant $(s)]$;
if $\operatorname{abs}(o 1-o 2)=1$ then
begin if $o 2<o 1$ then $o 2 \leftarrow o 1$;
if odd(o2) then right_transition $(p) \leftarrow$ axis
else right_transition $(p) \leftarrow$ diagonal;
end
else begin if $o 1=8$ then incr(turning_number) else decr (turning_number);
right_transition $(p) \leftarrow$ axis;
end;
left_transition $(s) \leftarrow$ right_transition $(p) ; p \leftarrow s ;$
until $p=q$
This code is used in section 452.
460. Filling a contour. Given the low-level machinery for making moves and for transforming a cyclic path into a cycle spec, we're almost able to fill a digitized path. All we need is a high-level routine that walks through the cycle spec and controls the overall process.

Our overall goal is to plot the integer points $(\operatorname{round}(x(t)), \operatorname{round}(y(t)))$ and to connect them by rook moves, assuming that round $(x(t))$ and round $(y(t))$ don't both jump simultaneously from one integer to another as t varies; these rook moves will be the edge of the contour that will be filled. We have reduced this problem to the case of curves that travel in first octant directions, i.e., curves such that $0 \leq y^{\prime}(t) \leq x^{\prime}(t)$, by transforming the original coordinates.

Another transformation makes the problem still simpler. We shall say that we are working with biased coordinates when (x, y) has been replaced by $(\tilde{x}, \tilde{y})=\left(x-y, y+\frac{1}{2}\right)$. When a curve travels in first octant directions, the corresponding curve with biased coordinates travels in first quadrant directions; the latter condition is symmetric in x and y, so it has advantages for the design of algorithms. The make_spec routine gives us skewed coordinates $(x-y, y)$, hence we obtain biased coordinates by simply adding $\frac{1}{2}$ to the second component.

The most important fact about biased coordinates is that we can determine the rounded unbiased path (round $(x(t))$, round $(y(t)))$ from the truncated biased path $(\lfloor\tilde{x}(t)\rfloor,\lfloor\tilde{y}(t)\rfloor)$ and information about the initial and final endpoints. If the unrounded and unbiased path begins at (x_{0}, y_{0}) and ends at (x_{1}, y_{1}), it's possible to prove (by induction on the length of the truncated biased path) that the rounded unbiased path is obtained by the following construction:

1) Start at $\left(\operatorname{round}\left(x_{0}\right)\right.$, round $\left.\left(y_{0}\right)\right)$.
2) If $\left(x_{0}+\frac{1}{2}\right) \bmod 1 \geq\left(y_{0}+\frac{1}{2}\right) \bmod 1$, move one step right.
3) Whenever the path $(\lfloor\tilde{x}(t)\rfloor,\lfloor\tilde{y}(t)\rfloor)$ takes an upward step (i.e., when $\lfloor\tilde{x}(t+\epsilon)\rfloor=\lfloor\tilde{x}(t)\rfloor$ and $\lfloor\tilde{y}(t+\epsilon)\rfloor=$ $\lfloor\tilde{y}(t)\rfloor+1)$, move one step up and then one step right.
4) Whenever the path $(\lfloor\tilde{x}(t)\rfloor,\lfloor\tilde{y}(t)\rfloor)$ takes a rightward step (i.e., when $\lfloor\tilde{x}(t+\epsilon)\rfloor=\lfloor\tilde{x}(t)\rfloor+1$ and $\lfloor\tilde{y}(t+\epsilon)\rfloor=\lfloor\tilde{y}(t)\rfloor)$, move one step right.
5) Finally, if $\left(x_{1}+\frac{1}{2}\right) \bmod 1 \geq\left(y_{1}+\frac{1}{2}\right) \bmod 1$, move one step left (thereby cancelling the previous move, which was one step right). You will now be at the point $\left(\operatorname{round}\left(x_{1}\right), \operatorname{round}\left(y_{1}\right)\right)$.
461. In order to validate the assumption that round $(x(t))$ and round $(y(t))$ don't both jump simultaneously, we shall consider that a coordinate pair (x, y) actually represents $(x+\epsilon, y+\epsilon \delta)$, where ϵ and δ are extremely small positive numbers - so small that their precise values never matter. This convention makes rounding unambiguous, since there is always a unique integer point nearest to any given scaled numbers (x, y).

When coordinates are transformed so that METAFONT needs to work only in "first octant" directions, the transformations involve negating x, negating y, and/or interchanging x with y. Corresponding adjustments to the rounding conventions must be made so that consistent values will be obtained. For example, suppose that we're working with coordinates that have been transformed so that a third-octant curve travels in first-octant directions. The skewed coordinates (x, y) in our data structure represent unskewed coordinates $(-y, x+y)$, which are actually $(-y+\epsilon, x+y+\epsilon \delta)$. We should therefore round as if our skewed coordinates were $(x+\epsilon+\epsilon \delta, y-\epsilon)$ instead of (x, y). The following table shows how the skewed coordinates should be perturbed when rounding decisions are made:

first_octant	$(x+\epsilon-\epsilon \delta, y+\epsilon \delta)$	fifth_octant	$(x-\epsilon+\epsilon \delta, y-\epsilon \delta)$
second_octant	$(x-\epsilon+\epsilon \delta, y+\epsilon)$	sixth_octant	$(x+\epsilon-\epsilon \delta, y-\epsilon)$
third_octant	$(x+\epsilon+\epsilon \delta, y-\epsilon)$	seventh_octant	$(x-\epsilon-\epsilon \delta, y+\epsilon)$
fourth_octant	$(x-\epsilon-\epsilon \delta, y+\epsilon \delta)$	eighth_octant	$(x+\epsilon+\epsilon \delta, y-\epsilon \delta)$

Four small arrays are set up so that the rounding operations will be fairly easy in any given octant.
\langle Global variables 13$\rangle+\equiv$

x_corr: array [first_octant .. sixth_octant] of $-1 . .1$;
462. Here $x y_{\text {_corr }}$ is 1 if and only if the x component of a skewed coordinate is to be decreased by an infinitesimal amount; y_{-}corr is similar, but for the y components. The other tables are set up so that the condition

$$
(x+y+\text { half_unit }) \bmod \text { unity } \geq(y+\text { half_unit }) \bmod \text { unity }
$$

is properly perturbed to the condition

$$
\left(x+y+\text { half_unit }-x_{-} \text {corr }-y_{-} \text {corr }\right) \bmod \text { unity } \geq\left(y+\text { half_unit }-y_{-} \text {corr }\right) \bmod \text { unity }+z_{-} \text {corr } .
$$

\langle Set initial values of key variables 21$\rangle+\equiv$
x_{-}corr $[$first_octant $] \leftarrow 0 ; y_{-}$corr $[$first_octant $] \leftarrow 0 ;$ xy_corr $[$ first_octant $] \leftarrow 0$;
x_{-}corr $[$second_octant $] \leftarrow 0 ; y_{-}$corr $[$second_octant $] \leftarrow 0 ;$ xy_corr $[$ second_octant $] \leftarrow 1$;
x_{-}corr $[$third_octant $] \leftarrow-1 ;$ y_corr $[$ third_octant $] \leftarrow 1 ;$ xy_corr $[$ third_octant $] \leftarrow 0$;
x_{-}corr $[$fourth_octant $] \leftarrow 1 ;$ y_corr $[$ fourth_octant $] \leftarrow 0 ;$ xy_corr $[$ fourth_octant $] \leftarrow 1$;
x_{-}corr $[$fifth_octant $] \leftarrow 0 ; y_{-}$corr $[$fifth_octant $] \leftarrow 1 ;$ xy_corr $[$ fifth_octant $] \leftarrow 1$;
x_{-}corr $[$sixth_octant $] \leftarrow 0 ; y_{-}$corr $[$sixth_octant $] \leftarrow 1 ;$ xy_corr $[$ sixth_octant $] \leftarrow 0$;
x_{-}corr $[$seventh_octant $] \leftarrow 1 ;$ y_corr $[$ seventh_octant $] \leftarrow 0 ;$ xy_corr $[$ seventh_octant $] \leftarrow 1$;
x_{-}corr $[$eighth_octant $] \leftarrow-1 ; y_{-}$corr $[$eighth_octant $] \leftarrow 1 ;$ xy_corr $[$ eighth_octant $] \leftarrow 0$;
for $k \leftarrow 1$ to 8 do $z_{-} \operatorname{corr}[k] \leftarrow x y_{-} \operatorname{corr}[k]-x_{-} \operatorname{corr}[k]$;
463. Here's a procedure that handles the details of rounding at the endpoints: Given skewed coordinates (x, y), it sets $(m 1, n 1)$ to the corresponding rounded lattice points, taking the current octant into account. Global variable $d 1$ is also set to 1 if $\left(x+y+\frac{1}{2}\right) \bmod 1 \geq\left(y+\frac{1}{2}\right) \bmod 1$.

```
procedure end_round (x,y : scaled);
    begin }y\leftarrowy+half_unit - y_corr[octant];x\leftarrowx+y- x_corr[octant];m1\leftarrowfloor_unscaled (x)
    n1 \leftarrow floor_unscaled (y);
    if x-unity *m1\geqy-unity *n1 + z_corr[octant] then d1 \leftarrow1 else d1 \leftarrow0;
    end;
```

464. The outputs $(m 1, n 1, d 1)$ of end_round will sometimes be moved to ($m 0, n 0, d 0$).
\langle Global variables 13$\rangle+\equiv$
$m 0, n 0, m 1, n 1:$ integer; \{lattice point coordinates \}
$d 0, d 1: 0 \ldots 1 ; \quad\{$ displacement corrections $\}$
465. We're ready now to fill the pixels enclosed by a given cycle spec h; the knot list that represents the cycle is destroyed in the process. The edge structure that gets all the resulting data is cur_edges, and the edges are weighted by cur_wt.
```
procedure fill_spec ( \(h\) : pointer);
    var \(p, q, r, s\) : pointer; \{for list traversal \}
    begin if internal[tracing_edges] \(>0\) then begin_edge_tracing;
    \(p \leftarrow h ; \quad\{\) we assume that left_type \((h)=\) endpoint \(\}\)
    repeat octant \(\leftarrow\) left_octant \((p) ;\langle\) Set variable \(q\) to the node at the end of the current octant 466\(\rangle\);
        if \(q \neq p\) then
            begin \(\langle\) Determine the starting and ending lattice points \((m 0, n 0)\) and ( \(m 1, n 1\) ) 467〉;
            \(\langle\) Make the moves for the current octant 468〉;
            move_to_edges (m0,n0,m1, n1);
            end;
        \(p \leftarrow \operatorname{link}(q) ;\)
    until \(p=h\);
    toss_knot_list ( \(h\) );
    if internal[tracing_edges] \(>0\) then end_edge_tracing;
    end;
```

466．〈Set variable q to the node at the end of the current octant 466$\rangle \equiv$
$q \leftarrow p ;$
while right＿type $(q) \neq$ endpoint do $q \leftarrow \operatorname{link}(q)$
This code is used in sections 465,506 ，and 506.

467．〈Determine the starting and ending lattice points $(m 0, n 0)$ and $(m 1, n 1) 467\rangle \equiv$ end＿round $\left(x_{-} \operatorname{coord}(p), y_{-} \operatorname{coord}(p)\right) ; m 0 \leftarrow m 1 ; n 0 \leftarrow n 1 ; d 0 \leftarrow d 1$ ；
end＿round $\left(x_{-} \operatorname{coord}(q), y_{-}\right.$coord $\left.(q)\right)$
This code is used in section 465.
468．Finally we perform the five－step process that was explained at the very beginning of this part of the program．
\langle Make the moves for the current octant 468$\rangle \equiv$
if $n 1-n 0 \geq$ move＿size then overflow（＂move」table」size＂，move＿size）；
move $[0] \leftarrow d 0 ;$ move＿ptr $\leftarrow 0 ; r \leftarrow p$ ；
repeat $s \leftarrow \operatorname{link}(r)$ ；
make＿moves $\left(x_{-} \operatorname{coord}(r)\right.$, right＿x (r) ，left＿x $(s), x_{-} \operatorname{coord}(s)$ ，
$y_{-} \operatorname{coord}(r)+h a l f_{-} u n i t$, right＿y $(r)+$ half＿unit，left＿y $(s)+$ half＿unit，y_{-}coord $(s)+h a l f_{-} u n i t$, $x y_{-}$corr［octant］，y＿corr［octant］）；$r \leftarrow s$ ；
until $r=q$ ；
move $[$ move＿ptr $] \leftarrow$ move $[$ move＿ptr $]-d 1$ ；
if internal $[$ smoothing $]>0$ then smooth＿moves $(0$, move＿ptr $)$
This code is used in section 465.
469. Polygonal pens. The next few parts of the program deal with the additional complications associated with "envelopes," leading up to an algorithm that fills a contour with respect to a pen whose boundary is a convex polygon. The mathematics underlying this algorithm is based on simple aspects of the theory of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi ["A kinetic framework for computational geometry," Proc. IEEE Symp. Foundations of Computer Science 24 (1983), 100-111].
If the vertices of the polygon are $w_{0}, w_{1}, \ldots, w_{n-1}, w_{n}=w_{0}$, in counterclockwise order, the convexity condition requires that "left turns" are made at each vertex when a person proceeds from w_{0} to w_{1} to \cdots to w_{n}. The envelope is obtained if we offset a given curve $z(t)$ by w_{k} when that curve is traveling in a direction $z^{\prime}(t)$ lying between the directions $w_{k}-w_{k-1}$ and $w_{k+1}-w_{k}$. At times t when the curve direction $z^{\prime}(t)$ increases past $w_{k+1}-w_{k}$, we temporarily stop plotting the offset curve and we insert a straight line from $z(t)+w_{k}$ to $z(t)+w_{k+1}$; notice that this straight line is tangent to the offset curve. Similarly, when the curve direction decreases past $w_{k}-w_{k-1}$, we stop plotting and insert a straight line from $z(t)+w_{k}$ to $z(t)+w_{k-1}$; the latter line is actually a "retrograde" step, which won't be part of the final envelope under METAFONT's assumptions. The result of this construction is a continuous path that consists of alternating curves and straight line segments. The segments are usually so short, in practice, that they blend with the curves; after all, it's possible to represent any digitized path as a sequence of digitized straight lines.

The nicest feature of this approach to envelopes is that it blends perfectly with the octant subdivision process we have already developed. The envelope travels in the same direction as the curve itself, as we plot it, and we need merely be careful what offset is being added. Retrograde motion presents a problem, but we will see that there is a decent way to handle it.
470. We shall represent pens by maintaining eight lists of offsets, one for each octant direction. The offsets at the boundary points where a curve turns into a new octant will appear in the lists for both octants. This means that we can restrict consideration to segments of the original polygon whose directions aim in the first octant, as we have done in the simpler case when envelopes were not required.

An example should help to clarify this situation: Consider the quadrilateral whose vertices are $w_{0}=$ $(0,-1), w_{1}=(3,-1), w_{2}=(6,1)$, and $w_{3}=(1,2)$. A curve that travels in the first octant will be offset by w_{1} or w_{2}, unless its slope drops to zero en route to the eighth octant; in the latter case we should switch to w_{0} as we cross the octant boundary. Our list for the first octant will contain the three offsets w_{0}, w_{1}, w_{2}. By convention we will duplicate a boundary offset if the angle between octants doesn't explicitly appear; in this case there is no explicit line of slope 1 at the end of the list, so the full list is

$$
w_{0} w_{1} w_{2} w_{2}=(0,-1)(3,-1)(6,1)(6,1)
$$

With skewed coordinates $(u-v, v)$ instead of (u, v) we obtain the list

$$
w_{0} w_{1} w_{2} w_{2} \mapsto(1,-1)(4,-1)(5,1)(5,1)
$$

which is what actually appears in the data structure. In the second octant there's only one offset; we list it twice (with coordinates interchanged, so as to make the second octant look like the first), and skew those coordinates, obtaining

$$
w_{2} w_{2} \mapsto(-5,6)(-5,6)
$$

as the list of transformed and skewed offsets to use when curves travel in the second octant. Similarly, we will have

$$
\begin{array}{rlrl}
w_{2} w_{2} & \mapsto(7,-6)(7,-6) & & \text { in the third; } \\
w_{2} w_{2} w_{3} w_{3} & \mapsto(-7,1)(-7,1)(-3,2)(-3,2) & \text { in the fourth; } \\
w_{3} w_{3} & \mapsto(1,-2)(1,-2) & & \text { in the fifth; } \\
w_{3} w_{3} w_{0} w_{0} & \mapsto(-1,1)(-1,1)(1,0)(1,0) & & \text { in the sixth; } \\
w_{0} w_{0} & \mapsto(1,0)(1,0) & & \text { in the seventh; } \\
w_{0} w_{0} & \mapsto(-1,1)(-1,1) & & \text { in the eighth. }
\end{array}
$$

Notice that w_{1} is considered here to be internal to the first octant; it's not part of the eighth. We could equally well have taken w_{0} out of the first octant list and put it into the eighth; then the first octant list would have been

$$
w_{1} w_{1} w_{2} w_{2} \mapsto(4,-1)(4,-1)(5,1)(5,1)
$$

and the eighth octant list would have been

$$
w_{0} w_{0} w_{1} \mapsto(-1,1)(-1,1)(2,1)
$$

Actually, there's one more complication: The order of offsets is reversed in even-numbered octants, because the transformation of coordinates has reversed counterclockwise and clockwise orientations in those octants. The offsets in the fourth octant, for example, are really $w_{3}, w_{3}, w_{2}, w_{2}$, not $w_{2}, w_{2}, w_{3}, w_{3}$.
471. In general, the list of offsets for an octant will have the form

$$
w_{0} \quad w_{1} \quad \ldots \quad w_{n} \quad w_{n+1}
$$

(if we renumber the subscripts in each list), where w_{0} and w_{n+1} are offsets common to the neighboring lists. We'll often have $w_{0}=w_{1}$ and/or $w_{n}=w_{n+1}$, but the other w^{\prime} 's will be distinct. Curves that travel between slope 0 and direction $w_{2}-w_{1}$ will use offset w_{1}; curves that travel between directions $w_{k}-w_{k-1}$ and $w_{k+1}-w_{k}$ will use offset w_{k}, for $1<k<n$; curves between direction $w_{n}-w_{n-1}$ and slope 1 (actually slope ∞ after skewing) will use offset w_{n}. In even-numbered octants, the directions are actually $w_{k}-w_{k+1}$ instead of $w_{k+1}-w_{k}$, because the offsets have been listed in reverse order.

Each offset w_{k} is represented by skewed coordinates $\left(u_{k}-v_{k}, v_{k}\right)$, where $\left(u_{k}, v_{k}\right)$ is the representation of w_{k} after it has been rotated into a first-octant disguise.
472. The top-level data structure of a pen polygon is a 10 -word node containing a reference count followed by pointers to the eight offset lists, followed by an indication of the pen's range of values.
If p points to such a node, and if the offset list for, say, the fourth octant has entries w_{0}, w_{1}, \ldots, w_{n}, w_{n+1}, then info($p+$ fourth_octant) will equal n, and $\operatorname{link}(p+$ fourth_octant $)$ will point to the offset node containing w_{0}. Memory location $p+$ fourth_octant is said to be the header of the pen-offset list for the fourth octant. Since this is an even-numbered octant, w_{0} is the offset that goes with the fifth octant, and w_{n+1} goes with the third.

The elements of the offset list themselves are doubly linked 3 -word nodes, containing coordinates in their x_{-}coord and y_{-}coord fields. The two link fields are called link and knil; if w points to the node for w_{k}, then $\operatorname{link}(w)$ and $\operatorname{knil}(w)$ point respectively to the nodes for w_{k+1} and w_{k-1}. If h is the list header, $\operatorname{link}(h)$ points to the node for w_{0} and $\operatorname{knil}(\operatorname{link}(h))$ to the node for w_{n+1}.
The tenth word of a pen header node contains the maximum absolute value of an x or y coordinate among all of the unskewed pen offsets.
The link field of a pen header node should be null if and only if the pen is a single point.
define pen_node_size $=10$
define coord_node_size $=3$
define max_offset $(\#) \equiv \operatorname{mem}[\#+9] . s c$
473. The print_pen subroutine illustrates these conventions by reconstructing the vertices of a polygon from METAFONT's complicated internal offset representation.
\langle Declare subroutines for printing expressions 257$\rangle+\equiv$
procedure print_pen(p : pointer ; s: str_number; nuline : boolean);
var nothing_printed: boolean; \{ has there been any action yet?\}
$k: 1 . .8 ; \quad$ \{ octant number \}
h : pointer; \{offset list head \}
m, n : integer; \{offset indices \}
$w, w w:$ pointer; \{pointers that traverse the offset list \}

for $k \leftarrow 1$ to 8 do
begin octant \leftarrow octant_code $[k] ; h \leftarrow p+$ octant $; n \leftarrow \operatorname{info}(h) ; w \leftarrow \operatorname{link}(h)$;
if $\neg \operatorname{odd}(k)$ then $w \leftarrow \operatorname{knil}(w) ; \quad\left\{\right.$ in even octants, start at $\left.w_{n+1}\right\}$
for $m \leftarrow 1$ to $n+1$ do
begin if odd (k) then $w w \leftarrow \operatorname{link}(w)$ else $w w \leftarrow \operatorname{knil}(w)$;
if $\left(x_{-} \operatorname{coord}(w w) \neq x\right.$ _coord $\left.(w)\right) \vee\left(y_{-} \operatorname{coord}(w w) \neq y_{-} \operatorname{coord}(w)\right)$ then
〈Print the unskewed and unrotated coordinates of node $w w 474\rangle$;
$w \leftarrow w w ;$
end;
end;
if nothing_printed then
begin $w \leftarrow$ link $(p+$ first_octant $)$; print_two $\left(x_{-} \operatorname{coord}(w)+y_{-} \operatorname{coord}(w), y_{-} \operatorname{coord}(w)\right)$;
end;
print_nl("ь..ьсуcle"); end_diagnostic(true);
end;
474. 〈Print the unskewed and unrotated coordinates of node ww 474$\rangle \equiv$
begin if nothing_printed then nothing_printed \leftarrow false
else print_nl("ь...");
print_two_true (x_coord(ww), y_coord(ww));
end
This code is used in section 473.
475. A null pen polygon, which has just one vertex $(0,0)$, is predeclared for error recovery. It doesn't need a proper reference count, because the toss_pen procedure below will never delete it from memory.
\langle Initialize table entries (done by INIMF only) 176$\rangle+\equiv$
ref_count $($ null_pen $) \leftarrow$ null; link $($ null_pen $) \leftarrow$ null;
info $($ null_pen +1$) \leftarrow 1$; link $($ null_pen +1$) \leftarrow$ null_coords;
for $k \leftarrow$ null_pen +2 to null_pen +8 do mem $[k] \leftarrow$ mem $[$ null_pen +1$]$;
max_offset $($ null_pen $) \leftarrow 0$;
link $($ null_coords $) \leftarrow$ null_coords; knil(null_coords $) \leftarrow$ null_coords;
$x_{\text {_coord }}($ null_coords $) \leftarrow 0 ; y_{-}$coord $($null_coords $) \leftarrow 0$;
476. Here's a trivial subroutine that inserts a copy of an offset on the link side of its clone in the doubly linked list.
procedure dup_offset(w: pointer);
var r : pointer; \{ the new node \}
begin $r \leftarrow$ get_node (coord_node_size); x _coord $(r) \leftarrow x$ _coord $(w) ;$ y_coord $(r) \leftarrow y_{\text {_coord }}(w)$;
$\operatorname{link}(r) \leftarrow \operatorname{link}(w) ; \operatorname{knil}(\operatorname{link}(w)) \leftarrow r ; \operatorname{knil}(r) \leftarrow w ; \operatorname{link}(w) \leftarrow r ;$
end;

477．The following algorithm is somewhat more interesting：It converts a knot list for a cyclic path into a pen polygon，ignoring everything but the $x_{-} \operatorname{coord}$ ，y_{-}coord，and link fields．If the given path vertices do not define a convex polygon，an error message is issued and the null pen is returned．
function make＿pen（ h ：pointer）：pointer；
label done，done1，not＿found，found；
var o ，oo，k ：small＿number；\quad \｛octant numbers－old，new，and current \}
p ：pointer；$\{$ top－level node for the new pen $\}$
$q, r, s, w, h h$ ：pointer；\｛for list manipulation \}
n ：integer；\｛ offset counter \}
$d x, d y:$ scaled；\｛ polygon direction $\}$
$m c: ~ s c a l e d ; \quad\{$ the largest coordinate \}
begin 〈Stamp all nodes with an octant code，compute the maximum offset，and set $h h$ to the node that begins the first octant；goto not＿found if there＇s a problem 479\rangle ；
if $m c \geq$ fraction＿one－half＿unit then goto not＿found；
$p \leftarrow$ get＿node $\left(p e n _n o d e _s i z e\right) ; ~ q \leftarrow h h ;$ max＿offset $(p) \leftarrow m c ; r e f$＿count $(p) \leftarrow$ null；
if $\operatorname{link}(q) \neq q$ then $\operatorname{link}(p) \leftarrow$ null +1 ；
for $k \leftarrow 1$ to 8 do 〈Construct the offset list for the k th octant 481〉；
goto found；
not＿found：$p \leftarrow$ null＿pen；〈Complain about a bad pen path 478〉；

make＿pen $\leftarrow p$ ；
end；

478．〈Complain about a bad pen path 478$\rangle \equiv$
if $m c \geq$ fraction＿one－half＿unit then begin print＿err（＂Pen ${ }_{\sqcup} \mathrm{too}_{\sqcup}$ large＂）；

end
else begin print_err ("Pen $\operatorname{licycle}_{\sqcup}$ must $_{\sqcup} \mathrm{be}_{\sqcup}$ convex");

end;
put_get_error

This code is used in section 477.
479. There should be exactly one node whose octant number is less than its predecessor in the cycle; that is node $h h$.

The loop here will terminate in all cases, but the proof is somewhat tricky: If there are at least two distinct y coordinates in the cycle, we will have $o>4$ and $o \leq 4$ at different points of the cycle. Otherwise there are at least two distinct x coordinates, and we will have $o>2$ somewhere, $o \leq 2$ somewhere.
〈Stamp all nodes with an octant code, compute the maximum offset, and set $h h$ to the node that begins
the first octant; goto not_found if there's a problem 479$\rangle \equiv$
$q \leftarrow h ; r \leftarrow \operatorname{link}(q) ; m c \leftarrow \operatorname{abs}\left(x _\operatorname{coord}(h)\right) ;$
if $q=r$ then
begin $h h \leftarrow h$; right_type $(h) \leftarrow 0 ; \quad\{$ this trick is explained below $\}$
if $m c<a b s\left(y_{-} \operatorname{coord}(h)\right)$ then $m c \leftarrow a b s\left(y _\operatorname{coord}(h)\right)$;
end
else begin $o \leftarrow 0$; $h h \leftarrow$ null;
loop begin $s \leftarrow \operatorname{link}(r)$;
if $m c<a b s\left(x _\operatorname{coord}(r)\right)$ then $m c \leftarrow a b s\left(x _\operatorname{coord}(r)\right)$;
if $m c<a b s\left(y_{-} \operatorname{coord}(r)\right)$ then $m c \leftarrow a b s\left(y_{-} \operatorname{coord}(r)\right)$;
$d x \leftarrow x_{-}$coord $(r)-x$ _coord $(q) ; d y \leftarrow y_{-} \operatorname{coord}(r)-y_{-} \operatorname{coord}(q)$;
if $d x=0$ then
if $d y=0$ then goto not_found; \{double point \}
if $a b_{-} v s_{-} c d\left(d x, y_{-} \operatorname{coord}(s)-y_{-} \operatorname{coord}(r), d y, x_{-} \operatorname{coord}(s)-x_{-} \operatorname{coord}(r)\right)<0$ then goto not_found;
\{ right turn \}
\langle Determine the octant code for direction $(d x, d y) 480\rangle$;
right_type $(q) \leftarrow$ octant; oo \leftarrow octant_number [octant];
if $o>o o$ then
begin if $h h \neq$ null then goto not_found; $\left\{>360^{\circ}\right\}$
$h h \leftarrow q$;
end;
$o \leftarrow o o ;$
if $(q=h) \wedge(h h \neq$ null $)$ then goto done;
$q \leftarrow r ; r \leftarrow s ;$
end;
done: end
This code is used in section 477 .
480. We want the octant for $(-d x,-d y)$ to be exactly opposite the octant for $(d x, d y)$.
\langle Determine the octant code for direction ($d x, d y$) 480$\rangle \equiv$
if $d x>0$ then octant \leftarrow first_octant
else if $d x=0$ then
if $d y>0$ then octant \leftarrow first_octant else octant \leftarrow first_octant + negate_ x else begin negate $(d x)$; octant \leftarrow first_octant + negate_ x;
end;
if $d y<0$ then
begin negate $(d y)$; octant \leftarrow octant + negate_ y;
end
else if $d y=0$ then
if octant $>$ first_octant then octant \leftarrow first_octant + negate_ $x+$ negate_ y;
if $d x<d y$ then octant \leftarrow octant + switch_x_and_y
This code is used in section 479.
481. Now q points to the node that the present octant shares with the previous octant, and right_type (q) is the octant code during which q should advance. We have set right_type $(q)=0$ in the special case that q should never advance (because the pen is degenerate).

The number of offsets n must be smaller than max_quarterword, because the fill_envelope routine stores $n+1$ in the right_type field of a knot node.
\langle Construct the offset list for the k th octant 481$\rangle \equiv$
begin octant \leftarrow octant_code $[k] ; n \leftarrow 0 ; h \leftarrow p+$ octant;
loop begin $r \leftarrow$ get_node (coord_node_size $) ;$ skew $\left(x_{-} \operatorname{coord}(q), y_{-}\right.$coord (q), octant); x_{-}coord $(r) \leftarrow c u r _x$;
y_{-}coord $(r) \leftarrow$ cur_y;
if $n=0$ then $\operatorname{link}(h) \leftarrow r$
else \langle Link node r to the previous node 482\rangle;
$w \leftarrow r$;
if right_type $(q) \neq$ octant then goto done1;
$q \leftarrow \operatorname{link}(q) ; \operatorname{incr}(n) ;$
end;
done1: 〈Finish linking the offset nodes, and duplicate the borderline offset nodes if necessary 483〉;
if $n \geq$ max_quarterword $^{\text {then }}$ overflow("pen $\operatorname{ppolygon}_{\sqcup}$ size", max_quarterword); ;
info $(h) \leftarrow n$;
end
This code is used in section 477.
482. Now w points to the node that was inserted most recently, and k is the current octant number.
\langle Link node r to the previous node 482$\rangle \equiv$
if $\operatorname{odd}(k)$ then
begin $\operatorname{link}(w) \leftarrow r ; \operatorname{knil}(r) \leftarrow w ;$
end
else begin $k n i l(w) \leftarrow r ; \operatorname{link}(r) \leftarrow w$; end
This code is used in section 481.
483. We have inserted $n+1$ nodes; it remains to duplicate the nodes at the ends, if slopes 0 and ∞ aren't already represented. At the end of this section the total number of offset nodes should be $n+2$ (since we call them $\left.w_{0}, w_{1}, \ldots, w_{n+1}\right)$.
\langle Finish linking the offset nodes, and duplicate the borderline offset nodes if necessary 483$\rangle \equiv$
$r \leftarrow \operatorname{link}(h)$;
if $\operatorname{odd}(k)$ then
begin $\operatorname{link}(w) \leftarrow r ; \operatorname{knil}(r) \leftarrow w ;$
end
else begin $\operatorname{knil}(w) \leftarrow r ; \operatorname{link}(r) \leftarrow w ; \operatorname{link}(h) \leftarrow w ; r \leftarrow w ;$
end;
if $\left(y_{-} \operatorname{coord}(r) \neq y_{-} \operatorname{coord}(\operatorname{link}(r))\right) \vee(n=0)$ then
begin dup_offset $(r) ; \operatorname{incr}(n)$;
end;
$r \leftarrow \operatorname{knil}(r)$;
if x_{-}coord $(r) \neq x_{-}$coord $(k n i l(r))$ then dup_offset (r)
else $\operatorname{decr}(n)$
This code is used in section 481.

484．Conversely，make＿path goes back from a pen to a cyclic path that might have generated it．The structure of this subroutine is essentially the same as print＿pen．
〈Declare the function called trivial＿knot 486〉
function make＿path（pen＿head ：pointer）：pointer；
var p ：pointer；\｛ the most recently copied knot \}
$k: 1 . .8$ ；\｛ octant number \}
h ：pointer；\｛ offset list head \}
m, n ：integer；\｛offset indices \}
$w, w w:$ pointer；\｛pointers that traverse the offset list \}
begin $p \leftarrow$ temp＿head；
for $k \leftarrow 1$ to 8 do
begin octant \leftarrow octant＿code $[k] ; h \leftarrow$ pen＿head + octant $; n \leftarrow \operatorname{info}(h) ; w \leftarrow \operatorname{link}(h)$ ；
if \neg odd (k) then $w \leftarrow \operatorname{knil}(w) ; \quad\left\{\right.$ in even octants，start at $\left.w_{n+1}\right\}$
for $m \leftarrow 1$ to $n+1$ do
begin if odd (k) then $w w \leftarrow \operatorname{link}(w)$ else $w w \leftarrow \operatorname{knil}(w)$ ；
if $\left(x_{-} \operatorname{coord}(w w) \neq x\right.$＿coord $\left.(w)\right) \vee\left(y_{-} \operatorname{coord}(w w) \neq y_{-} \operatorname{coord}(w)\right)$ then
〈Copy the unskewed and unrotated coordinates of node ww 485〉；
$w \leftarrow w w ;$
end；
end；
if $p=$ temp＿head then
begin $w \leftarrow$ link $($ pen＿head + first＿octant $) ; p \leftarrow$ trivial＿knot $\left(x_{-} \operatorname{coord}(w)+y_{-} \operatorname{coord}(w), y_{-} \operatorname{coord}(w)\right)$ ；
link $($ temp＿head $) \leftarrow p$ ；
end；
link $(p) \leftarrow$ link $($ temp＿head $) ;$ make＿path \leftarrow link $($ temp＿head $)$ ；
end；
485．〈Copy the unskewed and unrotated coordinates of node ww 485$\rangle \equiv$
begin unskew $\left(x _\operatorname{coord}(w w), y_{\text {＿coord }}(w w), \operatorname{octant}\right) ; \operatorname{link}(p) \leftarrow \operatorname{trivial_ knot}\left(c u r _x, c u r _y\right) ; p \leftarrow \operatorname{link}(p)$ ； end
This code is used in section 484.
486．\langle Declare the function called trivial＿knot 486$\rangle \equiv$
function trivial＿knot（ $x, y:$ scaled）：pointer；
var p ：pointer；$\quad\{$ a new knot for explicit coordinates x and $y\}$
begin $p \leftarrow$ get＿node $\left(k n o t _n o d e _s i z e\right)$ ；left＿type $(p) \leftarrow$ explicit；right＿type $(p) \leftarrow$ explicit；
$x_{-} \operatorname{coord}(p) \leftarrow x$ ；left＿x $(p) \leftarrow x$ ；right＿x $(p) \leftarrow x$ ；
$y_{-} \operatorname{coord}(p) \leftarrow y ;$ left＿y $(p) \leftarrow y ;$ right＿y $(p) \leftarrow y ;$
trivial＿knot $\leftarrow p$ ；
end；
This code is used in section 484.
487. That which can be created can be destroyed.
define add_pen_ref(\#) \equiv incr $\left(r e f _c o u n t(\#)\right)$
define delete_pen_ref(\#) \equiv
if ref_count $(\#)=$ null then toss_pen (\#)
else decr(ref_count(\#))
\langle Declare the recycling subroutines 268$\rangle+\equiv$
procedure toss_pen (p : pointer);
var $k: 1 . .8 ; \quad\{$ relative header locations $\}$
$w, w w:$ pointer; \{ pointers to offset nodes \}
begin if $p \neq$ null_pen then
begin for $k \leftarrow 1$ to 8 do
begin $w \leftarrow \operatorname{link}(p+k)$;
repeat $w w \leftarrow$ link (w); free_node $(w$, coord_node_size $) ; w \leftarrow w w$;
until $w=\operatorname{link}(p+k)$;
end;
free_node (p, pen_node_size);
end;
end;
488. The find_offset procedure sets (cur_x, cur_y) to the offset associated with a given direction (x, y) and a given pen p. If $x=y=0$, the result is $(0,0)$. If two different offsets apply, one of them is chosen arbitrarily. procedure find_offset($x, y:$ scaled; $p:$ pointer $)$;
label done, exit;
var octant: first_octant .. sixth_octant; \{octant code for $(x, y)\}$
$s:-1 . .+1 ; \quad\{$ sign of the octant $\}$
n : integer ; \{ number of offsets remaining \}
$h, w, w w:$ pointer; ; list traversal registers \}
begin \langle Compute the octant code; skew and rotate the coordinates $(x, y) 489\rangle$;
if odd(octant_number[octant]) then $s \leftarrow-1$ else $s \leftarrow+1$;
$h \leftarrow p+o c t a n t ; w \leftarrow \operatorname{link}(\operatorname{link}(h)) ; w w \leftarrow \operatorname{link}(w) ; n \leftarrow \operatorname{info}(h) ;$
while $n>1$ do
begin if $a b_{-} v s_{-} c d\left(x, y_{-} \operatorname{coord}(w w)-y_{-} \operatorname{coord}(w), y, x_{-} \operatorname{coord}(w w)-x_{-} \operatorname{coord}(w)\right) \neq s$ then goto done;
$w \leftarrow w w ; w w \leftarrow \operatorname{link}(w) ; \operatorname{decr}(n) ;$
end;
done: unskew $\left(x _\operatorname{coord}(w), y _\operatorname{coord}(w)\right.$, octant $)$;
exit: end;
489. \langle Compute the octant code; skew and rotate the coordinates $(x, y) 489\rangle \equiv$ if $x>0$ then octant \leftarrow first_octant
else if $x=0$ then
if $y \leq 0$ then
if $y=0$ then
begin cur_ $x \leftarrow 0$; cur_ $y \leftarrow 0$; return;
end
else octant \leftarrow first_octant + negate_x
else octant \leftarrow first_octant
else begin $x \leftarrow-x$;
if $y=0$ then octant \leftarrow first_octant + negate_ $x+$ negate_ y
else octant \leftarrow first_octant + negate_ x;
end;
if $y<0$ then
begin octant \leftarrow octant + negate_ $y ; y \leftarrow-y$; end;
if $x \geq y$ then $x \leftarrow x-y$
else begin octant \leftarrow octant + switch_x_and_ $y ; x \leftarrow y-x ; y \leftarrow y-x$;
end
This code is used in section 488.

490．Filling an envelope．We are about to reach the culmination of METAFONT＇s digital plotting routines：Almost all of the previous algorithms will be brought to bear on METAFONT＇s most difficult task， which is to fill the envelope of a given cyclic path with respect to a given pen polygon．
But we still must complete some of the preparatory work before taking such a big plunge．
491．Given a pointer c to a nonempty list of cubics，and a pointer h to the header information of a pen polygon segment，the offset＿prep routine changes the list into cubics that are associated with particular pen offsets．Namely，the cubic between p and q should be associated with the k th offset when right＿type $(p)=k$ ．

List c is actually part of a cycle spec，so it terminates at the first node whose right＿type is endpoint．The cubics all have monotone－nondecreasing $x(t)$ and $y(t)$ ．
〈Declare subroutines needed by offset＿prep 493〉
procedure offset＿prep（ $c, h:$ pointer）；
label done，not＿found；
var n ：halfword；\｛ the number of pen offsets \}
$p, q, r, l h, w w:$ pointer ；\｛ for list manipulation \}
k ：halfword；\｛ the current offset index \}
$w:$ pointer；$\quad\left\{\right.$ a pointer to offset $\left.w_{k}\right\}$
〈Other local variables for offset＿prep 495〉
begin $p \leftarrow c ; n \leftarrow \operatorname{info}(h) ; l h \leftarrow \operatorname{link}(h) ; \quad\left\{\right.$ now $l h$ points to $\left.w_{0}\right\}$
while right＿type $(p) \neq$ endpoint do
begin $q \leftarrow \operatorname{link}(p)$ ；〈Split the cubic between p and q ，if necessary，into cubics associated with single offsets，after which q should point to the end of the final such cubic 494 \rangle ；
〈Advance p to node q ，removing any＂dead＂cubics that might have been introduced by the splitting process 492 ；
end；
end；
492．〈Advance p to node q ，removing any＂dead＂cubics that might have been introduced by the splitting process 492$\rangle \equiv$
repeat $r \leftarrow \operatorname{link}(p)$ ；
if $x_{-} \operatorname{coord}(p)=$ right＿$x(p)$ then if $y_{-} \operatorname{coord}(p)=\operatorname{right}-y(p)$ then
if x＿coord $(p)=$ left＿x (r) then
if y_{-}coord $(p)=$ left＿y (r) then
if $x _\operatorname{coord}(p)=x _\operatorname{coord}(r)$ then
if $y_{-} \operatorname{coord}(p)=y_{-} \operatorname{coord}(r)$ then
begin remove＿cubic (p) ；
if $r=q$ then $q \leftarrow p$ ；
$r \leftarrow p ;$
end；
$p \leftarrow r ;$
until $p=q$
This code is used in section 491.

493．The splitting process uses a subroutine like split＿cubic，but（for＂bulletproof＂operation）we check to make sure that the resulting（skewed）coordinates satisfy $\Delta x \geq 0$ and $\Delta y \geq 0$ after splitting；make＿spec has made sure that these relations hold before splitting．（This precaution is surely unnecessary，now that make＿spec is so much more careful than it used to be．But who wants to take a chance？Maybe the hardware will fail or something．）
〈Declare subroutines needed by offset＿prep 493〉 三
procedure split＿for＿offset（ p ：pointer；$t:$ fraction）；
var q ：pointer；$\{$ the successor of $p\}$
r ：pointer；$\{$ the new node $\}$
begin $q \leftarrow \operatorname{link}(p)$ ；split＿cubic $\left(p, t, x_{-} \operatorname{coord}(q), y_{_} \operatorname{coord}(q)\right) ; r \leftarrow \operatorname{link}(p)$ ；
if $y_{-} \operatorname{coord}(r)<y_{-} \operatorname{coord}(p)$ then $y_{-} \operatorname{coord}(r) \leftarrow y_{-} \operatorname{coord}(p)$
else if $y_{-} \operatorname{coord}(r)>y_{\text {＿}} \operatorname{coord}(q)$ then $y_{\text {＿}} \operatorname{coord}(r) \leftarrow y_{-} \operatorname{coord}(q)$ ；
if x_{-}coord $(r)<x$＿coord (p) then x_{-}coord $(r) \leftarrow x$＿coord (p)
else if $x_{-} \operatorname{coord}(r)>x_{\text {＿coord }}(q)$ then $x_{-} \operatorname{coord}(r) \leftarrow x_{\text {＿coord }}(q)$ ；
end；
See also section 497.
This code is used in section 491.
494．If the pen polygon has n offsets，and if $w_{k}=\left(u_{k}, v_{k}\right)$ is the k th of these，the k th pen slope is defined by the formula

$$
s_{k}=\frac{v_{k+1}-v_{k}}{u_{k+1}-u_{k}}, \quad \text { for } 0<k<n .
$$

In odd－numbered octants，the numerator and denominator of this fraction will be nonnegative；in even－ numbered octants they will both be nonpositive．Furthermore we always have $0=s_{0} \leq s_{1} \leq \cdots \leq s_{n}=\infty$ ． The goal of offset＿prep is to find an offset index k to associate with each cubic，such that the slope $s(t)$ of the cubic satisfies

$$
\begin{equation*}
s_{k-1} \leq s(t) \leq s_{k} \quad \text { for } 0 \leq t \leq 1 \tag{*}
\end{equation*}
$$

We may have to split a cubic into as many as $2 n-1$ pieces before each piece corresponds to a unique offset． \langle Split the cubic between p and q ，if necessary，into cubics associated with single offsets，after which q should point to the end of the final such cubic 494$\rangle \equiv$
if $n \leq 1$ then right＿type $(p) \leftarrow 1 \quad$ \｛ this case is easy $\}$
else begin 〈Prepare for derivative computations；goto not＿found if the current cubic is dead 496 \rangle ；
\langle Find the initial slope，$d y / d x 501\rangle$ ；
if $d x=0$ then 〈Handle the special case of infinite slope 505\rangle
else begin 〈Find the index k such that $\left.s_{k-1} \leq d y / d x<s_{k} 502\right\rangle$ ；
〈 Complete the offset splitting process 503\rangle ；
end；
not＿found：end
This code is used in section 491.
495. The slope of a cubic $B\left(z_{0}, z_{1}, z_{2}, z_{3} ; t\right)=(x(t), y(t))$ can be calculated from the quadratic polynomials $\frac{1}{3} x^{\prime}(t)=B\left(x_{1}-x_{0}, x_{2}-x_{1}, x_{3}-x_{2} ; t\right)$ and $\frac{1}{3} y^{\prime}(t)=B\left(y_{1}-y_{0}, y_{2}-y_{1}, y_{3}-y_{2} ; t\right)$. Since we may be calculating slopes from several cubics split from the current one, it is desirable to do these calculations without losing too much precision. "Scaled up" values of the derivatives, which will be less tainted by accumulated errors than derivatives found from the cubics themselves, are maintained in local variables $x 0, x 1$, and $x 2$, representing $X_{0}=2^{l}\left(x_{1}-x_{0}\right), X_{1}=2^{l}\left(x_{2}-x_{1}\right)$, and $X_{2}=2^{l}\left(x_{3}-x_{2}\right)$; similarly $y 0, y 1$, and $y 2$ represent $Y_{0}=2^{l}\left(y_{1}-y_{0}\right)$, $Y_{1}=2^{l}\left(y_{2}-y_{1}\right)$, and $Y_{2}=2^{l}\left(y_{3}-y_{2}\right)$. To test whether the slope of the cubic is $\geq s$ or $\leq s$, we will test the sign of the quadratic $\frac{1}{3} 2^{l}\left(y^{\prime}(t)-s x^{\prime}(t)\right)$ if $s \leq 1$, or $\frac{1}{3} 2^{l}\left(y^{\prime}(t) / s-x^{\prime}(t)\right)$ if $s>1$.
\langle Other local variables for offset_prep 495$\rangle \equiv$
$x 0, x 1, x 2, y 0, y 1, y 2:$ integer; $\{$ representatives of derivatives \}
t0, t1, t2: integer; \{coefficients of polynomial for slope testing \}
$d u, d v, d x, d y:$ integer; $\{$ for slopes of the pen and the curve $\}$
max_coef: integer; \{ used while scaling \}
$x 0 a, x 1 a, x 2 a, y 0 a, y 1 a, y 2 a$: integer; $\{$ intermediate values $\}$
t : fraction; \{ where the derivative passes through zero \}
$s:$ fraction; \{slope or reciprocal slope \}
This code is used in section 491.
496. 〈Prepare for derivative computations; goto not_found if the current cubic is dead 496$\rangle \equiv$
$x 0 \leftarrow$ right_ $x(p)-x$ _coord $(p) ; \quad\{$ should be $\geq 0\}$
$x 2 \leftarrow x_{-}$coord $(q)-$ left_ $x(q) ; \quad\{$ likewise $\}$
$x 1 \leftarrow$ left_x $(q)-$ right_ $x(p) ; \quad\{$ but this might be negative $\}$
$y 0 \leftarrow \operatorname{right} _y(p)-y_{-} \operatorname{coord}(p) ; y 2 \leftarrow y_{-} \operatorname{coord}(q)-l e f t _y(q) ; y 1 \leftarrow l e f t _y(q)-\operatorname{right} y(p)$;
max_coef $\leftarrow a b s(x 0) ; \quad$ \{ we take abs just to make sure \}
if abs $(x 1)>$ max_coef then max_coef $\leftarrow a b s(x 1)$;
if $a b s(x 2)>$ max_coef then max_coef $\leftarrow a b s(x 2)$;
if $a b s(y 0)>$ max_coef then max_coef $\leftarrow a b s(y 0)$;
if $a b s(y 1)>$ max_coef then max_coef $\leftarrow a b s(y 1)$;
if abs (y2) > max_coef then max_coef $\leftarrow a b s(y 2)$;
if max_coef $=0$ then goto not_found;
while max_coef < fraction_half do
begin double(max_coef); double(x0); double(x1); double(x2); double(y0); double(y1); double(y2); end
This code is used in section 494.

497．Let us first solve a special case of the problem：Suppose we know an index k such that either （i）$s(t) \geq s_{k-1}$ for all t and $s(0)<s_{k}$ ，or（ii）$s(t) \leq s_{k}$ for all t and $s(0)>s_{k-1}$ ．Then，in a sense，we＇re halfway done，since one of the two inequalities in（＊）is satisfied，and the other couldn＇t be satisfied for any other value of k ．

The fin＿offset＿prep subroutine solves the stated subproblem．It has a boolean parameter called rising that is true in case（i），false in case（ii）．When rising $=$ false，parameters $x 0$ through $y 2$ represent the negative of the derivative of the cubic following p ；otherwise they represent the actual derivative．The w parameter should point to offset w_{k} ．
\langle Declare subroutines needed by offset＿prep 493〉 $+\equiv$
procedure fin＿offset＿prep（ p ：pointer；$k:$ halfword；$w:$ pointer ；$x 0, x 1, x 2, y 0, y 1, y 2$ ：integer ；
rising ：boolean ；$n:$ integer）；
label exit；
var ww：pointer；\｛ for list manipulation \}
$d u, d v:$ scaled ；\｛ for slope calculation $\}$
t0，t1，t2：integer；\｛ test coefficients \}
t ：fraction；\｛place where the derivative passes a critical slope \}
$s:$ fraction；\｛slope or reciprocal slope \}
v ：integer；\｛intermediate value for updating $x 0 \ldots y 2$ \}
begin loop
begin right＿type $(p) \leftarrow k$ ；
if rising then
if $k=n$ then return
else $w w \leftarrow \operatorname{link}(w) \quad\left\{\right.$ a pointer to $\left.w_{k+1}\right\}$
else if $k=1$ then return
else $w w \leftarrow k n i l(w) ; \quad\left\{\right.$ a pointer to $\left.w_{k-1}\right\}$
〈Compute test coefficients（ $t 0, t 1$, t2）for $s(t)$ versus s_{k} or $\left.s_{k-1} 498\right\rangle$ ；
$t \leftarrow$ crossing＿point（t0，t1，t2）；
if $t \geq$ fraction＿one then return；
〈Split the cubic at t ，and split off another cubic if the derivative crosses back 499〉；
if rising then $\operatorname{incr}(k)$ else $\operatorname{decr}(k)$ ；
$w \leftarrow w w ;$
end；
exit：end；
498．〈Compute test coefficients $(t 0, t 1, t 2)$ for $s(t)$ versus s_{k} or $\left.s_{k-1} 498\right\rangle \equiv$
$d u \leftarrow x_{-} \operatorname{coord}(w w)-x_{-} \operatorname{coord}(w) ; d v \leftarrow y_{-} \operatorname{coord}(w w)-y_{-} \operatorname{coord}(w)$ ；
if $a b s(d u) \geq a b s(d v)$ then $\left\{s_{k-1} \leq 1\right.$ or $\left.s_{k} \leq 1\right\}$
begin $s \leftarrow$ make＿fraction $(d v, d u)$ ；t0 \leftarrow take＿fraction $(x 0, s)-y 0 ;$ t1 $\leftarrow \operatorname{take}$＿fraction $(x 1, s)-y 1$ ；
$t 2 \leftarrow t a k e-f r a c t i o n(x 2, s)-y 2$ ；
end
else begin $s \leftarrow$ make＿fraction $(d u, d v) ; t 0 \leftarrow x 0-\operatorname{take}-f r a c t i o n ~(y 0, s) ; t 1 \leftarrow x 1-\operatorname{take} e_{-} f r a c t i o n(y 1, s)$ ；
$t 2 \leftarrow x 2-t a k e-f r a c t i o n(y 2, s) ;$
end
This code is used in sections 497 and 503.
499. The curve has crossed s_{k} or s_{k-1}; its initial segment satisfies ($*$), and it might cross again and return towards s_{k-1} or s_{k}, respectively, yielding another solution of ($*$).
\langle Split the cubic at t, and split off another cubic if the derivative crosses back 499$\rangle \equiv$
begin split_for_offset (p, t); right_type $(p) \leftarrow k ; p \leftarrow \operatorname{link}(p)$;
$v \leftarrow t$ _of_the_way $(x 0)(x 1) ; x 1 \leftarrow t_{-} o f_{-} t h e _w a y(x 1)(x 2) ; x 0 \leftarrow t_{-} o f$ _the_way $(v)(x 1)$;
$v \leftarrow t_{-} o f_{-} t h e_{-} w a y(y 0)(y 1) ; y 1 \leftarrow t_{-} o f_{-} t h e _w a y(y 1)(y 2) ; y 0 \leftarrow t_{-} o f_{-} t h e _w a y(v)(y 1)$;
$t 1 \leftarrow t$ _of_the_way $(t 1)(t 2)$;
if $t 1>0$ then $t 1 \leftarrow 0 ; \quad\{$ without rounding error, $t 1$ would be $\leq 0\}$
$t \leftarrow$ crossing_point $(0,-t 1,-t 2)$;
if $t<$ fraction_one then
begin split_for_offset (p, t); right_type $(\operatorname{link}(p)) \leftarrow k$;
$v \leftarrow t$ _of_the_way $(x 1)(x 2) ; x 1 \leftarrow t_{-} o f_{-} t h e _w a y(x 0)(x 1) ; x 2 \leftarrow t_{-} o f_{-} t h e _w a y(x 1)(v)$;
$v \leftarrow t$ _of_the_way $(y 1)(y 2) ; y 1 \leftarrow t_{-} o f$ _the_way $(y 0)(y 1) ; y 2 \leftarrow t _o f$ _the_way $(y 1)(v)$;
end;
end
This code is used in section 497.
500. Now we must consider the general problem of offset_prep, when nothing is known about a given cubic. We start by finding its slope $s(0)$ in the vicinity of $t=0$.
If $z^{\prime}(t)=0$, the given cubic is numerically unstable, since the slope direction is probably being influenced primarily by rounding errors. A user who specifies such cuspy curves should expect to generate rather wild results. The present code tries its best to believe the existing data, as if no rounding errors were present.
501. 〈Find the initial slope, $d y / d x 501\rangle \equiv$
$d x \leftarrow x 0 ; d y \leftarrow y 0 ;$
if $d x=0$ then
if $d y=0$ then
begin $d x \leftarrow x 1 ; d y \leftarrow y 1$;
if $d x=0$ then
if $d y=0$ then
begin $d x \leftarrow x 2 ; \quad d y \leftarrow y 2$;
end;
end
This code is used in section 494.
502. The next step is to bracket the initial slope between consecutive slopes of the pen polygon. The most important invariant relation in the following loop is that $d y / d x \geq s_{k-1}$.
$\left\langle\right.$ Find the index k such that $\left.s_{k-1} \leq d y / d x<s_{k} 502\right\rangle \equiv$
$k \leftarrow 1 ; w \leftarrow \operatorname{link}(l h) ;$
loop begin if $k=n$ then goto done;
$w w \leftarrow \operatorname{link}(w)$;
if $a b _v s _c d\left(d y, a b s\left(x _\operatorname{coord}(w w)-x _\operatorname{coord}(w)\right), d x, a b s\left(y _\operatorname{coord}(w w)-y_{-} \operatorname{coord}(w)\right)\right) \geq 0$ then
begin $\operatorname{incr}(k) ; w \leftarrow w w$;
end
else goto done;
end;
done:
This code is used in section 494.

503．Finally we want to reduce the general problem to situations that fin＿offset＿prep can handle．If $k=1$ ， we already are in the desired situation．Otherwise we can split the cubic into at most three parts with respect to s_{k-1} ，and apply fin＿offset＿prep to each part．
\langle Complete the offset splitting process 503$\rangle \equiv$
if $k=1$ then $t \leftarrow$ fraction＿one +1
else begin $w w \leftarrow k n i l(w)$ ；$\left\langle\right.$ Compute test coefficients（ $t 0, t 1, t 2$ ）for $s(t)$ versus s_{k} or $\left.s_{k-1} 498\right\rangle$ ；
$t \leftarrow$ crossing＿point $(-t 0,-t 1,-t 2)$ ；
end；
if $t \geq$ fraction＿one then fin＿offset＿prep $(p, k, w, x 0, x 1, x 2, y 0, y 1, y 2$, true,$n)$
else begin split＿for＿offset $(p, t) ; r \leftarrow \operatorname{link}(p)$ ；
$x 1 a \leftarrow t$＿of＿the＿way $(x 0)(x 1) ; x 1 \leftarrow t$＿of＿the＿way $(x 1)(x 2) ; x 2 a \leftarrow t _o f _t h e _w a y(x 1 a)(x 1)$ ；
$y 1 a \leftarrow t_{-} o f_{-} t h e _w a y(y 0)(y 1) ; y 1 \leftarrow t_{-} o f_{-} t h e_{-} w a y(y 1)(y 2) ; y 2 a \leftarrow t_{-} o f_{-} t h e_{-} w a y(y 1 a)(y 1)$ ；
fin＿offset＿prep $(p, k, w, x 0, x 1 a, x 2 a, y 0, y 1 a, y 2 a$, true,$n) ; x 0 \leftarrow x 2 a ; y 0 \leftarrow y 2 a$ ；
$t 1 \leftarrow t$＿of＿the＿way $(t 1)(t 2)$ ；
if $t 1<0$ then $t 1 \leftarrow 0$ ；
$t \leftarrow$ crossing＿point（ 0, t1，t2）；
if $t<$ fraction＿one then 〈Split off another rising cubic for fin＿offset＿prep 504〉；
fin＿offset＿prep $(r, k-1, w w,-x 0,-x 1,-x 2,-y 0,-y 1,-y 2, f a l s e, n)$ ；
end
This code is used in section 494.
504．〈Split off another rising cubic for fin＿offset＿prep 504$\rangle \equiv$
begin split＿for＿offset（ r, t ）；
$x 1 a \leftarrow t$＿of＿the＿way $(x 1)(x 2) ; x 1 \leftarrow t$＿of＿the＿way $(x 0)(x 1) ; x 0 a \leftarrow t_{-} o f_{-}$the＿way $(x 1)(x 1 a)$ ；
$y 1 a \leftarrow t_{-} o f_{-} t h e _w a y(y 1)(y 2) ; y 1 \leftarrow t_{-} o f_{-} t h e_{-} w a y(y 0)(y 1) ; y 0 a \leftarrow t_{-} o f_{-} t h e_{-} w a y(y 1)(y 1 a)$ ；
fin＿offset＿prep $(\operatorname{link}(r), k, w, x 0 a, x 1 a, x 2, y 0 a, y 1 a, y 2$, true,$n) ; x 2 \leftarrow x 0 a ; y 2 \leftarrow y 0 a$ ；
end
This code is used in section 503.
505．〈Handle the special case of infinite slope 505$\rangle \equiv$
fin＿offset＿prep $(p, n, k n i l(k n i l(l h)),-x 0,-x 1,-x 2,-y 0,-y 1,-y 2, f a l s e, n)$
This code is used in section 494.

506．OK，it＇s time now for the biggie．The fill＿envelope routine generalizes fill＿spec to polygonal envelopes． Its outer structure is essentially the same as before，except that octants with no cubics do contribute to the envelope．
〈Declare the procedure called skew＿line＿edges 510〉
〈Declare the procedure called dual＿moves 518〉
procedure fill＿envelope（spec＿head ：pointer）；
label done，done1；
var p, q, r, s ：pointer；$\quad\{$ for list traversal $\}$
h ：pointer；\｛ head of pen offset list for current octant \}
$w w w:$ pointer；\｛ a pen offset of temporary interest \}
〈Other local variables for fill＿envelope 511〉
begin if internal［tracing＿edges］>0 then begin＿edge＿tracing；
$p \leftarrow$ spec＿head；\quad \｛ we assume that left＿type $($ spec＿head $)=$ endpoint $\}$
repeat octant \leftarrow left＿octant $(p) ; h \leftarrow$ cur＿pen + octant ；
\langle Set variable q to the node at the end of the current octant 466\rangle ；
〈Determine the envelope＇s starting and ending lattice points（ $m 0, n 0$ ）and（ $m 1, n 1$ ）508〉；
offset＿prep $(p, h) ; \quad\{$ this may clobber node q ，if it becomes＂dead＂\}
\langle Set variable q to the node at the end of the current octant 466\rangle ；
〈Make the envelope moves for the current octant and insert them in the pixel data 512\rangle ；
$p \leftarrow \operatorname{link}(q)$ ；
until $p=$ spec＿head；
if internal［tracing＿edges］>0 then end＿edge＿tracing；
toss＿knot＿list（spec＿head）；
end；
507．In even－numbered octants we have reflected the coordinates an odd number of times，hence clockwise and counterclockwise are reversed；this means that the envelope is being formed in a＂dual＂manner．For the time being，let＇s concentrate on odd－numbered octants，since they＇re easier to understand．After we have coded the program for odd－numbered octants，the changes needed to dualize it will not be so mysterious．
It is convenient to assume that we enter an odd－numbered octant with an axis transition（where the skewed slope is zero）and leave at a diagonal one（where the skewed slope is infinite）．Then all of the offset points $z(t)+w(t)$ will lie in a rectangle whose lower left and upper right corners are the initial and final offset points．If this assumption doesn＇t hold we can implicitly change the curve so that it does．For example，if the entering transition is diagonal，we can draw a straight line from $z_{0}+w_{n+1}$ to $z_{0}+w_{0}$ and continue as if the curve were moving rightward．The effect of this on the envelope is simply to＂doubly color＂the region enveloped by a section of the pen that goes from w_{0} to w_{1} to \cdots to w_{n+1} to w_{0} ．The additional straight line at the beginning（and a similar one at the end，where it may be necessary to go from $z_{1}+w_{n+1}$ to $z_{1}+w_{0}$ ） can be drawn by the line＿edges routine；we are thereby saved from the embarrassment that these lines travel backwards from the current octant direction．

Once we have established the assumption that the curve goes from $z_{0}+w_{0}$ to $z_{1}+w_{n+1}$ ，any further retrograde moves that might occur within the octant can be essentially ignored；we merely need to keep track of the rightmost edge in each row，in order to compute the envelope．

Envelope moves consist of offset cubics intermixed with straight line segments．We record them in a separate env＿move array，which is something like move but it keeps track of the rightmost position of the envelope in each row．
\langle Global variables 13$\rangle+\equiv$
env＿move：array［ 0 ．move＿size］of integer；

508．〈Determine the envelope＇s starting and ending lattice points（ $m 0, n 0$ ）and（ $m 1, n 1$ ） 508$\rangle \equiv$ $w \leftarrow \operatorname{link}(h)$ ；if left＿transition $(p)=$ diagonal then $w \leftarrow k n i l(w)$ ；
stat if internal［tracing＿edges］＞unity then
\langle Print a line of diagnostic info to introduce this octant 509〉；
tats
$w w \leftarrow \operatorname{link}(h) ; w w w \leftarrow w w ; \quad$ \｛starting and ending offsets $\}$
if odd（octant＿number［octant］）then $w w w \leftarrow k n i l(w w w)$ else $w w \leftarrow k n i l(w w)$ ；
if $w \neq w w$ then skew＿line＿edges $(p, w, w w)$ ；
$\operatorname{end_ round}\left(x\right.$＿coord $\left.(p)+x_{-} \operatorname{coord}(w w), y_{-} \operatorname{coord}(p)+y_{-} \operatorname{coord}(w w)\right) ; m 0 \leftarrow m 1 ; n 0 \leftarrow n 1 ; d 0 \leftarrow d 1$ ；
end＿round $\left(x _\right.$coord $\left.(q)+x _c o o r d(w w w), y_{_} \operatorname{coord}(q)+y _\operatorname{coord}(w w w)\right)$ ；
if $n 1-n 0 \geq$ move＿size then overflow（＂move ${ }_{\lrcorner}$table \mathbf{e}_{\lrcorner}size＂，move＿size）
This code is used in section 506.
509．〈Print a line of diagnostic info to introduce this octant 509$\rangle \equiv$
begin print＿nl（＂＠பсctantப＂）；print（octant＿dir［octant］）；print（＂ь（＂）；print＿int（info（h））；
print（＂七offset＂）；
if $\operatorname{info}(h) \neq 1$ then print＿char（＂s＂）；
print（＂），$\left\llcorner\right.$ from ${ }_{\perp}$＂）；print＿two＿true $\left(x_{-} \operatorname{coord}(p)+x_{-} \operatorname{coord}(w), y_{-} \operatorname{coord}(p)+y_{-} \operatorname{coord}(w)\right)$ ；
$w w \leftarrow \operatorname{link}(h)$ ；if right＿transition $(q)=$ diagonal then $w w \leftarrow k n i l(w w)$ ；
print（＂பtoц＂）；print＿two＿true $\left(x_{-} \operatorname{coord}(q)+x_{-} \operatorname{coord}(w w), y_{-} \operatorname{coord}(q)+y_{-} \operatorname{coord}(w w)\right)$ ；
end
This code is used in section 508.
510．A slight variation of the line＿edges procedure comes in handy when we must draw the retrograde lines for nonstandard entry and exit conditions．
\langle Declare the procedure called skew＿line＿edges 510$\rangle \equiv$
procedure skew＿line＿edges（ $p, w, w w:$ pointer $)$ ；
var $x 0, y 0, x 1, y 1:$ scaled；$\quad\{$ from and to \}
begin if $\left(x_{-} \operatorname{coord}(w) \neq x_{\text {＿coord }}(w w)\right) \vee\left(y_{-} \operatorname{coord}(w) \neq y_{-} \operatorname{coord}(w w)\right)$ then begin $x 0 \leftarrow x_{-}$coord $(p)+x_{\text {＿coord }}(w) ; y 0 \leftarrow y_{-} \operatorname{coord}(p)+y_{-} \operatorname{coord}(w)$ ； $x 1 \leftarrow x _\operatorname{coord}(p)+x _\operatorname{coord}(w w) ; y 1 \leftarrow y_{-} \operatorname{coord}(p)+y_{-} \operatorname{coord}(w w)$ ； unskew（x0，y0，octant）；\｛ unskew and unrotate the coordinates \} $x 0 \leftarrow$ cur＿$x ; y 0 \leftarrow$ cur＿y； unskew（x1，y1，octant）；
stat if internal［tracing＿edges］＞unity then
begin print＿nl（＂＠பretrograde」line」from $") ;$ print＿two（x0，y0）；print（＂பtoப＂）；
print＿two（cur＿x，cur＿y）；print＿nl（＂＂）；
end；
tats
line＿edges（x0，y0，cur＿x，cur＿y）；\｛then draw a straight line \}
end；
end；
This code is used in section 506.

511．The envelope calculations require more local variables than we needed in the simpler case of fill＿spec． At critical points in the computation，w will point to offset $w_{k} ; m$ and n will record the current lattice positions．The values of move＿ptr after the initial and before the final offset adjustments are stored in smooth＿bot and smooth＿top，respectively．
\langle Other local variables for fill＿envelope 511$\rangle \equiv$
m, n ：integer；\｛current lattice position \}
$m m 0, m m 1$ ：integer；$\quad\{$ skewed equivalents of $m 0$ and $m 1\}$
k ：integer ；\｛ current offset number \}
$w, w w:$ pointer；\｛ pointers to the current offset and its neighbor \}
smooth＿bot，smooth＿top： 0 ．．move＿size；\｛boundaries of smoothing \}
$x x, y y, x p, y p$, delx, dely，$t x, t y:$ scaled；$\{$ registers for coordinate calculations $\}$
This code is used in sections 506 and 518.
512．〈 Make the envelope moves for the current octant and insert them in the pixel data 512$\rangle \equiv$
if odd（octant＿number［octant］）then begin 〈Initialize for ordinary envelope moves 513\rangle ；
$r \leftarrow p ;$ right＿type $(q) \leftarrow \operatorname{info}(h)+1 ;$
loop begin if $r=q$ then smooth＿top \leftarrow move＿ptr；
while right＿type $(r) \neq k$ do 〈Insert a line segment to approach the correct offset 515\rangle ；
if $r=p$ then smooth＿bot \leftarrow move＿ptr；
if $r=q$ then goto done；
move $[$ move＿ptr］$\leftarrow 1 ; n \leftarrow$ move＿ptr $; s \leftarrow \operatorname{link}(r)$ ；
make＿moves $\left(x_{-}\right.$coord $(r)+x_{-}$coord (w), right＿x $(r)+x_{-} \operatorname{coord}(w)$, left＿x $(s)+x_{-}$coord (w) ， x_{-}coord $(s)+x_{\text {＿coord }}(w), y_{-}$coord $(r)+y_{-}$coord $(w)+h a l f$＿unit, right＿$y(r)+y_{-}$coord $(w)+$ half＿unit, left＿y $(s)+y_{-}$coord $(w)+$ half＿unit,y_{-}coord $(s)+y_{-}$coord $(w)+$ half＿unit, xy＿corr［octant］，y＿corr［octant］）；
〈Transfer moves from the move array to env＿move 514 ；
$r \leftarrow s ;$
end；
done：〈Insert the new envelope moves in the pixel data 517〉；
end
else dual＿moves (h, p, q) ；
right＿type $(q) \leftarrow$ endpoint
This code is used in section 506.
513．〈Initialize for ordinary envelope moves 513$\rangle \equiv$
$k \leftarrow 0 ; w \leftarrow \operatorname{link}(h) ; w w \leftarrow k n i l(w) ; m m 0 \leftarrow$ floor＿unscaled $\left(x _\operatorname{coord}(p)+x_{-} \operatorname{coord}(w)-x y _c o r r[o c t a n t]\right) ;$
$m m 1 \leftarrow$ floor＿unscaled $\left(x _c o o r d ~(q)+x_{-} \operatorname{coord}(w w)-x y _c o r r[o c t a n t]\right) ;$
for $n \leftarrow 0$ to $n 1-n 0-1$ do env＿move $[n] \leftarrow m m 0$ ；
env＿move $[n 1-n 0] \leftarrow m m 1 ;$ move＿ptr $\leftarrow 0 ; m \leftarrow m m 0$
This code is used in section 512 ．
514．At this point n holds the value of move＿ptr that was current when make＿moves began to record its moves．
\langle Transfer moves from the move array to env＿move 514$\rangle \equiv$
repeat $m \leftarrow m+$ move $[n]-1$ ；
if $m>$ env＿move $[n]$ then env＿move $[n] \leftarrow m$ ；
incr (n) ；
until $n>$ move＿ptr
This code is used in section 512 ．
515. Retrograde lines (when k decreases) do not need to be recorded in env_move because their edges are not the furthest right in any row.

```
\(\langle\) Insert a line segment to approach the correct offset 515\(\rangle \equiv\)
    begin \(x x \leftarrow x_{-} \operatorname{coord}(r)+x_{-} \operatorname{coord}(w) ; y y \leftarrow y_{-} \operatorname{coord}(r)+y_{-} \operatorname{coord}(w)+h a l f_{-} u n i t\);
    stat if internal[tracing_edges] > unity then
        begin print_nl("@ \(@_{\sqcup}\) transition line \(_{\lrcorner}\)"); print_int( \(k\) ); print(",, from \(_{\lrcorner}\)");
        print_two_true (xx, yy - half_unit);
        end;
    tats
    if right_type \((r)>k\) then
        begin \(\operatorname{incr}(k) ; w \leftarrow \operatorname{link}(w) ; x p \leftarrow x_{-} \operatorname{coord}(r)+x \_\operatorname{coord}(w)\);
        \(y p \leftarrow y_{-}\)coord \((r)+y_{\text {_coord }}(w)+\) half_unit ;
        if \(y p \neq y y\) then 〈Record a line segment from ( \(x x, y y\) ) to \((x p, y p)\) in env_move 516\(\rangle\);
        end
    else begin \(\operatorname{decr}(k) ; w \leftarrow k n i l(w) ; x p \leftarrow x \_\operatorname{coord}(r)+x \_\operatorname{coord}(w)\);
        \(y p \leftarrow y_{-}\)coord \((r)+y_{-} \operatorname{coord}(w)+\) half_unit \(;\)
        end;
    stat if internal[tracing_edges] > unity then
        begin print("பtoப"); print_two_true(xp,yp - half_unit); print_nl("");
        end;
    tats
    \(m \leftarrow\) floor_unscaled ( \(x p-x y_{-}\)corr [octant]); move_ptr \(\leftarrow\) floor_unscaled (yp - y_corr[octant]) - n0;
    if \(m>\) env_move \([\) move_ptr] then env_move \([\) move_ptr \(] \leftarrow m\);
    end
```

This code is used in section 512 .
516. In this step we have $x p \geq x x$ and $y p \geq y y$.
\langle Record a line segment from $(x x, y y)$ to $(x p, y p)$ in env_move 516$\rangle \equiv$
begin $t y \leftarrow$ floor_scaled (yy - y_corr[octant]); dely $\leftarrow y p-y y ; y y \leftarrow y y-t y$;
$t y \leftarrow y p-y_{-}$corr $[$octant $]-t y$;
if $t y \geq u n i t y$ then
begin delx $\leftarrow x p-x x ; y y \leftarrow$ unity - yy;
loop begin $t x \leftarrow$ take_fraction(delx, make_fraction(yy, dely));
if ab_vs_cd(tx, dely, delx, yy) $+x y _$corr $[o c t a n t]>0$ then $\operatorname{decr}(t x)$;
$m \leftarrow$ floor_unscaled $(x x+t x)$;
if $m>$ env_move[move_ptr] then env_move[move_ptr] $\leftarrow m$;
$t y \leftarrow t y-u n i t y$;
if $t y<u n i t y$ then goto done1;
$y y \leftarrow y y+u n i t y ;$ incr (move_ptr);
end;
done1: end;
end
This code is used in section 515.

517．〈Insert the new envelope moves in the pixel data 517$\rangle \equiv$
debug if $(m \neq m m 1) \vee($ move＿ptr $\neq n 1-n 0)$ then confusion（＂1＂）；
gubed
move $[0] \leftarrow d 0+$ env＿move $[0]-m m 0$ ；
for $n \leftarrow 1$ to move＿ptr do move $[n] \leftarrow$ env＿move $[n]-e n v _m o v e[n-1]+1$ ；
move $[$ move＿ptr $] \leftarrow$ move $[$ move＿ptr］$-d 1$ ；
if internal［smoothing］>0 then smooth＿moves（smooth＿bot，smooth＿top）；
move＿to＿edges（m0，n0，m1，n1）；
if right＿transition $(q)=$ axis then
begin $w \leftarrow \operatorname{link}(h) ;$ skew＿line＿edges $(q, \operatorname{knil}(w), w)$ ； end
This code is used in section 512.
518．We＇ve done it all in the odd－octant case；the only thing remaining is to repeat the same ideas，upside down and／or backwards．

The following code has been split off as a subprocedure of fill＿envelope，because some Pascal compilers cannot handle procedures as large as fill＿envelope would otherwise be．
\langle Declare the procedure called dual＿moves 518$\rangle \equiv$
procedure dual＿moves $(h, p, q:$ pointer $)$ ；
label done，done1；
var r, s ：pointer；\｛ for list traversal $\}$
〈Other local variables for fill＿envelope 511〉
begin 〈Initialize for dual envelope moves 519\rangle ；
$r \leftarrow p ; \quad\{$ recall that right＿type $(q)=$ endpoint $=0$ now $\}$
loop begin if $r=q$ then smooth＿top \leftarrow move＿ptr；
while right＿type $(r) \neq k$ do \langle Insert a line segment dually to approach the correct offset 521\rangle ；
if $r=p$ then smooth＿bot \leftarrow move＿ptr；
if $r=q$ then goto done；
move［move＿ptr］$\leftarrow 1 ; n \leftarrow$ move＿ptr $; s \leftarrow \operatorname{link}(r)$ ；
make＿moves $\left(x_{-}\right.$coord $(r)+x_{-}$coord (w), right＿x $(r)+x_{-}$coord (w) ，left＿x $(s)+x_{-}$coord (w) ， x_{-}coord $(s)+x_{-}$coord $(w), y_{-}$coord $(r)+y_{-} \operatorname{coord}(w)+$ half＿unit，right＿y $(r)+y_{-}$coord $(w)+h a l f_{-} u n i t$, left＿y $(s)+y_{-} \operatorname{coord}(w)+$ half＿unit，y_{-}coord $(s)+y_{-}$coord $(w)+$ half＿unit, $x y_{-}$corr［octant］，y＿corr［octant］）；〈Transfer moves dually from the move array to env＿move 520 \rangle；
$r \leftarrow s ;$
end;
done：〈Insert the new envelope moves dually in the pixel data 523\rangle ；
end；
This code is used in section 506 ．
519．In the dual case the normal situation is to arrive with a diagonal transition and to leave at the axis． The leftmost edge in each row is relevant instead of the rightmost one．
\langle Initialize for dual envelope moves 519$\rangle \equiv$
$k \leftarrow \operatorname{info}(h)+1 ; w w \leftarrow \operatorname{link}(h) ; w \leftarrow \operatorname{knil}(w w) ;$
$m m 0 \leftarrow$ floor＿unscaled $\left(x _\operatorname{coord}(p)+x _\operatorname{coord}(w)-x y _c o r r[\right.$ octant $\left.]\right)$ ；
$m m 1 \leftarrow$ floor＿unscaled $\left(x_{-} \operatorname{coord}(q)+x_{-} \operatorname{coord}(w w)-x y\right.$＿corr $[$ octant $\left.]\right)$ ；
for $n \leftarrow 1$ to $n 1-n 0+1$ do env＿move $[n] \leftarrow m m 1$ ；
env＿move $[0] \leftarrow m m 0 ;$ move＿ptr $\leftarrow 0 ; m \leftarrow m m 0$
This code is used in section 518.
520. 〈Transfer moves dually from the move array to env_move 520$\rangle \equiv$
repeat if $m<e n v _m o v e[n]$ then env_move $[n] \leftarrow m$;
$m \leftarrow m+$ move $[n]-1 ; \operatorname{incr}(n) ;$
until $n>$ move_ptr
This code is used in section 518 .
521. Dual retrograde lines occur when k increases; the edges of such lines are not the furthest left in any row.
\langle Insert a line segment dually to approach the correct offset 521$\rangle \equiv$
begin $x x \leftarrow x_{-} \operatorname{coord}(r)+x_{-} \operatorname{coord}(w) ; y y \leftarrow y_{-} \operatorname{coord}(r)+y_{-} \operatorname{coord}(w)+h a l f _u n i t ;$
stat if internal[tracing_edges] > unity then

print_two_true(xx, yy - half_unit);
end;
tats
if right_type $(r)<k$ then
begin decr $(k) ; w \leftarrow k n i l(w) ; x p \leftarrow x_{-} \operatorname{coord}(r)+x_{-} \operatorname{coord}(w)$;
$y p \leftarrow y_{-}$coord $(r)+y_{-}$coord $(w)+$ half_unit;
if $y p \neq y y$ then \langle Record a line segment from $(x x, y y)$ to ($x p, y p$) dually in env_move 522\rangle;
end
else begin $\operatorname{incr}(k) ; w \leftarrow \operatorname{link}(w) ; x p \leftarrow x_{-} \operatorname{coord}(r)+x_{-} \operatorname{coord}(w)$;
$y p \leftarrow y_{-}$coord $(r)+y_{-}$coord $(w)+$ half_unit;
end;
stat if internal[tracing_edges $]>$ unity then
begin print("ьtoь"); print_two_true(xp,yp - half_unit); print_nl("");
end;
tats
$m \leftarrow$ floor_unscaled $\left(x p-x y _c o r r[o c t a n t]\right) ;$ move_ptr \leftarrow floor_unscaled $\left(y p-y _c o r r[\right.$ octant $\left.]\right)-n 0$;
if $m<e n v _m o v e\left[m o v e _p t r\right]$ then $e n v _m o v e\left[m o v e _p t r\right] \leftarrow m$;
end
This code is used in section 518 .
522. Again, $x p \geq x x$ and $y p \geq y y$; but this time we are interested in the smallest m that belongs to a given move_ptr position, instead of the largest m.
\langle Record a line segment from $(x x, y y)$ to ($x p, y p$) dually in env_move 522$\rangle \equiv$
begin $t y \leftarrow$ floor_scaled (yy - y_corr [octant]); dely $\leftarrow y p-y y ; y y \leftarrow y y-t y$;
$t y \leftarrow y p-y_{-}$corr $[$octant $]-t y$;
if $t y \geq$ unity then
begin delx $\leftarrow x p-x x ; y y \leftarrow u n i t y-y y$;
loop begin if $m<e n v _m o v e\left[m o v e _p t r\right]$ then env_move[move_ptr] $\leftarrow m$;
$t x \leftarrow$ take_fraction (delx, make_fraction $(y y$, dely $)$);
if ab_vs_cd $(t x$, dely, delx, yy $)+x y _c o r r[o c t a n t]>0$ then decr $(t x)$;
$m \leftarrow$ floor_unscaled $(x x+t x) ;$ ty $\leftarrow t y-u n i t y ;$ incr $\left(m o v e _p t r\right) ;$
if $t y<u n i t y$ then goto done1;
$y y \leftarrow y y+$ unity;
end;
done1: if $m<e n v _m o v e\left[m o v e _p t r\right]$ then $e n v _m o v e\left[m o v e _p t r\right] \leftarrow m$;
end;
end
This code is used in section 521.
523. Since env_move contains minimum values instead of maximum values, the finishing-up process is slightly different in the dual case.
\langle Insert the new envelope moves dually in the pixel data 523$\rangle \equiv$
debug if $(m \neq m m 1) \vee($ move_ptr $\neq n 1-n 0)$ then confusion("2"); gubed
move $[0] \leftarrow d 0+$ env_move $[1]-\mathrm{mm0}$;
for $n \leftarrow 1$ to move_ptr do move $[n] \leftarrow$ env_move $[n+1]-$ env_move $[n]+1$;
move $[$ move_ptr] \leftarrow move $[$ move_ptr] $-d 1$;
if internal[smoothing] >0 then smooth_moves(smooth_bot,smooth_top);
move_to_edges (m0, n0, m1, n1) ;
if right_transition $(q)=$ diagonal then
begin $w \leftarrow \operatorname{link}(h)$; skew_line_edges $(q, w, \operatorname{knil}(w))$;
end
This code is used in section 518 .
524. Elliptical pens. To get the envelope of a cyclic path with respect to an ellipse, METAFONT calculates the envelope with respect to a polygonal approximation to the ellipse, using an approach due to John Hobby (Ph.D. thesis, Stanford University, 1985). This has two important advantages over trying to obtain the "exact" envelope:

1) It gives better results, because the polygon has been designed to counteract problems that arise from digitization; the polygon includes sub-pixel corrections to an exact ellipse that make the results essentially independent of where the path falls on the raster. For example, the exact envelope with respect to a pen of diameter 1 blackens a pixel if and only if the path intersects a circle of diameter 1 inscribed in that pixel; the resulting pattern has "blots" when the path is traveling diagonally in unfortunate raster positions. A much better result is obtained when pixels are blackened only when the path intersects an inscribed diamond of diameter 1. Such a diamond is precisely the polygon that METAFONT uses in the special case of a circle whose diameter is 1 .
2) Polygonal envelopes of cubic splines are cubic splines, hence it isn't necessary to introduce completely different routines. By contrast, exact envelopes of cubic splines with respect to circles are complicated curves, more difficult to plot than cubics.
525. Hobby's construction involves some interesting number theory. If u and v are relatively prime integers, we divide the set of integer points (m, n) into equivalence classes by saying that (m, n) belongs to class $u m+v n$. Then any two integer points that lie on a line of slope $-u / v$ belong to the same class, because such points have the form $(m+t v, n-t u)$. Neighboring lines of slope $-u / v$ that go through integer points are separated by distance $1 / \sqrt{u^{2}+v^{2}}$ from each other, and these lines are perpendicular to lines of slope v / u. If we start at the origin and travel a distance $k / \sqrt{u^{2}+v^{2}}$ in direction (u, v), we reach the line of slope $-u / v$ whose points belong to class k.
For example, let $u=2$ and $v=3$. Then the points $(0,0),(3,-2), \ldots$ belong to class 0 ; the points $(-1,1)$, $(2,-1), \ldots$ belong to class 1 ; and the distance between these two lines is $1 / \sqrt{13}$. The point $(2,3)$ itself belongs to class 13, hence its distance from the origin is $13 / \sqrt{13}=\sqrt{13}$ (which we already knew).

Suppose we wish to plot envelopes with respect to polygons with integer vertices. Then the best polygon for curves that travel in direction $(v,-u)$ will contain the points of class k such that $k / \sqrt{u^{2}+v^{2}}$ is as close as possible to d, where d is the maximum distance of the given ellipse from the line $u x+v y=0$.

The fillin correction assumes that a diagonal line has an apparent thickness

$$
2 f \cdot \min (|u|,|v|) / \sqrt{u^{2}+v^{2}}
$$

greater than would be obtained with truly square pixels. (If a white pixel at an exterior corner is assumed to have apparent darkness f_{1} and a black pixel at an interior corner is assumed to have apparent darkness $1-f_{2}$, then $f=f_{1}-f_{2}$ is the fillin parameter.) Under this assumption we want to choose k so that $(k+2 f \cdot \min (|u|,|v|)) / \sqrt{u^{2}+v^{2}}$ is as close as possible to d.
Integer coordinates for the vertices work nicely because the thickness of the envelope at any given slope is independent of the position of the path with respect to the raster. It turns out, in fact, that the same property holds for polygons whose vertices have coordinates that are integer multiples of $\frac{1}{2}$, because ellipses are symmetric about the origin. It's convenient to double all dimensions and require the resulting polygon to have vertices with integer coordinates. For example, to get a circle of diameter r, we shall compute integer coordinates for a circle of radius r. The circle of radius r will want to be represented by a polygon that contains the boundary points $(0, \pm r)$ and $(\pm r, 0)$; later we will divide everything by 2 and get a polygon with $\left(0, \pm \frac{1}{2} r\right)$ and ($\left.\pm \frac{1}{2} r, 0\right)$ on its boundary.
526. In practice the important slopes are those having small values of u and v; these make regular patterns in which our eyes quickly spot irregularities. For example, horizontal and vertical lines (when $u=0$ and $|v|=1$, or $|u|=1$ and $v=0$) are the most important; diagonal lines (when $|u|=|v|=1$) are next; and then come lines with slope ± 2 or $\pm 1 / 2$.

The nicest way to generate all rational directions having small numerators and denominators is to generalize the Stern-Brocot tree [cf. Concrete Mathematics, section 4.5] to a "Stern-Brocot wreath" as follows: Begin with four nodes arranged in a circle, containing the respective directions $(u, v)=(1,0),(0,1),(-1,0)$, and $(0,-1)$. Then between pairs of consecutive terms (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ of the wreath, insert the direction ($u+u^{\prime}, v+v^{\prime}$); continue doing this until some stopping criterion is fulfilled.
It is not difficult to verify that, regardless of the stopping criterion, consecutive directions (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ of this wreath will always satisfy the relation $u v^{\prime}-u^{\prime} v=1$. Such pairs of directions have a nice property with respect to the equivalence classes described above. Let l be a line of equivalent integer points ($m+t v, n-t u$) with respect to (u, v), and let l^{\prime} be a line of equivalent integer points ($m^{\prime}+t v^{\prime}, n^{\prime}-t u^{\prime}$) with respect to $\left(u^{\prime}, v^{\prime}\right)$. Then l and l^{\prime} intersect in an integer point $\left(m^{\prime \prime}, n^{\prime \prime}\right)$, because the determinant of the linear equations for intersection is $u v^{\prime}-u^{\prime} v=1$. Notice that the class number of $\left(m^{\prime \prime}, n^{\prime \prime}\right)$ with respect to $\left(u+u^{\prime}, v+v^{\prime}\right)$ is the sum of its class numbers with respect to (u, v) and ($\left.u^{\prime}, v^{\prime}\right)$. Moreover, consecutive points on l and l^{\prime} belong to classes that differ by exactly 1 with respect to $\left(u+u^{\prime}, v+v^{\prime}\right)$.

This leads to a nice algorithm in which we construct a polygon having "correct" class numbers for as many small-integer directions (u, v) as possible: Assuming that lines l and l^{\prime} contain points of the correct class for (u, v) and $\left(u^{\prime}, v^{\prime}\right)$, respectively, we determine the intersection $\left(m^{\prime \prime}, n^{\prime \prime}\right)$ and compute its class with respect to $\left(u+u^{\prime}, v+v^{\prime}\right)$. If the class is too large to be the best approximation, we move back the proper number of steps from $\left(m^{\prime \prime}, n^{\prime \prime}\right)$ toward smaller class numbers on both l and l^{\prime}, unless this requires moving to points that are no longer in the polygon; in this way we arrive at two points that determine a line $l^{\prime \prime}$ having the appropriate class. The process continues recursively, until it cannot proceed without removing the last remaining point from the class for (u, v) or the class for $\left(u^{\prime}, v^{\prime}\right)$.

527．The make＿ellipse subroutine produces a pointer to a cyclic path whose vertices define a polygon suitable for envelopes．The control points on this path will be ignored；in fact，the fields in knot nodes that are usually reserved for control points are occupied by other data that helps make＿ellipse compute the desired polygon．

Parameters major＿axis and minor＿axis define the axes of the ellipse；and parameter theta is an angle by which the ellipse is rotated counterclockwise．If theta $=0$ ，the ellipse has the equation $(x / a)^{2}+(y / b)^{2}=1$ ， where $a=$ major＿axis $/ 2$ and $b=$ minor＿axis $/ 2$ ．In general，the points of the ellipse are generated in the complex plane by the formula $e^{i \theta}(a \cos t+i b \sin t)$ ，as t ranges over all angles．Notice that if major＿axis $=$ minor＿axis $=d$ ，we obtain a circle of diameter d ，regardless of the value of theta．
The method sketched above is used to produce the elliptical polygon，except that the main work is done only in the halfplane obtained from the three starting directions $(0,-1),(1,0),(0,1)$ ．Since the ellipse has circular symmetry，we use the fact that the last half of the polygon is simply the negative of the first half． Furthermore，we need to compute only one quarter of the polygon if the ellipse has axis symmetry．
function make＿ellipse（major＿axis，minor＿axis ：scaled；theta ：angle）：pointer；
label done，done1，found；
var $p, q, r, s:$ pointer；\｛ for list manipulation \}
h ：pointer；\｛ head of the constructed knot list \}
alpha，beta，gamma，delta：integer；\｛special points \}
$c, d:$ integer；$\{$ class numbers $\}$
$u, v:$ integer；\｛directions \}
symmetric：boolean；\｛ should the result be symmetric about the axes？\}
begin 〈Initialize the ellipse data structure by beginning with directions $(0,-1),(1,0),(0,1) 528\rangle$ ；
＜Interpolate new vertices in the ellipse data structure until improvement is impossible 531〉；
if symmetric then 〈Complete the half ellipse by reflecting the quarter already computed 536\rangle ；
〈Complete the ellipse by copying the negative of the half already computed 537 〉；
make＿ellipse $\leftarrow h$ ；
end；
528. A special data structure is used only with make_ellipse: The right_x, left_x, right_y, and left_y fields of knot nodes are renamed right_u, left_v, right_class, and left_length, in order to store information that simplifies the necessary computations.
If p and q are consecutive knots in this data structure, the x_{-}coord and y_{-}coord fields of p and q contain current vertices of the polygon; their values are integer multiples of half_unit. Both of these vertices belong to equivalence class right_class (p) with respect to the direction (right_u (p), left_v $(q))$. The number of points of this class on the line from vertex p to vertex q is $1+$ left_length (q). In particular, left_length $(q)=0$ means that $x _\operatorname{coord}(p)=x _\operatorname{coord}(q)$ and $y _\operatorname{coord}(p)=y_{\text {_coord }}(q)$; such duplicate vertices will be discarded during the course of the algorithm.

The contents of right_u (p) and left_v (q) are integer multiples of half_unit, just like the coordinate fields. Hence, for example, the point $\left(x_{-} \operatorname{coord}(p)-l e f t _v(q), y_{-} \operatorname{coord}(p)+\operatorname{right} u(p)\right)$ also belongs to class number right_class (p). This point is one step closer to the vertex in node q; it equals that vertex if and only if left_length $(q)=1$.
The left_type and right_type fields are not used, but link has its normal meaning.
To start the process, we create four nodes for the three directions $(0,-1),(1,0)$, and $(0,1)$. The corresponding vertices are $(-\alpha,-\beta),(\gamma,-\beta),(\gamma, \beta)$, and (α, β), where (α, β) is a half-integer approximation to where the ellipse rises highest above the x-axis, and where γ is a half-integer approximation to the maximum x coordinate of the ellipse. The fourth of these nodes is not actually calculated if the ellipse has axis symmetry.
define right_ $u \equiv$ right_ $x \quad\{u$ value for a pen edge $\}$
define left_v \equiv left_x $\quad\{v$ value for a pen edge $\}$
define right_class \equiv right_y $\quad\{$ equivalence class number of a pen edge $\}$
define left_length \equiv left_y $\quad\{$ length of a pen edge $\}$
\langle Initialize the ellipse data structure by beginning with directions $(0,-1),(1,0),(0,1) 528\rangle \equiv$
\langle Calculate integers α, β, γ for the vertex coordinates 530\rangle;
$p \leftarrow$ get_node $\left(k n o t _n o d e _s i z e\right) ; ~ q \leftarrow$ get_node (knot_node_size); $r \leftarrow$ get_node(knot_node_size);
if symmetric then $s \leftarrow$ null else $s \leftarrow$ get_node (knot_node_size);
$h \leftarrow p ; \operatorname{link}(p) \leftarrow q ; \operatorname{link}(q) \leftarrow r ; \operatorname{link}(r) \leftarrow s ; \quad\{s=$ null or $\operatorname{link}(s)=$ null $\}$
\langle Revise the values of α, β, γ, if necessary, so that degenerate lines of length zero will not be obtained 529\rangle;

$y_{\text {_coord }}(q) \leftarrow y_{\text {_coord }}(p) ; x_{-} \operatorname{coord}(r) \leftarrow x$ _coord (q);
right_u $(p) \leftarrow 0$; left_v $(q) \leftarrow-h a l f _u n i t ;$
right_u $(q) \leftarrow$ half_unit; left_v $(r) \leftarrow 0$;
right_u $u(r) \leftarrow 0 ;$ right_class $(p) \leftarrow$ beta; right_class $(q) \leftarrow$ gamma; right_class $(r) \leftarrow$ beta;
left_length $(q) \leftarrow$ gamma + alpha ;
if symmetric then
begin y_{-}coord $(r) \leftarrow 0$; left_length $(r) \leftarrow$ beta;
end
else begin $y_{-} \operatorname{coord}(r) \leftarrow-y_{-} \operatorname{coord}(p)$; left_length $(r) \leftarrow$ beta + beta;
$x_{\text {_coord }}(s) \leftarrow-x_{\text {_coord }}(p) ; y_{\text {_coord }}(s) \leftarrow y_{\text {_coord }}(r)$;
left_v $(s) \leftarrow$ half_unit; left_length $(s) \leftarrow$ gamma - alpha $;$
end
This code is used in section 527 .
529. One of the important invariants of the pen data structure is that the points are distinct. We may need to correct the pen specification in order to avoid this. (The result of pencircle will always be at least one pixel wide and one pixel tall, although makepen is capable of producing smaller pens.)
\langle Revise the values of α, β, γ, if necessary, so that degenerate lines of length zero will not be obtained 529$\rangle \equiv$
if beta $=0$ then beta $\leftarrow 1$;
if gamma $=0$ then gamma $\leftarrow 1$;
if gamma $\leq a b s($ alpha $)$ then
if alpha >0 then alpha \leftarrow gamma -1
else alpha $\leftarrow 1$ - gamma
This code is used in section 528 .
530. If a and b are the semi-major and semi-minor axes, the given ellipse rises highest above the x-axis at the point $\left(\left(a^{2}-b^{2}\right) \sin \theta \cos \theta / \rho\right)+i \rho$, where $\rho=\sqrt{(a \sin \theta)^{2}+(b \cos \theta)^{2}}$. It reaches furthest to the right of the y-axis at the point $\sigma+i\left(a^{2}-b^{2}\right) \sin \theta \cos \theta / \sigma$, where $\sigma=\sqrt{(a \cos \theta)^{2}+(b \sin \theta)^{2}}$.
\langle Calculate integers α, β, γ for the vertex coordinates 530$\rangle \equiv$
if $($ major_axis $=$ minor_axis $) \vee($ theta \bmod ninety_deg $=0)$ then
begin symmetric \leftarrow true; alpha $\leftarrow 0$;
if odd(theta div ninety_deg) then
begin beta \leftarrow major_axis; gamma \leftarrow minor_axis; n_sin \leftarrow fraction_one; n_cos $\leftarrow 0$;
\{ $n _$sin and $n_{_}$cos are used later \}
end
else begin beta \leftarrow minor_axis; gamma \leftarrow major_axis; thet $a \leftarrow 0$;
end; $\left\{n_{\text {_sin }}\right.$ and $n_{-} \cos$ aren't needed in this case $\}$
end
else begin symmetric \leftarrow false; $n_{_}$sin_cos $($theta $) ; \quad\left\{\right.$ set up $n _\sin =\sin \theta$ and $\left.n_{_} \cos =\cos \theta\right\}$
gamma \leftarrow take_fraction(major_axis, n _sin); delta \leftarrow take_fraction(minor_axis, n_{-}cos);
beta \leftarrow pyth_add (gamma, delta);
alpha \leftarrow take_fraction(take_fraction(major_axis, make_fraction(gamma, beta)), n_cos)

- take_fraction(take_fraction (minor_axis, make_fraction(delta, beta)), n_sin);
alpha $\leftarrow($ alpha + half_unit $)$ div unity;
gamma \leftarrow pyth_add(take_fraction(major_axis, n_cos), take_fraction(minor_axis, n_sin)); end;
beta \leftarrow (beta + half_unit $)$ div unity; gamma $\leftarrow($ gamma + half_unit $)$ div unity
This code is used in section 528 .

531. Now p, q, and r march through the list, always representing three consecutive vertices and two consecutive slope directions. When a new slope is interpolated, we back up slightly, until further refinement is impossible; then we march forward again. The somewhat magical operations performed in this part of the algorithm are justified by the theory sketched earlier. Complications arise only from the need to keep zero-length lines out of the final data structure.
\langle Interpolate new vertices in the ellipse data structure until improvement is impossible 531$\rangle \equiv$
loop begin $u \leftarrow$ right_ $u(p)+$ right_ $u(q) ; v \leftarrow$ left_ $v(q)+l e f t _v(r) ; c \leftarrow r i g h t _c l a s s(p)+r i g h t _c l a s s(q) ;$ <Compute the distance d from class 0 to the edge of the ellipse in direction (u, v), times $\sqrt{u^{2}+v^{2}}$, rounded to the nearest integer 533\rangle; delta $\leftarrow c-d ; \quad\{$ we want to move delta steps back from the intersection vertex $q\}$ if delta >0 then
begin if delta $>$ left_length (r) then delta \leftarrow left_length (r);
if delta \geq left_length (q) then
\langle Remove the line from p to q, and adjust vertex q to introduce a new line 534〉
else \langle Insert a new line for direction (u, v) between p and $q 535\rangle$;
end
else $p \leftarrow q$;
〈 Move to the next remaining triple (p, q, r), removing and skipping past zero-length lines that might be present; goto done if all triples have been processed 532\rangle;
end;
done:
This code is used in section 527 .
532. The appearance of a zero-length line means that we should advance p past it. We must not try to straddle a missing direction, because the algorithm works only on consecutive pairs of directions.
\langle Move to the next remaining triple (p, q, r), removing and skipping past zero-length lines that might be present; goto done if all triples have been processed 532$\rangle \equiv$
loop begin $q \leftarrow \operatorname{link}(p)$;
if $q=$ null then goto done;
if left_length $(q)=0$ then
begin link $(p) \leftarrow \operatorname{link}(q)$; right_class $(p) \leftarrow$ right_class (q); right_u $(p) \leftarrow$ right_u (q); free_node (q, knot_node_size); end
else begin $r \leftarrow \operatorname{link}(q)$;
if $r=$ null then goto done;
if left_length $(r)=0$ then
begin $\operatorname{link}(p) \leftarrow r$; free_node $(q$, knot_node_size $) ; p \leftarrow r$; end else goto found; end;
end;
found:
This code is used in section 531.
533. The 'div 8 ' near the end of this step comes from the fact that delta is scaled by 2^{15} and d by 2^{16}, while take_fraction removes a scale factor of 2^{28}. We also make sure that $d \geq \max (|u|,|v|)$, so that the pen will always include a circular pen of diameter 1 as a subset; then it won't be possible to get disconnected path envelopes.
< Compute the distance d from class 0 to the edge of the ellipse in direction (u, v), times $\sqrt{u^{2}+v^{2}}$, rounded to the nearest integer 533$\rangle \equiv$

$$
\text { delta } \leftarrow \text { pyth_add }(u, v) ;
$$

$$
\text { if major_axis }=\text { minor_axis } \text { then } d \leftarrow \text { major_axis } \quad\{\text { circles are easy }\}
$$

else begin if theta $=0$ then
begin alpha $\leftarrow u$; beta $\leftarrow v$;
end
else begin alpha \leftarrow take_fraction $\left(u, n_{_} \cos \right)+t a k e_{-} f r a c t i o n\left(v, n_{-} s i n\right)$;
beta \leftarrow take_fraction $\left(v, n_{-}\right.$cos $)-t a k e _f r a c t i o n\left(u, n_{-} s i n\right)$;
end;
alpha \leftarrow make_fraction(alpha, delta); beta \leftarrow make_fraction(beta, delta);
$d \leftarrow$ pyth_add(take_fraction(major_axis, alpha), take_fraction(minor_axis, beta));
end;
alpha $\leftarrow a b s(u) ;$ beta $\leftarrow a b s(v)$;
if alpha < beta then
begin alpha $\leftarrow a b s(v)$; beta $\leftarrow a b s(u)$;
end; $\quad\{$ now $\alpha=\max (|u|,|v|), \beta=\min (|u|,|v|)\}$
if internal $[$ fillin $] \neq 0$ then $d \leftarrow d$-take_fraction(internal[fillin], make_fraction(beta + beta, delta));
$d \leftarrow$ take_fraction $((d+4) \operatorname{div} 8$, delta $) ;$ alpha \leftarrow alpha div half_unit;
if $d<$ alpha then $d \leftarrow$ alpha
This code is used in section 531.
534. At this point there's a line of length \leq delta from vertex p to vertex q, orthogonal to direction $($ right_u $u(p)$, left_v $v(q)$; and there's a line of length \geq delta from vertex q to vertex r, orthogonal to direction $($ right_u $u(q)$, left_v $(r))$. The best line to direction (u, v) should replace the line from p to q; this new line will have the same length as the old.
\langle Remove the line from p to q, and adjust vertex q to introduce a new line 534$\rangle \equiv$
begin delta \leftarrow left_length (q);
right_class $(p) \leftarrow c-$ delta; right_u $(p) \leftarrow u$; left_v $(q) \leftarrow v$;
$x_{-} \operatorname{coord}(q) \leftarrow x _$coord $(q)-$ delta $*$ left_v $(r) ; y_{-} \operatorname{coord}(q) \leftarrow y_{-} \operatorname{coord}(q)+$ delta $*$ right_u (q);
left_length $(r) \leftarrow$ left_length $(r)-$ delta;
end
This code is used in section 531.
535. Here is the main case, now that we have dealt with the exception: We insert a new line of length delta for direction (u, v), decreasing each of the adjacent lines by delta steps.
\langle Insert a new line for direction (u, v) between p and $q 535\rangle \equiv$
begin $s \leftarrow$ get_node (knot_node_size); $\operatorname{link}(p) \leftarrow s$; link $(s) \leftarrow q$;
$x_{-} \operatorname{coord}(s) \leftarrow x_{-} \operatorname{coord}(q)+$ delta $*$ left_v $(q) ; y_{-} \operatorname{coord}(s) \leftarrow y_{-} \operatorname{coord}(q)-d e l t a *$ right_u (p);
x_{-}coord $(q) \leftarrow x$ _coord $(q)-$ delta $*$ left_v $(r) ; y_{-} \operatorname{coord}(q) \leftarrow y_{-} \operatorname{coord}(q)+$ delta $*$ right_u($\left.q\right)$;
left_v $(s) \leftarrow$ left_v $(q) ;$ right_u $(s) \leftarrow u$; left_v $(q) \leftarrow v ;$
right_class $(s) \leftarrow c-$ delta;
left_length $(s) \leftarrow$ left_length $(q)-$ delta $;$ left_length $(q) \leftarrow$ delta; left_length $(r) \leftarrow$ left_length $(r)-$ delta;
end
This code is used in section 531.
536. Only the coordinates need to be copied, not the class numbers and other stuff. At this point either $\operatorname{link}(p)$ or $\operatorname{link}(\operatorname{link}(p))$ is null.
\langle Complete the half ellipse by reflecting the quarter already computed 536$\rangle \equiv$
begin $s \leftarrow$ null; $q \leftarrow h$;
loop begin $r \leftarrow$ get_node (knot_node_size); $\operatorname{link}(r) \leftarrow s ; s \leftarrow r$;
x_{-}coord $(s) \leftarrow x_{-}$coord $(q) ; y_{-}$coord $(s) \leftarrow-y_{-} \operatorname{coord}(q)$;
if $q=p$ then goto done1;
$q \leftarrow \operatorname{link}(q)$;
if $y_{-} \operatorname{coord}(q)=0$ then goto done 1 ;
end;
done1: if $($ link $(p) \neq$ null $)$ then free_node $($ link (p), knot_node_size $)$;
$\operatorname{link}(p) \leftarrow s ;$ beta $\leftarrow-y_{-} \operatorname{coord}(h)$;
while $y_{-} \operatorname{coord}(p) \neq b e t a$ do $p \leftarrow \operatorname{link}(p)$;
$q \leftarrow \operatorname{link}(p)$;
end
This code is used in section 527.
537. Now we use a somewhat tricky fact: The pointer q will be null if and only if the line for the final direction $(0,1)$ has been removed. If that line still survives, it should be combined with a possibly surviving line in the initial direction $(0,-1)$.
\langle Complete the ellipse by copying the negative of the half already computed 537$\rangle \equiv$ if $q \neq$ null then
begin if right_u $(h)=0$ then
begin $p \leftarrow h ; h \leftarrow$ link (h); free_node(p, knot_node_size);
$x _\operatorname{coord}(q) \leftarrow-x$ _coord (h);
end;
$p \leftarrow q ;$
end
else $q \leftarrow p$;
$r \leftarrow \operatorname{link}(h) ; \quad\left\{\right.$ now $\left.p=q, x_{\text {_coord }}(p)=-x_{-} \operatorname{coord}(h), y_{_} \operatorname{coord}(p)=-y_{\text {_coord }}(h)\right\}$
repeat $s \leftarrow$ get_node(knot_node_size); link $(p) \leftarrow s ; p \leftarrow s$;
$x_{-} \operatorname{coord}(p) \leftarrow-x_{-} \operatorname{coord}(r) ; y_{-} \operatorname{coord}(p) \leftarrow-y_{-} \operatorname{coord}(r) ; r \leftarrow \operatorname{link}(r) ;$
until $r=q$;
$\operatorname{link}(p) \leftarrow h$
This code is used in section 527.

538．Direction and intersection times．A path of length n is defined parametrically by functions $x(t)$ and $y(t)$ ，for $0 \leq t \leq n$ ；we can regard t as the＂time＂at which the path reaches the point $(x(t), y(t))$ ．In this section of the program we shall consider operations that determine special times associated with given paths：the first time that a path travels in a given direction，and a pair of times at which two paths cross each other．

539．Let＇s start with the easier task．The function find＿direction＿time is given a direction (x, y) and a path starting at h ．If the path never travels in direction (x, y) ，the direction time will be -1 ；otherwise it will be nonnegative．

Certain anomalous cases can arise：If $(x, y)=(0,0)$ ，so that the given direction is undefined，the direction time will be 0 ．If $\left(x^{\prime}(t), y^{\prime}(t)\right)=(0,0)$ ，so that the path direction is undefined，it will be assumed to match any given direction at time t ．

The routine solves this problem in nondegenerate cases by rotating the path and the given direction so that $(x, y)=(1,0)$ ；i．e．，the main task will be to find when a given path first travels＂due east．＂
function find＿direction＿time（ $x, y:$ scaled；$h:$ pointer $)$ ：scaled；
label exit，found，not＿found，done；
var max：scaled；$\{\max (|x|,|y|)\}$
$p, q:$ pointer ；$\{$ for list traversal $\}$
n ：scaled；$\{$ the direction time at knot $p\}$
$t t$ ：scaled；\｛ the direction time within a cubic \}
\langle Other local variables for find＿direction＿time 542〉
begin 〈Normalize the given direction for better accuracy；but return with zero result if it＇s zero 540\rangle ；
$n \leftarrow 0 ; p \leftarrow h ;$
loop begin if right＿type $(p)=$ endpoint then goto not＿found；
$q \leftarrow \operatorname{link}(p) ;\langle$ Rotate the cubic between p and q ；then goto found if the rotated cubic travels due east at some time $t t$ ；but goto not＿found if an entire cyclic path has been traversed 541\rangle ；
$p \leftarrow q ; n \leftarrow n+$ unity； end；
not＿found：find＿direction＿time $\leftarrow-$ unity；return；
found：find＿direction＿time $\leftarrow n+t t$ ；
exit：end；
540．〈Normalize the given direction for better accuracy；but return with zero result if it＇s zero 540$\rangle \equiv$ if $\operatorname{abs}(x)<a b s(y)$ then
begin $x \leftarrow$ make＿fraction $(x, \operatorname{abs}(y))$ ；
if $y>0$ then $y \leftarrow$ fraction＿one else $y \leftarrow$－fraction＿one；
end
else if $x=0$ then
begin find＿direction＿time $\leftarrow 0$ ；return； end
else begin $y \leftarrow$ make＿fraction $(y, a b s(x))$ ；
if $x>0$ then $x \leftarrow$ fraction＿one else $x \leftarrow$－fraction＿one；
end
This code is used in section 539.

541．Since we＇re interested in the tangent directions，we work with the derivative

$$
\frac{1}{3} B^{\prime}\left(x_{0}, x_{1}, x_{2}, x_{3} ; t\right)=B\left(x_{1}-x_{0}, x_{2}-x_{1}, x_{3}-x_{2} ; t\right)
$$

instead of $B\left(x_{0}, x_{1}, x_{2}, x_{3} ; t\right)$ itself．The derived coefficients are also scaled up in order to achieve better accuracy．

The given path may turn abruptly at a knot，and it might pass the critical tangent direction at such a time．Therefore we remember the direction $p h i$ in which the previous rotated cubic was traveling．（The value of $p h i$ will be undefined on the first cubic，i．e．，when $n=0$ ．）
\langle Rotate the cubic between p and q ；then goto found if the rotated cubic travels due east at some time $t t$ ； but goto not＿found if an entire cyclic path has been traversed 541$\rangle \equiv$
$t t \leftarrow 0$ ；〈Set local variables $x 1, x 2, x 3$ and $y 1, y 2, y 3$ to multiples of the control points of the rotated derivatives 543〉；
if $y 1=0$ then
if $x 1 \geq 0$ then goto found；
if $n>0$ then
begin 〈Exit to found if an eastward direction occurs at knot $p 544\rangle$ ；
if $p=h$ then goto not＿found；
end；
if $(x 3 \neq 0) \vee(y 3 \neq 0)$ then $p h i \leftarrow n_{-} \arg (x 3, y 3)$ ；
〈Exit to found if the curve whose derivatives are specified by $x 1, x 2, x 3, y 1, y 2, y 3$ travels eastward at some time $t t 546\rangle$
This code is used in section 539 ．
542．〈Other local variables for find＿direction＿time 542$\rangle \equiv$
$x 1, x 2, x 3, y 1, y 2, y 3:$ scaled；\｛ multiples of rotated derivatives \}
theta，phi：angle；\｛angles of exit and entry at a knot \}
t ：fraction；\｛temp storage \}
This code is used in section 539.
543．〈Set local variables $x 1, x 2, x 3$ and $y 1, y 2, y 3$ to multiples of the control points of the rotated
derivatives 543$\rangle \equiv$
$x 1 \leftarrow \operatorname{right} _x(p)-x$＿coord $(p) ; x 2 \leftarrow$ left＿x $(q)-\operatorname{right} _x(p) ; x 3 \leftarrow x _$coord $(q)-$ left＿x $(q) ;$
$y 1 \leftarrow \operatorname{right} y(p)-y_{-} \operatorname{coord}(p) ; y 2 \leftarrow$ left＿$y(q)-\operatorname{right_ y}(p) ; y 3 \leftarrow y_{-} \operatorname{coord}(q)-l e f t _y(q)$ ；
max $\leftarrow a b s(x 1) ;$
if $a b s(x 2)>\max$ then $\max \leftarrow a b s(x 2)$ ；
if $\operatorname{abs}(x 3)>\max$ then $\max \leftarrow a b s(x 3)$ ；
if $a b s(y 1)>\max$ then $\max \leftarrow a b s(y 1)$ ；
if $a b s(y 2)>\max$ then $\max \leftarrow a b s(y 2)$ ；
if $a b s(y 3)>\max$ then $\max \leftarrow a b s(y 3)$ ；
if max $=0$ then goto found；
while max＜fraction＿half do
begin double（max）；double（x1）；double（x2）；double（x3）；double（y1）；double（y2）；double（y3）； end；
$t \leftarrow x 1 ; x 1 \leftarrow \operatorname{take}$－fraction $(x 1, x)+$ take＿fraction $(y 1, y) ; y 1 \leftarrow t a k e_{-} f r a c t i o n(y 1, x)-t a k e _f r a c t i o n(t, y)$ ；
$t \leftarrow x 2 ; x 2 \leftarrow \operatorname{take}$－fraction $(x 2, x)+$ take＿fraction $(y 2, y) ; y 2 \leftarrow t a k e_{-} f r a c t i o n(y 2, x)-t a k e_{-} f r a c t i o n(t, y)$ ；
$t \leftarrow x 3 ; x 3 \leftarrow$ take＿fraction $(x 3, x)+$ take＿fraction $(y 3, y) ; y 3 \leftarrow \operatorname{take}$＿fraction $(y 3, x)-t a k e _f r a c t i o n(t, y)$
This code is used in section 541.

544．\langle Exit to found if an eastward direction occurs at knot $p 544\rangle \equiv$
theta $\leftarrow n_{-} \arg (x 1, y 1)$ ；
if theta ≥ 0 then
if $p h i \leq 0$ then
if $p h i \geq$ theta－one＿eighty＿deg then goto found；
if theta ≤ 0 then
if $p h i \geq 0$ then
if phi \leq theta + one＿eighty＿deg then goto found
This code is used in section 541.
545．In this step we want to use the crossing＿point routine to find the roots of the quadratic equation $B\left(y_{1}, y_{2}, y_{3} ; t\right)=0$ ．Several complications arise：If the quadratic equation has a double root，the curve never crosses zero，and crossing＿point will find nothing；this case occurs iff $y_{1} y_{3}=y_{2}^{2}$ and $y_{1} y_{2}<0$ ．If the quadratic equation has simple roots，or only one root，we may have to negate it so that $B\left(y_{1}, y_{2}, y_{3} ; t\right)$ crosses from positive to negative at its first root．And finally，we need to do special things if $B\left(y_{1}, y_{2}, y_{3} ; t\right)$ is identically zero．

546．〈Exit to found if the curve whose derivatives are specified by $x 1, x 2, x 3, y 1, y 2, y 3$ travels eastward at some time $t t 546\rangle \equiv$
if $x 1<0$ then
if $x 2<0$ then
if $x 3<0$ then goto done；
if $a b_{-} v s_{-} c d(y 1, y 3, y 2, y 2)=0$ then
〈Handle the test for eastward directions when $y_{1} y_{3}=y_{2}^{2}$ ；either goto found or goto done 548〉；
if $y 1 \leq 0$ then
if $y 1<0$ then
begin $y 1 \leftarrow-y 1 ; y 2 \leftarrow-y 2 ; y 3 \leftarrow-y 3$ ；
end
else if $y 2>0$ then
begin $y 2 \leftarrow-y 2 ; y 3 \leftarrow-y 3$ ；
end；
$\left\langle\right.$ Check the places where $B\left(y_{1}, y_{2}, y_{3} ; t\right)=0$ to see if $\left.B\left(x_{1}, x_{2}, x_{3} ; t\right) \geq 0547\right\rangle$ ；
done：
This code is used in section 541.

547．The quadratic polynomial $B\left(y_{1}, y_{2}, y_{3} ; t\right)$ begins ≥ 0 and has at most two roots，because we know that it isn＇t identically zero．

It must be admitted that the crossing＿point routine is not perfectly accurate；rounding errors might cause it to find a root when $y_{1} y_{3}>y_{2}^{2}$ ，or to miss the roots when $y_{1} y_{3}<y_{2}^{2}$ ．The rotation process is itself subject to rounding errors．Yet this code optimistically tries to do the right thing．
define we＿found＿it 三

```
begin }tt\leftarrow(t+'4000) div '10000; goto found
    end
```

$\left\langle\right.$ Check the places where $B\left(y_{1}, y_{2}, y_{3} ; t\right)=0$ to see if $\left.B\left(x_{1}, x_{2}, x_{3} ; t\right) \geq 0547\right\rangle \equiv$
$t \leftarrow$ crossing＿point（y1，y2，y3）；
if $t>$ fraction＿one then goto done；
$y 2 \leftarrow t$＿of＿the＿way $(y 2)(y 3) ; x 1 \leftarrow t_{-} o f_{-} t h e _w a y(x 1)(x 2) ; x 2 \leftarrow t_{-} o f_{-} t h e _w a y(x 2)(x 3)$ ；
$x 1 \leftarrow t$＿of＿the＿way $(x 1)(x 2)$ ；
if $x 1 \geq 0$ then we＿found＿it；
if $y 2>0$ then $y 2 \leftarrow 0$ ；
$t t \leftarrow t ; t \leftarrow$ crossing＿point $(0,-y 2,-y 3)$ ；
if $t>$ fraction＿one then goto done；
$x 1 \leftarrow t$＿of＿the＿way $(x 1)(x 2) ; x 2 \leftarrow t_{-}$of＿the＿way $(x 2)(x 3)$ ；
if $t_{-} o f_{-}$the＿way $(x 1)(x 2) \geq 0$ then
begin $t \leftarrow t$＿of＿the＿way $(t t)($ fraction＿one $)$ ；we＿found＿it；
end
This code is used in section 546 ．
548．〈Handle the test for eastward directions when $y_{1} y_{3}=y_{2}^{2}$ ；either goto found or goto done 548$\rangle \equiv$
begin if ab＿vs＿cd $(y 1, y 2,0,0)<0$ then
begin $t \leftarrow$ make＿fraction $(y 1, y 1-y 2) ; x 1 \leftarrow t_{-} o f_{-} t h e_{-} w a y(x 1)(x 2)$ ；$x 2 \leftarrow t_{-} o f_{-} t h e_{-} w a y(x 2)(x 3)$ ；
if t_{-}of＿the＿way $(x 1)(x 2) \geq 0$ then we＿found＿it；
end
else if $y 3=0$ then
if $y 1=0$ then 〈Exit to found if the derivative $B\left(x_{1}, x_{2}, x_{3} ; t\right)$ becomes $\left.\geq 0549\right\rangle$ else if $x 3 \geq 0$ then
begin $t t \leftarrow$ unity；goto found；
end；
goto done；
end
This code is used in section 546.
549．At this point we know that the derivative of $y(t)$ is identically zero，and that $x 1<0$ ；but either $x 2 \geq 0$ or $x 3 \geq 0$ ，so there＇s some hope of traveling east．
$\left\langle\right.$ Exit to found if the derivative $B\left(x_{1}, x_{2}, x_{3} ; t\right)$ becomes $\left.\geq 0549\right\rangle \equiv$
begin $t \leftarrow$ crossing＿point $(-x 1,-x 2,-x 3)$ ；
if $t \leq$ fraction＿one then we＿found＿it；
if ab＿vs＿cd $(x 1, x 3, x 2, x 2) \leq 0$ then
begin $t \leftarrow$ make＿fraction $(x 1, x 1-x 2)$ ；we＿found＿it；
end；
end
This code is used in section 548.
550. The intersection of two cubics can be found by an interesting variant of the general bisection scheme described in the introduction to make_moves. Given $w(t)=B\left(w_{0}, w_{1}, w_{2}, w_{3} ; t\right)$ and $z(t)=B\left(z_{0}, z_{1}, z_{2}, z_{3} ; t\right)$, we wish to find a pair of times $\left(t_{1}, t_{2}\right)$ such that $w\left(t_{1}\right)=z\left(t_{2}\right)$, if an intersection exists. First we find the smallest rectangle that encloses the points $\left\{w_{0}, w_{1}, w_{2}, w_{3}\right\}$ and check that it overlaps the smallest rectangle that encloses $\left\{z_{0}, z_{1}, z_{2}, z_{3}\right\}$; if not, the cubics certainly don't intersect. But if the rectangles do overlap, we bisect the intervals, getting new cubics w^{\prime} and $w^{\prime \prime}, z^{\prime}$ and $z^{\prime \prime}$; the intersection routine first tries for an intersection between w^{\prime} and z^{\prime}, then (if unsuccessful) between w^{\prime} and $z^{\prime \prime}$, then (if still unsuccessful) between $w^{\prime \prime}$ and z^{\prime}, finally (if thrice unsuccessful) between $w^{\prime \prime}$ and $z^{\prime \prime}$. After l successful levels of bisection we will have determined the intersection times t_{1} and t_{2} to l bits of accuracy.

As before, it is better to work with the numbers $W_{k}=2^{l}\left(w_{k}-w_{k-1}\right)$ and $Z_{k}=2^{l}\left(z_{k}-z_{k-1}\right)$ rather than the coefficients w_{k} and z_{k} themselves. We also need one other quantity, $\Delta=2^{l}\left(w_{0}-z_{0}\right)$, to determine when the enclosing rectangles overlap. Here's why: The x coordinates of $w(t)$ are between $u_{\min }$ and $u_{\max }$, and the x coordinates of $z(t)$ are between $x_{\min }$ and $x_{\max }$, if we write $w_{k}=\left(u_{k}, v_{k}\right)$ and $z_{k}=\left(x_{k}, y_{k}\right)$ and $u_{\min }=\min \left(u_{0}, u_{1}, u_{2}, u_{3}\right)$, etc. These intervals of x coordinates overlap if and only if $u_{\min } \leq x_{\max }$ and $x_{\text {min }} \leq u_{\text {max }}$. Letting

$$
U_{\min }=\min \left(0, U_{1}, U_{1}+U_{2}, U_{1}+U_{2}+U_{3}\right), U_{\max }=\max \left(0, U_{1}, U_{1}+U_{2}, U_{1}+U_{2}+U_{3}\right),
$$

we have $2^{l} u_{\text {min }}=2^{l} u_{0}+U_{\text {min }}$, etc.; the condition for overlap reduces to

$$
X_{\min }-U_{\max } \leq 2^{l}\left(u_{0}-x_{0}\right) \leq X_{\max }-U_{\min } .
$$

Thus we want to maintain the quantity $2^{l}\left(u_{0}-x_{0}\right)$; similarly, the quantity $2^{l}\left(v_{0}-y_{0}\right)$ accounts for the y coordinates. The coordinates of $\Delta=2^{l}\left(w_{0}-z_{0}\right)$ must stay bounded as l increases, because of the overlap condition; i.e., we know that $X_{\min }, X_{\max }$, and their relatives are bounded, hence $X_{\max }-U_{\min }$ and $X_{\min }-U_{\max }$ are bounded.
551. Incidentally, if the given cubics intersect more than once, the process just sketched will not necessarily find the lexicographically smallest pair $\left(t_{1}, t_{2}\right)$. The solution actually obtained will be smallest in "shuffled order"; i.e., if $t_{1}=\left(. a_{1} a_{2} \ldots a_{16}\right)_{2}$ and $t_{2}=\left(. b_{1} b_{2} \ldots b_{16}\right)_{2}$, then we will minimize $a_{1} b_{1} a_{2} b_{2} \ldots a_{16} b_{16}$, not $a_{1} a_{2} \ldots a_{16} b_{1} b_{2} \ldots b_{16}$. Shuffled order agrees with lexicographic order if all pairs of solutions $\left(t_{1}, t_{2}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ have the property that $t_{1}<t_{1}^{\prime}$ iff $t_{2}<t_{2}^{\prime}$; but in general, lexicographic order can be quite different, and the bisection algorithm would be substantially less efficient if it were constrained by lexicographic order.
For example, suppose that an overlap has been found for $l=3$ and $\left(t_{1}, t_{2}\right)=(.101, .011)$ in binary, but that no overlap is produced by either of the alternatives $(.1010, .0110),(.1010, .0111)$ at level 4 . Then there is probably an intersection in one of the subintervals $(.1011, .011 x)$; but lexicographic order would require us to explore $(.1010, .1 x x x)$ and $(.1011, .00 x x)$ and $(.1011, .010 x)$ first. We wouldn't want to store all of the subdivision data for the second path, so the subdivisions would have to be regenerated many times. Such inefficiencies would be associated with every ' 1 ' in the binary representation of t_{1}.
552. The subdivision process introduces rounding errors, hence we need to make a more liberal test for overlap. It is not hard to show that the computed values of U_{i} differ from the truth by at most l, on level l, hence $U_{\min }$ and $U_{\max }$ will be at most $3 l$ in error. If β is an upper bound on the absolute error in the computed components of $\Delta=($ delx, dely $)$ on level l, we will replace the test ' $X_{\text {min }}-U_{\max } \leq d e l x$ ' by the more liberal test ' $X_{\min }-U_{\max } \leq d e l x+t o l$ ', where $t o l=6 l+\beta$.

More accuracy is obtained if we try the algorithm first with $t o l=0$; the more liberal tolerance is used only if an exact approach fails. It is convenient to do this double-take by letting ' 3 ' in the preceding paragraph be a parameter, which is first 0 , then 3 .
\langle Global variables 13$\rangle+\equiv$
tol_step: $0 . .6 ; \quad$ \{ either 0 or 3 , usually \}
553. We shall use an explicit stack to implement the recursive bisection method described above. In fact, the bisect_stack array is available for this purpose. It will contain numerous 5 -word packets like $\left(U_{1}, U_{2}, U_{3}, U_{\min }, U_{\max }\right)$, as well as 20 -word packets comprising the 5 -word packets for U, V, X, and Y.

The following macros define the allocation of stack positions to the quantities needed for bisectionintersection.

```
define stack_1 (\#) \(\equiv\) bisect_stack \([\#] \quad\left\{U_{1}, V_{1}, X_{1}\right.\), or \(\left.Y_{1}\right\}\)
define stack_2 \((\#) \equiv\) bisect_stack \([\#+1] \quad\left\{U_{2}, V_{2}, X_{2}\right.\), or \(\left.Y_{2}\right\}\)
define stack_3 \((\#) \equiv\) bisect_stack \([\#+2] \quad\left\{U_{3}, V_{3}, X_{3}\right.\), or \(\left.Y_{3}\right\}\)
define stack_min \((\#) \equiv\) bisect_stack \([\#+3] \quad\left\{U_{\min }, V_{\min }, X_{\min }\right.\), or \(\left.Y_{\min }\right\}\)
define stack_max \((\#) \equiv\) bisect_stack \([\#+4] \quad\left\{U_{\max }, V_{\max }, X_{\max }\right.\), or \(\left.Y_{\max }\right\}\)
define int_packets \(=20 \quad\left\{\right.\) number of words to represent \(U_{k}, V_{k}, X_{k}\), and \(\left.Y_{k}\right\}\)
define \(u \_p a c k e t(\#) \equiv \#-5\)
define v_packet \((\#) \equiv \#-10\)
define \(x\) _packet \((\#) \equiv \#-15\)
define y_packet (\#) \(\equiv \#-20\)
define l_packets \(\equiv\) bisect_ptr - int_packets
define r_packets \(\equiv\) bisect_ptr
define ul_packet \(\equiv u_{-}\)packet (l_packets) \(\quad\left\{\right.\) base of \(U_{k}^{\prime}\) variables \(\}\)
define vl_packet \(\equiv v_{-}\)packet \(\left(l_{-}\right.\)packets \() \quad\left\{\right.\) base of \(V_{k}^{\prime}\) variables \(\}\)
define \(x l \_p a c k e t \equiv x \_p a c k e t\left(l \_p a c k e t s\right) \quad\left\{\right.\) base of \(X_{k}^{\prime}\) variables \(\}\)
define \(y l\) _packet \(\equiv y_{-}\)packet \(\left(l_{-}\right.\)packets \() \quad\left\{\right.\) base of \(Y_{k}^{\prime}\) variables \(\}\)
define ur_packet \(\equiv u_{-}\)packet (r_packets) \(\quad\left\{\right.\) base of \(U_{k}^{\prime \prime}\) variables \(\}\)
define vr_packet \(\equiv\) v_packet \(\left(r_{-}\right.\)packets \() \quad\left\{\right.\) base of \(V_{k}^{\prime \prime}\) variables \(\}\)
define \(x r_{-} p a c k e t \equiv x_{-} p a c k e t\left(r_{-} p a c k e t s\right) \quad\left\{\right.\) base of \(X_{k}^{\prime \prime}\) variables \(\}\)
define \(y r_{-}\)packet \(\equiv y_{-}\)packet (r_packets) \(\quad\left\{\right.\) base of \(Y_{k}^{\prime \prime}\) variables \(\}\)
define \(u 1 l \equiv\) stack_1 (ul_packet) \(\quad\left\{U_{1}^{\prime}\right\}\)
define \(u\) Ol \(\equiv\) stack_2 \(\left(u l \_p a c k e t\right) \quad\left\{U_{2}^{\prime}\right\}\)
define \(u 3 l \equiv\) stack_3 (ul_packet) \(\quad\left\{U_{3}^{\prime}\right\}\)
define \(v 1 l \equiv\) stack_1 (vl_packet) \(\quad\left\{V_{1}^{\prime}\right\}\)
define \(v 2 l \equiv\) stack_2 \(\left(v l_{-p a c k e t) ~} \quad\left\{V_{2}^{\prime}\right\}\right.\)
define \(v 3 l \equiv\) stack_3 (vl_packet) \(\quad\left\{V_{3}^{\prime}\right\}\)
define \(x 1 l \equiv\) stack_1 (xl_packet) \(\quad\left\{X_{1}^{\prime}\right\}\)
define \(x 2 l \equiv\) stack_2 \(\left(x l \_p a c k e t\right) \quad\left\{X_{2}^{\prime}\right\}\)
define \(x 3 l \equiv\) stack_3 (xl_packet) \(\quad\left\{X_{3}^{\prime}\right\}\)
define \(y 1 l \equiv\) stack_1 (yl_packet) \(\quad\left\{Y_{1}^{\prime}\right\}\)
define \(y 2 l \equiv\) stack_2 \((\) yl_packet \() \quad\left\{Y_{2}^{\prime}\right\}\)
define y3l \(\equiv\) stack_3 (yl_packet) \(\quad\left\{Y_{3}^{\prime}\right\}\)
define \(u 1 r \equiv\) stack_1 (ur_packet) \(\quad\left\{U_{1}^{\prime \prime}\right\}\)
define u2r \(\equiv\) stack_2 \(\left(u r \_p a c k e t\right) \quad\left\{U_{2}^{\prime \prime}\right\}\)
define \(u 3 r \equiv\) stack_3 (ur_packet) \(\quad\left\{U_{3}^{\prime \prime}\right\}\)
define \(v 1 r \equiv\) stack_1 \(\left(v r_{-}\right.\)packet \() \quad\left\{V_{1}^{\prime \prime}\right\}\)
define \(v 2 r \equiv\) stack_2 \(\left(v r_{-}\right.\)packet \() \quad\left\{V_{2}^{\prime \prime}\right\}\)
define \(v 3 r \equiv\) stack_3 \(\left(v r_{-}\right.\)packet \() \quad\left\{V_{3}^{\prime \prime}\right\}\)
define \(x 1 r \equiv\) stack_1 (xr_packet) \(\quad\left\{X_{1}^{\prime \prime}\right\}\)
define \(x 2 r \equiv\) stack_2 (xr_packet) \(\quad\left\{X_{2}^{\prime \prime}\right\}\)
define \(x 3 r \equiv\) stack_3 (xr_packet) \(\quad\left\{X_{3}^{\prime \prime}\right\}\)
define \(y 1 r \equiv\) stack_1 (yr_packet) \(\quad\left\{Y_{1}^{\prime \prime}\right\}\)
define y2r \(\equiv\) stack_2 \(\left(y r \_p a c k e t\right) \quad\left\{Y_{2}^{\prime \prime}\right\}\)
define \(y 3 r \equiv\) stack_3 \(\left(y r \_p a c k e t\right) \quad\left\{Y_{3}^{\prime \prime}\right\}\)
define stack_dx \(\equiv\) bisect_stack \([\) bisect_ptr] \(\quad\{\) stacked value of delx \(\}\)
define stack_dy \(\equiv\) bisect_stack[bisect_ptr +1\(] \quad\{\) stacked value of dely \(\}\)
```

define stack_tol \equiv bisect_stack[bisect_ptr +2$] \quad\{$ stacked value of tol $\}$
define stack_uv \equiv bisect_stack $[$ bisect_ptr +3$] \quad\{$ stacked value of $u v\}$
define stack_xy \equiv bisect_stack $[$ bisect_ptr +4$] \quad\{$ stacked value of $x y\}$
define int_increment $=$ int_packets + int_packets $+5 \quad$ \{ number of stack words per level $\}$
\langle Check the "constant" values for consistency 14$\rangle+\equiv$
if int_packets $+17 *$ int_increment $>$ bistack_size then $b a d \leftarrow 32$;
554. Computation of the min and max is a tedious but fairly fast sequence of instructions; exactly four comparisons are made in each branch.

```
define set_min_max \((\#) \equiv\)
    if stack_1 \((\#)<0\) then
        if stack_3 \((\#) \geq 0\) then
            begin if stack_2 \((\#)<0\) then \(\operatorname{stack}\) _min \((\#) \leftarrow\) stack_1 \((\#)+\) stack_2 \((\#)\)
            else stack_min \((\#) \leftarrow\) stack_1 \((\#)\);
            stack_max \((\#) \leftarrow\) stack_1 (\#) + stack_2 \((\#)+\) stack_3 (\#);
            if stack_max \((\#)<0\) then stack_max \((\#) \leftarrow 0\);
            end
        else begin stack_min \((\#) \leftarrow\) stack_1 \((\#)+\) stack_2 \((\#)+\) stack_3 \((\#)\);
            if stack_min (\#) > stack_1 (\#) then stack_min (\#) \(\leftarrow \operatorname{stack}_{-} 1\) (\#);
            stack_max \((\#) \leftarrow\) stack_1 (\#) + stack_2 (\#);
            if stack_max \((\#)<0\) then stack_max \((\#) \leftarrow 0\);
            end
    else if stack_ \(3(\#) \leq 0\) then
            begin if stack_2 \((\#)>0\) then \(s t a c k \_m a x(\#) \leftarrow\) stack_1 \((\#)+\) stack_2 \((\#)\)
            else stack_max (\#) \(\leftarrow\) stack_1 (\#);
            stack_min \((\#) \leftarrow\) stack_1 (\#) + stack_2 (\#) + stack_3 (\#);
            if \(\operatorname{stack}\) _min \((\#)>0\) then stack_min \((\#) \leftarrow 0\);
            end
    else begin stack_max \((\#) \leftarrow\) stack_1 \((\#)+\) stack_2 \(_{-}(\#)+\) stack_3 \((\#)\);
            if stack_max \((\#)<\) stack_1 (\#) then stack_max \((\#) \leftarrow\) stack_1 (\#);
            stack_min \((\#) \leftarrow\) stack_1 (\#) + stack_2 (\#);
            if \(\operatorname{stack} \_\)min \((\#)>0\) then stack_min \((\#) \leftarrow 0\);
            end
```

555. It's convenient to keep the current values of l, t_{1}, and t_{2} in the integer form $2^{l}+2^{l} t_{1}$ and $2^{l}+2^{l} t_{2}$. The cubic_intersection routine uses global variables cur_t and cur_tt for this purpose; after successful completion, cur_t and cur_tt will contain unity plus the scaled values of t_{1} and t_{2}.

The values of cur_t and cur_tt will be set to zero if cubic_intersection finds no intersection. The routine gives up and gives an approximate answer if it has backtracked more than 5000 times (otherwise there are cases where several minutes of fruitless computation would be possible).
define max_patience $=5000$
\langle Global variables 13$\rangle+\equiv$
cur_t, cur_tt: integer; \{ controls and results of cubic_intersection \}
time_to_go: integer; \{this many backtracks before giving up \}
max_t: integer; \{ maximum of 2^{l+1} so far achieved $\}$

556．The given cubics $B\left(w_{0}, w_{1}, w_{2}, w_{3} ; t\right)$ and $B\left(z_{0}, z_{1}, z_{2}, z_{3} ; t\right)$ are specified in adjacent knot nodes $(p, \operatorname{link}(p))$ and $(p p, \operatorname{link}(p p))$ ，respectively．
procedure cubic＿intersection（ $p, p p$ ：pointer）；
label continue，not＿found，exit；
var $q, q q:$ pointer；$\{\operatorname{link}(p), \operatorname{link}(p p)\}$
begin time＿to＿go \leftarrow max＿patience；max＿$t \leftarrow 2$ ；〈 Initialize for intersections at level zero 558〉；
loop begin continue：if delx－tol \leq stack＿max $\left(x _p a c k e t(x y)\right)-s t a c k _m i n\left(u _p a c k e t(u v)\right)$ then if delx + tol \geq stack＿min $\left(x_{-}\right.$packet $\left.(x y)\right)$－stack＿max（u＿packet $\left.(u v)\right)$ then
if dely－tol $\leq \operatorname{stack}$＿max $\left(y_{-}\right.$packet $\left.(x y)\right)$－stack＿min $\left(v _p a c k e t(u v)\right)$ then
if dely + tol \geq stack＿min（y＿packet（xy））－stack＿max（v＿packet（uv））then
begin if cur＿$t \geq$ max＿$_{-}$then
begin if max＿t $=$ two then $\{$ we＇ve done 17 bisections \}
begin cur＿t $\leftarrow h a l f\left(\right.$ cur＿$\left._{-} t+1\right)$ ；cur＿tt $\leftarrow h a l f\left(c u r_{-} t t+1\right)$ ；return；
end；
double（max＿t）；appr＿t $\leftarrow c u r_{-} t ;$ appr＿t $t \leftarrow c u r_{-} t t ;$
end；
〈Subdivide for a new level of intersection 559〉；
goto continue；
end；
if time＿to＿go＞0 then decr（time＿to＿go）
else begin while appr＿t＜unity do
begin double（appr＿t）；double（appr＿tt）；
end；
cur＿t $\leftarrow a p p r_{-} t ; c u r_{-} t t \leftarrow a p p r_{-} t t ;$ return；
end；
〈Advance to the next pair（cur＿t，cur＿tt） 560\rangle ；
end；
exit：end；
557．The following variables are global，although they are used only by cubic＿intersection，because it is necessary on some machines to split cubic＿intersection up into two procedures．
\langle Global variables 13$\rangle+\equiv$
delx，dely：integer；$\quad\left\{\right.$ the components of $\left.\Delta=2^{l}\left(w_{0}-z_{0}\right)\right\}$
tol：integer；\｛bound on the uncertainty in the overlap test \}
$u v, x y: 0$ ．．bistack＿size；\｛pointers to the current packets of interest \}
three＿l：integer；\｛tol＿step times the bisection level \}
appr＿t，appr＿tt：integer；\｛ best approximations known to the answers \}

558．We shall assume that the coordinates are sufficiently non－extreme that integer overflow will not occur．
\langle Initialize for intersections at level zero 558$\rangle \equiv$
$q \leftarrow \operatorname{link}(p) ; q q \leftarrow \operatorname{link}(p p) ;$ bisect＿ptr \leftarrow int＿packets；
$u 1 r \leftarrow$ right＿x $(p)-x_{-}$coord $(p) ; u 2 r \leftarrow$ left＿x $(q)-r i g h t _x(p) ; u 3 r \leftarrow x_{_} \operatorname{coord}(q)-l e f t _x(q)$ ；
set＿min＿max（ur＿packet）；
$v 1 r \leftarrow \operatorname{right}-y(p)-y_{-} \operatorname{coord}(p) ; v 2 r \leftarrow$ left＿y $(q)-\operatorname{right} _y(p) ; v 3 r \leftarrow y_{-} \operatorname{coord}(q)-l e f t _y(q)$ ；
set＿min＿max（vr＿packet）；
$x 1 r \leftarrow$ right＿$x(p p)-x_{-}$coord $(p p) ; x 2 r \leftarrow$ left＿$x(q q)-r i g h t _x(p p) ; x 3 r \leftarrow x_{-}$coord $(q q)-$ left＿x $(q q)$ ；
set＿min＿max（xr＿packet）；
$y 1 r \leftarrow \operatorname{right}-y(p p)-y_{-} \operatorname{coord}(p p) ; y 2 r \leftarrow l e f t _y(q q)-\operatorname{right}-y(p p) ; y 3 r \leftarrow y_{-} \operatorname{coord}(q q)-l e f t _y(q q) ;$
set＿min＿max（yr＿packet）；
delx $\leftarrow x_{-} \operatorname{coord}(p)-x_{-} \operatorname{coord}(p p) ;$ dely $\leftarrow y_{-} \operatorname{coord}(p)-y_{-} \operatorname{coord}(p p)$ ；
$t o l \leftarrow 0 ; u v \leftarrow r_{-} p a c k e t s ; x y \leftarrow r_{-}$packets $;$three＿$l \leftarrow 0 ;$ cur＿$t \leftarrow 1 ;$ cur＿tt $\leftarrow 1$
This code is used in section 556 ．
559．〈Subdivide for a new level of intersection 559$\rangle \equiv$
stack＿dx \leftarrow delx ；stack＿dy \leftarrow dely；stack＿tol $\leftarrow t o l ;$ stack＿uv $\leftarrow u v ;$ stack＿xy $\leftarrow x y ;$
bisect＿ptr \leftarrow bisect＿ptr + int＿increment；
double（cur＿t）；double（cur＿tt）；
$u 1 l \leftarrow$ stack＿1 $\left(u _p a c k e t(u v)\right) ;$ u3r \leftarrow stack＿3 $\left(u _p a c k e t(u v)\right) ; u 2 l \leftarrow$ half $\left(u 1 l+\right.$ stack＿2 $\left.\left(u _p a c k e t(u v)\right)\right)$ ；
$u 2 r \leftarrow \operatorname{half}\left(u 3 r+\operatorname{stack}\right.$＿2 $\left.\left(u _p a c k e t(u v)\right)\right) ; u 3 l \leftarrow$ half $(u 2 l+u 2 r) ; u 1 r \leftarrow u 3 l ;$ set＿min＿max（ul＿packet）； set＿min＿max（ur＿packet）；
$v 1 l \leftarrow$ stack＿1 $\left(v_{-} p a c k e t(u v)\right) ; v 3 r \leftarrow$ stack＿3 $\left(v _p a c k e t(u v)\right) ; v 2 l \leftarrow$ half $\left(v 1 l+\right.$ stack＿2 $\left.\left(v _p a c k e t(u v)\right)\right)$ ；
$v 2 r \leftarrow h a l f(v 3 r+$ stack＿2 $(v-p a c k e t(u v))) ; v 3 l \leftarrow$ half $(v 2 l+v 2 r) ; v 1 r \leftarrow v 3 l ;$ set＿min＿max $\left(v l _p a c k e t\right) ;$ set＿min＿max（vr＿packet）；
$x 1 l \leftarrow$ stack＿1 $(x$＿packet $(x y)) ; x 3 r \leftarrow$ stack＿3 $\left(x _p a c k e t(x y)\right) ; x 2 l \leftarrow$ half $\left(x 1 l+\right.$ stack＿2 $\left.\left(x _p a c k e t(x y)\right)\right)$ ；
$x 2 r \leftarrow h a l f\left(x 3 r+\right.$ stack＿2 $\left.\left(x _p a c k e t(x y)\right)\right) ; x 3 l \leftarrow$ half $(x 2 l+x 2 r) ; x 1 r \leftarrow x 3 l ;$ set＿min＿max $\left(x l _p a c k e t\right) ;$ set＿min＿max（xr＿packet）；
$y 1 l \leftarrow$ stack＿1 $\left(y _p a c k e t(x y)\right) ; y 3 r \leftarrow$ stack＿3 $\left(y _p a c k e t(x y)\right) ; y 2 l \leftarrow$ half $\left(y 1 l+\right.$ stack＿2 $\left.\left(y _p a c k e t(x y)\right)\right)$ ； $y 2 r \leftarrow$ half $\left(y 3 r+\right.$ stack＿2 $\left.2\left(y _p a c k e t(x y)\right)\right) ; y 3 l \leftarrow$ half $(y 2 l+y 2 r) ; y 1 r \leftarrow y 3 l ;$ set＿min＿max $(y l-p a c k e t) ;$ set＿min＿max（yr＿packet）；
$u v \leftarrow$ l＿packets；$x y \leftarrow$ l＿packets ；double（delx）；double（dely）；
$t o l \leftarrow t o l-t h r e e _l+t o l _s t e p ;$ double $(t o l) ;$ three＿$l \leftarrow$ three＿l + tol＿step
This code is used in section 556 ．
560．〈Advance to the next pair（cur－t，cur－tt） 560$\rangle \equiv$
not＿found：if odd（cur＿tt）then
if odd（cur＿t）then 〈Descend to the previous level and goto not＿found 561\rangle
else begin incr（cur＿t）；

```
        delx }\leftarrow\mathrm{ delx + stack_1(u_packet(uv)) + stack_2(u_packet(uv)) + stack_3(u_packet(uv));
```

 dely \(\leftarrow\) dely + stack_1 \(\left(v_{-}\right.\)packet \(\left.(u v)\right)+\) stack_2 \(\left(v _\right.\)packet \(\left.(u v)\right)+\) stack_3 \(\left(v _p a c k e t(u v)\right)\);
 \(u v \leftarrow u v+\) int_packets; \(\quad\left\{\right.\) switch from l_packets to \(r_{-}\)packets \}
 decr \(\left(\right.\) cur_tt); \(x y \leftarrow x y\)-int_packets; \(\left\{\right.\) switch from \(r_{-}\)packets to l_packets \}
 delx \(\leftarrow\) delx \(+\operatorname{stack}\) _1 \(\left(x _p a c k e t(x y)\right)+\) stack_2 \(\left(x _p a c k e t(x y)\right)+\) stack_3 \(\left(x _p a c k e t(x y)\right)\);
 dely \(\leftarrow\) dely + stack_1 \(\left(y _p a c k e t(x y)\right)+\) stack_2 \(\left(y _p a c k e t(x y)\right)+\) stack_3 \(\left(y _p a c k e t(x y)\right)\);
 end
 else begin incr (cur_tt); tol \(\leftarrow\) tol + three_l;
 delx \(\leftarrow\) delx - stack_1 \(\left(x _p a c k e t(x y)\right)\) - stack_2 \(\left(x _p a c k e t(x y)\right)\) - stack_3 (x_packet \(\left.(x y)\right)\);
 dely \(\leftarrow\) dely - stack_1 \(\left(y _p a c k e t(x y)\right)\) - stack_2 \(\left(y _p a c k e t(x y)\right)\) - stack_3 (y_packet \(\left.(x y)\right)\);
 \(x y \leftarrow x y+\) int_packets; \(\quad\left\{\right.\) switch from l_packets to \(r_{-}\)packets \}
 end
 This code is used in section 556 ．
561. 〈Descend to the previous level and goto not_found 561$\rangle \equiv$
begin cur_t $t \leftarrow$ half (cur_t); cur_tt \leftarrow half (cur_tt);
if cur_ $t=0$ then return;
bisect_ptr \leftarrow bisect_ptr - int_increment $;$ three_l \leftarrow three_l - tol_step $;$ delx \leftarrow stack_dx $;$ dely \leftarrow stack_dy; tol \leftarrow stack_tol; $u v \leftarrow$ stack_uv; $x y \leftarrow$ stack_xy;
goto not_found;
end
This code is used in section 560 .
562. The path_intersection procedure is much simpler. It invokes cubic_intersection in lexicographic order until finding a pair of cubics that intersect. The final intersection times are placed in cur-t and cur_tt.

```
procedure path_intersection( \(h, h h:\) pointer);
    label exit;
    var \(p, p p:\) pointer; \(\{\) link registers that traverse the given paths \(\}\)
        \(n, n n\) : integer; \(\quad\{\) integer parts of intersection times, minus unity \}
    begin \(\langle\) Change one-point paths into dead cycles 563\(\rangle\);
    tol_step \(\leftarrow 0\);
    repeat \(n \leftarrow-\) unity; \(p \leftarrow h\);
        repeat if right_type \((p) \neq\) endpoint then
            begin \(n n \leftarrow-\) unity; \(p p \leftarrow h h\);
            repeat if right_type \((p p) \neq\) endpoint then
                    begin cubic_intersection ( \(p, p p\) );
                if cur \(-t>0\) then
                    begin cur_\(_{-} t \leftarrow c u r_{-} t+n\); cur_t \(\leftarrow \leftarrow\) cur_t \(t+n n\); return;
                    end;
                    end;
                    \(n n \leftarrow n n+\) unity \(; p p \leftarrow \operatorname{link}(p p) ;\)
            until \(p p=h h\);
            end;
            \(n \leftarrow n+\) unity \(; p \leftarrow \operatorname{link}(p) ;\)
        until \(p=h\);
        tol_step \(\leftarrow\) tol_step +3 ;
    until tol_step \(>3\);
    cur_t \(\leftarrow-\) unity; cur_tt \(\leftarrow-\) unity;
exit: end;
```

563. 〈Change one-point paths into dead cycles 563$\rangle \equiv$
if right_type $(h)=$ endpoint then
begin right_x $(h) \leftarrow x_{-}$coord (h); left_x $(h) \leftarrow x_{-}$coord (h); right_y $(h) \leftarrow y_{-}$coord (h);
left_y $(h) \leftarrow y _$coord (h); right_type $(h) \leftarrow$ explicit ;
end;
if right_type $(h h)=$ endpoint then
begin right_x $(h h) \leftarrow x_{\text {_coord }}(h h)$; left_x $(h h) \leftarrow x_{-}$coord $(h h) ;$ right_y $(h h) \leftarrow y_{-}$coord $(h h)$;
left_y $(h h) \leftarrow y _$coord $(h h)$; right_type $(h h) \leftarrow$ explicit;
end;
This code is used in section 562 .
564. Online graphic output. METAFONT displays images on the user's screen by means of a few primitive operations that are defined below. These operations have deliberately been kept simple so that they can be implemented without great difficulty on a wide variety of machines. Since Pascal has no traditional standards for graphic output, some system-dependent code needs to be written in order to support this aspect of METAFONT; but the necessary routines are usually quite easy to write.

In fact, there are exactly four such routines:
init_screen does whatever initialization is necessary to support the other operations; it is a boolean function that returns false if graphic output cannot be supported (e.g., if the other three routines have not been written, or if the user doesn't have the right kind of terminal).
blank_rectangle updates a buffer area in memory so that all pixels in a specified rectangle will be set to the background color.
paint_row assigns values to specified pixels in a row of the buffer just mentioned, based on "transition" indices explained below.
update_screen displays the current screen buffer; the effects of blank_rectangle and paint_row commands may or may not become visible until the next update_screen operation is performed. (Thus, update_screen is analogous to update_terminal.)
The Pascal code here is a minimum version of init_screen and update_screen, usable on METAFONT installations that don't support screen output. If init_screen is changed to return true instead of false, the other routines will simply log the fact that they have been called; they won't really display anything. The standard test routines for METAFONT use this log information to check that METAFONT is working properly, but the wlog instructions should be removed from production versions of METAFONT.

```
function init_screen: boolean;
    begin init_screen }\leftarrow\mathrm{ false;
    end;
procedure update_screen; { will be called only if init_screen returns true }
    begin init wlog_ln(`Calling_UPDATESCREEN`); tini {for testing only }
    end;
```

565. The user's screen is assumed to be a rectangular area, screen_width pixels wide and screen_depth pixels deep. The pixel in the upper left corner is said to be in column 0 of row 0 ; the pixel in the lower right corner is said to be in column screen_width -1 of row screen_depth -1 . Notice that row numbers increase from top to bottom, contrary to METAFONT's other coordinates.

Each pixel is assumed to have two states, referred to in this documentation as black and white. The background color is called white and the other color is called black; but any two distinct pixel values can actually be used. For example, the author developed METAFONT on a system for which white was black and black was bright green.
define white $=0 \quad\{$ background pixels $\}$
define black $=1 \quad\{$ visible pixels $\}$
\langle Types in the outer block 18〉 $+\equiv$
screen_row $=0$. . screen_depth; $\quad\{$ a row number on the screen $\}$
screen_col $=0$. screen_width; $\quad\{$ a column number on the screen $\}$
trans_spec $=$ array $[$ screen_col $]$ of screen_col; $\quad\{$ a transition spec, see below $\}$
pixel_color $=$ white. .black; $\quad\{$ specifies one of the two pixel values $\}$
566. We'll illustrate the blank_rectangle and paint_row operations by pretending to declare a screen buffer called screen_pixel. This code is actually commented out, but it does specify the intended effects.
\langle Global variables 13$\rangle+\equiv$
© $\{$ screen_pixel: array [screen_row, screen_col] of pixel_color; © $\}$
567. The blank_rectangle routine simply whitens all pixels that lie in columns left_col through right_col -1 , inclusive, of rows top_row through bot_row - 1 , inclusive, given four parameters that satisfy the relations

$$
0 \leq \text { left_col } \leq \text { right_col } \leq \text { screen_width }, \quad 0 \leq \text { top_row } \leq \text { bot_row } \leq \text { screen_depth } .
$$

If left_col $=$ right_col or top_row $=$ bot_row, nothing happens.
The commented-out code in the following procedure is for illustrative purposes only.
procedure blank_rectangle(left_col, right_col : screen_col; top_row, bot_row : screen_row);
var r : screen_row; c: screen_col;
begin $@\{$ for $r \leftarrow$ top_row to bot_row -1 do
for $c \leftarrow$ left_col to right_col -1 do screen_pixel $[r, c] \leftarrow$ white;
©
init $w l_{\text {log_cr }} ; \quad\{$ this will be done only after init_screen $=$ true $\}$
 tini
end;
568. The real work of screen display is done by paint_row. But it's not hard work, because the operation affects only one of the screen rows, and it affects only a contiguous set of columns in that row. There are four parameters: r (the row), b (the initial color), a (the array of transition specifications), and n (the number of transitions). The elements of a will satisfy

$$
0 \leq a[0]<a[1]<\cdots<a[n] \leq \text { screen_width }
$$

the value of r will satisfy $0 \leq r<$ screen_depth; and n will be positive.
The general idea is to paint blocks of pixels in alternate colors; the precise details are best conveyed by means of a Pascal program (see the commented-out code below).

```
procedure paint_row( \(r\) : screen_row; \(b\) : pixel_color; var \(a:\) trans_spec; \(n:\) screen_col \()\); \(^{\text {s }}\)
    var \(k\) : screen_col; \(\quad\{\) an index into \(a\}\)
        c: screen_col; \{ an index into screen_pixel \}
    begin ©\{ \(k \leftarrow 0 ; c \leftarrow a[0]\);
    repeat incr ( \(k\) );
        repeat screen_pixel \([r, c] \leftarrow b\); incr \((c)\);
        until \(c=a[k]\);
        \(b \leftarrow\) black \(-b ; \quad\{\) black \(\leftrightarrow\) white \(\}\)
    until \(k=n\);
    © \(\}\)
```



```
    for \(k \leftarrow 0\) to \(n\) do
        begin \(w \log (a[k]: 1)\);
        if \(k \neq n\) then \(w \log \left({ }^{-},{ }^{-}\right)\);
        end;
    wlog_ln( \(\left.\left.{ }^{-}\right)^{-}\right)\); tini
    end;
```

569. The remainder of METAFONT's screen routines are system-independent calls on the four primitives just defined.

First we have a global boolean variable that tells if init_screen has been called, and another one that tells if init_screen has given a true response.
\langle Global variables 13$\rangle+\equiv$
screen_started: boolean; \{ have the screen primitives been initialized? \}
screen_OK: boolean; \{ is it legitimate to call blank_rectangle, paint_row, and update_screen? \}
570. define start_screen \equiv
begin if \neg screen_started then
begin screen_OK \leftarrow init_screen; screen_started \leftarrow true;
end;
end
\langle Set initial values of key variables 21$\rangle+\equiv$
screen_started \leftarrow false; screen_OK \leftarrow false;
571. METAFONT provides the user with 16 "window" areas on the screen, in each of which it is possible to produce independent displays.

It should be noted that METAFONT's windows aren't really independent "clickable" entities in the sense of multi-window graphic workstations; METAFONT simply maps them into subsets of a single screen image that is controlled by init_screen, blank_rectangle, paint_row, and update_screen as described above. Implementations of METAFONT on a multi-window workstation probably therefore make use of only two windows in the other sense: one for the terminal output and another for the screen with METAFONT's 16 areas. Henceforth we shall use the term window only in METAFONT's sense.
\langle Types in the outer block 18$\rangle+\equiv$
window_number $=0 . .15$;
572. A user doesn't have to use any of the 16 windows. But when a window is "opened," it is allocated to a specific rectangular portion of the screen and to a specific rectangle with respect to METAFONT's coordinates. The relevant data is stored in global arrays window_open, left_col, right_col, top_row, bot_row, m_window, and n_{-}window.

The window_open array is boolean, and its significance is obvious. The left_col, ..., bot_row arrays contain screen coordinates that can be used to blank the entire window with blank_rectangle. And the other two arrays just mentioned handle the conversion between actual coordinates and screen coordinates: METAFONT's pixel in column m of row n will appear in screen column m_{-}window $+m$ and in screen row $n-w i n d o w-n$, provided that these lie inside the boundaries of the window.
Another array window_time holds the number of times this window has been updated.
\langle Global variables 13$\rangle+\equiv$
window_open: array [window_number] of boolean; \{ has this window been opened? \} left_col: array [window_number] of screen_col; \{ leftmost column position on screen \} right_col: array [window_number] of screen_col; \{rightmost column position, plus 1\} top_row: array [window_number] of screen_row; \{ topmost row position on screen \} bot_row: array [window_number] of screen_row; \{bottommost row position, plus 1$\}$ m_window: array [window_number] of integer; \{offset between user and screen columns \} n_window: array [window_number] of integer; \{offset between user and screen rows \} window_time: array [window_number] of integer; \{it has been updated this often \}
573. 〈Set initial values of key variables 21$\rangle+\equiv$
for $k \leftarrow 0$ to 15 do
begin window_open $[k] \leftarrow$ false; window_time $[k] \leftarrow 0$; end;
574. Opening a window isn't like opening a file, because you can open it as often as you like, and you never have to close it again. The idea is simply to define special points on the current screen display.

Overlapping window specifications may cause complex effects that can be understood only by scrutinizing METAFONT's display algorithms; thus it has been left undefined in the METAFONT user manual, although the behavior is in fact predictable.

Here is a subroutine that implements the command 'openwindow k from $(r 0, c 0)$ to $(r 1, c 1)$ at (x, y) '.
procedure open_a_window(k : window_number; r0, c0, r1, c1: scaled; x, y : scaled);
var m, n : integer; \{pixel coordinates \}
begin \langle Adjust the coordinates $(r 0, c 0)$ and $(r 1, c 1)$ so that they lie in the proper range 575\rangle;
window_open $[k] \leftarrow$ true; incr (window_time $[k])$;
left_col $[k] \leftarrow c 0 ;$ right_col $[k] \leftarrow c 1 ;$ top_row $[k] \leftarrow r 0 ;$ bot_row $[k] \leftarrow r 1$;
〈Compute the offsets between screen coordinates and actual coordinates 576\rangle;
start_screen;
if screen_OK then
begin blank_rectangle (c0, c1, r0, r1); update_screen; end;
end;
575. A window whose coordinates don't fit the existing screen size will be truncated until they do.
\langle Adjust the coordinates $(r 0, c 0)$ and $(r 1, c 1)$ so that they lie in the proper range 575$\rangle \equiv$
if $r 0<0$ then $r 0 \leftarrow 0$ else $r 0 \leftarrow$ round_unscaled $(r 0)$;
$r 1 \leftarrow$ round_unscaled $(r 1)$;
if $r 1>$ screen_depth then $r 1 \leftarrow$ screen_depth;
if $r 1<r 0$ then
if $r 0>$ screen_depth then $r 0 \leftarrow r 1$ else $r 1 \leftarrow r 0$;
if $c 0<0$ then $c 0 \leftarrow 0$ else $c 0 \leftarrow$ round_unscaled (c0);
$c 1 \leftarrow$ round_unscaled (c1);
if $c 1>$ screen_width then $c 1 \leftarrow$ screen_width;
if $c 1<c 0$ then
if $c 0>$ screen_width then $c 0 \leftarrow c 1$ else $c 1 \leftarrow c 0$
This code is used in section 574.
576. Three sets of coordinates are rampant, and they must be kept straight! (i) METAFONT's main coordinates refer to the edges between pixels. (ii) METAFONT's pixel coordinates (within edge structures) say that the pixel bounded by $(m, n),(m, n+1),(m+1, n)$, and $(m+1, n+1)$ is in pixel row number n and pixel column number m. (iii) Screen coordinates, on the other hand, have rows numbered in increasing order from top to bottom, as mentioned above.

The program here first computes integers m and n such that pixel column m of pixel row n will be at the upper left corner of the window. Hence pixel column $m-c 0$ of pixel row $n+r 0$ will be at the upper left corner of the screen.
\langle Compute the offsets between screen coordinates and actual coordinates 576$\rangle \equiv$
$m \leftarrow$ round_unscaled $(x) ; n \leftarrow$ round_unscaled $(y)-1$;
m_window $[k] \leftarrow c 0-m$; n_window $[k] \leftarrow r 0+n$
This code is used in section 574 .

577．Now here comes METAFONT＇s most complicated operation related to window display：Given the number k of an open window，the pixels of positive weight in cur＿edges will be shown as black in the window；all other pixels will be shown as white．
procedure disp＿edges（ k ：window＿number）；
label done，found；
var $p, q:$ pointer ；$\{$ for list manipulation $\}$
already＿there：boolean；\｛ is a previous incarnation in the window？\}
r ：integer；\｛row number \}
〈Other local variables for disp＿edges 580〉
begin if screen＿OK then
if left＿col $[k]<$ right＿col $[k]$ then if top＿row $[k]<$ bot＿row $[k]$ then
begin already＿there \leftarrow false；
if last＿window（cur＿edges）$=k$ then
if last＿window＿time $($ cur＿edges $)=$ window＿time $[k]$ then already＿there \leftarrow true；
if \neg already＿there then blank＿rectangle（left＿col $[k]$ ，right＿col $[k]$ ，top＿row $[k]$ ，bot＿row $[k]$ ）；
〈Initialize for the display computations 581\rangle ；
$p \leftarrow$ link（cur＿edges）$; r \leftarrow n_{-}$window $[k]-\left(n _m i n(\right.$ cur＿edges $\left.)-z e r o _f i e l d\right) ;$
while $(p \neq$ cur＿edges $) \wedge(r \geq$ top＿row $[k])$ do
begin if $r<b o t _r o w[k]$ then 〈Display the pixels of edge row p in screen row $\left.r 578\right\rangle$ ；
$p \leftarrow \operatorname{link}(p) ; \operatorname{decr}(r)$ ；
end；
update＿screen；incr（window＿time $[k])$ ；last＿window $($ cur＿edges $) \leftarrow k$ ；
last＿window＿time $($ cur＿edges $) \leftarrow$ window＿time $[k]$ ；
end；
end；
578．Since it takes some work to display a row，we try to avoid recomputation whenever we can．
\langle Display the pixels of edge row p in screen row $r 578\rangle \equiv$
begin if unsorted $(p)>$ void then sort＿edges (p)
else if unsorted $(p)=\operatorname{void}$ then
if already＿there then goto done；
unsorted $(p) \leftarrow$ void；\quad \｛ this time we＇ll paint，but maybe not next time \}
〈Set up the parameters needed for paint＿row；but goto done if no painting is needed after all 582 〉；
paint＿row（ r ，b，row＿transition，n ）；
done：end
This code is used in section 577 ．
579．The transition－specification parameter to paint＿row is always the same array．
\langle Global variables 13$\rangle+\equiv$
row＿transition：trans＿spec；\｛ an array of black／white transitions \}
580. The job remaining is to go through the list $\operatorname{sorted}(p)$, unpacking the info fields into m and weight, then making black the pixels whose accumulated weight w is positive.
\langle Other local variables for disp_edges 580$\rangle \equiv$
n : screen_col; $\quad\{$ the highest active index in row_transition \}
$w, w w$: integer; \{old and new accumulated weights \}
b: pixel_color; \{status of first pixel in the row transitions \}
$m, m m$: integer; \{old and new screen column positions \}
d : integer; \{ edge-and-weight without min_halfword compensation \}
m_adjustment: integer; \{ conversion between edge and screen coordinates \}
right_edge: integer; \{largest edge-and-weight that could affect the window \}
min_col: screen_col; \{ the smallest screen column number in the window $\}$
This code is used in section 577 .
581. Some precomputed constants make the display calculations faster.
\langle Initialize for the display computations 581$\rangle \equiv$
$m_{_}$adjustment $\leftarrow m_{_}$window $[k]-m_{_}$offset (cur_edges);
right_edge $\leftarrow 8 *\left(\right.$ right_col $[k]-m_{-}$adjustment $)$;
min_col \leftarrow left_col $[k]$
This code is used in section 577.
582. 〈Set up the parameters needed for paint_row; but goto done if no painting is needed after all 582$\rangle \equiv$ $n \leftarrow 0 ; w w \leftarrow 0 ; m \leftarrow-1 ; w \leftarrow 0 ; q \leftarrow \operatorname{sorted}(p) ;$ row_transition $[0] \leftarrow$ min_col;
loop begin if $q=$ sentinel then $d \leftarrow$ right_edge
else $d \leftarrow h o(\operatorname{info}(q))$;
$m m \leftarrow(d \operatorname{div} 8)+m _a d j u s t m e n t ;$
if $m m \neq m$ then
begin \langle Record a possible transition in column m 583〉;
$m \leftarrow m m ; w \leftarrow w w ;$
end;
if $d \geq$ right_edge then goto found;
$w w \leftarrow w w+(d \bmod 8)-z e r o _w ; q \leftarrow \operatorname{link}(q) ;$
end;
found: < Wind up the paint_row parameter calculation by inserting the final transition; goto done if no painting is needed 584\rangle;
This code is used in section 578 .
583. Now m is a screen column < right_col $[k]$.
\langle Record a possible transition in column m 583〉 \equiv
if $w \leq 0$ then
begin if $w w>0$ then if $m>$ min_col then
begin if $n=0$ then
if already_there then
begin $b \leftarrow$ white; $\operatorname{incr}(n)$;
end
else $b \leftarrow$ black
else $\operatorname{incr}(n)$;
row_transition $[n] \leftarrow m$;
end;
end
else if $w w \leq 0$ then if $m>$ min_col then
begin if $n=0$ then $b \leftarrow$ black;
incr (n); row_transition $[n] \leftarrow m$;
end
This code is used in section 582 .
584. If the entire row is white in the window area, we can omit painting it when already_there is false, since it has already been blanked out in that case.

When the following code is invoked, row_transition $[n]$ will be strictly less than right_col $[k]$.
〈Wind up the paint_row parameter calculation by inserting the final transition; goto done if no painting is needed 584$\rangle \equiv$
if already_there $\vee(w w>0)$ then
begin if $n=0$ then
if $w w>0$ then $b \leftarrow$ black
else $b \leftarrow$ white;
incr $(n) ;$ row_transition $[n] \leftarrow$ right_col $[k]$;
end
else if $n=0$ then goto done
This code is used in section 582.
585. Dynamic linear equations. METAFONT users define variables implicitly by stating equations that should be satisfied; the computer is supposed to be smart enough to solve those equations. And indeed, the computer tries valiantly to do so, by distinguishing five different types of numeric values:
type $(p)=$ known is the nice case, when value (p) is the scaled value of the variable whose address is p.
type $(p)=$ dependent means that $\operatorname{value}(p)$ is not present, but dep_list (p) points to a dependency list that expresses the value of variable p as a scaled number plus a sum of independent variables with fraction coefficients.
$\operatorname{type}(p)=$ independent means that value $(p)=64 s+m$, where $s>0$ is a "serial number" reflecting the time this variable was first used in an equation; also $0 \leq m<64$, and each dependent variable that refers to this one is actually referring to the future value of this variable times 2^{m}. (Usually $m=0$, but higher degrees of scaling are sometimes needed to keep the coefficients in dependency lists from getting too large. The value of m will always be even.)
type $(p)=$ numeric_type means that variable p hasn't appeared in an equation before, but it has been explicitly declared to be numeric.
type $(p)=$ undefined means that variable p hasn't appeared before.
We have actually discussed these five types in the reverse order of their history during a computation: Once known, a variable never again becomes dependent; once dependent, it almost never again becomes independent; once independent, it never again becomes numeric_type; and once numeric_type, it never again becomes undefined (except of course when the user specifically decides to scrap the old value and start again). A backward step may, however, take place: Sometimes a dependent variable becomes independent again, when one of the independent variables it depends on is reverting to undefined.
define s_scale $=64$ \{ the serial numbers are multiplied by this factor $\}$
define new_indep $(\#) \equiv$ \{create a new independent variable $\}$
begin if serial_no > el_gordo - s_scale then
overflow("independent_variables", serial_no div s_scale);
type $(\#) \leftarrow$ independent $;$ serial_no \leftarrow serial_no + s_scale $;$ value $(\#) \leftarrow$ serial_no;
end
\langle Global variables 13$\rangle+\equiv$
serial_no: integer; \{ the most recent serial number, times s_scale \}
586. 〈Make variable $q+s$ newly independent 586$\rangle \equiv$
new_indep $(q+s)$
This code is used in section 232.
587. But how are dependency lists represented? It's simple: The linear combination $\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}+\beta$ appears in $k+1$ value nodes. If $q=\operatorname{dep}$ _list (p) points to this list, and if $k>0$, then value $(q)=\alpha_{1}$ (which is a fraction); $\operatorname{info}(q)$ points to the location of v_{1}; and $\operatorname{link}(p)$ points to the dependency list $\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}+\beta$. On the other hand if $k=0$, then $\operatorname{value}(q)=\beta$ (which is scaled) and $\operatorname{info}(q)=$ null. The independent variables v_{1}, \ldots, v_{k} have been sorted so that they appear in decreasing order of their value fields (i.e., of their serial numbers). (It is convenient to use decreasing order, since value (null) $=0$. If the independent variables were not sorted by serial number but by some other criterion, such as their location in mem, the equation-solving mechanism would be too system-dependent, because the ordering can affect the computed results.)

The link field in the node that contains the constant term β is called the final link of the dependency list. METAFONT maintains a doubly-linked master list of all dependency lists, in terms of a permanently allocated node in mem called dep_head. If there are no dependencies, we have link (dep_head) $=$ dep_head and $\operatorname{prev} v_{-}$dep $($dep_head $)=$dep_head; otherwise $\operatorname{link}($ dep_head $)$ points to the first dependent variable, say p, and prev _dep $(p)=$ dep_head. We have type $(p)=$ dependent, and dep_list (p) points to its dependency list. If the final link of that dependency list occurs in location q, then $\operatorname{link}(q)$ points to the next dependent variable (say r); and we have $\operatorname{prev} \operatorname{dep}^{\operatorname{dep}}(r)=q$, etc.
define dep_list(\#) $\equiv \operatorname{link}($ value_loc(\#)) \quad \{ half of the value field in a dependent variable \}
define prev _dep $(\#) \equiv \operatorname{info}($ value_loc (\#)) $\quad\{$ the other half; makes a doubly linked list $\}$
define dep_node_size $=2$ \{the number of words per dependency node $\}$
\langle Initialize table entries (done by INIMF only) 176$\rangle+\equiv$
serial_no $\leftarrow 0 ; \operatorname{link}($ dep_head $) \leftarrow$ dep_head $;$ prev_dep $($ dep_head $) \leftarrow$ dep_head $;$ info $($ dep_head $) \leftarrow$ null;
dep_list $($ dep_head $) \leftarrow$ null;
588. Actually the description above contains a little white lie. There's another kind of variable called proto_dependent, which is just like a dependent one except that the α coefficients in its dependency list are scaled instead of being fractions. Proto-dependency lists are mixed with dependency lists in the nodes reachable from dep_head.
589. Here is a procedure that prints a dependency list in symbolic form. The second parameter should be either dependent or proto_dependent, to indicate the scaling of the coefficients.
\langle Declare subroutines for printing expressions 257$\rangle+\equiv$
procedure print_dependency (p : pointer; t : small_number);
label exit;
var v : integer; \{ a coefficient \}
$p p, q$: pointer; \{for list manipulation \}
begin $p p \leftarrow p$;
loop begin $v \leftarrow \operatorname{abs}($ value $(p)) ; q \leftarrow \operatorname{info}(p)$;
if $q=$ null then \quad the constant term \}
begin if $(v \neq 0) \vee(p=p p)$ then
begin if $\operatorname{value}(p)>0$ then
if $p \neq p p$ then print_char("+");
print_scaled $($ value $(p))$;
end;
return;
end;
〈Print the coefficient, unless it's $\pm 1.0590\rangle$;
if type $(q) \neq$ independent then confusion("dep");
print_variable_name $(q) ; v \leftarrow \operatorname{value}(q) \bmod$ s_scale;
while $v>0$ do
begin $\operatorname{print}(" * 4 ") ; v \leftarrow v-2$;
end;
$p \leftarrow \operatorname{link}(p) ;$
end;
exit: end;
590. 〈Print the coefficient, unless it's $\pm 1.0590\rangle \equiv$
if value $(p)<0$ then print_char ("-")
else if $p \neq p p$ then print_char ("+");
if $t=$ dependent then $v \leftarrow$ round_fraction (v);
if $v \neq u n i t y$ then print_scaled (v)
This code is used in section 589.
591. The maximum absolute value of a coefficient in a given dependency list is returned by the following simple function.

```
function max_coef ( \(p\) : pointer): fraction;
    var \(x\) : fraction; \{ the maximum so far \}
    begin \(x \leftarrow 0\);
    while \(\operatorname{info}(p) \neq\) null do
        begin if \(\operatorname{abs}(\operatorname{value}(p))>x\) then \(x \leftarrow \operatorname{abs}(\operatorname{value}(p))\);
        \(p \leftarrow \operatorname{link}(p)\);
        end;
    max_coef \(\leftarrow x\);
    end;
```

592. One of the main operations needed on dependency lists is to add a multiple of one list to the other; we call this p_{-}plus_f f, where p and q point to dependency lists and f is a fraction.

If the coefficient of any independent variable becomes coef_bound or more, in absolute value, this procedure changes the type of that variable to 'independent_needing_fix', and sets the global variable fix_needed to true. The value of coef_bound $=\mu$ is chosen so that $\mu^{2}+\mu<8$; this means that the numbers we deal with won't get too large. (Instead of the "optimum" $\mu=(\sqrt{33}-1) / 2 \approx 2.3723$, the safer value $7 / 3$ is taken as the threshold.)
The changes mentioned in the preceding paragraph are actually done only if the global variable watch_coefs is true. But it usually is; in fact, it is false only when METAFONT is making a dependency list that will soon be equated to zero.
Several procedures that act on dependency lists, including $p_{-} p l u s_{-} f q$, set the global variable dep_final to the final (constant term) node of the dependency list that they produce.
define coef_bound \equiv ' $4525252525 \quad\{$ fraction approximation to $7 / 3$ \}
define independent_needing_fix $=0$
\langle Global variables 13$\rangle+\equiv$
fix_needed: boolean; \{does at least one independent variable need scaling? \}
watch_coefs: boolean; \{ should we scale coefficients that exceed coef_bound? \}
dep_final: pointer; $\quad\{$ location of the constant term and final link $\}$
593. 〈Set initial values of key variables 21$\rangle+\equiv$
fix_needed \leftarrow false; watch_coefs \leftarrow true;

594．The $p_{-} p l u s _f q$ procedure has a fourth parameter，t ，that should be set to proto＿dependent if p is a proto－dependency list．In this case f will be scaled，not a fraction．Similarly，the fifth parameter $t t$ should be proto＿dependent if q is a proto－dependency list．

List q is unchanged by the operation；but list p is totally destroyed．
The final link of the dependency list or proto－dependency list returned by $p_{-} p l u s_{-} f q$ is the same as the original final link of p ．Indeed，the constant term of the result will be located in the same mem location as the original constant term of p ．

Coefficients of the result are assumed to be zero if they are less than a certain threshold．This compensates for inevitable rounding errors，and tends to make more variables＇known＇．The threshold is approximately 10^{-5} in the case of normal dependency lists， 10^{-4} for proto－dependencies．
define fraction＿threshold $=2685 \quad$ \｛a fraction coefficient less than this is zeroed $\}$
define half＿fraction＿threshold $=1342$ \｛half of fraction＿threshold $\}$
define scaled＿threshold $=8 \quad\{$ a scaled coefficient less than this is zeroed $\}$
define half＿scaled＿threshold $=4 \quad\{$ half of scaled＿threshold $\}$
\langle Declare basic dependency－list subroutines 594$\rangle \equiv$
function p_{-}plus＿f $f(p$ ：pointer $; f:$ integer $; q:$ pointer $; t, t t:$ small＿number $)$ ：pointer；
label done；
var $p p, q q:$ pointer；$\{\operatorname{info}(p)$ and $\operatorname{info}(q)$ ，respectively $\}$
$r, s:$ pointer；\quad for list manipulation \}
threshold：integer；\｛defines a neighborhood of zero \}
v ：integer；\｛ temporary register \}
begin if $t=$ dependent then threshold \leftarrow fraction＿threshold
else threshold \leftarrow scaled＿threshold；
$r \leftarrow$ temp＿head $; p p \leftarrow \operatorname{info}(p) ; q q \leftarrow \operatorname{info}(q) ;$
loop if $p p=q q$ then
if $p p=$ null then goto done
else 〈Contribute a term from p ，plus f times the corresponding term from q 595〉
else if $\operatorname{value}(p p)<\operatorname{value}(q q)$ then 〈Contribute a term from q ，multiplied by $f 596$ 〉
else begin $\operatorname{link}(r) \leftarrow p ; r \leftarrow p ; p \leftarrow \operatorname{link}(p) ; p p \leftarrow \operatorname{info}(p)$ ；
end；
done：if $t=$ dependent then $\operatorname{value}(p) \leftarrow \operatorname{slow_ add(value}(p)$, take＿fraction $\left.(v a l u e(q), f)\right)$
else value $(p) \leftarrow$ slow＿add $(\operatorname{value}(p)$ ，take＿scaled $(\operatorname{value}(q), f))$ ；
link $(r) \leftarrow p ;$ dep＿final $\leftarrow p ; p_{-}$plus＿f $q \leftarrow$ link（temp＿head）；
end；
See also sections $600,602,603$ ，and 604 ．
This code is used in section 246.

```
595. 〈Contribute a term from \(p\), plus \(f\) times the corresponding term from \(q 595\rangle \equiv\)
    begin if \(t t=\) dependent then \(v \leftarrow\) value \((p)+\operatorname{take}-f r a c t i o n(f, v a l u e ~(q))\)
    else \(v \leftarrow \operatorname{value}(p)+\) take_scaled \((f, \operatorname{value}(q))\);
    value \((p) \leftarrow v ; s \leftarrow p ; p \leftarrow \operatorname{link}(p)\);
    if abs \((v)<\) threshold then free_node(s, dep_node_size)
    else begin if abs \((v) \geq\) coef_bound then
        if watch_coefs then
            begin type \((q q) \leftarrow\) independent_needing_fix; fix_needed \(\leftarrow\) true;
                end;
        \(\operatorname{link}(r) \leftarrow s ; r \leftarrow s ;\)
        end;
    \(p p \leftarrow \operatorname{info}(p) ; q \leftarrow \operatorname{link}(q) ; q q \leftarrow \operatorname{info}(q) ;\)
    end
```

This code is used in section 594.

596．〈Contribute a term from q ，multiplied by $f 596\rangle \equiv$
begin if $t t=$ dependent then $v \leftarrow$ take＿fraction $(f$, value $(q))$
else $v \leftarrow$ take＿scaled $(f$ ，value $(q))$ ；
if $\operatorname{abs}(v)>$ half（threshold）then
begin $s \leftarrow$ get＿node（dep＿node＿size）；info $(s) \leftarrow q q$ ；value $(s) \leftarrow v$ ；
if abs $(v) \geq$ coef＿bound then
if watch＿coefs then
begin type $(q q) \leftarrow$ independent＿needing＿fix；fix＿needed \leftarrow true；
end；
$\operatorname{link}(r) \leftarrow s ; r \leftarrow s ;$
end；
$q \leftarrow \operatorname{link}(q) ; q q \leftarrow \operatorname{info}(q) ;$
end
This code is used in section 594.
597．It is convenient to have another subroutine for the special case of $p_{-} p l u s_{-} f q$ when $f=1.0$ ．In this routine lists p and q are both of the same type t（either dependent or proto＿dependent）．

label done；

var $p p, q q$ ：pointer；$\{\operatorname{info}(p)$ and $\operatorname{info}(q)$ ，respectively $\}$ $r, s:$ pointer；\｛ for list manipulation \} threshold：integer；\｛defines a neighborhood of zero \} v ：integer；\｛ temporary register \}
begin if $t=$ dependent then threshold \leftarrow fraction＿threshold
else threshold \leftarrow scaled＿threshold；
$r \leftarrow$ temp＿head $; p p \leftarrow \operatorname{info}(p) ; q q \leftarrow \operatorname{info}(q)$ ；
loop if $p p=q q$ then
if $p p=$ null then goto done
else 〈Contribute a term from p ，plus the corresponding term from q 598〉
else if value $(p p)<\operatorname{value}(q q)$ then
begin $s \leftarrow$ get＿node $($ dep＿node＿size $) ; \operatorname{info}(s) \leftarrow q q ;$ value $(s) \leftarrow \operatorname{value}(q) ; q \leftarrow \operatorname{link}(q)$ ；
$q q \leftarrow \operatorname{info}(q) ; \operatorname{link}(r) \leftarrow s ; r \leftarrow s ;$
end
else begin $\operatorname{link}(r) \leftarrow p ; r \leftarrow p ; p \leftarrow \operatorname{link}(p) ; p p \leftarrow \operatorname{info}(p)$ ；
end；
done：value $(p) \leftarrow$ slow＿add $(\operatorname{value}(p)$, value $(q)) ; \operatorname{link}(r) \leftarrow p ;$ dep＿final $\leftarrow p ; p_{-}$plus＿$q \leftarrow$ link（temp＿head）；
end；
598．〈Contribute a term from p ，plus the corresponding term from q 598〉 \equiv
begin $v \leftarrow \operatorname{value}(p)+\operatorname{value}(q) ; \operatorname{value}(p) \leftarrow v ; s \leftarrow p ; p \leftarrow \operatorname{link}(p) ; p p \leftarrow \operatorname{info}(p)$ ；
if abs $(v)<$ threshold then free＿node（s，dep＿node＿size）
else begin if abs $(v) \geq$ coef＿bound then
if watch＿coefs then
begin type $(q q) \leftarrow$ independent＿needing＿fix；fix＿needed \leftarrow true；
end；
$\operatorname{link}(r) \leftarrow s ; r \leftarrow s ;$
end；
$q \leftarrow \operatorname{link}(q) ; q q \leftarrow \operatorname{info}(q) ;$
end
This code is used in section 597.
599. A somewhat simpler routine will multiply a dependency list by a given constant v. The constant is either a fraction less than fraction_one, or it is scaled. In the latter case we might be forced to convert a dependency list to a proto-dependency list. Parameters $t 0$ and $t 1$ are the list types before and after; they should agree unless $t 0=$ dependent and $t 1=$ proto_dependent and $v_{-} i_{-}$scaled $=$true.

var r, s : pointer ; \{ for list manipulation \}
$w:$ integer ; \{tentative coefficient \}
threshold: integer; scaling_down: boolean;
begin if $t 0 \neq t 1$ then scaling_down \leftarrow true else scaling_down $\leftarrow \neg v_{-}$is_scaled;
if $t 1=$ dependent then threshold \leftarrow half_fraction_threshold
else threshold \leftarrow half_scaled_threshold;
$r \leftarrow$ temp_head;
while $\operatorname{info}(p) \neq$ null do
begin if scaling_down then $w \leftarrow$ take_fraction $(v, \operatorname{value}(p))$
else $w \leftarrow$ take_scaled $(v$, value $(p))$;
if $a b s(w) \leq$ threshold then
begin $s \leftarrow$ link (p); free_node (p, dep_node_size); $p \leftarrow s$; end
else begin if $\operatorname{abs}(w) \geq$ coef_bound then
begin fix_needed \leftarrow true; type $($ info $(p)) \leftarrow$ independent_needing_fix;
end;
$\operatorname{link}(r) \leftarrow p ; r \leftarrow p ; \operatorname{value}(p) \leftarrow w ; p \leftarrow \operatorname{link}(p) ;$
end;
end;
$\operatorname{link}(r) \leftarrow p$;
if v_is_scaled then value $(p) \leftarrow$ take_scaled $(v a l u e(p), v)$
else value $(p) \leftarrow$ take_fraction $($ value $(p), v)$;
p_{-}times_v \leftarrow link $($ temp_head $)$;
end;
600. Similarly, we sometimes need to divide a dependency list by a given scaled constant.
\langle Declare basic dependency-list subroutines 594〉 $+\equiv$
function $p_{-} o v e r_{-} v(p: p o i n t e r ; ~ v:$ scaled $;$ t0, $t 1:$ small_number $):$ pointer;
var r, s : pointer; $\quad\{$ for list manipulation $\}$
w : integer; \{tentative coefficient \}
threshold: integer; scaling_down: boolean;
begin if $t 0 \neq t 1$ then scaling_down \leftarrow true else scaling_down \leftarrow false;
if $t 1=$ dependent then threshold \leftarrow half_fraction_threshold
else threshold \leftarrow half_scaled_threshold;
$r \leftarrow$ temp_head;
while $\operatorname{info}(p) \neq$ null do
begin if scaling_down then
if $a b s(v)<' 2000000$ then $w \leftarrow$ make_scaled (value $(p), v *$ '10000)
else $w \leftarrow$ make_scaled (round_fraction $(v a l u e ~(p)), v)$
else $w \leftarrow$ make_scaled (value $(p), v)$;
if $a b s(w) \leq$ threshold then
begin $s \leftarrow$ link (p); free_node (p, dep_node_size); $p \leftarrow s$; end
else begin if $\operatorname{abs}(w) \geq$ coef_bound then
begin fix_needed \leftarrow true $;$ type $(\operatorname{info}(p)) \leftarrow$ independent_needing_fix;
end;
$\operatorname{link}(r) \leftarrow p ; r \leftarrow p ; \operatorname{value}(p) \leftarrow w ; p \leftarrow \operatorname{link}(p) ;$
end;
end;
link $(r) \leftarrow p ;$ value $(p) \leftarrow$ make_scaled $(v a l u e ~(p), v) ;$ p_over_v \leftarrow link $($ temp_head $)$;
end;
601. Here's another utility routine for dependency lists. When an independent variable becomes dependent, we want to remove it from all existing dependencies. The p_{-}with_x_becoming_q function computes the dependency list of p after variable x has been replaced by q.
This procedure has basically the same calling conventions as p_{-}plus_fq: List q is unchanged; list p is destroyed; the constant node and the final link are inherited from p; and the fourth parameter tells whether or not p is proto_dependent. However, the global variable dep_final is not altered if x does not occur in list p.
function p_{-}with_x_becoming_ $q(p, x, q$: pointer $; t:$ small_number $)$: pointer;
var $r, s:$ pointer ; \{ for list manipulation \}
v : integer; ; coefficient of $x\}$
$s x$: integer; $\quad\{$ serial number of $x\}$
begin $s \leftarrow p ; r \leftarrow$ temp_head; s $x \leftarrow$ value (x);
while value $(\operatorname{info}(s))>s x$ do
begin $r \leftarrow s ; s \leftarrow \operatorname{link}(s)$;
end;
if $\operatorname{info}(s) \neq x$ then p_{-}with_x_becoming_ $q \leftarrow p$
else begin link $($ temp_head $) \leftarrow p$; link $(r) \leftarrow \operatorname{link}(s) ; v \leftarrow$ value (s); free_node $(s$, dep_node_size);
$p _w i t h _x _b e c o m i n g _q \leftarrow p_{-} p l u s_{-} f q($ link $($ temp_head $), v, q, t$, dependent $)$;
end;
end;
602. Here's a simple procedure that reports an error when a variable has just received a known value that's out of the required range.
\langle Declare basic dependency-list subroutines 594$\rangle+\equiv$
procedure val_too_big (x : scaled);
begin if internal [warning_check] >0 then

end;
end;
603. When a dependent variable becomes known, the following routine removes its dependency list. Here p points to the variable, and q points to the dependency list (which is one node long).
\langle Declare basic dependency-list subroutines 594〉 $+\equiv$
procedure make_known (p, q : pointer);
var $t:$ dependent . . proto_dependent; ; the previous type $\}$
$\operatorname{begin} \operatorname{prev}$ _dep $(\operatorname{link}(q)) \leftarrow \operatorname{prev} \mathbf{- d e p}(p) ; \operatorname{link}\left(\operatorname{prev} _\operatorname{dep}(p)\right) \leftarrow \operatorname{link}(q) ; t \leftarrow \operatorname{type}(p) ;$ type $(p) \leftarrow$ known;
value $(p) \leftarrow$ value (q); free_node $(q$, dep_node_size);
if abs $(\operatorname{value}(p)) \geq$ fraction_one then val_too_big $(\operatorname{value}(p))$;
if internal[tracing_equations] >0 then
if interesting (p) then
begin begin_diagnostic; print_nl("\#\#\#\#ப"); print_variable_name(p); print_char("=");
print_scaled(value $(p))$; end_diagnostic(false);
end;
if cur_exp $=p$ then
if cur_type $=t$ then
begin cur_type \leftarrow known; cur_exp $\leftarrow \operatorname{value}(p)$; free_node $\left(p, v a l u e _n o d e _s i z e\right) ; ~ ;$
end;
end;
604. The fix_dependencies routine is called into action when fix_needed has been triggered. The program keeps a list s of independent variables whose coefficients must be divided by 4 .
In unusual cases, this fixup process might reduce one or more coefficients to zero, so that a variable will become known more or less by default.
\langle Declare basic dependency-list subroutines 594$\rangle+\equiv$
procedure fix_dependencies;
label done;
var $p, q, r, s, t:$ pointer; \{ list manipulation registers \}
$x:$ pointer; $\{$ an independent variable $\}$
begin $r \leftarrow$ link (dep_head); $s \leftarrow$ null;
while $r \neq$ dep_head do
begin $t \leftarrow r$;
\langle Run through the dependency list for variable t, fixing all nodes, and ending with final link $q 605\rangle$;
$r \leftarrow \operatorname{link}(q)$;
if $q=$ dep_list (t) then make_known (t, q);
end;
while $s \neq$ null do
begin $p \leftarrow \operatorname{link}(s) ; x \leftarrow \operatorname{info}(s) ;$ free_avail $(s) ; s \leftarrow p ;$ type $(x) \leftarrow$ independent;
value $(x) \leftarrow \operatorname{value}(x)+2$;
end;
fix_needed \leftarrow false;
end;
605. define independent_being__fixed $=1$ \{this variable already appears in $s\}$
\langle Run through the dependency list for variable t, fixing all nodes, and ending with final link $q 605\rangle \equiv$
$r \leftarrow$ value_loc $(t) ; \quad\{\operatorname{link}(r)=\operatorname{dep}$ _list $(t)\}$
loop begin $q \leftarrow \operatorname{link}(r) ; x \leftarrow \operatorname{info}(q)$;
if $x=$ null then goto done;
if type $(x) \leq$ independent_being_fixed then
begin if type $(x)<$ independent_being_fixed then
begin $p \leftarrow$ get_avail; link $(p) \leftarrow s ; s \leftarrow p ;$ info $(s) \leftarrow x$; type $(x) \leftarrow$ independent_being_fixed;
end;
value $(q) \leftarrow \operatorname{value}(q) \operatorname{div} 4$;
if value $(q)=0$ then
begin $\operatorname{link}(r) \leftarrow \operatorname{link}(q) ;$ free_node $(q$, dep_node_size $) ; q \leftarrow r$;
end;
end;
$r \leftarrow q ;$
end;
done:
This code is used in section 604.
606. The new_dep routine installs a dependency list p into the value node q, linking it into the list of all known dependencies. We assume that dep_final points to the final node of list p.
procedure new_dep (q, p : pointer);
var r : pointer; \{ what used to be the first dependency \}
begin dep_list $(q) \leftarrow p$; prev_dep $(q) \leftarrow$ dep_head $; r \leftarrow \operatorname{link}($ dep_head $)$; link $($ dep_final $) \leftarrow r$;
$\operatorname{prev} _$dep $(r) \leftarrow$ dep_final; $\operatorname{link}($ dep_head $) \leftarrow q$;
end;
607. Here is one of the ways a dependency list gets started. The const_dependency routine produces a list that has nothing but a constant term.
function const_dependency ($v:$ scaled): pointer;
begin dep_final \leftarrow get_node $($ dep_node_size $)$; value $($ dep_final $) \leftarrow v$; info $(\text { dep_final })^{\text {find }} \leftarrow$ null;
const_dependency \leftarrow dep_final;
end;
608. And here's a more interesting way to start a dependency list from scratch: The parameter to single_dependency is the location of an independent variable x, and the result is the simple dependency list ' $x+0$ '.
In the unlikely event that the given independent variable has been doubled so often that we can't refer to it with a nonzero coefficient, single_dependency returns the simple list ' 0 '. This case can be recognized by testing that the returned list pointer is equal to dep_final.
function single_dependency (p : pointer): pointer;
var q : pointer; \{ the new dependency list \} m : integer; $\{$ the number of doublings \}
begin $m \leftarrow$ value $(p) \bmod s_{-}$scale;
if $m>28$ then single_dependency \leftarrow const_dependency (0)
else begin $q \leftarrow$ get_node (dep_node_size); value $(q) \leftarrow$ two_to_the $[28-m]$; info $(q) \leftarrow p$; link $(q) \leftarrow$ const_dependency (0); single_dependency $\leftarrow q$; end;
end;
609. We sometimes need to make an exact copy of a dependency list.
function copy_dep_list (p : pointer): pointer;
label done;
var q : pointer; \{ the new dependency list \}
begin $q \leftarrow$ get_node(dep_node_size); dep_final $\leftarrow q$;
loop begin info $($ dep_final $) \leftarrow$ info (p); value $($ dep_final $) \leftarrow \operatorname{value}(p)$; if info $($ dep_final $)=$ null then goto done; $\operatorname{link}($ dep_final $) \leftarrow$ get_node $($ dep_node_size $) ;$ dep_final $\leftarrow \operatorname{link}\left(d e p _f i n a l\right) ; p \leftarrow \operatorname{link}(p)$; end;
done: copy_dep_list $\leftarrow q$;
end;

610．But how do variables normally become known？Ah，now we get to the heart of the equation－solving mechanism．The linear＿eq procedure is given a dependent or proto＿dependent list，p，in which at least one independent variable appears．It equates this list to zero，by choosing an independent variable with the largest coefficient and making it dependent on the others．The newly dependent variable is eliminated from all current dependencies，thereby possibly making other dependent variables known．
The given list p is，of course，totally destroyed by all this processing．
procedure linear＿eq（ p ：pointer；$t:$ small＿number $)$ ；
var q, r, s ：pointer；$\quad\{$ for link manipulation \}
$x:$ pointer；$\{$ the variable that loses its independence \}
n ：integer；\｛ the number of times x had been halved \}
v ：integer；\｛ the coefficient of x in list $p\}$
prev＿r：pointer；\｛lags one step behind r \}
final＿node：pointer；\｛ the constant term of the new dependency list \}
w ：integer；\｛a tentative coefficient \}
begin \langle Find a node q in list p whose coefficient v is largest 611\rangle ；
$x \leftarrow \operatorname{info}(q) ; n \leftarrow$ value $(x) \bmod s_{-}$scale；
\langle Divide list p by $-v$ ，removing node $q 612\rangle$ ；
if internal［tracing＿equations］＞0 then 〈Display the new dependency 613〉；
〈Simplify all existing dependencies by substituting for x 614〉；
〈Change variable x from independent to dependent or known 615\rangle ；
if fix＿needed then fix＿dependencies；
end；
611．\langle Find a node q in list p whose coefficient v is largest 611$\rangle \equiv$
$q \leftarrow p ; r \leftarrow \operatorname{link}(p) ; v \leftarrow \operatorname{value}(q) ;$
while $\operatorname{info}(r) \neq$ null do
begin if $\operatorname{abs}(\operatorname{value}(r))>\operatorname{abs}(v)$ then
begin $q \leftarrow r ; v \leftarrow \operatorname{value}(r)$ ；
end；
$r \leftarrow \operatorname{link}(r) ;$
end
This code is used in section 610.
612. Here we want to change the coefficients from scaled to fraction, except in the constant term. In the common case of a trivial equation like ' $\mathrm{x}=3.14$ ', we will have $v=-$ fraction_one, $q=p$, and $t=$ dependent.
\langle Divide list p by $-v$, removing node $q 612\rangle \equiv$
$s \leftarrow t e m p _h e a d ; \operatorname{link}(s) \leftarrow p ; r \leftarrow p ;$
repeat if $r=q$ then
begin link $(s) \leftarrow \operatorname{link}(r)$; free_node $(r$, dep_node_size $)$;
end
else begin $w \leftarrow$ make_fraction (value $(r), v)$;
if $\operatorname{abs}(w) \leq h a l f_{-}$fraction_threshold then
begin link $(s) \leftarrow$ link (r); free_node $(r$, dep_node_size $)$;
end
else begin value $(r) \leftarrow-w ; s \leftarrow r$;
end;
end;
$r \leftarrow \operatorname{link}(s)$;
until info $(r)=n u l l$;
if $t=$ proto_dependent then value $(r) \leftarrow-$ make_scaled $(\operatorname{value}(r), v)$
else if $v \neq-$ fraction_one then $\operatorname{value}(r) \leftarrow-$ make_fraction $(v a l u e(r), v)$;
final_node $\leftarrow r ; p \leftarrow \operatorname{link}\left(t e m p _h e a d\right)$
This code is used in section 610.
613. 〈Display the new dependency 613$\rangle \equiv$
if interesting (x) then
begin begin_diagnostic; print_nl("\#\#ப"); print_variable_name $(x) ; w \leftarrow n$;
while $w>0$ do
begin $\operatorname{print}(" * 4 ") ; w \leftarrow w-2$;
end;
print_char("="); print_dependency (p, dependent); end_diagnostic(false);
end
This code is used in section 610 .
614. 〈Simplify all existing dependencies by substituting for $x 614\rangle \equiv$
prev_r \leftarrow dep_head $; r \leftarrow \operatorname{link}($ dep_head $)$;
while $r \neq$ dep_head do
begin $s \leftarrow$ dep_list $(r) ; q \leftarrow p_{-}$with_x_becoming_ $q(s, x, p$, type $(r))$;
if $\operatorname{info}(q)=$ null then make_known (r, q)
else begin dep_list $(r) \leftarrow q$;
repeat $q \leftarrow \operatorname{link}(q)$;
until $\operatorname{info}(q)=$ null;
prev_r $\leftarrow q$;
end;
$r \leftarrow \operatorname{link}($ prev_r $)$;
end
This code is used in section 610 .
615. 〈Change variable x from independent to dependent or known 615$\rangle \equiv$
if $n>0$ then $\left\langle\right.$ Divide list p by $\left.2^{n} 616\right\rangle$;
if $\operatorname{info}(p)=$ null then
begin type $(x) \leftarrow$ known; value $(x) \leftarrow \operatorname{value}(p)$;
if abs $(\operatorname{value}(x)) \geq$ fraction_one then val_too_big $(v a l u e(x))$;
free_node (p, dep_node_size);
if cur_exp $=x$ then
if cur_type $=$ independent then
begin cur_exp \leftarrow value (x); cur_type \leftarrow known; free_node $(x$, value_node_size);
end;
end
else begin type $(x) \leftarrow$ dependent; dep_final \leftarrow final_node; new_dep (x, p);
if cur_exp $=x$ then
if cur_type $=$ independent then cur_type \leftarrow dependent;
end
This code is used in section 610 .
616. $\left\langle\right.$ Divide list p by $\left.2^{n} 616\right\rangle \equiv$
begin $s \leftarrow$ temp_head; link $($ temp_head $) \leftarrow p ; r \leftarrow p$;
repeat if $n>30$ then $w \leftarrow 0$
else $w \leftarrow$ value (r) div two_to_the $[n]$;
if $($ abs $(w) \leq$ half_fraction_threshold $) \wedge($ info $(r) \neq$ null $)$ then
begin $\operatorname{link}(s) \leftarrow \operatorname{link}(r)$; free_node (r, dep_node_size);
end
else begin value $(r) \leftarrow w$; $s \leftarrow r$;
end;
$r \leftarrow \operatorname{link}(s) ;$
until info $(s)=$ null;
$p \leftarrow \operatorname{link}($ temp_head $)$;
end
This code is used in section 615.
617. The check_mem procedure, which is used only when METAFONT is being debugged, makes sure that the current dependency lists are well formed.
\langle Check the list of linear dependencies 617$\rangle \equiv$

```
\(q \leftarrow\) dep_head \(; p \leftarrow \operatorname{link}(q)\);
    while \(p \neq\) dep_head do
        begin if \(\operatorname{prev} \operatorname{dep}(p) \neq q\) then
            begin print_nl("Bad」PREVDEP பat \(_{\llcorner }\)"); print_int \((p)\);
            end;
    \(p \leftarrow\) dep_list \((p) ; r \leftarrow\) inf_val;
    repeat if \(\operatorname{value}(\operatorname{info}(p)) \geq \operatorname{value}(r)\) then
```



```
                    end;
            \(r \leftarrow \operatorname{info}(p) ; q \leftarrow p ; p \leftarrow \operatorname{link}(q) ;\)
    until \(r=\) null;
    end
```

This code is used in section 180.
618. Dynamic nonlinear equations. Variables of numeric type are maintained by the general scheme of independent, dependent, and known values that we have just studied; and the components of pair and transform variables are handled in the same way. But METAFONT also has five other types of values: boolean, string, pen, path, and picture; what about them?
Equations are allowed between nonlinear quantities, but only in a simple form. Two variables that haven't yet been assigned values are either equal to each other, or they're not.

Before a boolean variable has received a value, its type is unknown_boolean; similarly, there are variables whose type is unknown_string, unknown_pen, unknown_path, and unknown_picture. In such cases the value is either null (which means that no other variables are equivalent to this one), or it points to another variable of the same undefined type. The pointers in the latter case form a cycle of nodes, which we shall call a "ring." Rings of undefined variables may include capsules, which arise as intermediate results within expressions or as expr parameters to macros.

When one member of a ring receives a value, the same value is given to all the other members. In the case of paths and pictures, this implies making separate copies of a potentially large data structure; users should restrain their enthusiasm for such generality, unless they have lots and lots of memory space.
619. The following procedure is called when a capsule node is being added to a ring (e.g., when an unknown variable is mentioned in an expression).
function new_ring_entry (p : pointer): pointer;
var q : pointer; \{ the new capsule node \}
begin $q \leftarrow$ get_node $($ value_node_size); name_type $(q) \leftarrow$ capsule ; type $(q) \leftarrow$ type (p);
if value $(p)=$ null then value $(q) \leftarrow p$ else value $(q) \leftarrow \operatorname{value}(p)$;
$\operatorname{value}(p) \leftarrow q$; new_ring_entry $\leftarrow q$;
end;
620. Conversely, we might delete a capsule or a variable before it becomes known. The following procedure simply detaches a quantity from its ring, without recycling the storage.
\langle Declare the recycling subroutines 268$\rangle+\equiv$
procedure ring_delete (p : pointer);
var q : pointer;
begin $q \leftarrow \operatorname{value}(p)$;
if $q \neq$ null then
if $q \neq p$ then
begin while $\operatorname{value}(q) \neq p$ do $q \leftarrow \operatorname{value}(q)$;
$\operatorname{value}(q) \leftarrow \operatorname{value}(p)$;
end;
end;

621．Eventually there might be an equation that assigns values to all of the variables in a ring．The nonlinear＿eq subroutine does the necessary propagation of values．
If the parameter flush＿p is true，node p itself needn＇t receive a value；it will soon be recycled．
procedure nonlinear＿eq（ v ：integer；$p:$ pointer；flush＿p ：boolean）；
var t ：small＿number；$\{$ the type of ring $p\}$
$q, r:$ pointer；\｛ link manipulation registers \}
begin $t \leftarrow$ type $(p)-$ unknown＿tag；$q \leftarrow \operatorname{value}(p)$ ；
if flush＿p then type $(p) \leftarrow$ vacuous else $p \leftarrow q$ ；
repeat $r \leftarrow \operatorname{value}(q) ;$ type $(q) \leftarrow t$ ；
case t of
boolean＿type：value $(q) \leftarrow v$ ；
string＿type：begin value $(q) \leftarrow v$ ；add＿str＿ref (v) ；
end；
pen＿type：begin value $(q) \leftarrow v$ ；add＿pen＿ref (v) ；
end；
path＿type：value $(q) \leftarrow$ copy＿path (v) ；
picture＿type：value $(q) \leftarrow$ copy＿edges (v) ；
end；\｛ there ain＇t no more cases \}
$q \leftarrow r ;$
until $q=p$ ；
end；
622．If two members of rings are equated，and if they have the same type，the ring＿merge procedure is called on to make them equivalent．

```
procedure \(\operatorname{ring}\) _merge ( \(p, q:\) pointer );
    label exit;
    var \(r:\) pointer; \{ traverses one list \}
    begin \(r \leftarrow \operatorname{value}(p)\);
    while \(r \neq p\) do
        begin if \(r=q\) then
            begin 〈Exclaim about a redundant equation 623 〉;
            return;
            end;
        \(r \leftarrow\) value \((r)\);
        end;
    \(r \leftarrow\) value \((p)\); value \((p) \leftarrow\) value \((q)\); value \((q) \leftarrow r\);
exit: end;
```

623．〈Exclaim about a redundant equation 623$\rangle \equiv$
begin print＿err（＂Redundant equation＂）；$^{\text {equ }}$

put＿get＿error；
end
This code is used in sections 622，1004，and 1008.
624. Introduction to the syntactic routines. Let's pause a moment now and try to look at the Big Picture. The METAFONT program consists of three main parts: syntactic routines, semantic routines, and output routines. The chief purpose of the syntactic routines is to deliver the user's input to the semantic routines, while parsing expressions and locating operators and operands. The semantic routines act as an interpreter responding to these operators, which may be regarded as commands. And the output routines are periodically called on to produce compact font descriptions that can be used for typesetting or for making interim proof drawings. We have discussed the basic data structures and many of the details of semantic operations, so we are good and ready to plunge into the part of METAFONT that actually controls the activities.

Our current goal is to come to grips with the get_next procedure, which is the keystone of METAFONT's input mechanism. Each call of get_next sets the value of three variables cur_cmd, cur_mod, and cur_sym, representing the next input token.
cur_cmd denotes a command code from the long list of codes given earlier; cur_mod denotes a modifier of the command code; cur_sym is the hash address of the symbolic token that was just scanned,
or zero in the case of a numeric or string or capsule token.
Underlying this external behavior of get_next is all the machinery necessary to convert from character files to tokens. At a given time we may be only partially finished with the reading of several files (for which input was specified), and partially finished with the expansion of some user-defined macros and/or some macro parameters, and partially finished reading some text that the user has inserted online, and so on. When reading a character file, the characters must be converted to tokens; comments and blank spaces must be removed, numeric and string tokens must be evaluated.

To handle these situations, which might all be present simultaneously, METAFONT uses various stacks that hold information about the incomplete activities, and there is a finite state control for each level of the input mechanism. These stacks record the current state of an implicitly recursive process, but the get_next procedure is not recursive.
\langle Global variables 13$\rangle+\equiv$
cur_cmd: eight_bits; \{current command set by get_next \}
cur_mod: integer; \{ operand of current command \}
cur_sym: halfword; \{ hash address of current symbol \}
625. The print_cmd_mod routine prints a symbolic interpretation of a command code and its modifier. It consists of a rather tedious sequence of print commands, and most of it is essentially an inverse to the primitive routine that enters a METAFONT primitive into hash and eqtb. Therefore almost all of this procedure appears elsewhere in the program, together with the corresponding primitive calls.
\langle Declare the procedure called print_cmd_mod 625$\rangle \equiv$
procedure print_cmd_mod ($c, m:$ integer $)$;

begin case c of

〈Cases of print_cmd_mod for symbolic printing of primitives 212〉
othercases $\operatorname{print}\left(\right.$ " [unknown ${ }_{\lrcorner}$command U_{\sqcup} code!]")
endcases;
end;
This code is used in section 227.
626. Here is a procedure that displays a given command in braces, in the user's transcript file.
define show_cur_cmd_mod \equiv show_cmd_mod(cur_cmd, cur_mod)
procedure show_cmd_mod (c, m : integer);
begin begin_diagnostic; print_nl("\{"); print_cmd_mod(c,m); print_char("\}"); end_diagnostic(false); end;
627. Input stacks and states. The state of METAFONT's input mechanism appears in the input stack, whose entries are records with five fields, called index, start, loc, limit, and name. The top element of this stack is maintained in a global variable for which no subscripting needs to be done; the other elements of the stack appear in an array. Hence the stack is declared thus:
\langle Types in the outer block 18$\rangle+\equiv$
in_state_record $=$ record index_field: quarterword;
start_field, loc_field, limit_field, name_field: halfword;
end;
628. 〈Global variables 13$\rangle+\equiv$
input_stack: array [0 . stack_size] of in_state_record;
input_ptr: 0 .. stack_size; \{ first unused location of input_stack \}
max_in_stack: 0 .. stack_size; \{largest value of input_ptr when pushing \}
cur_input: in_state_record; \{ the "top" input state \}
629. We've already defined the special variable loc \equiv cur_input.loc_field in our discussion of basic inputoutput routines. The other components of cur_input are defined in the same way:
$\begin{array}{lcc}\text { define } \text { index } \equiv \text { cur_input.index_field } & \text { \{reference for buffer information \} } \\ \text { define start } \equiv \text { cur_input.start_field } & \text { \{starting position in buffer \} } \\ \text { define limit } \equiv \text { cur_input.limit_field } & \text { \{end of current line in buffer \} } \\ \text { define name } \equiv \text { cur_input.name_field } & \text { \{name of the current file \} }\end{array}$
630. Let's look more closely now at the five control variables (index, start, loc, limit, name), assuming that METAFONT is reading a line of characters that have been input from some file or from the user's terminal. There is an array called buffer that acts as a stack of all lines of characters that are currently being read from files, including all lines on subsidiary levels of the input stack that are not yet completed. METAFONT will return to the other lines when it is finished with the present input file.
(Incidentally, on a machine with byte-oriented addressing, it would be appropriate to combine buffer with the str_pool array, letting the buffer entries grow downward from the top of the string pool and checking that these two tables don't bump into each other.)

The line we are currently working on begins in position start of the buffer; the next character we are about to read is buffer [loc]; and limit is the location of the last character present. We always have loc $\leq l i m i t$. For convenience, buffer [limit] has been set to "\%", so that the end of a line is easily sensed.
The name variable is a string number that designates the name of the current file, if we are reading a text file. It is 0 if we are reading from the terminal for normal input, or 1 if we are executing a readstring command, or 2 if we are reading a string that was moved into the buffer by scantokens.
631. Additional information about the current line is available via the index variable, which count how many lines of characters are present in the buffer below the current level. We have index $=0$ when reading from the terminal and prompting the user for each line; then if the user types, e.g., 'input font', we will have index $=1$ while reading the file font.mf. However, it does not follow that index is the same as the input stack pointer, since many of the levels on the input stack may come from token lists.

The global variable in_open is equal to the index value of the highest non-token-list level. Thus, the number of partially read lines in the buffer is in_open +1 , and we have in_open $=$ index when we are not reading a token list.

If we are not currently reading from the terminal, we are reading from the file variable input_file [index]. We use the notation terminal_input as a convenient abbreviation for name $=0$, and cur_file as an abbreviation for input_file [index].
The global variable line contains the line number in the topmost open file, for use in error messages. If we are not reading from the terminal, line_stack $[$ index $]$ holds the line number for the enclosing level, so that line can be restored when the current file has been read.

If more information about the input state is needed, it can be included in small arrays like those shown here. For example, the current page or segment number in the input file might be put into a variable page, maintained for enclosing levels in 'page_stack: array [1. max_in_open] of integer' by analogy with line_stack.
define terminal_input $\equiv($ name $=0) \quad$ \{ are we reading from the terminal? $\}$
define cur_file \equiv input_file[index] \quad \{ the current alpha_file variable \}
\langle Global variables 13$\rangle+\equiv$
in_open: 0 .. max_in_open; \{ the number of lines in the buffer, less one \}
open_parens: 0 . . max_in_open; \{ the number of open text files \}
input_file: array [1. max_in_open] of alpha_file;
line: integer; \{current line number in the current source file \}
line_stack: array [1. max_in_open] of integer;
632. However, all this discussion about input state really applies only to the case that we are inputting from a file. There is another important case, namely when we are currently getting input from a token list. In this case index > max_in_open, and the conventions about the other state variables are different:
$l o c$ is a pointer to the current node in the token list, i.e., the node that will be read next. If $l o c=$ null, the token list has been fully read.
start points to the first node of the token list; this node may or may not contain a reference count, depending on the type of token list involved.
token_type, which takes the place of index in the discussion above, is a code number that explains what kind of token list is being scanned.
name points to the eqtb address of the macro being expanded, if the current token list is a macro not defined by vardef. Macros defined by vardef have name $=$ null; their name can be deduced by looking at their first two parameters.
param_start, which takes the place of limit, tells where the parameters of the current macro or loop text begin in the param_stack.
The token_type can take several values, depending on where the current token list came from:
forever_text, if the token list being scanned is the body of a forever loop;
loop_text, if the token list being scanned is the body of a for or forsuffixes loop;
parameter, if a text or suffix parameter is being scanned;
backed_up, if the token list being scanned has been inserted as 'to be read again';
inserted, if the token list being scanned has been inserted as part of error recovery;
macro, if the expansion of a user-defined symbolic token is being scanned.
The token list begins with a reference count if and only if token_type $=$ macro.

```
define token_type \(\equiv\) index \(\quad\) \{ type of current token list \}
define token_state \(\equiv\) (index \(>\) max_in_open \() \quad\{\) are we scanning a token list? \(\}\)
define file_state \(\equiv\) (index \(\leq\) max_in_open \() \quad\{\) are we scanning a file line? \(\}\)
define param_start \(\equiv\) limit \(\quad\{\) base of macro parameters in param_stack \(\}\)
define forever_text \(=\) max_in_open \(+1 \quad\{\) token_type code for loop texts \(\}\)
define loop_text \(=\) max_in_open +2 \{token_type code for loop texts \(\}\)
define parameter \(=\) max_in_open \(+3 \quad\{\) token_type code for parameter texts \(\}\)
define backed_up \(=\) max_in_open \(+4 \quad\{\) token_type code for texts to be reread \(\}\)
define inserted \(=\) max_in_open \(+5 \quad\{\) token_type code for inserted texts \(\}\)
define macro \(=\) max_in_open \(+6 \quad\{\) token_type code for macro replacement texts \(\}\)
```

633. The param_stack is an auxiliary array used to hold pointers to the token lists for parameters at the current level and subsidiary levels of input. This stack grows at a different rate from the others.
\langle Global variables 13$\rangle+\equiv$
param_stack: array [0 .. param_size] of pointer; \{token list pointers for parameters \}
param_ptr: 0 .. param_size; $\quad\{$ first unused entry in param_stack \}
max_param_stack: integer; \{largest value of param_ptr \}
634. Thus, the "current input state" can be very complicated indeed; there can be many levels and each level can arise in a variety of ways. The show_context procedure, which is used by METAFONT's errorreporting routine to print out the current input state on all levels down to the most recent line of characters from an input file, illustrates most of these conventions. The global variable file_ptr contains the lowest level that was displayed by this procedure.
\langle Global variables 13$\rangle+\equiv$
file_ptr: 0 .. stack_size; \{shallowest level shown by show_context \}

635．The status at each level is indicated by printing two lines，where the first line indicates what was read so far and the second line shows what remains to be read．The context is cropped，if necessary，so that the first line contains at most half＿error＿line characters，and the second contains at most error＿line． Non－current input levels whose token＿type is＇backed＿up＇are shown only if they have not been fully read．
procedure show＿context；\｛prints where the scanner is \}
label done；
var old＿setting： 0 ．．max＿selector；\｛saved selector setting \}
〈Local variables for formatting calculations 641\rangle
begin file＿ptr \leftarrow input＿ptr；input＿stack $[$ file＿ptr $] \leftarrow$ cur＿input；\quad \｛ store current state \}
loop begin cur＿input \leftarrow input＿stack［file＿ptr］；\｛ enter into the context \}
\langle Display the current context 636\rangle ；
if file＿state then
if $($ name $>2) \vee($ file＿ptr $=0)$ then goto done；
decr（file＿ptr）；
end；
done：cur＿input \leftarrow input＿stack［input＿ptr］；\｛restore original state \}
end；
636．\langle Display the current context 636$\rangle \equiv$
if $($ file＿ptr $=$ input＿ptr $) \vee$ file＿state $\vee($ token＿type \neq backed＿up $) \vee(l o c \neq$ null $)$ then
$\{$ we omit backed－up token lists that have already been read \}
begin tally $\leftarrow 0 ; \quad$ \｛ get ready to count characters \}
old＿setting \leftarrow selector；
if file＿state then
begin 〈Print location of current line 637〉；
〈 Pseudoprint the line 644〉；
end
else begin 〈Print type of token list 638\rangle ；
\langle Pseudoprint the token list 645\rangle ；
end；
selector \leftarrow old＿setting $; \quad$ \｛stop pseudoprinting \}
\langle Print two lines using the tricky pseudoprinted information 643\rangle ；
end
This code is used in section 635 ．
637．This routine should be changed，if necessary，to give the best possible indication of where the current line resides in the input file．For example，on some systems it is best to print both a page and line number． \langle Print location of current line 637$\rangle \equiv$
if name ≤ 1 then
if terminal＿input $\wedge($ file＿ptr $=0)$ then print＿nl $("<*>")$
else print＿nl（＂＜insert＞＂）
else if name $=2$ then print＿nl（＂＜scantokens＞＂）
else begin print＿nl（＂l．＂）；print＿int（line）；
end；
print＿char（＂ப＂）
This code is used in section 636.

638．〈Print type of token list 638$\rangle \equiv$
case token＿type of
forever＿text：print＿nl（＂＜forever＞ப＂）；
loop＿text：〈Print the current loop value 639〉；
parameter：print＿nl（＂＜argument＞ப＂）；

inserted：print＿nl（＂＜inserted」text＞ப＂）；
macro：begin print＿ln；
if name \neq null then slow＿print（text（name））
else 〈Print the name of a vardef＇d macro 640\rangle ；
print（＂－＞＂）；
end；
othercases print＿nl（＂？＂）\｛ this should never happen \}
endcases
This code is used in section 636 ．
639．The parameter that corresponds to a loop text is either a token list（in the case of forsuffixes）or a ＂capsule＂（in the case of for）．We＇ll discuss capsules later；for now，all we need to know is that the link field in a capsule parameter is void and that $\operatorname{print} \operatorname{texp}^{\exp }(p, 0)$ displays the value of capsule p in abbreviated form．
\langle Print the current loop value 639$\rangle \equiv$
begin print＿nl（＂＜for（＂）；p \leftarrow param＿stack［param＿start］；
if $p \neq$ null then
if $\operatorname{link}(p)=$ void then $\operatorname{print} \exp (p, 0) \quad$ \｛we＇re in a for loop \}
else show＿token＿list（ p ，null，20，tally）；
print（＂）＞ப＂）；
end
This code is used in section 638 ．
640．The first two parameters of a macro defined by vardef will be token lists representing the macro＇s prefix and＂at point．＂By putting these together，we get the macro＇s full name．

```
\(\langle\) Print the name of a vardef'd macro 640\(\rangle \equiv\)
    begin \(p \leftarrow\) param_stack [param_start];
    if \(p=\) null then show_token_list(param_stack[param_start +1\(]\),null, 20, tally)
    else begin \(q \leftarrow p\);
        while \(\operatorname{link}(q) \neq\) null do \(q \leftarrow \operatorname{link}(q)\);
        \(\operatorname{link}(q) \leftarrow\) param_stack \([\) param_start +1\(] ;\) show_token_list \((p\), null \(, 20, \operatorname{tally}) ; \operatorname{link}(q) \leftarrow\) null;
        end;
    end
```

This code is used in section 638.
641. Now it is necessary to explain a little trick. We don't want to store a long string that corresponds to a token list, because that string might take up lots of memory; and we are printing during a time when an error message is being given, so we dare not do anything that might overflow one of METAFONT's tables. So 'pseudoprinting' is the answer: We enter a mode of printing that stores characters into a buffer of length error_line, where character $k+1$ is placed into trick_buf $[k \bmod$ error_line $]$ if $k<t r i c k _c o u n t$, otherwise character k is dropped. Initially we set tally $\leftarrow 0$ and trick_count $\leftarrow 1000000$; then when we reach the point where transition from line 1 to line 2 should occur, we set first_count \leftarrow tally and trick_count $\leftarrow \max ($ error_line, tally $+1+$ error_line - half_error_line $)$. At the end of the pseudoprinting, the values of first_count, tally, and trick_count give us all the information we need to print the two lines, and all of the necessary text is in trick_buf.
Namely, let l be the length of the descriptive information that appears on the first line. The length of the context information gathered for that line is $k=$ first_count, and the length of the context information gathered for line 2 is $m=\min ($ tally, trick_count $)-k$. If $l+k \leq h$, where $h=$ half_error_line, we print trick_buf $[0 \ldots k-1]$ after the descriptive information on line 1 , and set $n \leftarrow l+k$; here n is the length of line 1. If $l+k>h$, some cropping is necessary, so we set $n \leftarrow h$ and print ' \ldots ' followed by

$$
\text { trick_buf }[(l+k-h+3) \ldots k-1],
$$

where subscripts of trick_buf are circular modulo error_line. The second line consists of n spaces followed by trick_buf $[k \ldots(k+m-1)]$, unless $n+m>$ error_line; in the latter case, further cropping is done. This is easier to program than to explain.
\langle Local variables for formatting calculations 641$\rangle \equiv$
$i: 0$..buf_size; \{ index into buffer \}
l : integer; \{ length of descriptive information on line 1 \}
m : integer; $\{$ context information gathered for line 2$\}$
$n: 0$. . error_line; $\quad\{$ length of line 1 \}
p : integer; \{starting or ending place in trick_buf \}
q : integer; \{temporary index \}
This code is used in section 635.
642. The following code tells the print routines to gather the desired information.
define begin_pseudoprint \equiv
begin $l \leftarrow$ tally; tally $\leftarrow 0$; selector \leftarrow pseudo; trick_count $\leftarrow 1000000$;
end
define set_trick_count \equiv
begin first_count \leftarrow tally; trick_count \leftarrow tally $+1+$ error_line - half_error_line ;
if trick_count $<$ error_line then trick_count \leftarrow error_line;
end
643. And the following code uses the information after it has been gathered.
\langle Print two lines using the tricky pseudoprinted information 643$\rangle \equiv$
if trick_count $=1000000$ then set_trick_count $; \quad\{$ set_trick_count must be performed $\}$
if tally $<$ trick_count then $m \leftarrow$ tally - first_count
else $m \leftarrow$ trick_count - first_count ; \{ context on line 2$\}$
if $l+$ first_count \leq half_error_line then
begin $p \leftarrow 0 ; n \leftarrow l+$ first_count;
end
else begin print("..."); $p \leftarrow l+$ first_count - half_error_line $+3 ; n \leftarrow$ half_error_line $;$
end;
for $q \leftarrow p$ to first_count -1 do print_char(trick_buf [q mod error_line]);
print_ln;
for $q \leftarrow 1$ to n do print_char("ப"); $\{$ print n spaces to begin line 2$\}$
if $m+n \leq$ error_line then $p \leftarrow$ first_count $+m$
else $p \leftarrow$ first_count $+($ error_line $-n-3)$;
for $q \leftarrow$ first_count to $p-1$ do print_char (trick_buf $[q \bmod$ error_line $])$;
if $m+n>$ error_line then print("...")
This code is used in section 636.
644. But the trick is distracting us from our current goal, which is to understand the input state. So let's concentrate on the data structures that are being pseudoprinted as we finish up the show_context procedure.
\langle Pseudoprint the line 644$\rangle \equiv$
begin_pseudoprint;
if limit >0 then
for $i \leftarrow$ start to limit -1 do
begin if $i=$ loc then set_trick_count;
print (buffer [i]);
end
This code is used in section 636 .
645. 〈 Pseudoprint the token list 645$\rangle \equiv$
begin_pseudoprint;
if token_type \neq macro then show_token_list(start, loc, 100000, 0)
else show_macro(start, loc, 100000)
This code is used in section 636.
646. Here is the missing piece of show_token_list that is activated when the token beginning line 2 is about to be shown:
\langle Do magic computation 646$\rangle \equiv$
set_trick_count
This code is used in section 217.
647. Maintaining the input stacks. The following subroutines change the input status in commonly needed ways.

First comes push_input, which stores the current state and creates a new level (having, initially, the same properties as the old).

```
define push_input \(\equiv \quad\{\) enter a new input level, save the old \(\}\)
    begin if input_ptr \(>\) max_in_stack then
        begin max_in_stack \(\leftarrow\) input_ptr;
        if input_ptr \(=\) stack_size then overflow("inputபstack \({ }_{\sqcup}\) size", stack_size);
        end;
    input_stack[input_ptr] \(\leftarrow\) cur_input \(; \quad\{\) stack the record \(\}\)
    incr (input_ptr);
    end
```

648. And of course what goes up must come down.
define pop_input $\equiv \quad\{$ leave an input level, re-enter the old $\}$
begin decr (input_ptr); cur_input \leftarrow input_stack[input_ptr]; end
649. Here is a procedure that starts a new level of token-list input, given a token list p and its type t. If $t=$ macro, the calling routine should set name, reset loc, and increase the macro's reference count.
define back_list $(\#) \equiv$ begin_token_list(\#, backed_up) \quad \{backs up a simple token list $\}$
procedure begin_token_list (p : pointer; $t:$ quarterword);
begin push_input; start $\leftarrow p ;$ token_type $\leftarrow t$; param_start \leftarrow param_ptr; loc $\leftarrow p$;
end;
650. When a token list has been fully scanned, the following computations should be done as we leave that level of input.
```
procedure end_token_list; {leave a token-list input level }
    label done;
    var p: pointer; { temporary register }
    begin if token_type }\geq\mathrm{ backed_up then { token list to be deleted }
        if token_type \leqinserted then
            begin flush_token_list(start); goto done;
            end
        else delete_mac_ref(start); {update reference count }
    while param_ptr > param_start do {parameters must be flushed }
        begin decr(param_ptr); p\leftarrow param_stack[param_ptr];
        if p\not= null then
            if link}(p)=void then {it's an expr parameter 
                    begin recycle_value (p); free_node(p,value_node_size);
                    end
            else flush_token_list (p); { it's a suffix or text parameter }
        end;
done: pop_input; check_interrupt;
    end;
```

651. The contents of cur_cmd, cur_mod, cur_sym are placed into an equivalent token by the cur_tok routine.

〈Declare the procedure called make_exp_copy 855〉
function cur_tok: pointer;
var p : pointer; \{ a new token node \}
save_type: small_number; $\{$ cur_type to be restored $\}$
save_exp: integer; \{cur_exp to be restored \}
begin if cur_sym $=0$ then
if cur_cmd $=$ capsule_token then
begin save_type \leftarrow cur_type; save_exp \leftarrow cur_exp ; make_exp_copy(cur_mod); $p \leftarrow$ stash_cur_exp;
link $(p) \leftarrow$ null; cur_type \leftarrow save_type $;$ cur_exp \leftarrow save_exp;
end
else begin $p \leftarrow$ get_node(token_node_size); value $(p) \leftarrow$ cur_mod; name_type $(p) \leftarrow$ token ;
if cur_cmd $=$ numeric_token then type $(p) \leftarrow$ known
else type $(p) \leftarrow$ string_type;
end
else begin fast_get_avail $(p) ; \operatorname{info}(p) \leftarrow$ cur_sym;
end;
cur_tok $\leftarrow p$;
end;
652. Sometimes METAFONT has read too far and wants to "unscan" what it has seen. The back_input procedure takes care of this by putting the token just scanned back into the input stream, ready to be read again. If cur_sym $\neq 0$, the values of $c u r_{-}$cmd and cur_mod are irrelevant.
procedure back_input; \{ undoes one token of input \}
var $p:$ pointer; \{ a token list of length one \}
begin $p \leftarrow$ cur_tok;
while token_state $\wedge(l o c=$ null $)$ do end_token_list; $\quad\{$ conserve stack space $\}$
back_list (p);
end;
653. The back_error routine is used when we want to restore or replace an offending token just before issuing an error message. We disable interrupts during the call of back_input so that the help message won't be lost.
procedure back_error; \{back up one token and call error \}
begin OK_to_interrupt \leftarrow false; back_input; OK_to_interrupt \leftarrow true; error;
end;
procedure ins_error; \{ back up one inserted token and call error \}
begin OK_to_interrupt \leftarrow false; back_input; token_type \leftarrow inserted; OK_to_interrupt \leftarrow true; error; end;
654. The begin_file_reading procedure starts a new level of input for lines of characters to be read from a file, or as an insertion from the terminal. It does not take care of opening the file, nor does it set loc or limit or line.
procedure begin_file_reading;
begin if in_open = max_in_open then overflow("text_input_levels", max_in_open);

incr $($ in_open $) ;$ push_input ; index \leftarrow in_open; line_stack $[$ index $] \leftarrow$ line; start \leftarrow first $;$ name $\leftarrow 0$;
\{terminal_input is now true $\}$
end;
655. Conversely, the variables must be downdated when such a level of input is finished:
procedure end_file_reading;
begin first \leftarrow start; line \leftarrow line_stack[index];
if index \neq in_open then confusion("endinput");
if name >2 then a_{-}close (cur_file); \{forget it
pop_input; decr(in_open);
end;
656. In order to keep the stack from overflowing during a long sequence of inserted 'show' commands, the following routine removes completed error-inserted lines from memory.
procedure clear_for_error_prompt;
begin while file_state \wedge terminal_input $\wedge($ input_ptr $>0) \wedge(l o c=$ limit $)$ do end_file_reading; print_ln; clear_terminal;
end;
657. To get METAFONT's whole input mechanism going, we perform the following actions.
\langle Initialize the input routines 657$\rangle \equiv$
begin input_ptr $\leftarrow 0 ;$ max_in_stack $\leftarrow 0$; in_open $\leftarrow 0$; open_parens $\leftarrow 0$; max_buf_stack $\leftarrow 0$; param_ptr $\leftarrow 0$; max_param_stack $\leftarrow 0$; first $\leftarrow 1$; start $\leftarrow 1$; index $\leftarrow 0$; line $\leftarrow 0$; name $\leftarrow 0$; force_eof \leftarrow false;
if \neg init_terminal then goto final_end;
limit \leftarrow last $;$ first \leftarrow last $+1 ; \quad$ \{ init_terminal has set loc and last $\}$
end;
See also section 660 .
This code is used in section 1211.

658．Getting the next token．The heart of METAFONT＇s input mechanism is the get＿next procedure， which we shall develop in the next few sections of the program．Perhaps we shouldn＇t actually call it the ＂heart，＂however；it really acts as METAFONT＇s eyes and mouth，reading the source files and gobbling them up．And it also helps METAFONT to regurgitate stored token lists that are to be processed again．

The main duty of get＿next is to input one token and to set cur＿cmd and cur＿mod to that token＇s command code and modifier．Furthermore，if the input token is a symbolic token，that token＇s hash address is stored in cur＿sym；otherwise cur＿sym is set to zero．

Underlying this simple description is a certain amount of complexity because of all the cases that need to be handled．However，the inner loop of get＿next is reasonably short and fast．

659．Before getting into get＿next，we need to consider a mechanism by which METAFONT helps keep errors from propagating too far．Whenever the program goes into a mode where it keeps calling get＿next repeatedly until a certain condition is met，it sets scanner＿status to some value other than normal．Then if an input file ends，or if an＇outer＇symbol appears，an appropriate error recovery will be possible．

The global variable warning＿info helps in this error recovery by providing additional information．For example，warning＿info might indicate the name of a macro whose replacement text is being scanned．
define normal $=0 \quad\{$ scanner＿status at＂quiet times＂$\}$
define skipping $=1 \quad\{$ scanner＿status when false conditional text is being skipped $\}$
define flushing $=2 \quad$ \｛scanner＿status when junk after a statement is being ignored \}
define absorbing $=3 \quad\{$ scanner＿status when a text parameter is being scanned $\}$
define var＿defining $=4 \quad\{$ scanner＿status when a vardef is being scanned $\}$
define op＿defining $=5 \quad\{$ scanner＿status when a macro def is being scanned $\}$
define loop＿defining $=6 \quad\{$ scanner＿status when a for loop is being scanned $\}$
\langle Global variables 13$\rangle+\equiv$
scanner＿status：normal ．．loop＿defining；\｛ are we scanning at high speed？\}
warning＿info：integer；\｛if so，what else do we need to know，in case an error occurs？\}
660．〈 Initialize the input routines 657$\rangle+\equiv$
scanner＿status \leftarrow normal；
661．The following subroutine is called when an＇outer＇symbolic token has been scanned or when the end of a file has been reached．These two cases are distinguished by cur＿sym，which is zero at the end of a file．
function check＿outer＿validity：boolean；
var $p:$ pointer；\｛ points to inserted token list \}
begin if scanner＿status $=$ normal then check＿outer＿validity \leftarrow true
else begin deletions＿allowed \leftarrow false；〈Back up an outer symbolic token so that it can be reread 662\rangle ；
if scanner＿status＞skipping then 〈Tell the user what has run away and try to recover 663〉

print＿int（warning＿info）；

 if cur＿sym $=0$ then
 cur＿sym \leftarrow frozen＿fi；ins＿error； end；
deletions＿allowed \leftarrow true；check＿outer＿validity \leftarrow false；
end；
end；

662．〈Back up an outer symbolic token so that it can be reread 662$\rangle \equiv$
if cur＿sym $\neq 0$ then
begin $p \leftarrow$ get＿avail；info $(p) \leftarrow$ cur＿sym；back＿list $(p) ; \quad$ \｛ prepare to read the symbolic token again \} end
This code is used in section 661.
663．〈Tell the user what has run away and try to recover 663$\rangle \equiv$
begin runaway；\｛print the definition－so－far \}
if cur＿sym $=0$ then print＿err（＂File ${ }_{\sqcup}$ ended＂）
else begin print＿err（＂Forbidden ${ }_{\sqcup}$ token $_{\sqcup} f$ ound＂）；
end；

case scanner＿status of
〈Complete the error message，and set cur＿sym to a token that might help recover from the error 664 〉
end；\｛ there are no other cases \}
ins＿error；
end
This code is used in section 661.
664．As we consider various kinds of errors，it is also appropriate to change the first line of the help message just given；help＿line［3］points to the string that might be changed．
\langle Complete the error message，and set cur＿sym to a token that might help recover from the error 664$\rangle \equiv$

end；
absorbing：begin $\operatorname{print}\left(\right.$＂a $\mathrm{a}_{\llcorner } \operatorname{text}_{\sqcup}$ argument＂）；

if warning＿info $=0$ then cur＿sym \leftarrow frozen＿end＿group
else begin cur＿sym \leftarrow frozen＿right＿delimiter ；equiv（frozen＿right＿delimiter $) \leftarrow$ warning＿info； end；
end；
var＿defining，op＿defining：begin print（＂the \sqcup definition ${ }_{\llcorner } \mathcal{O f}_{\sqcup}$＂）；
if scanner＿status $=o p_{-} d e f i n i n g$ then slow＿print $($ text $($ warning＿info $))$
else print＿variable＿name（warning＿info）；
cur＿sym \leftarrow frozen＿end＿def；
end；

end；
This code is used in section 663 ．

665．The runaway procedure displays the first part of the text that occurred when METAFONT began its special scanner＿status，if that text has been saved．
\langle Declare the procedure called runaway 665$\rangle \equiv$
procedure runaway；
begin if scanner＿status $>$ flushing then
begin print＿nl（＂Runawayப＂）；
case scanner＿status of
absorbing：print（＂text？＂）；
var＿defining，op＿defining：print（＂definition？＂）；
loop＿defining：print（＂loop？＂）；
end；\｛ there are no other cases \}
print＿ln；show＿token＿list（link（hold＿head），null，error＿line－10，0）；
end；
end；
This code is used in section 162.
666．We need to mention a procedure that may be called by get＿next．
procedure firm＿up＿the＿line；forward；
667．And now we＇re ready to take the plunge into get＿next itself．
define switch $=25 \quad$ \｛a label in get＿next $\}$
define start＿numeric＿token $=85 \quad\{$ another $\}$
define start＿decimal＿token $=86 \quad$ \｛and another \}
define fin＿numeric＿token $=87$ \｛and still another，although goto is considered harmful \}
procedure get＿next；\｛sets cur＿cmd，cur＿mod，cur＿sym to next token \}
label restart，$\quad\{$ go here to get the next input token \}
exit，$\{$ go here when the next input token has been got \}
found，$\{$ go here when the end of a symbolic token has been found $\}$
switch，\｛ go here to branch on the class of an input character \} start＿numeric＿token，start＿decimal＿token，fin＿numeric＿token，done；
\｛ go here at crucial stages when scanning a number \}
var $k: 0$. buf＿size；$\{$ an index into buffer \} c：ASCII＿code；\｛ the current character in the buffer \} class：ASCII＿code；\｛its class number \} n, f ：integer ；\｛registers for decimal－to－binary conversion \}
begin restart：cur＿sym $\leftarrow 0$ ；
if file＿state then 〈Input from external file；goto restart if no input found，or return if a non－symbolic token is found 669\rangle
else 〈Input from token list；goto restart if end of list or if a parameter needs to be expanded，or return if a non－symbolic token is found 676\rangle ；
〈Finish getting the symbolic token in cur＿sym；goto restart if it is illegal 668〉；
exit：end；
668．When a symbolic token is declared to be＇outer＇，its command code is increased by outer＿tag．
\langle Finish getting the symbolic token in cur＿sym；goto restart if it is illegal 668$\rangle \equiv$
cur＿cmd \leftarrow eq＿type $($ cur＿sym $)$ ；cur＿mod \leftarrow equiv（cur＿sym）；
if cur＿cmd \geq outer＿tag then
if check＿outer＿validity then cur＿cmd \leftarrow cur＿cmd－outer＿tag
else goto restart
This code is used in section 667 ．

669．A percent sign appears in buffer［limit］；this makes it unnecessary to have a special test for end－of－line．
〈Input from external file；goto restart if no input found，or return if a non－symbolic token is found 669$\rangle \equiv$
begin switch：$c \leftarrow$ buffer［loc］；incr（loc）；class \leftarrow char＿class $[c]$ ；
case class of
digit＿class：goto start＿numeric＿token；
period＿class：begin class \leftarrow char＿class［buffer $[l o c]]$ ；
if class $>$ period＿class then goto switch
else if class $<$ period＿class then $\quad\{$ class $=$ digit＿class $\}$
begin $n \leftarrow 0$ ；goto start＿decimal＿token；
end；
end；
space＿class：goto switch；
percent＿class：begin 〈Move to next line of file，or goto restart if there is no next line 679 〉；
check＿interrupt；goto switch；
end；
string＿class：〈 Get a string token and return 671\rangle ；
isolated＿classes：begin $k \leftarrow l o c-1$ ；goto found； end；
invalid＿class：〈Decry the invalid character and goto restart 670〉；
othercases do＿nothing \｛letters，etc．\}
endcases；
$k \leftarrow l o c-1$ ；
while char＿class $[$ buffer $[l o c]]=$ class do $\operatorname{incr}(l o c)$ ；
goto found；
start＿numeric＿token：〈 Get the integer part n of a numeric token；set $f \leftarrow 0$ and goto fin＿numeric＿token if there is no decimal point 673\rangle ；
start＿decimal＿token：〈Get the fraction part f of a numeric token 674\rangle ；
fin＿numeric＿token：〈Pack the numeric and fraction parts of a numeric token and return 675〉；
found：cur＿sym $\leftarrow i d _l o o k u p(k, l o c-k)$ ；
end
This code is used in section 667 ．
670．We go to restart instead of to switch，because we might enter token＿state after the error has been dealt with（cf．clear＿for＿error＿prompt）．
\langle Decry the invalid character and goto restart 670$\rangle \equiv$

deletions＿allowed \leftarrow false；error；deletions＿allowed \leftarrow true；goto restart；
end
This code is used in section 669.
671. 〈Get a string token and return 671$\rangle \equiv$
begin if buffer $[l o c]=$ """" then cur_mod $\leftarrow " "$
else begin $k \leftarrow$ loc; buffer $[$ limit +1$] \leftarrow " " " "$;
repeat incr (loc);
until buffer $[l o c]=$ """";
if loc> limit then \langle Decry the missing string delimiter and goto restart 672\rangle;
if $(l o c=k+1) \wedge($ length $($ buffer $[k])=1)$ then cur_mod \leftarrow buffer $[k]$
else begin str_room $(l o c-k)$;
repeat append_char (buffer $[k])$; incr (k);
until $k=l o c$;
cur_mod \leftarrow make_string;
end;
end;
incr (loc); cur_cmd \leftarrow string_token; return;
end
This code is used in section 669 .
672. We go to restart after this error message, not to switch, because the clear_for_error_prompt routine might have reinstated token_state after error has finished.
\langle Decry the missing string delimiter and goto restart 672$\rangle \equiv$
begin loc \leftarrow limit; $\quad\{$ the next character to be read on this line will be "\%" \}

deletions_allowed \leftarrow false; error; deletions_allowed \leftarrow true; goto restart;
end
This code is used in section 671 .
673. LGet the integer part n of a numeric token; set $f \leftarrow 0$ and goto fin_numeric_token if there is no decimal point 673$\rangle \equiv$
$n \leftarrow c-$ " 0 ";
while char_class $[$ buffer $[$ loc $]]=$ digit_class do begin if $n<4096$ then $n \leftarrow 10 * n+$ buffer [loc] - "0"; incr (loc);
end;
if buffer $[l o c]=$ "." then
if char_class $[$ buffer $[l o c+1]]=$ digit_class then goto done;
$f \leftarrow 0$; goto fin_numeric_token;
done: incr (loc)
This code is used in section 669 .

674．\langle Get the fraction part f of a numeric token 674$\rangle \equiv$
$k \leftarrow 0 ;$
repeat if $k<17$ then $\quad\{$ digits for $k \geq 17$ cannot affect the result \}
begin $\operatorname{dig}[k] \leftarrow$ buffer $[l o c]-$＂ 0 ＂；incr (k) ；
end；
incr（loc）；
until char＿class $[$ buffer $[l o c]] \neq$ digit＿class；
$f \leftarrow$ round＿decimals (k) ；
if $f=$ unity then
begin $\operatorname{incr}(n) ; f \leftarrow 0$ ；
end
This code is used in section 669 ．

675．〈Pack the numeric and fraction parts of a numeric token and return 675$\rangle \equiv$
if $n<4096$ then cur＿mod $\leftarrow n *$ unity $+f$
else begin print＿err（＂Enormous number $_{\sqcup}$ has $_{\sqcup}$ been $_{\sqcup}$ reduced＂）；

deletions＿allowed \leftarrow false；error ；deletions＿allowed \leftarrow true ；cur＿mod \leftarrow＇17777r77777；
end；
cur＿cmd \leftarrow numeric＿token；return
This code is used in section 669 ．

676．Let＇s consider now what happens when get＿next is looking at a token list．
＜Input from token list；goto restart if end of list or if a parameter needs to be expanded，or return if a non－symbolic token is found 676$\rangle \equiv$
if $l o c \geq h i _m e m _m i n$ then $\{$ one－word token $\}$
begin cur＿sym $\leftarrow \operatorname{info}(l o c) ;$ loc $\leftarrow \operatorname{link}(l o c) ; \quad\{$ move to next $\}$
if cur＿sym \geq expr＿base then
if cur＿sym \geq suffix＿base then 〈Insert a suffix or text parameter and goto restart 677 〉
else begin cur＿cmd \leftarrow capsule＿token；
cur＿mod \leftarrow param＿stack $[$ param＿start + cur＿sym $-($ expr＿base $)] ;$ cur＿sym $\leftarrow 0$ ；return； end；
end
else if loc＞null then 〈Get a stored numeric or string or capsule token and return 678〉
else begin \｛we are done with this token list \}
end＿token＿list；goto restart；\｛resume previous level \}
end
This code is used in section 667 ．
677．〈Insert a suffix or text parameter and goto restart 677$\rangle \equiv$
begin if cur＿sym \geq text＿base then cur＿sym \leftarrow cur＿sym－param＿size；
$\{$ param＿size $=$ text＿base - suffix＿base $\}$
begin＿token＿list（param＿stack［param＿start＋cur＿sym－（suffix＿base）］，parameter $)$ ；goto restart； end
This code is used in section 676 ．

678．〈Get a stored numeric or string or capsule token and return 678$\rangle \equiv$
begin if name＿type $(l o c)=$ token then
begin cur＿mod \leftarrow value（loc）；
if type $(l o c)=$ known then cur＿cmd \leftarrow numeric＿token
else begin cur＿cmd \leftarrow string＿token；add＿str＿ref（cur＿mod）； end；
end
else begin cur＿mod $\leftarrow l o c$ ；cur＿cmd \leftarrow capsule＿token；
end；
$l o c \leftarrow \operatorname{link}(l o c) ;$ return；
end
This code is used in section 676 ．
679．All of the easy branches of get＿next have now been taken care of．There is one more branch．
\langle Move to next line of file，or goto restart if there is no next line 679$\rangle \equiv$
if name >2 then 〈Read next line of file into buffer，or goto restart if the file has ended 681\rangle
else begin if input＿ptr >0 then $\{$ text was inserted during error recovery or by scantokens $\}$
begin end＿file＿reading；goto restart；\｛resume previous level \} end；
if selector $<$ log＿only then open＿log＿file；
if interaction $>$ nonstop＿mode then
begin if limit $=$ start then $\{$ previous line was empty \}

print＿ln；first \leftarrow start；prompt＿input $(" * ") ; \quad$ \｛input on－line into buffer $\}$
limit \leftarrow last $;$ buffer $[$ limit $] \leftarrow " \% " ;$ first \leftarrow limit $+1 ;$ loc \leftarrow start ；
end

\｛ nonstop mode，which is intended for overnight batch processing，never waits for on－line input \} end
This code is used in section 669 ．

680．The global variable force＿eof is normally false；it is set true by an endinput command．
\langle Global variables 13$\rangle+\equiv$
force＿eof：boolean；\｛ should the next input be aborted early？\}

```
681. 〈Read next line of file into buffer, or goto restart if the file has ended 681\(\rangle \equiv\)
    begin incr (line); first \(\leftarrow\) start;
    if \(\neg\) force_eof then
        begin if input_ln(cur_file, true) then \(\{\) not end of file \(\}\)
            firm_up_the_line \(\quad\{\) this sets limit \(\}\)
        else force_eof \(\leftarrow\) true;
        end;
    if force_eof then
        begin print_char(")"); decr(open_parens); update_terminal; \{show user that file has been read \}
        force_eof \(\leftarrow\) false; end_file_reading; \{ resume previous level \}
        if check_outer_validity then goto restart else goto restart;
        end;
    buffer \([\) limit \(] \leftarrow " \%\) "; first \(\leftarrow\) limit \(+1 ;\) loc \(\leftarrow\) start \(; \quad\) \{ready to read \(\}\)
    end
```

This code is used in section 679 ．
682. If the user has set the pausing parameter to some positive value, and if nonstop mode has not been selected, each line of input is displayed on the terminal and the transcript file, followed by ' $=>$ '. METAFONT waits for a response. If the response is null (i.e., if nothing is typed except perhaps a few blank spaces), the original line is accepted as it stands; otherwise the line typed is used instead of the line in the file.
procedure firm_up_the_line;
var $k: 0 \ldots$ buf_size; $\{$ an index into buffer $\}$
begin limit \leftarrow last;
if internal[pausing] >0 then
if interaction $>$ nonstop_mode then
begin wake_up_terminal; print_ln;
if start < limit then
for $k \leftarrow$ start to limit -1 do $\operatorname{print}(\operatorname{buffer}[k])$;
first \leftarrow limit ; prompt_input("=>"); \{ wait for user response \}
if last $>$ first then
begin for $k \leftarrow$ first to last -1 do $\{$ move line down in buffer $\}$
buffer $[k+$ start - first $] \leftarrow$ buffer $[k]$;
limit \leftarrow start + last - first ;
end;
end;
end;
683. Scanning macro definitions. METAFONT has a variety of ways to tuck tokens away into token lists for later use: Macros can be defined with def, vardef, primarydef, etc.; repeatable code can be defined with for, forever, forsuffixes. All such operations are handled by the routines in this part of the program.

The modifier part of each command code is zero for the "ending delimiters" like enddef and endfor.
define start_def $=1 \quad\{$ command modifier for def $\}$
define $v a r_{-} d e f=2 \quad\{$ command modifier for vardef $\}$
define end_def $=0 \quad\{$ command modifier for enddef $\}$
define start_forever $=1 \quad\{$ command modifier for forever $\}$
define end_for $=0 \quad\{$ command modifier for endfor $\}$
\langle Put each of METAFONT's primitives into the hash table 192$\rangle+\equiv$
primitive("def", macro_def, start_def);
primitive("vardef", macro_def, var_def);
primitive("primarydef", macro_def, secondary_primary_macro);
primitive("secondarydef", macro_def, tertiary_secondary_macro);
primitive("tertiarydef", macro_def, expression_tertiary_macro);
primitive("enddef", macro_def, end_def); eqtb[frozen_end_def] \leftarrow eqtb[cur_sym];
primitive("for", iteration, expr_base);
primitive("forsuffixes", iteration, suffix_base);
primitive("forever", iteration, start_forever);
primitive("endfor", iteration, end_for); eqtb[frozen_end_for] \leftarrow eqtb[cur_sym];
684. 〈 Cases of print_cmd_mod for symbolic printing of primitives 212$\rangle+\equiv$
macro_def: if $m \leq v a r_{-} d e f$ then
if $m=s t a r t _d e f$ then $\operatorname{print}(" d e f ")$
else if $m<$ start_def then print("enddef") else print("vardef")
else if $m=$ secondary_primary_macro then print("primarydef")
else if $m=$ tertiary_secondary_macro then print("secondarydef")
else print("tertiarydef");
iteration: if $m \leq$ start_forever then
if $m=$ start_forever then print("forever") else print("endfor")
else if $m=$ expr_base then print("for") else print("forsuffixes");

685．Different macro－absorbing operations have different syntaxes，but they also have a lot in common． There is a list of special symbols that are to be replaced by parameter tokens；there is a special command code that ends the definition；the quotation conventions are identical．Therefore it makes sense to have most of the work done by a single subroutine．That subroutine is called scan＿toks．
The first parameter to scan＿toks is the command code that will terminate scanning（either macro＿def or iteration）．
The second parameter，subst＿list，points to a（possibly empty）list of two－word nodes whose info and value fields specify symbol tokens before and after replacement．The list will be returned to free storage by scan＿toks．
The third parameter is simply appended to the token list that is built．And the final parameter tells how many of the special operations \＃＠，＠，and＠\＃are to be replaced by suffix parameters．When such parameters are present，they are called（SUFFIX0），（SUFFIX1），and（SUFFIX2）．
function scan＿toks（terminator ：command＿code；subst＿list，tail＿end ：pointer；suffix＿count ：small＿number）： pointer；
label done，found；
var p ：pointer；\｛ tail of the token list being built \}
q ：pointer；\｛ temporary for link management \}
balance：integer；\｛left delimiters minus right delimiters \}
begin $p \leftarrow$ hold＿head；balance $\leftarrow 1$ ；link $($ hold＿head $) \leftarrow$ null；
loop begin get＿next；
if cur＿sym >0 then
begin 〈Substitute for cur＿sym，if it＇s on the subst＿list 686〉；
if cur＿cmd $=$ terminator then 〈Adjust the balance；goto done if it＇s zero 687〉
else if cur＿cmd $=$ macro＿special then 〈Handle quoted symbols，\＃＠，＠，or＠\＃ 690\rangle ； end；
$\operatorname{link}(p) \leftarrow \operatorname{cur} _$tok $; p \leftarrow \operatorname{link}(p) ;$
end；
done：link $(p) \leftarrow$ tail＿end；flush＿node＿list（subst＿list）；scan＿toks $\leftarrow \operatorname{link}($ hold＿head）；
end；
686．〈Substitute for cur＿sym，if it＇s on the subst＿list 686$\rangle \equiv$
begin $q \leftarrow$ subst＿list；
while $q \neq$ null do
begin if info $(q)=$ cur＿sym then begin cur＿sym \leftarrow value (q) ；cur＿cmd \leftarrow relax；goto found； end；
$q \leftarrow \operatorname{link}(q) ;$
end；
found：end
This code is used in section 685.
687．〈Adjust the balance；goto done if it＇s zero 687$\rangle \equiv$
if cur＿mod >0 then incr（balance）
else begin decr（balance）；
if balance $=0$ then goto done；
end
This code is used in section 685 ．
688. Four commands are intended to be used only within macro texts: quote, \#@, ©, and @\#. They are variants of a single command code called macro_special.

```
    define quote \(=0 \quad\{\) macro_special modifier for quote \(\}\)
    define macro_prefix \(=1 \quad\{\) macro_special modifier for \#© \(\}\)
    define macro_at \(=2 \quad\) \{ macro_special modifier for © \(\}\)
    define macro_suffix \(=3 \quad\) \{ macro_special modifier for @\# \(\}\)
\(\langle\) Put each of METAFONT's primitives into the hash table 192\(\rangle+\equiv\)
    primitive("quote", macro_special, quote);
    primitive("\#@", macro_special, macro_prefix);
    primitive("@", macro_special, macro_at);
    primitive("@\#", macro_special, macro_suffix);
```

689. 〈Cases of print_cmd_mod for symbolic printing of primitives 212$\rangle+\equiv$ macro_special: case m of macro_prefix: print("\#@"); macro_at: print_char("@"); macro_suffix: print("@\#");
othercases print("quote")
endcases;
690. 〈Handle quoted symbols, \#@, @, or @\# 690$\rangle \equiv$
begin if cur_mod $=$ quote then get_next
else if cur_mod \leq suffix_count then cur_sym \leftarrow suffix_base $-1+$ cur_mod;
end
This code is used in section 685.
691. Here is a routine that's used whenever a token will be redefined. If the user's token is unredefinable, the 'frozen_inaccessible' token is substituted; the latter is redefinable but essentially impossible to use, hence METAFONT's tables won't get fouled up.
```
procedure get_symbol; {sets cur_sym to a safe symbol}
    label restart;
    begin restart: get_next;
    if (cur_sym = 0)\vee (cur_sym > frozen_inaccessible) then
        begin print_err("Missing\sqcupsymbolic
        help3 ("Sorry:\lrcornerYou
        ("I`ve
        ("definition
        if cur_sym > 0 then help_line[2] \leftarrow "Sorry:\sqcupYou&can`t}\mp@subsup{t}{\llcorner}{\prime
        else if cur_cmd = string_token then delete_str_ref (cur_mod);
        cur_sym}\leftarrow\mathrm{ frozen_inaccessible; ins_error; goto restart;
        end;
    end;
```

692. Before we actually redefine a symbolic token, we need to clear away its former value, if it was a variable. The following stronger version of get_symbol does that.
procedure get_clear_symbol;
begin get_symbol; clear_symbol(cur_sym,false);
end;
693. Here's another little subroutine; it checks that an equals sign or assignment sign comes along at the proper place in a macro definition.
```
procedure check_equals;
    begin if cur_cmd }\not=\mathrm{ equals then
        if cur_cmd }\not=\mathrm{ assignment then
            begin missing_err("=");
            help5("The
            ("because
            ("But
            ("was
            ("will_be
            end;
    end;
```

694. A primarydef, secondarydef, or tertiarydef is rather easily handled now that we have scan_toks. In this case there are two parameters, which will be EXPRO and EXPR1 (i.e., expr_base and expr_base +1).
procedure make_op_def;
var m : command_code; \{ the type of definition $\}$
$p, q, r:$ pointer; $\quad\{$ for list manipulation $\}$
begin $m \leftarrow$ cur_mod;
get_symbol; $q \leftarrow$ get_node $($ token_node_size $) ; \operatorname{info}(q) \leftarrow$ cur_sym; value $(q) \leftarrow$ expr_base;
get_clear_symbol; warning_info \leftarrow cur_sym;
get_symbol $; p \leftarrow$ get_node $($ token_node_size $) ; \operatorname{info}(p) \leftarrow$ cur_sym $;$ value $(p) \leftarrow$ expr_base $+1 ; \operatorname{link}(p) \leftarrow q ;$
get_next; check_equals;
scanner_status \leftarrow op_defining $; q \leftarrow$ get_avail; ref_count $(q) \leftarrow$ null $; r \leftarrow$ get_avail; link $(q) \leftarrow r ;$
$\operatorname{info}(r) \leftarrow$ general_macro; link $(r) \leftarrow$ scan_toks $($ macro_def,p, null, 0$) ;$ scanner_status \leftarrow normal;
eq_type $($ warning_info $) \leftarrow m$; equiv $($ warning_info $) \leftarrow q ;$ get_x_next;
end;
695. Parameters to macros are introduced by the keywords expr, suffix, text, primary, secondary, and tertiary.
\langle Put each of METAFONT's primitives into the hash table 192$\rangle+\equiv$
primitive("expr", param_type, expr_base);
primitive("suffix", param_type, suffix_base);
primitive("text", param_type, text_base);
primitive("primary", param_type, primary_macro);
primitive("secondary", param_type, secondary_macro);
primitive("tertiary", param_type, tertiary_macro);
696. 〈 Cases of print_cmd_mod for symbolic printing of primitives 212$\rangle+\equiv$
param_type: if $m \geq$ expr_base then
if $m=$ expr_base then $\operatorname{print}($ "expr")
else if $m=$ suffix_base then print("suffix") else print("text")
else if $m<$ secondary_macro then print("primary")
else if $m=$ secondary_macro then print("secondary")
else print("tertiary");

697．Let＇s turn next to the more complex processing associated with def and vardef．When the following procedure is called，cur＿mod should be either start＿def or var＿def．
〈Declare the procedure called check＿delimiter 1032〉
〈Declare the function called scan＿declared＿variable 1011〉
procedure scan＿def；
var m ：start＿def ．．var＿def；\｛ the type of definition \}
$n: 0 \ldots 3$ ；$\{$ the number of special suffix parameters $\}$
$k: 0 \ldots$ param＿size；$\quad\{$ the total number of parameters $\}$
c ：general＿macro ．．text＿macro；\｛the kind of macro we＇re defining \}
r ：pointer；\｛parameter－substitution list \}
q ：pointer；\｛ tail of the macro token list \}
p：pointer；\｛temporary storage \}
base：halfword；\｛ expr＿base，suffix＿base，or text＿base \}
l＿delim，r＿delim：pointer；\｛matching delimiters \}
begin $m \leftarrow$ cur＿mod $; c \leftarrow$ general＿macro；link $($ hold＿head $) \leftarrow$ null；
$q \leftarrow$ get＿avail；ref＿count $(q) \leftarrow$ null $; r \leftarrow$ null；
〈Scan the token or variable to be defined；set n ，scanner＿status，and warning＿info 700 〉；
$k \leftarrow n ;$
if cur＿cmd $=$ left＿delimiter then \langle Absorb delimited parameters，putting them into lists q and r 703〉；
if cur＿cmd $=$ param＿type then \langle Absorb undelimited parameters，putting them into list r 705〉；
check＿equals；$p \leftarrow$ get＿avail； $\operatorname{info}(p) \leftarrow c$ ；link $(q) \leftarrow p$ ；
\langle Attach the replacement text to the tail of node $p 698\rangle$ ；
scanner＿status \leftarrow normal；get＿x＿next；
end；
698．We don＇t put＇frozen＿end＿group＇into the replacement text of a vardef，because the user may want to redefine＇endgroup＇．
\langle Attach the replacement text to the tail of node $p 698\rangle \equiv$
if $m=$ start＿def then link $(p) \leftarrow$ scan＿toks（macro＿def，r, null，n ）
else begin $q \leftarrow$ get＿avail； $\operatorname{info}(q) \leftarrow b g _l o c ; \operatorname{link}(p) \leftarrow q ; p \leftarrow$ get＿avail；info $(p) \leftarrow$ eg＿loc；
$\operatorname{link}(q) \leftarrow$ scan＿toks（macro＿def $, r, p, n)$ ；
end；
if warning＿info $=$ bad＿vardef then flush＿token＿list（value（bad＿vardef））
This code is used in section 697.
699．〈Global variables 13$\rangle+\equiv$
bg＿loc，eg＿loc： 1 ．．hash＿end；\｛ hash addresses of＇begingroup＇and＇endgroup＇\}

700．〈Scan the token or variable to be defined；set n ，scanner＿status，and warning＿info 700$\rangle \equiv$
if $m=$ start＿def $^{\text {then }}$
begin get＿clear＿symbol；warning＿info \leftarrow cur＿sym；get＿next；scanner＿status \leftarrow op＿defining；$n \leftarrow 0$ ； eq＿type $($ warning＿info $) \leftarrow$ defined＿macro；equiv $($ warning＿info $) \leftarrow q$ ；
end
else begin $p \leftarrow$ scan＿declared＿variable；flush＿variable $(\operatorname{equiv}(\operatorname{info}(p)), \operatorname{link}(p), \operatorname{true})$ ；
warning＿info \leftarrow find＿variable (p) ；flush＿list (p) ；
if warning＿info $=$ null then \langle Change to＇a bad variable＇ 701\rangle ；
scanner＿status \leftarrow var＿defining；$n \leftarrow 2$ ；
if cur＿cmd $=$ macro＿special then
if cur＿mod $=$ macro＿suffix then $\{@ \#\}$
begin $n \leftarrow 3$ ；get＿next；
end；
type $($ warning＿info $) \leftarrow$ unsuffixed＿macro $-2+n$ ；value $($ warning＿info $) \leftarrow q$ ；
end $\quad\{$ suffixed＿macro $=$ unsuffixed＿macro +1$\}$
This code is used in section 697.
701．〈Change to＇a bad variable＇ 701$\rangle \equiv$

 end
This code is used in section 700 ．

702．\langle Initialize table entries（done by INIMF only） 176$\rangle+\equiv$ name＿type $($ bad＿vardef $) \leftarrow$ root $;$ link $\left(b a d _v a r d e f\right) ~ \leftarrow f r o z e n _b a d _v a r d e f ;$
equiv $($ frozen＿bad＿vardef $) \leftarrow$ bad＿vardef $;$ eq＿type $($ frozen＿bad＿vardef $) \leftarrow$ tag＿token；

703．〈Absorb delimited parameters，putting them into lists q and $r 703\rangle \equiv$
repeat l_{-}delim \leftarrow cur＿sym；r＿delim \leftarrow cur＿mod；get＿next；
if $($ cur＿cmd $=$ param＿type $) \wedge($ cur＿mod \geq expr＿base $)$ then base \leftarrow cur＿mod

 base \leftarrow expr＿base；
end；
〈Absorb parameter tokens for type base 704〉；
check＿delimiter（l＿delim，r＿delim）；get＿next；
until cur＿cmd \neq left＿delimiter
This code is used in section 697.

704．〈Absorb parameter tokens for type base 704$\rangle \equiv$
repeat link $(q) \leftarrow$ get＿avail；$q \leftarrow \operatorname{link}(q) ; \operatorname{info}(q) \leftarrow$ base $+k$ ；
get＿symbol $; p \leftarrow$ get＿node $($ token＿node＿size $) ; \operatorname{value}(p) \leftarrow$ base $+k ;$ info $(p) \leftarrow$ cur＿sym；
if $k=$ param＿size then overflow（＂parameter $\mathbf{S t a c k}_{\sqcup}$ size＂，param＿size）；
$\operatorname{incr}(k) ; \operatorname{link}(p) \leftarrow r ; r \leftarrow p ;$ get＿next；
until cur＿cmd \neq comma
This code is used in section 703.
705. 〈Absorb undelimited parameters, putting them into list $r 705\rangle \equiv$
begin $p \leftarrow$ get_node(token_node_size);
if cur_mod < expr_base then
begin $c \leftarrow$ cur_mod; value $(p) \leftarrow$ expr_base $+k$;
end
else begin value $(p) \leftarrow$ cur_mod $+k$;
if cur_mod $=$ expr_base then $c \leftarrow$ expr_macro
else if cur_mod $=$ suffix_base then $c \leftarrow$ suffix_macro
else $c \leftarrow$ text_macro;
end;
if $k=$ param_size then overflow("parameter Tack $_{\sqcup}$ size", param_size);
incr (k); get_symbol; info $(p) \leftarrow$ cur_sym; $\operatorname{link}(p) \leftarrow r ; r \leftarrow p ;$ get_next;
if $c=$ expr_macro then
if cur_cmd $=o f$ _token then
begin $c \leftarrow$ of_macro; $p \leftarrow$ get_node(token_node_size);
if $k=$ param_size then overflow("parameter_stack ${ }_{\sqcup}$ Size", param_size);
value $(p) \leftarrow$ expr_base $+k$; get_symbol; $\operatorname{info}(p) \leftarrow$ cur_sym; $\operatorname{link}(p) \leftarrow r ; r \leftarrow p ;$ get_next; end;
end
This code is used in section 697.

706．Expanding the next token．Only a few command codes $<$ min＿command can possibly be returned by get＿next；in increasing order，they are if＿test，fi＿or＿else，input，iteration，repeat＿loop，exit＿test， relax，scan＿tokens，expand＿after，and defined＿macro．

METAFONT usually gets the next token of input by saying get＿x＿next．This is like get＿next except that it keeps getting more tokens until finding cur＿cmd \geq min＿command．In other words，get＿x＿next expands macros and removes conditionals or iterations or input instructions that might be present．

It follows that get＿x＿next might invoke itself recursively．In fact，there is massive recursion，since macro expansion can involve the scanning of arbitrarily complex expressions，which in turn involve macro expansion and conditionals，etc．

Therefore it＇s necessary to declare a whole bunch of forward procedures at this point，and to insert some other procedures that will be invoked by get＿x＿next．
procedure scan＿primary；forward；
procedure scan＿secondary；forward；
procedure scan＿tertiary；forward；
procedure scan＿expression；forward；
procedure scan＿suffix；forward；
〈Declare the procedure called macro＿call 720〉
procedure get＿boolean；forward；
procedure pass＿text；forward；
procedure conditional；forward；
procedure start＿input；forward；
procedure begin＿iteration；forward；
procedure resume＿iteration；forward；
procedure stop＿iteration；forward；
707．An auxiliary subroutine called expand is used by get＿x＿next when it has to do exotic expansion commands．
procedure expand；
var p ：pointer；\｛ for list manipulation $\}$
k ：integer；$\quad\{$ something that we hope is \leq buf＿size $\}$
j ：pool＿pointer；\｛index into str＿pool \}
begin if internal［tracing＿commands］$>$ unity then
if cur＿cmd \neq defined＿macro then show＿cur＿cmd＿mod；
case cur＿cmd of
if＿test：conditional；\｛ this procedure is discussed in Part 36 below \}
fi＿or＿else：〈Terminate the current conditional and skip to fi 751 〉；
input：〈Initiate or terminate input from a file 711\rangle ；
iteration：if cur＿mod $=$ end＿for then 〈Scold the user for having an extra endfor 708〉
else begin＿iteration；\｛this procedure is discussed in Part 37 below \}
repeat＿loop：〈Repeat a loop 712\rangle ；
exit＿test：\langle Exit a loop if the proper time has come 713\rangle ；
relax：do＿nothing；
expand＿after：〈 Expand the token after the next token 715〉；
scan＿tokens：〈Put a string into the input buffer 716\rangle ；
defined＿macro：macro＿call（cur＿mod，null，cur＿sym）；
end；\｛ there are no other cases \}
end；

708．〈Scold the user for having an extra endfor 708$\rangle \equiv$

error；
end
This code is used in section 707 ．
709．The processing of input involves the start＿input subroutine，which will be declared later；the processing of endinput is trivial．
\langle Put each of METAFONT＇s primitives into the hash table 192$\rangle+\equiv$
primitive（＂input＂，input，0）；
primitive（＂endinput＂，input，1）；
710．〈 Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$ input：if $m=0$ then $\operatorname{print}($＂input＂）else $\operatorname{print}(" e n d i n p u t ") ;$

711．〈 Initiate or terminate input from a file 711$\rangle \equiv$
if cur＿mod >0 then force＿eof \leftarrow true
else start＿input
This code is used in section 707.
712．We＇ll discuss the complicated parts of loop operations later．For now it suffices to know that there＇s a global variable called loop＿ptr that will be null if no loop is in progress．
\langle Repeat a loop 712$\rangle \equiv$
begin while token＿state $\wedge(l o c=$ null $)$ do end＿token＿list；$\quad\{$ conserve stack space $\}$
if loop＿ptr $=$ null then
begin print＿err（＂Lost＿loop＂）；

error；
end
else resume＿iteration；\｛ this procedure is in Part 37 below \}
end
This code is used in section 707.
713．〈Exit a loop if the proper time has come 713$\rangle \equiv$
begin get＿boolean；
if internal［tracing＿commands］＞unity then show＿cmd＿mod（nullary，cur＿exp）；
if cur＿exp $=$ true＿code then if loop＿ptr $=$ null then begin print＿err（＂No」loop $\operatorname{lis}_{\llcorner } \mathrm{in}_{\lrcorner}$progress＂）；
 if cur＿cmd $=$ semicolon then error else back＿error； end
else 〈Exit prematurely from an iteration 714\rangle
else if cur＿cmd \neq semicolon then
begin missing＿err（＂；＂）；

 end；
end
This code is used in section 707.
714. Here we use the fact that forever_text is the only token_type that is less than loop_text.
\langle Exit prematurely from an iteration 714$\rangle \equiv$
begin $p \leftarrow$ null;
repeat if file_state then end_file_reading
else begin if token_type \leq loop_text then $p \leftarrow$ start;
end_token_list;
end;
until $p \neq$ null;

stop_iteration; \{this procedure is in Part 37 below \}
end
This code is used in section 713.
715. 〈Expand the token after the next token 715$\rangle \equiv$
begin get_next; $p \leftarrow$ cur_tok; get_next;
if cur_cmd $<$ min_command then expand
else back_input;
back_list (p);
end
This code is used in section 707 .
716. \langle Put a string into the input buffer 716$\rangle \equiv$
begin get_x_next; scan_primary;
if cur_type \neq string_type then

end
else begin back_input;
if length $($ cur_exp $)>0$ then \langle Pretend we're reading a new one-line file 717\rangle;
end;
end
This code is used in section 707 .
717. 〈Pretend we're reading a new one-line file 717$\rangle \equiv$
begin begin_file_reading; name $\leftarrow 2 ; k \leftarrow$ first + length (cur_exp);
if $k \geq$ max_buf_stack then
begin if $k \geq$ buf_size then
begin max_buf_stack \leftarrow buf_size; overflow("buffer_size", buf_size); end;
max_buf_stack $\leftarrow k+1$;
end;
$j \leftarrow$ str_start $[$ cur_exp $] ;$ limit $\leftarrow k$;
while first $<$ limit do
begin buffer $[$ first $] \leftarrow$ so $($ str_pool $[j])$; incr (j); incr $($ first $)$;
end;
buffer $[$ limit $] \leftarrow$ "\%"; first \leftarrow limit +1 ; loc \leftarrow start ; flush_cur_exp (0);
end
This code is used in section 716 .
718. Here finally is get_x_next.

The expression scanning routines to be considered later communicate via the global quantities cur_type and cur_exp; we must be very careful to save and restore these quantities while macros are being expanded.

```
procedure get_x_next;
    var save_exp: pointer; \{ a capsule to save cur_type and cur_exp \}
    begin get_next;
    if cur_cmd \(<\) min_command then
        begin save_exp \(\leftarrow\) stash_cur_exp;
        repeat if cur_cmd \(=\) defined_macro then macro_call(cur_mod, null, cur_sym)
            else expand;
            get_next;
        until cur_cmd \(\geq\) min_command;
        unstash_cur_exp (save_exp); \{ that restores cur_type and cur_exp \}
        end;
    end;
```

719. Now let's consider the macro_call procedure, which is used to start up all user-defined macros. Since the arguments to a macro might be expressions, macro_call is recursive.

The first parameter to macro_call points to the reference count of the token list that defines the macro. The second parameter contains any arguments that have already been parsed (see below). The third parameter points to the symbolic token that names the macro. If the third parameter is null, the macro was defined by vardef, so its name can be reconstructed from the prefix and "at" arguments found within the second parameter.
What is this second parameter? It's simply a linked list of one-word items, whose info fields point to the arguments. In other words, if arg_list $=$ null, no arguments have been scanned yet; otherwise info(arg_list) points to the first scanned argument, and link(arg_list) points to the list of further arguments (if any).
Arguments of type expr are so-called capsules, which we will discuss later when we concentrate on expressions; they can be recognized easily because their link field is void. Arguments of type suffix and text are token lists without reference counts.

720．After argument scanning is complete，the arguments are moved to the param＿stack．（They can＇t be put on that stack any sooner，because the stack is growing and shrinking in unpredictable ways as more arguments are being acquired．）Then the macro body is fed to the scanner；i．e．，the replacement text of the macro is placed at the top of the METAFONT＇s input stack，so that get＿next will proceed to read it next．
\langle Declare the procedure called macro＿call 720$\rangle \equiv$
〈Declare the procedure called print＿macro＿name 722〉
〈Declare the procedure called print＿arg 723〉
\langle Declare the procedure called scan＿text＿arg 730〉
procedure macro＿call（def＿ref，arg＿list，macro＿name ：pointer）；
\｛invokes a user－defined sequence of commands \}
label found；
var r ：pointer；\｛ current node in the macro＇s token list \}
$p, q:$ pointer；\｛ for list manipulation \}
n ：integer；$\{$ the number of arguments \}
l＿delim，r＿delim：pointer；\｛ a delimiter pair \}
tail：pointer；\｛ tail of the argument list \}
begin $r \leftarrow$ link（def＿ref）；add＿mac＿ref（def＿ref）；
if arg＿list $=$ null then $n \leftarrow 0$
else \langle Determine the number n of arguments already supplied，and set tail to the tail of arg＿list 724\rangle ；
if internal［tracing＿macros］>0 then
\langle Show the text of the macro being expanded，and the existing arguments 721\rangle ；
\langle Scan the remaining arguments，if any；set r to the first token of the replacement text 725\rangle ；
\langle Feed the arguments and replacement text to the scanner 736〉；
end；
This code is used in section 706.
721．〈Show the text of the macro being expanded，and the existing arguments 721$\rangle \equiv$
begin begin＿diagnostic；print＿ln；print＿macro＿name（arg＿list，macro＿name）；
if $n=3$ then $\operatorname{print}($＂＠\＃＂）；\｛indicate a suffixed macro \}
show＿macro（def＿ref，null，100000）；
if arg＿list \neq null then
begin $n \leftarrow 0 ; p \leftarrow$ arg＿list；
repeat $q \leftarrow \operatorname{info}(p) ;$ print＿arg $(q, n, 0) ; \operatorname{incr}(n) ; p \leftarrow \operatorname{link}(p)$ ；
until $p=$ null；
end；
end＿diagnostic（false）；
end
This code is used in section 720 ．
722．〈Declare the procedure called print＿macro＿name 722$\rangle \equiv$
procedure print＿macro＿name（a，$n:$ pointer $)$ ；
var $p, q:$ pointer；$\quad\{$ they traverse the first part of $a\}$
begin if $n \neq$ null then slow＿print（text（ n ））
else begin $p \leftarrow \operatorname{info}(a)$ ；
if $p=$ null then slow＿print $(\operatorname{text}(\operatorname{info}(\operatorname{info}(\operatorname{link}(a)))))$
else begin $q \leftarrow p$ ；
while $\operatorname{link}(q) \neq$ null do $q \leftarrow \operatorname{link}(q)$ ；
$\operatorname{link}(q) \leftarrow$ info $($ link $(a))$ ；show＿token＿list $(p$, null， 1000,0$) ; \operatorname{link}(q) \leftarrow$ null；
end；
end；
end；
This code is used in section 720 ．

723．〈Declare the procedure called print＿arg 723$\rangle \equiv$
procedure print＿arg（ $q:$ pointer $; n:$ integer $; b:$ pointer $)$ ；
begin if $\operatorname{link}(q)=$ void then print＿nl（＂（EXPR＂）
else if $(b<$ text＿base $) \wedge(b \neq$ text＿macro $)$ then print＿nl（＂（SUFFIX＂）
else print＿nl（＂（TEXT＂）；
print＿int（n）；print（＂）＜－＂）；
if $\operatorname{link}(q)=$ void then print＿exp $(q, 1)$
else show＿token＿list（ q ，null， 1000,0 ）；
end；
This code is used in section 720 ．
724．〈Determine the number n of arguments already supplied，and set tail to the tail of arg＿list 724$\rangle \equiv$
begin $n \leftarrow 1$ ；tail \leftarrow arg＿list；
while $\operatorname{link}($ tail $) \neq$ null do
begin $\operatorname{incr}(n) ;$ tail $\leftarrow \operatorname{link}($ tail $)$ ；
end；
end
This code is used in section 720 ．
725．〈Scan the remaining arguments，if any；set r to the first token of the replacement text 725$\rangle \equiv$
cur＿cmd \leftarrow comma $+1 ; \quad\{$ anything \neq comma will do $\}$
while $\operatorname{info}(r) \geq$ expr＿base do
begin 〈Scan the delimited argument represented by info $(r) 726\rangle$ ；
$r \leftarrow \operatorname{link}(r)$ ；
end；
if cur＿cmd $=$ comma then begin print＿err（＂Too』many」arguments」to」＂）；print＿macro＿name（arg＿list，macro＿name）； print＿char（＂；＂）；print＿nl（＂பธMissing」｀＂）；slow＿print（text（r＿delim））；

（＂You might $_{\sqcup w a n t}^{\sqcup} t_{\sqcup}$ delete $_{\sqcup}$ some $_{\sqcup}$ tokens $_{\sqcup}$ before ${ }_{\sqcup}$ continuing．＂）；error； end；
if $\operatorname{info}(r) \neq$ general＿macro then \langle Scan undelimited $\operatorname{argument(s)733\rangle ;~}$
$r \leftarrow \operatorname{link}(r)$
This code is used in section 720 ．

726．At this point，the reader will find it advisable to review the explanation of token list format that was presented earlier，paying special attention to the conventions that apply only at the beginning of a macro＇s token list．

On the other hand，the reader will have to take the expression－parsing aspects of the following program on faith；we will explain cur＿type and cur＿exp later．（Several things in this program depend on each other， and it＇s necessary to jump into the circle somewhere．）
\langle Scan the delimited argument represented by info（r） 726$\rangle \equiv$
if cur＿cmd \neq comma then
begin get＿x＿next；
if cur＿cmd \neq left＿delimiter then
begin print＿err（＂Missingபargument＿to」＂）；print＿macro＿name（arg＿list，macro＿name）；

（＂isцeither ${ }_{\sqcup}$ zerouor $_{\llcorner }$null．＂）；
if info $(r) \geq$ suffix＿base then
begin cur＿exp \leftarrow null；cur＿type \leftarrow token＿list；
end
else begin cur＿exp $\leftarrow 0$ ；cur＿type \leftarrow known；
end；
back＿error；cur＿cmd \leftarrow right＿delimiter；goto found；
end；
l＿delim \leftarrow cur＿sym；r＿delim \leftarrow cur＿mod；
end；
\langle Scan the argument represented by info（r）729〉；
if cur＿cmd \neq comma then \langle Check that the proper right delimiter was present 727\rangle ；
found：〈Append the current expression to arg＿list 728〉
This code is used in section 725 ．
727．\langle Check that the proper right delimiter was present 727$\rangle \equiv$
if $($ cur＿cmd \neq right＿delimiter $) \vee\left(\right.$ cur＿mod $\left.\neq l_{\text {＿delim }}\right)$ then
if $\operatorname{info}(\operatorname{link}(r)) \geq$ expr＿base then

 cur＿cmd \leftarrow comma；

end

else begin missing＿err（text（r＿delim））；

 end
This code is used in section 726 ．
728. A suffix or text parameter will have been scanned as a token list pointed to by cur_exp, in which case we will have cur_type $=$ token_list .
\langle Append the current expression to arg_list 728$\rangle \equiv$
begin $p \leftarrow$ get_avail;
if cur_type $=$ token_list then $\operatorname{info}(p) \leftarrow$ cur_exp
else $\operatorname{info}(p) \leftarrow$ stash_cur_exp;
if internal[tracing_macros] >0 then
begin begin_diagnostic; print_arg(info(p), n, info(r)); end_diagnostic(false);
end;
if arg_list $=$ null then arg_list $\leftarrow p$
else $\operatorname{link}($ tail $) \leftarrow p$;
tail $\leftarrow p ; \operatorname{incr}(n)$;
end
This code is used in sections 726 and 733.
729. \langle Scan the argument represented by info(r) 729$\rangle \equiv$
if $\operatorname{info}(r) \geq$ text_base then scan_text_arg (l_delim, r_{-}delim)
else begin get_x_next;
if $\operatorname{info}(r) \geq$ suffix_base then scan_suffix
else scan_expression;
end
This code is used in section 726 .
730. The parameters to scan_text_arg are either a pair of delimiters or zero; the latter case is for undelimited text arguments, which end with the first semicolon or endgroup or end that is not contained in a group.
\langle Declare the procedure called scan_text_arg 730$\rangle \equiv$
procedure scan_text_arg (l_delim, r_delim : pointer);
label done;
var balance: integer; \{ excess of l_delim over r_delim \}
p: pointer; \{ list tail \}
begin warning_info \leftarrow l_delim; scanner_status \leftarrow absorbing; $p \leftarrow$ hold_head; balance $\leftarrow 1$;
link (hold_head) \leftarrow null;
loop begin get_next;
if l_{-}delim $=0$ then \langle Adjust the balance for an undelimited argument; goto done if done 732\rangle
else <Adjust the balance for a delimited argument; goto done if done 731〉;
$\operatorname{link}(p) \leftarrow \operatorname{cur}-t o k ; p \leftarrow \operatorname{link}(p) ;$
end;
done: cur_exp \leftarrow link(hold_head); cur_type \leftarrow token_list; scanner_status \leftarrow normal;
end;
This code is used in section 720 .

731．〈Adjust the balance for a delimited argument；goto done if done 731$\rangle \equiv$
begin if cur＿cmd $=$ right＿delimiter then
begin if cur＿mod $=l_{-}$delim then begin decr（balance）； if balance $=0$ then goto done； end；
end
else if cur＿cmd $=$ left＿delimiter then if cur＿mod $=r_{-} d e l i m$ then incr（balance）；
end
This code is used in section 730 ．
732．〈Adjust the balance for an undelimited argument；goto done if done 732$\rangle \equiv$
begin if end＿of＿statement then $\{$ cur＿cmd $=$ semicolon，end＿group，or stop $\}$
begin if balance $=1$ then goto done
else if cur＿cmd $=$ end＿group then decr（balance）；
end
else if cur＿cmd $=$ begin＿group then incr（balance）；
end
This code is used in section 730 ．

```
733. \(\langle\) Scan undelimited argument(s) 733\(\rangle \equiv\)
    begin if \(\operatorname{info}(r)<\) text_macro then
        begin get_x_next;
        if info \((r) \neq\) suffix_macro then
            if \((\) cur_cmd \(=\) equals \() \vee(\) cur_cmd \(=\) assignment \()\) then get_x_next;
        end;
    case \(\operatorname{info}(r)\) of
    primary_macro: scan_primary;
    secondary_macro: scan_secondary;
    tertiary_macro: scan_tertiary;
    expr_macro: scan_expression;
    of_macro: 〈Scan an expression followed by 'of \(\langle\) primary〉' 734\(\rangle\);
    suffix_macro: 〈Scan a suffix with optional delimiters 735〉;
    text_macro: scan_text_arg \((0,0)\);
    end; \{ there are no other cases \}
    back_input; \(\langle\) Append the current expression to arg_list 728〉;
    end
```

This code is used in section 725 ．

734．〈Scan an expression followed by＇of \langle primary〉＇ 734$\rangle \equiv$
begin scan＿expression；$p \leftarrow$ get＿avail； $\operatorname{info}(p) \leftarrow$ stash＿cur＿exp；
if internal［tracing＿macros］>0 then
begin begin＿diagnostic；print＿arg（info（p），n，0）；end＿diagnostic（false）；
end；
if arg＿list $=$ null then arg＿list $\leftarrow p$ else $\operatorname{link}(t a i l) \leftarrow p$ ；
tail $\leftarrow p ;$ incr (n) ；
if cur＿cmd \neq of＿token then
begin missing＿err（＂of＂）；print（＂$\sqcup \mathrm{for}_{\mathrm{\sqcup}}$＂）；print＿macro＿name（arg＿list，macro＿name）；
 end；
get＿x＿next；scan＿primary；
end
This code is used in section 733 ．
735．〈Scan a suffix with optional delimiters 735$\rangle \equiv$
begin if cur＿cmd \neq left＿delimiter then l_{-}delim \leftarrow null
else begin l＿delim \leftarrow cur＿sym；r_{-}delim \leftarrow cur＿mod；get＿x＿next ； end；
scan＿suffix；
if l＿delim \neq null then
begin if $($ cur＿cmd \neq right＿delimiter $) \vee\left(\right.$ cur＿mod $\left.\neq l_{\text {＿delim }}\right)$ then
begin missing＿err（text（r＿delim））；

end；
get＿x＿next；
end；
end
This code is used in section 733 ．
736．Before we put a new token list on the input stack，it is wise to clean off all token lists that have recently been depleted．Then a user macro that ends with a call to itself will not require unbounded stack space．
\langle Feed the arguments and replacement text to the scanner 736$\rangle \equiv$
while token＿state $\wedge(l o c=$ null $)$ do end＿token＿list；$\quad\{$ conserve stack space $\}$
if param＿ptr $+n>$ max＿param＿stack then begin max＿param＿stack \leftarrow param＿ptr $+n$ ； if max＿param＿stack＞param＿size then overflow（＂parameter $\operatorname{listack}_{\sqcup}$ size＂，param＿size）； end；
begin＿token＿list（def＿ref，macro）；name \leftarrow macro＿name；loc $\leftarrow r$ ；
if $n>0$ then
begin $p \leftarrow$ arg＿list；
repeat param＿stack $[$ param＿ptr $] \leftarrow \operatorname{info}(p) ;$ incr $($ param＿ptr $) ; p \leftarrow \operatorname{link}(p)$ ；
until $p=$ null；
flush＿list（arg＿list）；
end
This code is used in section 720 ．
737. It's sometimes necessary to put a single argument onto param_stack. The stack_argument subroutine does this.
procedure stack_argument (p : pointer);
begin if param_ptr $=$ max_param_stack then
begin incr(max_param_stack);
if max_param_stack > param_size then overflow("parameter _Stack $_{\sqcup}$ size", param_size);
end;
param_stack $[$ param_ptr] $\leftarrow p$; incr $($ param_ptr $)$;
end;

738．Conditional processing．Let＇s consider now the way if commands are handled．
Conditions can be inside conditions，and this nesting has a stack that is independent of other stacks．Four global variables represent the top of the condition stack：cond＿ptr points to pushed－down entries，if any； cur＿if tells whether we are processing if or elseif；if＿limit specifies the largest code of a fi＿or＿else command that is syntactically legal；and if＿line is the line number at which the current conditional began．
If no conditions are currently in progress，the condition stack has the special state cond＿ptr $=$ null， $i f_{-}$limit $=$normal，cur＿if $=0$ ，if＿line $=0$ ．Otherwise cond＿ptr points to a two－word node；the type， name＿type，and link fields of the first word contain if＿limit，cur＿if，and cond＿ptr at the next level，and the second word contains the corresponding if＿line．
define if＿node＿size $=2$ \｛number of words in stack entry for conditionals $\}$
define if＿line＿field（\＃）\equiv mem［\＃＋1］．int
define $i f_{-}$code $=1 \quad\{$ code for if being evaluated $\}$
define $f_{_}$code $=2 \quad\{$ code for fi $\}$
define else＿code $=3 \quad\{$ code for else $\}$
define else＿if＿code $=4 \quad\{$ code for elseif $\}$
\langle Global variables 13$\rangle+\equiv$
cond＿ptr：pointer；\｛ top of the condition stack \} if＿limit：normal ．．else＿if＿code；\｛ upper bound on fi＿or＿else codes $\}$ cur＿if：small＿number；\｛ type of conditional being worked on \}
if＿line：integer；\｛line where that conditional began \}
739．〈Set initial values of key variables 21$\rangle+\equiv$
cond＿ptr \leftarrow null；if＿limit \leftarrow normal；cur＿if $\leftarrow 0$ ；if＿line $\leftarrow 0$ ；
740．〈Put each of METAFONT＇s primitives into the hash table 192$\rangle+\equiv$
primitive（＂if＂，if＿test，if＿code）；
primitive（＂fi＂，fi＿or＿else，fi＿code）；eqtb $[$ frozen＿fi］\leftarrow eqtb $[$ cur＿sym］；
primitive（＂else＂，f＿or＿else，else＿code）；
primitive（＂elseif＂，f＿or＿else，else＿if＿code）；
741．〈Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$ if＿test，fi＿or＿else：case m of
if＿code：print（＂if＂）；
f＿code：print（＂fi＂）；
else＿code：print（＂else＂）；
othercases print（＂elseif＂）
endcases；
742. Here is a procedure that ignores text until coming to an elseif, else, or fi at the current level of if ...fi nesting. After it has acted, cur_mod will indicate the token that was found.
METAFONT's smallest two command codes are $i f_{-}$test and f_{-}or_else; this makes the skipping process a bit simpler.
procedure pass_text;
label done;
var l : integer;
begin scanner_status \leftarrow skipping; $l \leftarrow 0$; warning_info \leftarrow line;
loop begin get_next;
if cur_cmd \leq fi_or_else 2 then
if cur_cmd $<$ f_or_else then incr (l)
else begin if $l=0$ then goto done;
if cur_mod $=f_{i}$ code then decr (l);
end
else \langle Decrease the string reference count, if the current token is a string 743\rangle;
end;
done: scanner_status \leftarrow normal;
end;
743. 〈Decrease the string reference count, if the current token is a string 743$\rangle \equiv$
if cur_cmd $=$ string_token then delete_str_ref (cur_mod)
This code is used in sections 83, 742, 991, and 1016.
744. When we begin to process a new if, we set $i f$ _limit $\leftarrow i f$ _code; then if elseif or else or fi occurs before the current if condition has been evaluated, a colon will be inserted. A construction like 'if fi' would otherwise get METAFONT confused.
\langle Push the condition stack 744$\rangle \equiv$
begin $p \leftarrow$ get_node (if_node_size); link $(p) \leftarrow$ cond_ptr; type $(p) \leftarrow i f_{-} l i m i t ;$ name_type $(p) \leftarrow c u r_{-} i f ;$
$i f$ _line_field $(p) \leftarrow i f_{-} l i n e ;$ cond_ptr $\leftarrow p$; if_limit $\leftarrow i f_{-}$code; if_line \leftarrow line; cur_if $\leftarrow i f$ _code;
end
This code is used in section 748 .
745. 〈Pop the condition stack 745$\rangle \equiv$
begin $p \leftarrow$ cond_ptr; if_line $\leftarrow i f_{-}$line_field (p); cur_if \leftarrow name_type (p); if_limit \leftarrow type (p);
cond_ptr $\leftarrow \operatorname{link}(p)$; free_node $\left(p, i f _n o d e _s i z e\right)$;
end
This code is used in sections 748, 749, and 751.

746．Here＇s a procedure that changes the if＿limit code corresponding to a given value of cond＿ptr．
procedure change＿if＿limit（（ ：small＿number ；p ：pointer）；
label exit；
var q ：pointer；
begin if $p=$ cond＿ptr then $i f_{\text {＿limit }} \leftarrow l$ \｛ that＇s the easy case \}
else begin $q \leftarrow$ cond＿ptr；
loop begin if $q=$ null then confusion（＂if＂）；
if $\operatorname{link}(q)=p$ then
begin type $(q) \leftarrow l$ ；return；
end；
$q \leftarrow \operatorname{link}(q) ;$ end；
end；
exit：end；
747．The user is supposed to put colons into the proper parts of conditional statements．Therefore，META－ FONT has to check for their presence．

```
procedure check_colon;
    begin if cur_cmd }\not=\mathrm{ colon then
        begin missing_err(":");
        help2("There
```



```
        end;
    end;
```

748．A condition is started when the get＿x＿next procedure encounters an if＿test command；in that case get＿x＿next calls conditional，which is a recursive procedure．
procedure conditional；
label exit，done，reswitch，found；
var save＿cond＿ptr：pointer；\｛cond＿ptr corresponding to this conditional \} new＿if＿limit：fi＿code ．．else＿if＿code；\｛future value of $i f_{-}$limit \} p：pointer；\｛ temporary register \}
begin \langle Push the condition stack 744\rangle ；save＿cond＿ptr \leftarrow cond＿ptr；
reswitch：get＿boolean；new＿if＿limit \leftarrow else＿if＿code；
if internal［tracing＿commands］＞unity then 〈Display the boolean value of cur＿exp 750〉；
found：check＿colon；
if cur＿exp $=$ true＿code then
begin change＿if＿limit（new＿if＿limit，save＿cond＿ptr）；return；\｛wait for elseif，else，or fi \} end；
〈Skip to elseif or else or fi，then goto done 749\rangle ；
done：cur＿if \leftarrow cur＿mod；if＿line \leftarrow line；
if cur＿mod $=f_{-}$code then \langlePop the condition stack 745\rangle
else if cur＿mod $=$ else＿if＿code then goto reswitch
 end；
exit：end；
749. In a construction like 'if if true: $0=1$: foo else: bar fi', the first else that we come to after learning that the if is false is not the else we're looking for. Hence the following curious logic is needed.
\langle Skip to elseif or else or fi, then goto done 749$\rangle \equiv$
loop begin pass_text;
if cond_ptr = save_cond_ptr then goto done
else if cur_mod $=f_{-}$code then \langlePop the condition stack 745\rangle;
end
This code is used in section 748 .
750. 〈Display the boolean value of cur_exp 750$\rangle \equiv$
begin begin_diagnostic;
if cur_exp = true_code then $\operatorname{print}("\{$ true $\}$ ") else $\operatorname{print}("\{f a l s e\} ") ;$
end_diagnostic(false);
end
This code is used in section 748 .
751. The processing of conditionals is complete except for the following code, which is actually part of get_x_next. It comes into play when elseif, else, or fi is scanned.
\langle Terminate the current conditional and skip to fi 751$\rangle \equiv$
if cur_mod $>$ if_limit then
if $i f_{-}$limit $=i f_{-}$code then $\{$condition not yet evaluated $\}$
begin missing_err(":"); back_input; cur_sym \leftarrow frozen_colon; ins_error; end
else begin print_err("Extraப"); print_cmd_mod(fi_or_else, cur_mod);
 end
else begin while cur_mod $\neq f_{-}$code do pass_text; $\quad\{$ skip to fi $\}$
\langle Pop the condition stack 745\rangle;
end
This code is used in section 707.
752. Iterations. To bring our treatment of get_x_next to a close, we need to consider what METAFONT does when it sees for, forsuffixes, and forever.

There's a global variable loop_ptr that keeps track of the for loops that are currently active. If loop_ptr = null, no loops are in progress; otherwise info (loop_ptr) points to the iterative text of the current (innermost) loop, and link(loop_ptr) points to the data for any other loops that enclose the current one.

A loop-control node also has two other fields, called loop_type and loop_list, whose contents depend on the type of loop:
loop_type $($ loop_ptr $)=$ null means that loop_list (loop_ptr) points to a list of one-word nodes whose info fields point to the remaining argument values of a suffix list and expression list.
loop_type (loop_ptr) $=$ void means that the current loop is 'forever'.
loop_type $($ loop_ptr $)=p>$ void means that value $(p), \operatorname{step_ size}(p)$, and final_value (p) contain the data for an arithmetic progression.
In the latter case, p points to a "progression node" whose first word is not used. (No value could be stored there because the link field of words in the dynamic memory area cannot be arbitrary.)
define loop_list_loc $(\#) \equiv \#+1 \quad$ \{ where the loop_list field resides $\}$
define loop_type (\#) \equiv info(loop_list_loc(\#)) \quad \{ the type of for loop $\}$
define loop_list (\#) \equiv link(loop_list_loc(\#)) $\quad\{$ the remaining list elements $\}$
define loop_node_size $=2 \quad$ \{ the number of words in a loop control node $\}$
define progression_node_size $=4 \quad\{$ the number of words in a progression node $\}$
define step_size $(\#) \equiv \operatorname{mem}[\#+2] . s c \quad\{$ the step size in an arithmetic progression $\}$
define final_value (\#) $\equiv \operatorname{mem}[\#+3] . s c \quad\{$ the final value in an arithmetic progression $\}$
\langle Global variables 13$\rangle+\equiv$
loop_ptr: pointer; \{top of the loop-control-node stack \}
753. 〈Set initial values of key variables 21$\rangle+\equiv$
loop_ptr \leftarrow null;
754. If the expressions that define an arithmetic progression in a for loop don't have known numeric values, the bad_for subroutine screams at the user.

```
procedure bad_for(s : str_number);
    begin disp_err (null, "Improper \({ }^{\bullet}\) "); \{ show the bad expression above the message \}
```



```
    end;
```

755．Here＇s what METAFONT does when for，forsuffixes，or forever has just been scanned．（This code requires slight familiarity with expression－parsing routines that we have not yet discussed；but it seems to belong in the present part of the program，even though the author didn＇t write it until later．The reader may wish to come back to it．）
procedure begin＿iteration；
label continue，done，found；
var m ：halfword；\｛ expr＿base（for）or suffix＿base（forsuffixes）\}
n ：halfword；$\quad\{$ hash address of the current symbol $\}$
$p, q, s, p p:$ pointer；\｛link manipulation registers \}
begin $m \leftarrow$ cur＿mod $; n \leftarrow$ cur＿sym $; s \leftarrow$ get＿node（loop＿node＿size）；
if $m=$ start＿forever then
begin loop＿type $(s) \leftarrow$ void；$p \leftarrow$ null；get＿x＿next；goto found；
end；
get＿symbol；$p \leftarrow$ get＿node（token＿node＿size）$; \operatorname{info}(p) \leftarrow$ cur＿sym $;$ value $(p) \leftarrow m$ ；
get＿x＿next；
if $($ cur＿cmd \neq equals $) \wedge($ cur＿cmd \neq assignment $)$ then
begin missing＿err（＂＝＂）；

back＿error；
end；
\langle Scan the values to be used in the loop 764\rangle ；
found：\langle Check for the presence of a colon 756\rangle ；
〈Scan the loop text and put it on the loop control stack 758〉；
resume＿iteration；
end；
756．〈 Check for the presence of a colon 756$\rangle \equiv$
if cur＿cmd \neq colon then
begin missing＿err（＂：＂）；

end
This code is used in section 755 ．
757．We append a special frozen＿repeat＿loop token in place of the＇endfor＇at the end of the loop．This will come through METAFONT＇s scanner at the proper time to cause the loop to be repeated．
（A user who tries some shenanigan like＇for ．．．let endfor＇will be foiled by the get＿symbol routine，which keeps frozen tokens unchanged．Furthermore the frozen＿repeat＿loop is an outer token，so it won＇t be lost accidentally．）

758．〈Scan the loop text and put it on the loop control stack 758$\rangle \equiv$

info $(s) \leftarrow$ scan＿toks $($ iteration $, p, q, 0)$ ；scanner＿status \leftarrow normal；
link $(s) \leftarrow$ loop＿ptr；loop＿ptr $\leftarrow s$
This code is used in section 755 ．
759．〈 Initialize table entries（done by INIMF only） 176$\rangle+\equiv$
eq＿type $($ frozen＿repeat＿loop $) \leftarrow$ repeat＿loop + outer＿tag $;$ text $($ frozen＿repeat＿loop $) \leftarrow$＂\llcorner ENDFOR＂；

760．The loop text is inserted into METAFONT＇s scanning apparatus by the resume＿iteration routine．
procedure resume＿iteration；
label not＿found，exit；
var p, q ：pointer；\｛ link registers \}
begin $p \leftarrow$ loop＿type（loop＿ptr）；
if $p>$ void then $\{p$ points to a progression node $\}$
begin cur＿exp $\leftarrow \operatorname{value}(p)$ ；
if 〈The arithmetic progression has ended 761\rangle then goto not＿found；
cur＿type \leftarrow known $; q \leftarrow$ stash＿cur＿exp $; \quad$ \｛ make q an expr argument \}
$\operatorname{value}(p) \leftarrow$ cur＿exp $+\operatorname{step_ size}(p) ; \quad\{$ set $\operatorname{value}(p)$ for the next iteration $\}$
end
else if $p<$ void then
begin $p \leftarrow$ loop＿list（loop＿ptr）；
if $p=$ null then goto not＿found；
loop＿list $($ loop＿ptr $) \leftarrow \operatorname{link}(p) ; q \leftarrow \operatorname{info}(p)$ ；free＿avail (p) ；
end
else begin begin＿token＿list（info（loop＿ptr），forever＿text）；return；
end；
begin＿token＿list（info（loop＿ptr），loop＿text）；stack＿argument（q）；
if internal［tracing＿commands］＞unity then 〈Trace the start of a loop 762〉；
return；
not＿found：stop＿iteration；
exit：end；
761．〈The arithmetic progression has ended 761$\rangle \equiv$

This code is used in section 760 ．
762．〈Trace the start of a loop 762$\rangle \equiv$
begin begin＿diagnostic；print＿nl（＂\｛loop」value＝＂）；
if $(q \neq$ null $) \wedge(\operatorname{link}(q)=$ void $)$ then print＿exp $(q, 1)$
else show＿token＿list（ q ，null， 50,0 ）；
print＿char（＂\}"); end_diagnostic(false);
end
This code is used in section 760 ．
763. A level of loop control disappears when resume_iteration has decided not to resume, or when an exitif construction has removed the loop text from the input stack.
procedure stop_iteration;
var p, q : pointer; \{ the usual \}
begin $p \leftarrow$ loop_type (loop_ptr);
if $p>$ void then free_node (p, progression_node_size)
else if $p<$ void then
begin $q \leftarrow$ loop_list(loop_ptr);
while $q \neq$ null do
begin $p \leftarrow \operatorname{info}(q)$;
if $p \neq$ null then
if $\operatorname{link}(p)=$ void then $\{$ it's an expr parameter \}
begin recycle_value (p); free_node(p, value_node_size);
end
else flush_token_list (p); \{it's a suffix or text parameter \}
$p \leftarrow q ; q \leftarrow \operatorname{link}(q) ;$ free_avail (p);
end;
end;
$p \leftarrow$ loop_ptr; loop_ptr \leftarrow link $(p) ;$ flush_token_list $($ info $(p))$; free_node(p, loop_node_size);
end;
764. Now that we know all about loop control, we can finish up the missing portion of begin_iteration and we'll be done.

The following code is performed after the ' $=$ ' has been scanned in a for construction (if $m=$ expr_base) or a forsuffixes construction (if $m=s u f f i x _b a s e$).
\langle Scan the values to be used in the loop 764$\rangle \equiv$
loop_type $(s) \leftarrow$ null $; q \leftarrow$ loop_list_loc $(s) ; \operatorname{link}(q) \leftarrow$ null; $\quad\left\{\operatorname{link}(q)=\operatorname{loop_ list}(s)\right\}$
repeat get_x_next;
if $m \neq$ expr_base then scan_suffix
else begin if cur_cmd \geq colon then
if cur_cmd \leq comma then goto continue;
scan_expression;
if cur_cmd $=$ step_token then
if $q=$ loop_list_loc (s) then \langle Prepare for step-until construction and goto done 765〉;
cur_exp \leftarrow stash_cur_exp;
end;
$\operatorname{link}(q) \leftarrow$ get_avail; $q \leftarrow \operatorname{link}(q) ; \operatorname{info}(q) \leftarrow$ cur_exp; cur_type \leftarrow vacuous;
continue: until cur_cmd \neq comma;
done:
This code is used in section 755 .

765．〈Prepare for step－until construction and goto done 765$\rangle \equiv$
begin if cur＿type $\neq k n o w n$ then bad＿for（＂initial＿value＂）；
$p p \leftarrow$ get＿node $($ progression＿node＿size $) ;$ value $(p p) \leftarrow c u r _e x p ;$
get＿x＿next；scan＿expression；
if cur＿type $\neq k n o w n$ then bad＿for（＂step」size＂）；
step＿size $(p p) \leftarrow$ cur＿exp；
if cur＿cmd \neq until＿token then
begin missing＿err（＂until＂）；

 end；
get＿x＿next；scan＿expression；
if cur＿type \neq known then bad＿for（＂final」value＂）；
final＿value $(p p) \leftarrow$ cur＿exp；loop＿type $(s) \leftarrow p p$ ；goto done；
end
This code is used in section 764 ．
766. File names. It's time now to fret about file names. Besides the fact that different operating systems treat files in different ways, we must cope with the fact that completely different naming conventions are used by different groups of people. The following programs show what is required for one particular operating system; similar routines for other systems are not difficult to devise.
METAFONT assumes that a file name has three parts: the name proper; its "extension"; and a "file area" where it is found in an external file system. The extension of an input file is assumed to be '. mf ' unless otherwise specified; it is '.log' on the transcript file that records each run of METAFONT; it is '.tfm' on the font metric files that describe characters in the fonts METAFONT creates; it is '. gf ' on the output files that specify generic font information; and it is '. base' on the base files written by INIMF to initialize METAFONT. The file area can be arbitrary on input files, but files are usually output to the user's current area. If an input file cannot be found on the specified area, METAFONT will look for it on a special system area; this special area is intended for commonly used input files.

Simple uses of METAFONT refer only to file names that have no explicit extension or area. For example, a person usually says 'input cmr10' instead of 'input cmr10.new'. Simple file names are best, because they make the METAFONT source files portable; whenever a file name consists entirely of letters and digits, it should be treated in the same way by all implementations of METAFONT. However, users need the ability to refer to other files in their environment, especially when responding to error messages concerning unopenable files; therefore we want to let them use the syntax that appears in their favorite operating system.
767. METAFONT uses the same conventions that have proved to be satisfactory for $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. In order to isolate the system-dependent aspects of file names, the system-independent parts of METAFONT are expressed in terms of three system-dependent procedures called begin_name, more_name, and end_name. In essence, if the user-specified characters of the file name are $c_{1} \ldots c_{n}$, the system-independent driver program does the operations
begin_name $;$ more_name $\left(c_{1}\right) ; \ldots ;$ more_name $\left(c_{n}\right) ;$ end_name.
These three procedures communicate with each other via global variables. Afterwards the file name will appear in the string pool as three strings called cur_name, cur_area, and cur_ext; the latter two are null (i.e., ""), unless they were explicitly specified by the user.

Actually the situation is slightly more complicated, because METAFONT needs to know when the file name ends. The more_name routine is a function (with side effects) that returns true on the calls more_name $\left(c_{1}\right)$, \ldots, more_name $\left(c_{n-1}\right)$. The final call more_name $\left(c_{n}\right)$ returns false; or, it returns true and c_{n} is the last character on the current input line. In other words, more_name is supposed to return true unless it is sure that the file name has been completely scanned; and end_name is supposed to be able to finish the assembly of cur_name, cur_area, and cur_ext regardless of whether more_name $\left(c_{n}\right)$ returned true or false.
\langle Global variables 13$\rangle+\equiv$
cur_name: str_number; \{ name of file just scanned \}
cur_area: str_number; \{ file area just scanned, or "" \}
cur_ext: str_number; \{ file extension just scanned, or "" \}
768. The file names we shall deal with for illustrative purposes have the following structure: If the name contains ' $>$ ' or ' $:$ ', the file area consists of all characters up to and including the final such character; otherwise the file area is null. If the remaining file name contains '.', the file extension consists of all such characters from the first remaining '. ' to the end, otherwise the file extension is null.

We can scan such file names easily by using two global variables that keep track of the occurrences of area and extension delimiters:
\langle Global variables 13$\rangle+\equiv$
area_delimiter: pool_pointer; \{ the most recent '>' or ' $:$ ', if any \}
ext_delimiter: pool_pointer; \{ the relevant '., , if any \}
769. Input files that can't be found in the user's area may appear in a standard system area called MF_area. This system area name will, of course, vary from place to place.
define MF_area \equiv "MFinputs:"
770. Here now is the first of the system-dependent routines for file name scanning.
procedure begin_name;
begin area_delimiter $\leftarrow 0$; ext_delimiter $\leftarrow 0$;
end;
771. And here's the second.
function more_name ($c:$: ASCII_code): boolean;
begin if $c=$ " \sqcup " then more_name \leftarrow false
else begin if $(c=">") \vee(c=": ")$ then
begin area_delimiter \leftarrow pool_ptr; ext_delimiter $\leftarrow 0$;
end
else if $(c=" . ") \wedge($ ext_delimiter $=0)$ then ext_delimiter \leftarrow pool_ptr;
str_room (1); append_char (c); \{contribute c to the current string \} more_name \leftarrow true; end;
end;
772. The third.
procedure end_name;
begin if $s t r_{-} p t r+3>$ max_str_ptr then
begin if str_ptr $+3>$ max_strings then overflow("number ${ }_{\sqcup} \circ f_{\sqcup}$ strings", max_strings - init_str_ptr);
max_str_ptr \leftarrow str_ptr +3 ;
end;
if area_delimiter $=0$ then cur_area $\leftarrow " "$
else begin cur_area \leftarrow str_ptr; incr (str_ptr); str_start $\left[s t r _p t r\right] \leftarrow$ area_delimiter +1 ;
end;
if ext_delimiter $=0$ then
begin cur_ext \leftarrow ""; cur_name \leftarrow make_string;
end
else begin cur_name \leftarrow str_ptr ; incr (str_ptr); str_start [str_ptr] \leftarrow ext_delimiter;
cur_ext \leftarrow make_string;
end;
end;
773. Conversely, here is a routine that takes three strings and prints a file name that might have produced them. (The routine is system dependent, because some operating systems put the file area last instead of first.)
〈Basic printing procedures 57$\rangle+\equiv$
procedure print_file_name (n, a, e: integer);
begin slow_print (a); slow_print (n); slow_print (e);
end;
774. Another system-dependent routine is needed to convert three internal METAFONT strings to the name_of_file value that is used to open files. The present code allows both lowercase and uppercase letters in the file name.

```
define append_to_name \((\#) \equiv\)
    begin \(c \leftarrow \# ; \operatorname{incr}(k)\);
    if \(k \leq\) file_name_size then \(n a m e \_o f_{-} f i l e[k] \leftarrow x c h r[c]\);
    end
procedure pack_file_name ( \(n, a, e\) : str_number);
    var \(k\) : integer; \{number of positions filled in name_of_file \}
        c: ASCII_code; \{ character being packed \}
        \(j\) : pool_pointer; \{index into str_pool \(\}\)
    begin \(k \leftarrow 0\);
    for \(j \leftarrow\) str_start \([a]\) to str_start \([a+1]-1\) do append_to_name \((\) so \((\) str_pool \([j]))\);
    for \(j \leftarrow\) str_start \([n]\) to str_start \([n+1]-1\) do append_to_name (so (str_pool \([j]))\);
    for \(j \leftarrow\) str_start \([e]\) to str_start \([e+1]-1\) do append_to_name (so(str_pool \([j])\) );
    if \(k \leq\) file_name_size then name_length \(\leftarrow k\) else name_length \(\leftarrow\) file_name_size;
    for \(k \leftarrow\) name_length +1 to file_name_size do name_of_file \([k] \leftarrow{ }^{\prime} \sqcup^{\prime}\) ';
    end;
```

775. A messier routine is also needed, since base file names must be scanned before METAFONT's string mechanism has been initialized. We shall use the global variable MF_base_default to supply the text for default system areas and extensions related to base files.
define base_default_length $=18$ \{ length of the $M F _$base_default string \}
define base_area_length $=8 \quad$ \{length of its area part \}
define base_ext_length $=5 \quad$ \{length of its '.base' part \}
define base_extension $=$ ".base" $\quad\{$ the extension, as a WEB constant $\}$
\langle Global variables 13$\rangle+\equiv$
MF_base_default: packed array [1..base_default_length] of char;
776. 〈Set initial values of key variables 21$\rangle+\equiv$

MF_base_default \leftarrow 'MFbases: plain.base';
777. 〈 Check the "constant" values for consistency 14$\rangle+\equiv$
if base_default_length $>$ file_name_size then bad $\leftarrow 41$;
778. Here is the messy routine that was just mentioned. It sets name_of_file from the first n characters of MF_base_default, followed by buffer [$a . . b]$, followed by the last base_ext_length characters of MF_base_default.

We dare not give error messages here, since METAFONT calls this routine before the error routine is ready to roll. Instead, we simply drop excess characters, since the error will be detected in another way when a strange file name isn't found.

```
procedure pack_buffered_name( \(n\) : small_number; \(a, b\) : integer);
    var \(k\) : integer; \{ number of positions filled in name_of_file \}
        c: ASCII_code; \{ character being packed \}
        \(j\) : integer; \{ index into buffer or MF_base_default \}
    begin if \(n+b-a+1+\) base_ext_length > file_name_size then
        \(b \leftarrow a+\) file_name_size \(-n-1\) - base_ext_length;
    \(k \leftarrow 0\);
    for \(j \leftarrow 1\) to \(n\) do append_to_name(xord[MF_base_default [j]]);
    for \(j \leftarrow a\) to \(b\) do append_to_name(buffer \([j]\) );
    for \(j \leftarrow\) base_default_length - base_ext_length +1 to base_default_length do
        append_to_name (xord[MF_base_default [j]]);
    if \(k \leq\) file_name_size then name_length \(\leftarrow k\) else name_length \(\leftarrow\) file_name_size;
    for \(k \leftarrow\) name_length +1 to file_name_size do name_of_file \([k] \leftarrow{ }^{\leftarrow}{ }_{\omega}\) ';
    end;
```

779. Here is the only place we use pack_buffered_name. This part of the program becomes active when a "virgin" METAFONT is trying to get going, just after the preliminary initialization, or when the user is substituting another base file by typing ' $\&$ ' after the initial '**' prompt. The buffer contains the first line of input in buffer [loc .. (last - 1)], where loc < last and buffer $[l o c] \neq$ " $\mathrm{\cup}$ ".
\langle Declare the function called open_base_file 779$\rangle \equiv$
function open_base_file: boolean;
label found, exit;
var $j: 0$. buf_size; \{ the first space after the file name \}
begin $j \leftarrow$ loc;
if buffer $[l o c]=$ "\&" then
begin incr (loc); $j \leftarrow$ loc; buffer [last] \leftarrow " ${ }^{\circ}$ ";
while buffer $[j] \neq$ "ь" do $\operatorname{incr}(j)$;
pack_buffered_name ($0, l o c, j-1$); \{ try first without the system file area \}
if w_{-}open_in(base_file) then goto found;
pack_buffered_name(base_area_length, loc, $j-1$); \quad now try the system base file area $\}$
if w_{-}open_in(base_file) then goto found;

update_terminal;
end; \{now pull out all the stops: try for the system plain file \}
pack_buffered_name(base_default_length - base_ext_length, 1, 0);
if $\neg w_{-} o p e n_{-} i n\left(b a s e_{-} f i l e\right)$ then

open_base_file \leftarrow false; return;
end;
found: loc $\leftarrow j$; open_base_file \leftarrow true;
exit: end;
This code is used in section 1187.
780. Operating systems often make it possible to determine the exact name (and possible version number) of a file that has been opened. The following routine, which simply makes a METAFONT string from the value of name_of_file, should ideally be changed to deduce the full name of file f, which is the file most recently opened, if it is possible to do this in a Pascal program.

This routine might be called after string memory has overflowed, hence we dare not use 'str_room'.
function make_name_string: str_number;
var k : 1 .. file_name_size; \{index into name_of_file \}
begin if $($ pool_ptr + name_length $>$ pool_size $) \vee($ str_ptr $=$ max_strings $)$ then make_name_string $\leftarrow " ? "$
else begin for $k \leftarrow 1$ to name_length do append_char (xord[name_of_file[k]]);
make_name_string \leftarrow make_string;
end;
end;
function a_make_name_string(var f : alpha_file): str_number;
begin a_make_name_string \leftarrow make_name_string;
end;
function b_make_name_string(var f : byte_file): str_number;
begin b_make_name_string \leftarrow make_name_string;
end;
function w_make_name_string(var f : word_file): str_number;
begin w_make_name_string \leftarrow make_name_string;
end;
781. Now let's consider the "driver" routines by which METAFONT deals with file names in a systemindependent manner. First comes a procedure that looks for a file name in the input by taking the information from the input buffer. (We can't use get_next, because the conversion to tokens would destroy necessary information.)

This procedure doesn't allow semicolons or percent signs to be part of file names, because of other conventions of METAFONT. The manual doesn't use semicolons or percents immediately after file names, but some users no doubt will find it natural to do so; therefore system-dependent changes to allow such characters in file names should probably be made with reluctance, and only when an entire file name that includes special characters is "quoted" somehow.

```
procedure scan_file_name;
    label done;
    begin begin_name;
    while buffer[loc] = "ь" do incr(loc);
    loop begin if (buffer[loc]=";")\vee (buffer [loc] = "%") then goto done;
        if \negmore_name(buffer[loc]) then goto done;
        incr (loc);
        end;
done: end_name;
    end;
```

782. The global variable job_name contains the file name that was first input by the user. This name is extended by '. log ' and '. gf ' and '. base' and '.tfm' in the names of METAFONT's output files.
\langle Global variables 13$\rangle+\equiv$
job_name: str_number; \{ principal file name\}
log_opened: boolean; \{ has the transcript file been opened? \}
log_name: str_number; \{full name of the \log file \}

783．Initially job＿name $=0$ ；it becomes nonzero as soon as the true name is known．We have job＿name $=0$ if and only if the＇log＇file has not been opened，except of course for a short time just after job＿name has become nonzero．
\langle Initialize the output routines 55$\rangle+\equiv$
job＿name $\leftarrow 0$ ；log＿opened \leftarrow false；
784．Here is a routine that manufactures the output file names，assuming that job＿name $\neq 0$ ．It ignores and changes the current settings of cur＿area and cur＿ext．
define pack＿cur＿name \equiv pack＿file＿name（cur＿name，cur＿area，cur＿ext）
procedure pack＿job＿name（s ：str＿number）；$\{s=" . l o g ", " . g f ", " . t f m "$ ，or base＿extension $\}$
begin cur＿area \leftarrow＂＂；cur＿ext $\leftarrow s$ ；cur＿name \leftarrow job＿name；pack＿cur＿name；
end；
785．Actually the main output file extension is usually something like＂． 300 gf ＂instead of just＂．gf＂；the additional number indicates the resolution in pixels per inch，based on the setting of hppp when the file is opened．
\langle Global variables 13$\rangle+\equiv$
gf＿ext：str＿number；\｛default extension for the output file \}
786．If some trouble arises when METAFONT tries to open a file，the following routine calls upon the user to supply another file name．Parameter s is used in the error message to identify the type of file；parameter e is the default extension if none is given．Upon exit from the routine，variables cur＿name，cur＿area，cur＿ext， and name＿of＿file are ready for another attempt at file opening．

```
procedure prompt_file_name(s,e : str_number);
    label done;
    var \(k\) : 0..buf_size; \{index into buffer \}
    begin if interaction = scroll_mode then wake_up_terminal;
```



```
    print_file_name (cur_name, cur_area, cur_ext); print(" -.");
    if \(e=" . \mathrm{mf} "\) then show_context;
    print_nl("Please \({ }_{\lrcorner}\)type \(_{\llcorner }\)another \(_{\sqcup}\) "); print (s);
```



```
    clear_terminal; prompt_input(": \(\sqcup\) "); 〈Scan file name in the buffer 787〉;
    if cur_ext \(="\) " then cur_ext \(\leftarrow e\);
    pack_cur_name;
    end;
```

787. 〈Scan file name in the buffer 787$\rangle \equiv$
begin begin_name $; k \leftarrow$ first;
while (buffer $[k]=$ "ь") $\wedge(k<$ last $)$ do incr (k);
loop begin if $k=$ last then goto done;
if \neg more_name (buffer $[k]$) then goto done;
incr (k);
end;
done: end_name;
end
This code is used in section 786 .
788. The open_log_file routine is used to open the transcript file and to help it catch up to what has previously been printed on the terminal.
procedure open_log_file;
var old_setting: 0 . . max_selector; \{previous selector setting \}
$k: 0 \ldots$ buf_size; ; index into months and buffer \}
$l: 0 .$. buf_size; ; end of first input line \}
m : integer; \{ the current month \}
months: packed array [1..36] of char; \{abbreviations of month names \}
begin old_setting \leftarrow selector;
if job_name $=0$ then job_name \leftarrow "mfput";
pack_job_name(".log");
while \neg a_open_out (log_file) do 〈Try to get a different log file name 789〉;
log_name \leftarrow a_make_name_string (log_file); selector \leftarrow log_only; log_opened \leftarrow true;
\langle Print the banner line, including the date and time 790\rangle;
input_stack $[$ input_ptr $] \leftarrow$ cur_input; $\quad\{$ make sure bottom level is in memory \}
print_nl("**"); $l \leftarrow$ input_stack [0].limit_field $-1 ; \quad\{$ last position of first line $\}$
for $k \leftarrow 1$ to l do print(buffer $[k]$);
print_ln; \{now the transcript file contains the first line of input \}
selector \leftarrow old_setting $+2 ; \quad\{$ log_only or term_and_log $\}$
end;
789. Sometimes open_log_file is called at awkward moments when METAFONT is unable to print error messages or even to show_context. The prompt_file_name routine can result in a fatal_error, but the error routine will not be invoked because log_opened will be false.

The normal idea of batch_mode is that nothing at all should be written on the terminal. However, in the unusual case that no log file could be opened, we make an exception and allow an explanatory message to be seen.

Incidentally, the program always refers to the log file as a 'transcript file', because some systems cannot use the extension '. log' for this file.
\langle Try to get a different log file name 789$\rangle \equiv$
begin selector \leftarrow term_only; prompt_file_name("transcript_file_name", ". \log ");
end
This code is used in section 788 .
790. \langle Print the banner line, including the date and time 790$\rangle \equiv$
begin wlog(banner); slow_print(base_ident); print("чч"); print_int(sys_day); print_char("ь");
months \leftarrow 'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC';
for $k \leftarrow 3 *$ sys_month -2 to $3 *$ sys_month do wlog (months $[k]$);
print_char("ப"); print_int(sys_year); print_char("ப"); print_dd(sys_time div 60); print_char(":");
print_dd (sys_time mod 60);
end
This code is used in section 788 .
791. Here's an example of how these file-name-parsing routines work in practice. We shall use the macro set_output_file_name when it is time to crank up the output file.

```
define set_output_file_name \equiv
    begin if job_name = 0 then open_log_file;
    pack_job_name(gf_ext);
    while }\neg\mp@subsup{b}{_}{\primeopen_out(gf_file) do prompt_file_name("file&name\sqcupfor_output", gf_ext);
    output_file_name \leftarrow b_make_name_string(gf__file);
    end
```

\langle Global variables 13$\rangle+\equiv$
gf_file: byte_file; \{ the generic font output goes here \}
output_file_name: str_number; \{full name of the output file \}
792. 〈Initialize the output routines 55$\rangle+\equiv$
output_file_name $\leftarrow 0$;
793. Let's turn now to the procedure that is used to initiate file reading when an 'input' command is being processed. Beware: For historic reasons, this code foolishly conserves a tiny bit of string pool space; but that can confuse the interactive ' E ' option.

```
procedure start_input; { METAFONT will input something }
    label done;
    begin <Put the desired file name in (cur_name, cur_ext, cur_area) 795\rangle;
    if cur_ext = "" then cur_ext }\leftarrow".mf"
    pack_cur_name;
    loop begin begin_file_reading; {set up cur_file and new level of input }
        if a_open_in(cur_file) then goto done;
        if cur_area = "" then
            begin pack_file_name(cur_name, MF_area,cur_ext);
            if a_open_in(cur_file) then goto done;
            end;
        end_file_reading; {remove the level that didn't work }
        prompt_file_name("input_file_name", ".mf");
        end;
done: name \leftarrow a_make_name_string(cur_file); str_ref [cur_name]}\leftarrow\mathrm{ max_str_ref;
    if job_name = 0 then
        begin job_name \leftarrow cur_name; open_log_file;
        end; {open_log_file doesn't show_context, so limit and loc needn't be set to meaningful values yet }
    if term_offset + length(name) > max_print_line - 2 then print_ln
    else if (term_offset > 0) \vee(file_offset >0) then print_char("\sqcup");
    print_char("("); incr(open_parens); slow_print(name); update_terminal;
    if name = str_ptr - 1 then { conserve string pool space (but see note above)}
        begin flush_string(name); name \leftarrow cur_name;
        end;
    <Read the first line of the new file 794\rangle;
    end;
```

794. Here we have to remember to tell the input_ln routine not to start with a get. If the file is empty, it is considered to contain a single blank line.
\langle Read the first line of the new file 794$\rangle \equiv$
begin line $\leftarrow 1$;
if input_ln(cur_file, false) then do_nothing;
firm_up_the_line ; buffer $[$ limit $] \leftarrow " \% " ;$ first \leftarrow limit +1 ; loc \leftarrow start;
end
This code is used in section 793.
795. 〈Put the desired file name in (cur_name, cur_ext, cur_area) 795$\rangle \equiv$
while token_state $\wedge(l o c=$ null $)$ do end_token_list;
if token_state then

 ("possibly "garbaging $^{\text {the }}$ name $_{\sqcup}$ you $_{\sqcup}$ gave.")
 error;
end;
if file_state then scan_file_name
else begin cur_name \leftarrow ""; cur_ext \leftarrow ""; cur_area \leftarrow ""; end
This code is used in section 793.
796. Introduction to the parsing routines. We come now to the central nervous system that sparks many of METAFONT's activities. By evaluating expressions, from their primary constituents to ever larger subexpressions, METAFONT builds the structures that ultimately define fonts of type.
Four mutually recursive subroutines are involved in this process: We call them

> scan_primary, scan_secondary, scan_tertiary, and scan_expression.

Each of them is parameterless and begins with the first token to be scanned already represented in cur_cmd, cur_mod, and cur_sym. After execution, the value of the primary or secondary or tertiary or expression that was found will appear in the global variables cur_type and cur_exp. The token following the expression will be represented in cur_cmd, cur_mod, and cur_sym.

Technically speaking, the parsing algorithms are "LL(1)," more or less; backup mechanisms have been added in order to provide reasonable error recovery.
\langle Global variables 13$\rangle+\equiv$
cur_type: small_number; \{ the type of the expression just found \}
cur_exp: integer; \{the value of the expression just found \}
797. 〈Set initial values of key variables 21$\rangle+\equiv$ cur_exp $\leftarrow 0$;
798. Many different kinds of expressions are possible, so it is wise to have precise descriptions of what cur_type and cur_exp mean in all cases:
cur_type $=$ vacuous means that this expression didn't turn out to have a value at all, because it arose from a begingroup ... endgroup construction in which there was no expression before the endgroup. In this case cur_exp has some irrelevant value.
cur_type $=$ boolean_type means that cur_exp is either true_code or false_code.
cur_type $=$ unknown_boolean means that cur_exp points to a capsule node that is in a ring of equivalent booleans whose value has not yet been defined.
cur_type $=$ string_type means that cur_exp is a string number (i.e., an integer in the range $0 \leq$ cur_exp $<$ str_ptr). That string's reference count includes this particular reference.
cur_type $=$ unknown_string means that cur_exp points to a capsule node that is in a ring of equivalent strings whose value has not yet been defined.
cur_type $=$ pen_type means that cur_exp points to a pen header node. This node contains a reference count, which takes account of this particular reference.
cur_type $=$ unknown_pen means that cur_exp points to a capsule node that is in a ring of equivalent pens whose value has not yet been defined.
cur_type $=$ future_pen means that cur_exp points to a knot list that should eventually be made into a pen. Nobody else points to this particular knot list. The future_pen option occurs only as an output of scan_primary and scan_secondary, not as an output of scan_tertiary or scan_expression.
cur_type $=$ path_type means that cur_exp points to the first node of a path; nobody else points to this particular path. The control points of the path will have been chosen.
cur_type $=$ unknown_path means that cur_exp points to a capsule node that is in a ring of equivalent paths whose value has not yet been defined.
cur_type $=$ picture_type means that cur_exp points to an edges header node. Nobody else points to this particular set of edges.
cur_type $=$ unknown_picture means that cur_exp points to a capsule node that is in a ring of equivalent pictures whose value has not yet been defined.
cur_type $=$ transform_type means that cur_exp points to a transform_type capsule node. The value part of this capsule points to a transform node that contains six numeric values, each of which is independent, dependent, proto_dependent, or known.
cur_type $=$ pair_type means that cur_exp points to a capsule node whose type is pair_type. The value part of this capsule points to a pair node that contains two numeric values, each of which is independent, dependent, proto_dependent, or known.
cur_type $=$ known means that cur_exp is a scaled value.
cur_type $=$ dependent means that cur_exp points to a capsule node whose type is dependent. The dep_list field in this capsule points to the associated dependency list.
cur_type $=$ proto_dependent means that cur_exp points to a proto_dependent capsule node. The dep_list field in this capsule points to the associated dependency list.
cur_type $=$ independent means that cur_exp points to a capsule node whose type is independent. This somewhat unusual case can arise, for example, in the expression ' $x+$ begingroup string $x ; 0$ endgroup'.
cur_type $=$ token_list means that cur_exp points to a linked list of tokens.
The possible settings of cur_type have been listed here in increasing numerical order. Notice that cur_type will never be numeric_type or suffixed_macro or unsuffixed_macro, although variables of those types are allowed. Conversely, METAFONT has no variables of type vacuous or token_list.
799. Capsules are two-word nodes that have a similar meaning to cur_type and cur_exp. Such nodes have name_type $=$ capsule , and their type field is one of the possibilities for cur_type listed above. Also link \leq void in capsules that aren't part of a token list.

The value field of a capsule is, in most cases, the value that corresponds to its type, as cur_exp corresponds to cur_type. However, when cur_exp would point to a capsule, no extra layer of indirection is present; the value field is what would have been called value (cur_exp) if it had not been encapsulated. Furthermore, if the type is dependent or proto_dependent, the value field of a capsule is replaced by dep_list and prev_dep fields, since dependency lists in capsules are always part of the general dep_list structure.

The get_x_next routine is careful not to change the values of cur_type and cur_exp when it gets an expanded token. However, get_x_next might call a macro, which might parse an expression, which might execute lots of commands in a group; hence it's possible that cur_type might change from, say, unknown_boolean to boolean_type, or from dependent to known or independent, during the time get_x_next is called. The programs below are careful to stash sensitive intermediate results in capsules, so that METAFONT's generality doesn't cause trouble.

Here's a procedure that illustrates these conventions. It takes the contents of (cur_type, cur_exp) and stashes them away in a capsule. It is not used when cur_type $=$ token_list. After the operation, cur_type $=$ vacuous; hence there is no need to copy path lists or to update reference counts, etc.
The special link void is put on the capsule returned by stash_cur_exp, because this procedure is used to store macro parameters that must be easily distinguishable from token lists.
\langle Declare the stashing/unstashing routines 799$\rangle \equiv$
function stash_cur_exp: pointer;
var p : pointer; \{ the capsule that will be returned \}
begin case cur_type of
unknown_types, transform_type, pair_type, dependent, proto_dependent, independent: $p \leftarrow$ cur_exp;
othercases begin $p \leftarrow$ get_node (value_node_size); name_type $(p) \leftarrow$ capsule; type $(p) \leftarrow$ cur_type; value $(p) \leftarrow$ cur_exp;
end
endcases;
cur_type $\leftarrow v a c u o u s ; \operatorname{link}(p) \leftarrow v o i d ;$ stash_cur_exp $\leftarrow p$;
end;
See also section 800 .
This code is used in section 801.

800．The inverse of stash＿cur＿exp is the following procedure，which deletes an unnecessary capsule and puts its contents into cur＿type and cur＿exp．
The program steps of METAFONT can be divided into two categories：those in which cur＿type and cur＿exp are＂alive＂and those in which they are＂dead，＂in the sense that cur＿type and cur＿exp contain relevant information or not．It＇s important not to ignore them when they＇re alive，and it＇s important not to pay attention to them when they＇re dead．

There＇s also an intermediate category：If cur＿type $=$ vacuous，then cur＿exp is irrelevant，hence we can proceed without caring if cur＿type and cur＿exp are alive or dead．In such cases we say that cur＿type and cur＿exp are dormant．It is permissible to call get＿x＿next only when they are alive or dormant．
The stash procedure above assumes that cur＿type and cur＿exp are alive or dormant．The unstash procedure assumes that they are dead or dormant；it resuscitates them．
\langle Declare the stashing／unstashing routines 799〉 $+\equiv$
procedure unstash＿cur＿exp（ p ：pointer）；
begin cur＿type \leftarrow type (p) ；
case cur＿type of
unknown＿types，transform＿type，pair＿type，dependent，proto＿dependent，independent：cur＿exp $\leftarrow p$ ；
othercases begin cur＿exp \leftarrow value (p) ；free＿node（ p ，value＿node＿size）；
end
endcases；
end；
801．The following procedure prints the values of expressions in an abbreviated format．If its first parameter p is null，the value of（cur＿type，cur＿exp）is displayed；otherwise p should be a capsule containing the desired value．The second parameter controls the amount of output．If it is 0 ，dependency lists will be abbreviated to＇linearform＇unless they consist of a single term．If it is greater than 1 ，complicated structures（pens，pictures，and paths）will be displayed in full．
\langle Declare subroutines for printing expressions 257$\rangle+\equiv$
〈Declare the procedure called print＿dp 805〉
\langle Declare the stashing／unstashing routines 799\rangle
procedure print＿exp（ p ：pointer；verbosity ：small＿number）；
var restore＿cur＿exp：boolean；\｛should cur＿exp be restored？\}
t ：small＿number；\｛ the type of the expression \}
v ：integer；\｛ the value of the expression \}
q ：pointer；\｛ a big node being displayed \}
begin if $p \neq$ null then restore＿cur＿exp \leftarrow false
else begin $p \leftarrow$ stash＿cur＿exp；restore＿cur＿exp \leftarrow true； end；
$t \leftarrow$ type (p) ；
if $t<$ dependent then $v \leftarrow \operatorname{value}(p)$ else if $t<$ independent then $v \leftarrow \operatorname{dep}$＿list (p) ；
\langle Print an abbreviated value of v with format depending on $t 802\rangle$ ；
if restore＿cur＿exp then unstash＿cur＿exp (p) ；
end；

802．〈Print an abbreviated value of v with format depending on $t 802\rangle \equiv$ case t of
vacuous：print（＂vacuous＂）；
boolean＿type：if $v=$ true＿code then $\operatorname{print}(" t r u e ")$ else $\operatorname{print}(" f a l s e ")$ ；
unknown＿types，numeric＿type：〈Display a variable that＇s been declared but not defined 806〉；
string＿type：begin print＿char（＂＂＂＂）；slow＿print（v）；print＿char（＂＂＂＂）； end；
pen＿type，future＿pen，path＿type，picture＿type：〈Display a complex type 804〉；
transform＿type，pair＿type：if $v=$ null then print＿type (t)
else \langle Display a big node 803\rangle ；
known：print＿scaled（v）；
dependent，proto＿dependent：print＿dp（ t, v, verbosity）；
independent：print＿variable＿name（p）；
othercases confusion（＂exp＂）
endcases
This code is used in section 801 ．
803．〈Display a big node 803$\rangle \equiv$
begin print＿char（＂（＂）；$q \leftarrow v+$ big＿node＿size $[t]$ ；
repeat if type $(v)=$ known then print＿scaled $(\operatorname{value}(v))$
else if type $(v)=$ independent then print＿variable＿name (v)
else print＿dp（type (v) ，dep＿list (v) ，verbosity）；
$v \leftarrow v+2$ ；
if $v \neq q$ then print＿char（＂，＂）；
until $v=q$ ；
print＿char（＂）＂）；
end
This code is used in section 802.

804．Values of type picture，path，and pen are displayed verbosely in the log file only，unless the user has given a positive value to tracingonline．
\langle Display a complex type 804$\rangle \equiv$
if verbosity ≤ 1 then print＿type (t)
else begin if selector $=$ term＿and＿log then
if internal［tracing＿online $] \leq 0$ then
begin selector \leftarrow term＿only；print＿type $(t) ; \operatorname{print}\left(" \sqcup\left(\right.\right.$ see $_{\sqcup}$ the $\left.\left._{\sqcup} \operatorname{transcript}_{\sqcup} f i l e\right) "\right)$ ；
selector \leftarrow term＿and＿log；
end；
case t of
pen＿type：print＿pen（v，＂＂，false）；
future＿pen：print＿path（v，＂ь（future ${ }_{\sqcup}$ pen）＂，false）；
path＿type：print＿path（v，＂＂，false）；
picture＿type：begin cur＿edges $\leftarrow v$ ；print＿edges $(" \mathrm{l}$, false， 0,0$)$ ；
end；
end；\｛ there are no other cases \}
end
This code is used in section 802 ．
805. 〈Declare the procedure called print_dp 805$\rangle \equiv$
procedure print_dp (t : small_number; $p:$ pointer ; verbosity : small_number $)$;
var q : pointer; $\quad\{$ the node following $p\}$
begin $q \leftarrow \operatorname{link}(p)$;
if $(\operatorname{info}(q)=$ null $) \vee($ verbosity $>0)$ then print _dependency (p, t)
else print("linearform");
end;
This code is used in section 801.
806. The displayed name of a variable in a ring will not be a capsule unless the ring consists entirely of capsules.
\langle Display a variable that's been declared but not defined 806$\rangle \equiv$
begin print_type (t);
if $v \neq$ null then
begin print_char("ப");
while $($ name_type $(v)=$ capsule $) \wedge(v \neq p)$ do $v \leftarrow \operatorname{value}(v)$;
print_variable_name (v);
end;
end
This code is used in section 802.
807. When errors are detected during parsing, it is often helpful to display an expression just above the error message, using exp_err or disp_err instead of print_err.
define exp_err $(\#) \equiv$ disp_err (null, \#) \quad \{displays the current expression $\}$
\langle Declare subroutines for printing expressions 257$\rangle+\equiv$
procedure disp_err (p : pointer; s : str_number $)$;
begin if interaction $=$ error_stop_mode then wake_up_terminal;
print_nl(">>ப"); print_exp $(p, 1) ; \quad$ \{ "medium verbose" printing of the expression $\}$
if $s \neq "$ " then
begin print_nl("!七"); print(s);
end;
end;

808．If cur＿type and cur＿exp contain relevant information that should be recycled，we will use the following procedure，which changes cur＿type to known and stores a given value in cur＿exp．We can think of cur＿type and cur＿exp as either alive or dormant after this has been done，because cur＿exp will not contain a pointer value．
\langle Declare the procedure called flush＿cur＿exp 808〉 \equiv
procedure flush＿cur＿exp（ $v:$ scaled）；
begin case cur＿type of
unknown＿types，transform＿type，pair＿type，
dependent，proto＿dependent，independent：begin recycle＿value（cur＿exp）；
free＿node（cur＿exp，value＿node＿size）；
end；
pen＿type：delete＿pen＿ref（cur＿exp）；
string＿type：delete＿str＿ref（cur＿exp）；
future＿pen，path＿type：toss＿knot＿list（cur＿exp）；
picture＿type：toss＿edges（cur＿exp）；
othercases do＿nothing
endcases；
cur＿type \leftarrow known $;$ cur＿exp $\leftarrow v$ ；
end；
See also section 820 ．
This code is used in section 246.
809．There＇s a much more general procedure that is capable of releasing the storage associated with any two－word value packet．
\langle Declare the recycling subroutines 268$\rangle+\equiv$
procedure recycle＿value（ p ：pointer）；
label done；
var t ：small＿number；\｛ a type code $\}$
v ：integer；\｛ a value \}
$v v$ ：integer；\｛ another value \}
$q, r, s, p p:$ pointer；\｛link manipulation registers \}
begin $t \leftarrow$ type (p) ；
if $t<$ dependent then $v \leftarrow \operatorname{value}(p)$ ；
case t of
undefined，vacuous，boolean＿type，known，numeric＿type：do＿nothing；
unknown＿types： ring＿delete (p) ；
string＿type：delete＿str＿ref（v）；
pen＿type：delete＿pen＿ref（v）；
path＿type，future＿pen：toss＿knot＿list（v）；
picture＿type：toss＿edges（v）；
pair＿type，transform＿type：〈Recycle a big node 810〉；
dependent，proto＿dependent：〈Recycle a dependency list 811〉；
independent：〈Recycle an independent variable 812〉；
token＿list，structured：confusion（＂recycle＂）；
unsuffixed＿macro，suffixed＿macro：delete＿mac＿ref（value（p））；
end；\｛there are no other cases \}
type $(p) \leftarrow$ undefined；
end；
810. 〈Recycle a big node 810$\rangle \equiv$
if $v \neq$ null then
begin $q \leftarrow v+$ big_node_size $[t]$;
repeat $q \leftarrow q-2$; recycle_value (q);
until $q=v$;
free_node (v, big_node_size $[t])$;
end
This code is used in section 809.
811. \langle Recycle a dependency list 811$\rangle \equiv$
begin $q \leftarrow$ dep_list (p);
while $\operatorname{info}(q) \neq$ null do $q \leftarrow \operatorname{link}(q)$;
$\operatorname{link}(\operatorname{prev} d e p(p)) \leftarrow \operatorname{link}(q) ; \operatorname{prev} \operatorname{dep}(\operatorname{link}(q)) \leftarrow \operatorname{prev} d e p(p) ; \operatorname{link}(q) \leftarrow$ null;
flush_node_list (dep_list $\left.^{(p)}\right)$;
end
This code is used in section 809 .
812. When an independent variable disappears, it simply fades away, unless something depends on it. In the latter case, a dependent variable whose coefficient of dependence is maximal will take its place. The relevant algorithm is due to Ignacio A. Zabala, who implemented it as part of his Ph.D. thesis (Stanford University, December 1982).

For example, suppose that variable x is being recycled, and that the only variables depending on x are $y=2 x+a$ and $z=x+b$. In this case we want to make y independent and $z=.5 y-.5 a+b$; no other variables will depend on y. If tracingequations >0 in this situation, we will print ' $\# \# \#-2 \mathrm{x}=-\mathrm{y}+\mathrm{a}$ '.

There's a slight complication, however: An independent variable x can occur both in dependency lists and in proto-dependency lists. This makes it necessary to be careful when deciding which coefficient is maximal.

Furthermore, this complication is not so slight when a proto-dependent variable is chosen to become independent. For example, suppose that $y=2 x+100 a$ is proto-dependent while $z=x+b$ is dependent; then we must change $z=.5 y-50 a+b$ to a proto-dependency, because of the large coefficient ' 50 '.

In order to deal with these complications without wasting too much time, we shall link together the occurrences of x among all the linear dependencies, maintaining separate lists for the dependent and protodependent cases.
\langle Recycle an independent variable 812$\rangle \equiv$
begin max_c $[$ dependent $] \leftarrow 0$; max_c $[$ proto_dependent $] \leftarrow 0$;
max_link $[$ dependent $] \leftarrow$ null; max_link $[$ proto_dependent $] \leftarrow$ null;
$q \leftarrow$ link (dep_head);
while $q \neq$ dep_head do
begin $s \leftarrow$ value_loc $(q) ;$ \{ now $\operatorname{link}(s)=\operatorname{dep} _$list $\left.(q)\right\}$
loop begin $r \leftarrow \operatorname{link}(s)$;
if $\operatorname{info}(r)=$ null then goto done;
if $\operatorname{info}(r) \neq p$ then $s \leftarrow r$
else begin $t \leftarrow \operatorname{type}(q) ; \operatorname{link}(s) \leftarrow \operatorname{link}(r) ; \operatorname{info}(r) \leftarrow q ;$
if $\operatorname{abs}($ value $(r))>\max _{-}[t]$ then \langle Record a new maximum coefficient of type t 814 \rangle
else begin link $(r) \leftarrow$ max_link $[t]$; max_link $[t] \leftarrow r$;
end;
end;
end;
done: $q \leftarrow \operatorname{link}(r)$;
end;
if $($ max_c $[$ dependent $]>0) \vee($ max_c c proto_dependent $]>0)$ then
〈Choose a dependent variable to take the place of the disappearing independent variable, and change all remaining dependencies accordingly 815\rangle;
end
This code is used in section 809.
813. The code for independency removal makes use of three two-word arrays.
\langle Global variables 13$\rangle+\equiv$
max_c: array [dependent . . proto_dependent] of integer; \{ max coefficient magnitude \}
max_ptr: array [dependent . . proto_dependent] of pointer; \{ where p occurs with max_c \}
max_link: array [dependent . . proto_dependent] of pointer; \{ other occurrences of $p\}$
814. \langle Record a new maximum coefficient of type $t 814\rangle \equiv$
begin if max_c $[t]>0$ then
begin $\operatorname{link}($ max_ptr $[t]) \leftarrow$ max_link $[t] ;$ max_link $[t] \leftarrow$ max_ptr $[t]$;
end;
max_c $[t] \leftarrow$ abs $($ value $(r)) ;$ max_ptr $[t] \leftarrow r$;
end
This code is used in section 812 .

815．〈Choose a dependent variable to take the place of the disappearing independent variable，and change all remaining dependencies accordingly 815$\rangle \equiv$
begin if（max＿c $[$ dependent $]$ div＇ $10000 \geq$ max＿c $[$ proto＿dependent $]$ ）then $t \leftarrow$ dependent
else $t \leftarrow$ proto＿dependent；
\langle Determine the dependency list s to substitute for the independent variable p 816 ；
$t \leftarrow$ dependent + proto＿dependent $-t ; \quad\{$ complement $t\}$
if $\max _{-}[t]>0$ then $\{$ we need to pick up an unchosen dependency \}
begin link $($ max＿ptr $[t]) \leftarrow$ max＿link $[t] ;$ max＿link $[t] \leftarrow$ max＿ptr $[t]$ ；
end；
if $t \neq$ dependent then 〈Substitute new dependencies in place of p 818〉
else 〈Substitute new proto－dependencies in place of $p 819$ 〉；
flush＿node＿list（s）；
if fix＿needed then fix＿dependencies；
check＿arith；
end
This code is used in section 812 ．
816．Let $s=$ max＿ptr $[t]$ ．At this point we have value $(s)= \pm$ max＿c $[t]$ ，and info (s) points to the dependent variable $p p$ of type t from whose dependency list we have removed node s ．We must reinsert node s into the dependency list，with coefficient -1.0 ，and with $p p$ as the new independent variable．Since $p p$ will have a larger serial number than any other variable，we can put node s at the head of the list．
\langle Determine the dependency list s to substitute for the independent variable $p 816\rangle \equiv$
$s \leftarrow$ max＿ptr $[t] ; p p \leftarrow \operatorname{info}(s) ; v \leftarrow$ value $(s) ;$
if $t=$ dependent then value $(s) \leftarrow-$ fraction＿one else value $(s) \leftarrow-$ unity；
$r \leftarrow$ dep＿list $(p p) ; \operatorname{link}(s) \leftarrow r ;$
while $\operatorname{info}(r) \neq$ null do $r \leftarrow \operatorname{link}(r)$ ；
$q \leftarrow \operatorname{link}(r) ; \operatorname{link}(r) \leftarrow$ null；prev＿dep $(q) \leftarrow$ prev＿dep $(p p) ; \operatorname{link}\left(p r e v _d e p(p p)\right) \leftarrow q ;$ new＿indep $(p p)$ ；
if cur＿exp $=p p$ then
if cur＿type $=t$ then cur＿type \leftarrow independent；
if internal［tracing＿equations］＞0 then 〈Show the transformed dependency 817〉
This code is used in section 815.
817．Now $(-v)$ times the formerly independent variable p is being replaced by the dependency list s ．
\langle Show the transformed dependency 817$\rangle \equiv$
if interesting (p) then
begin begin＿diagnostic；print＿nl（＂\＃\＃\＃৬＂）；
if $v>0$ then print＿char（＂－＂）；
if $t=$ dependent then $v v \leftarrow$ round＿fraction（max＿c $[$ dependent $])$
else $v v \leftarrow$ max＿c［proto＿dependent］；
if $v v \neq u n i t y$ then print＿scaled $(v v)$ ；
print＿variable＿name（p）；
while $\operatorname{value}(p) \bmod s _$scale >0 do
begin print $(" * 4 ")$ ；value $(p) \leftarrow \operatorname{value}(p)-2$ ；
end；
if $t=$ dependent then print＿char（＂＝＂）else print（＂ $\mathrm{U}=\mathrm{\cup}$＂）；
print＿dependency (s, t) ；end＿diagnostic（false）；
end
This code is used in section 816.
818. Finally, there are dependent and proto-dependent variables whose dependency lists must be brought up to date.
\langle Substitute new dependencies in place of $p 818\rangle \equiv$
for $t \leftarrow$ dependent to proto_dependent do
begin $r \leftarrow$ max_link $[t]$;
while $r \neq$ null do
begin $q \leftarrow \operatorname{info}(r)$; dep_list $(q) \leftarrow p_{-} p l u s_{-} f q($ dep_list (q), make_fraction(value $(r),-v), s, t$, dependent $)$;
if dep_list $(q)=$ dep_final then make_known (q, dep_final);
$q \leftarrow r ; r \leftarrow$ link (r); free_node (q, dep_node_size);
end;
end
This code is used in section 815 .
819. 〈Substitute new proto-dependencies in place of $p 819\rangle \equiv$
for $t \leftarrow$ dependent to proto_dependent do
begin $r \leftarrow$ max_link $[t]$;
while $r \neq$ null do begin $q \leftarrow \operatorname{info}(r)$; if $t=$ dependent then $\quad\{$ for safety's sake, we change q to proto_dependent $\}$
begin if cur_exp $=q$ then
if cur_type $=$ dependent then cur_type \leftarrow proto_dependent;
dep_list $(q) \leftarrow$ p_over_v $($ dep_list (q), unity, dependent, proto_dependent $)$;
type $(q) \leftarrow$ proto_dependent; value $(r) \leftarrow$ round_fraction $($ value $(r))$;
end;
dep_list $(q) \leftarrow p_{-} p l u s _f q($ dep_list (q), make_scaled $(v a l u e(r),-v), s$, proto_dependent, proto_dependent); if dep_list $(q)=$ dep_final then make_known(q, dep_final);
$q \leftarrow r ; r \leftarrow$ link (r); free_node (q, dep_node_size);
end;
end
This code is used in section 815 .
820. Here are some routines that provide handy combinations of actions that are often needed during error recovery. For example, 'flush_error' flushes the current expression, replaces it by a given value, and calls error.
Errors often are detected after an extra token has already been scanned. The 'put_get' routines put that token back before calling error; then they get it back again. (Or perhaps they get another token, if the user has changed things.)
\langle Declare the procedure called flush_cur_exp 808〉 $+\equiv$
procedure flush_error (v : scaled);
begin error; flush_cur_exp (v); end;
procedure back_error; forward;
procedure get_x_next; forward;
procedure put_get_error;
begin back_error; get_x_next; end;
procedure put_get_flush_error ($v:$ scaled);
begin put_get_error; flush_cur_exp(v); end;
821. A global variable called var_flag is set to a special command code just before METAFONT calls scan_expression, if the expression should be treated as a variable when this command code immediately follows. For example, var_flag is set to assignment at the beginning of a statement, because we want to know the location of a variable at the left of ' $:=$ ', not the value of that variable.

The scan_expression subroutine calls scan_tertiary, which calls scan_secondary, which calls scan_primary, which sets var_flag $\leftarrow 0$. In this way each of the scanning routines "knows" when it has been called with a special var_flag, but var_flag is usually zero.

A variable preceding a command that equals var_flag is converted to a token list rather than a value. Furthermore, an ' $=$ ' sign following an expression with var_flag $=$ assignment is not considered to be a relation that produces boolean expressions.
\langle Global variables 13$\rangle+\equiv$
var_flag: 0 .. max_command_code; $\{$ command that wants a variable \}
822. 〈Set initial values of key variables 21$\rangle+\equiv$ var_flag $\leftarrow 0$;

823．Parsing primary expressions．The first parsing routine，scan＿primary，is also the most compli－ cated one，since it involves so many different cases．But each case－with one exception－is fairly simple by itself．

When scan＿primary begins，the first token of the primary to be scanned should already appear in cur＿cmd， cur＿mod，and cur＿sym．The values of cur＿type and cur＿exp should be either dead or dormant，as explained earlier．If cur＿cmd is not between min＿primary＿command and max＿primary＿command，inclusive，a syntax error will be signalled．
\langle Declare the basic parsing subroutines 823$\rangle \equiv$
procedure scan＿primary；
label restart，done，done1，done2；
var $p, q, r:$ pointer；$\{$ for list manipulation $\}$
c：quarterword；\｛ a primitive operation code \}
my＿var＿flag： 0 ．．max＿command＿code；\｛initial value of var＿flag \}
l＿delim，r＿delim：pointer；\｛ hash addresses of a delimiter pair \}
〈Other local variables for scan＿primary 831〉
begin my＿var＿flag $\leftarrow v a r_{-} f l a g ;$ var＿flag $\leftarrow 0$ ；
restart：check＿arith；〈Supply diagnostic information，if requested 825〉；
case cur＿cmd of
left＿delimiter：\langle Scan a delimited primary 826 \rangle ；
begin＿group：〈Scan a grouped primary 832\rangle ；
string＿token：〈Scan a string constant 833〉；
numeric＿token：〈Scan a primary that starts with a numeric token 837〉；
nullary：〈Scan a nullary operation 834\rangle ；
unary，type＿name，cycle，plus＿or＿minus：〈Scan a unary operation 835〉；
primary＿binary：〈Scan a binary operation with＇of＇between its operands 839〉；
str＿op：〈Convert a suffix to a string 840\rangle ；
internal＿quantity：〈Scan an internal numeric quantity 841 〉；
capsule＿token：make＿exp＿copy（cur＿mod）；
tag＿token：〈Scan a variable primary；goto restart if it turns out to be a macro 844〉；
othercases begin bad＿exp（＂A $\mathrm{A}_{\llcorner }$primary＂）；goto restart；
end
endcases；
get＿x＿next；\｛ the routines goto done if they don＇t want this \}
done： if cur＿cmd $=$ left＿bracket then
if cur＿type \geq known then 〈Scan a mediation construction 859〉；
end；
See also sections $860,862,864,868$ ，and 892.
This code is used in section 1202.
824．Errors at the beginning of expressions are flagged by bad＿exp．
procedure bad＿exp（s：str＿number）；
var save＿flag： 0 ．．max＿command＿code；

cur＿cmd \leftarrow numeric＿token $;$ cur＿mod $\leftarrow 0$ ；ins＿error；
save＿flag $\leftarrow v a r_{-} f l a g ; v a r_{-} f l a g ~ \leftarrow 0 ;$ get＿x＿next；var＿flag \leftarrow save＿flag；
end；

825．〈Supply diagnostic information，if requested 825$\rangle \equiv$
debug if panicking then check＿mem（false）；
gubed
if interrupt $\neq 0$ then
if OK＿to＿interrupt $^{\text {then }}$
begin back＿input；check＿interrupt；get＿x＿next； end
This code is used in section 823.

826．\langle Scan a delimited primary 826$\rangle \equiv$
begin l_{-}delim \leftarrow cur＿sym ；r＿delim \leftarrow cur＿mod；get＿x＿next；scan＿expression；
if $($ cur＿cmd $=$ comma $) \wedge($ cur＿type \geq known $)$ then \langle Scan the second of a pair of numerics 830\rangle
else check＿delimiter（l＿delim，r＿delim）；
end
This code is used in section 823 ．

827．The stash＿in subroutine puts the current（numeric）expression into a field within a＂big node．＂
procedure stash＿in（ p ：pointer）；
var q ：pointer；$\quad\{$ temporary register $\}$
begin type $(p) \leftarrow$ cur＿type；
if cur＿type $=$ known then $\operatorname{value}(p) \leftarrow$ cur＿exp
else begin if cur＿type $=$ independent then \langle Stash an independent cur＿exp into a big node 829〉 else begin mem $[$ value＿loc $(p)] \leftarrow$ mem $[$ value＿loc $($ cur＿exp $)]$ ；
$\left\{\operatorname{dep} p_{-} l i s t(p) \leftarrow d e p_{-} l i s t\left(c u r_{-} e x p\right)\right.$ and $\left.\operatorname{prev} d e p(p) \leftarrow p r e v_{-} d e p\left(c u r_{-} e x p\right)\right\}$
$\operatorname{link}\left(p r e v _d e p(p)\right) \leftarrow p ;$
end；
free＿node（cur＿exp，value＿node＿size）； end；
cur＿type \leftarrow vacuous；
end；
828．In rare cases the current expression can become independent．There may be many dependency lists pointing to such an independent capsule，so we can＇t simply move it into place within a big node．Instead， we copy it，then recycle it．

829．〈Stash an independent cur＿exp into a big node 829$\rangle \equiv$
begin $q \leftarrow$ single＿dependency（cur＿exp）；
if $q=d e p_{-}$final then
begin type $(p) \leftarrow$ known；value $(p) \leftarrow 0 ;$ free＿node $(q$ ，dep＿node＿size $)$ ；
end
else begin type $(p) \leftarrow$ dependent；new＿dep (p, q) ；
end；
recycle＿value（cur＿exp）；
end
This code is used in section 827 ．

830．〈Scan the second of a pair of numerics 830$\rangle \equiv$
begin $p \leftarrow$ get＿node（value＿node＿size）；type $(p) \leftarrow$ pair＿type ；name＿type $(p) \leftarrow$ capsule ；init＿big＿node (p) ；
$q \leftarrow$ value (p) ；stash＿in（x＿part＿loc $(q))$ ；
get＿x＿next；scan＿expression；
if cur＿type $<$ known then

end；
stash＿in（y＿part＿loc $(q))$ ；check＿delimiter（l＿delim，r＿delim）；cur＿type \leftarrow pair＿type；cur＿exp $\leftarrow p$ ；
end
This code is used in section 826 ．
831．The local variable group＿line keeps track of the line where a begingroup command occurred；this will be useful in an error message if the group doesn＇t actually end．
\langle Other local variables for scan＿primary 831$\rangle \equiv$
group＿line：integer；\｛ where a group began \}
See also sections 836 and 843 ．
This code is used in section 823 ．
832．〈Scan a grouped primary 832$\rangle \equiv$
begin group＿line \leftarrow line；
if internal［ttracing＿commands $]>0$ then show＿cur＿cmd＿mod；
save＿boundary＿item（ p ）；
repeat do＿statement；$\quad\{$ ends with cur＿cmd \geq semicolon $\}$
until cur＿cmd \neq semicolon；
if cur＿cmd \neq end＿group then

 end；
unsave；\｛ this might change cur＿type，if independent variables are recycled \}
if internal［tracing＿commands $]>0$ then show＿cur＿cmd＿mod；
end
This code is used in section 823 ．
833．〈Scan a string constant 833$\rangle \equiv$
begin cur＿type \leftarrow string＿type；cur＿exp \leftarrow cur＿mod；
end
This code is used in section 823 ．

834．Later we＇ll come to procedures that perform actual operations like addition，square root，and so on； our purpose now is to do the parsing．But we might as well mention those future procedures now，so that the suspense won＇t be too bad：
do＿nullary（c）does primitive operations that have no operands（e．g．，＇true＇or＇pencircle＇）；
do＿unary（c）applies a primitive operation to the current expression；
do＿binary（ p, c ）applies a primitive operation to the capsule p and the current expression．
\langle Scan a nullary operation 834$\rangle \equiv$
do＿nullary（cur＿mod）
This code is used in section 823.
835．〈Scan a unary operation 835$\rangle \equiv$
begin $c \leftarrow$ cur＿mod；get＿x＿next；scan＿primary；do＿unary（c）；goto done；
end
This code is used in section 823 ．
836．A numeric token might be a primary by itself，or it might be the numerator of a fraction composed solely of numeric tokens，or it might multiply the primary that follows（provided that the primary doesn＇t begin with a plus sign or a minus sign）．The code here uses the facts that max＿primary＿command $=$ plus＿or＿minus and max＿primary＿command $-1=$ numeric＿token．If a fraction is found that is less than unity，we try to retain higher precision when we use it in scalar multiplication．
\langle Other local variables for scan＿primary 831$\rangle+\equiv$
num，denom：scaled；$\quad\{$ for primaries that are fractions，like＇ $1 / 2$＇$\}$
837．〈Scan a primary that starts with a numeric token 837 〉 \equiv
begin cur＿exp \leftarrow cur＿mod；cur＿type \leftarrow known；get＿x＿next；
if cur＿cmd \neq slash then
begin num $\leftarrow 0$ ；denom $\leftarrow 0$ ；
end
else begin get＿x＿next；
if cur＿cmd \neq numeric＿token then
begin back＿input；cur＿cmd \leftarrow slash $;$ cur＿mod \leftarrow over $;$ cur＿sym $\leftarrow f r o z e n _s l a s h ;$ goto done； end；
num \leftarrow cur＿exp $;$ denom \leftarrow cur＿mod $;$
if denom $=0$ then \langle Protest division by zero 838〉
else cur＿exp \leftarrow make＿scaled（num，denom）；
check＿arith；get＿x＿next；
end；
if cur＿cmd \geq min＿primary＿command then
if cur＿cmd＜numeric＿token then $\{$ in particular，cur＿cmd \neq plus＿or＿minus $\}$
begin $p \leftarrow$ stash＿cur＿exp $;$ scan＿primary；
if $($ abs $($ num $) \geq a b s($ denom $)) \vee($ cur＿type $<$ pair＿type $)$ then do＿binary $(p$, times $)$
else begin frac＿mult（num，denom）；free＿node（p，value＿node＿size）；
end； end；
goto done；
end
This code is used in section 823 ．

838．〈Protest division by zero 838$\rangle \equiv$
 error；
end
This code is used in section 837 ．
839．〈Scan a binary operation with＇of＇between its operands 839$\rangle \equiv$
begin $c \leftarrow$ cur＿mod；get＿x＿next；scan＿expression；
if cur＿cmd \neq of＿token then
begin missing＿err（＂of＂）；print（＂ьfor ＂$\left.^{\prime}\right)$ ；print＿cmd＿mod（primary＿binary，c ）；
 end；
$p \leftarrow$ stash＿cur＿exp；get＿x＿next；scan＿primary；do＿binary (p, c) ；goto done；
end
This code is used in section 823 ．
840．〈Convert a suffix to a string 840$\rangle \equiv$
begin get＿x＿next；scan＿suffix；old＿setting \leftarrow selector；selector \leftarrow new＿string；
show＿token＿list（cur＿exp，null，100000，0）；flush＿token＿list（cur＿exp）；cur＿exp \leftarrow make＿string；
selector \leftarrow old＿setting ；cur＿type \leftarrow string＿type；goto done；
end
This code is used in section 823 ．

841．If an internal quantity appears all by itself on the left of an assignment，we return a token list of length one，containing the address of the internal quantity plus hash＿end．（This accords with the conventions of the save stack，as described earlier．）

```
\(\langle\) Scan an internal numeric quantity 841\(\rangle \equiv\)
    begin \(q \leftarrow\) cur_mod;
    if my_var_flag = assignment then
        begin get_x_next;
        if cur_cmd \(=\) assignment then
            begin cur_exp \(\leftarrow\) get_avail; info \(\left(c u r_{-} e x p\right) \leftarrow q+\) hash_end; cur_type \(\leftarrow\) token_list; goto done;
            end;
        back_input;
        end;
    cur_type \(\leftarrow\) known; cur_exp \(\leftarrow\) internal \([q]\);
    end
```

This code is used in section 823 ．
842．The most difficult part of scan＿primary has been saved for last，since it was necessary to build up some confidence first．We can now face the task of scanning a variable．

As we scan a variable，we build a token list containing the relevant names and subscript values，simulta－ neously following along in the＂collective＂structure to see if we are actually dealing with a macro instead of a value．

The local variables pre＿head and post＿head will point to the beginning of the prefix and suffix lists；tail will point to the end of the list that is currently growing．

Another local variable，$t t$ ，contains partial information about the declared type of the variable－so－far．If $t t \geq$ unsuffixed＿macro，the relation $t t=$ type (q) will always hold．If $t t=$ undefined，the routine doesn＇t bother to update its information about type．And if undefined $<t t<$ unsuffixed＿macro，the precise value of $t t$ isn＇t critical．

843．〈Other local variables for scan＿primary 831〉＋三
pre＿head，post＿head，tail：pointer；\｛prefix and suffix list variables \}
$t t$ ：small＿number；\｛ approximation to the type of the variable－so－far \}
t ：pointer；\｛a token \}
macro＿ref：pointer；\｛reference count for a suffixed macro \}
844．〈Scan a variable primary；goto restart if it turns out to be a macro 844$\rangle \equiv$
begin fast＿get＿avail（pre＿head）；tail \leftarrow pre＿head；post＿head $\leftarrow n u l l ; ~ t t ~ \leftarrow v a c u o u s ;$
loop begin $t \leftarrow$ cur＿tok；link $($ tail $) \leftarrow t$ ； if $t t \neq$ undefined then
begin 〈Find the approximate type $t t$ and corresponding $q 850\rangle$ ； if $t t \geq$ unsuffixed＿macro then
\langle Either begin an unsuffixed macro call or prepare for a suffixed one 845\rangle ； end；
get＿x＿next；tail $\leftarrow t$ ；
if cur＿cmd $=$ left＿bracket then
\langle Scan for a subscript；replace cur＿cmd by numeric＿token if found 846〉；
if cur＿cmd＞max＿suffix＿token then goto done1；
if cur＿cmd $<$ min＿suffix＿token then goto done 1 ；
end；\｛now cur＿cmd is internal＿quantity，tag＿token，or numeric＿token \}
done1：〈Handle unusual cases that masquerade as variables，and goto restart or goto done if appropriate； otherwise make a copy of the variable and goto done 852\rangle ；
end
This code is used in section 823 ．
845．〈Either begin an unsuffixed macro call or prepare for a suffixed one 845$\rangle \equiv$
begin $\operatorname{link}($ tail $) \leftarrow$ null；
if $t t>$ unsuffixed＿macro then $\{t t=$ suffixed＿macro $\}$
begin post＿head \leftarrow get＿avail；tail \leftarrow post＿head；link $($ tail $) \leftarrow t$ ；
$t t \leftarrow$ undefined $;$ macro＿ref $\leftarrow \operatorname{value}(q) ;$ add＿mac＿ref $($ macro＿ref $)$ ；
end
else 〈Set up unsuffixed macro call and goto restart 853〉；
end
This code is used in section 844 ．

846．〈Scan for a subscript；replace cur＿cmd by numeric＿token if found 846$\rangle \equiv$
begin get＿x＿next；scan＿expression；
if cur＿cmd \neq right＿bracket then 〈Put the left bracket and the expression back to be rescanned 847〉
else begin if cur＿type \neq known then bad＿subscript；
cur＿cmd \leftarrow numeric＿token $;$ cur＿mod \leftarrow cur＿exp $;$ cur＿sym $\leftarrow 0 ;$
end；
end
This code is used in section 844 ．
847．The left bracket that we thought was introducing a subscript might have actually been the left bracket in a mediation construction like＇ $\mathrm{x}[\mathrm{a}, \mathrm{b}]$＇．So we don＇t issue an error message at this point；but we do want to back up so as to avoid any embarrassment about our incorrect assumption．
\langle Put the left bracket and the expression back to be rescanned 847$\rangle \equiv$
begin back＿input；\｛ that was the token following the current expression \}
back＿expr $;$ cur＿cmd \leftarrow left＿bracket $;$ cur＿mod $\leftarrow 0 ;$ cur＿sym \leftarrow frozen＿left＿bracket；
end
This code is used in sections 846 and 859.
848. Here's a routine that puts the current expression back to be read again.
procedure back_expr;
var p : pointer; $\{$ capsule token $\}$
begin $p \leftarrow$ stash_cur_exp; link $(p) \leftarrow$ null; back_list (p);
end;
849. Unknown subscripts lead to the following error message.
procedure bad_subscript;

end;
850. Every time we call get_x_next, there's a chance that the variable we've been looking at will disappear. Thus, we cannot safely keep q pointing into the variable structure; we need to start searching from the root each time.
\langle Find the approximate type $t t$ and corresponding $q 850\rangle \equiv$

$$
\text { begin } p \leftarrow \operatorname{link}\left(p r e _h e a d\right) ; q \leftarrow \operatorname{info}(p) ; t t \leftarrow \text { undefined } ;
$$

if eq_type (q) mod outer_tag $=$ tag_token then
begin $q \leftarrow \operatorname{equiv}(q)$;
if $q=$ null then goto done2;
loop begin $p \leftarrow \operatorname{link}(p)$;
if $p=$ null then
begin $t t \leftarrow$ type (q); goto done2;
end;
if type $(q) \neq$ structured then goto done2;
$q \leftarrow \operatorname{link}($ attr_head $(q)) ; \quad\{$ the collective_subscript attribute $\}$
if $p \geq h i i_{-} m e m _m i n$ then $\{$ it's not a subscript $\}$
begin repeat $q \leftarrow \operatorname{link}(q)$;
until attr _loc $(q) \geq \operatorname{info}(p)$;
if $\operatorname{attr}_{-} l o c(q)>\operatorname{info}(p)$ then goto done2;
end;
end;
end;
done2: end
This code is used in section 844 .

851．How do things stand now？Well，we have scanned an entire variable name，including possible sub－ scripts and／or attributes；cur＿cmd，cur＿mod，and cur＿sym represent the token that follows．If post＿head＝ null，a token list for this variable name starts at link（pre＿head），with all subscripts evaluated．But if post＿head \neq null，the variable turned out to be a suffixed macro；pre＿head is the head of the prefix list，while post＿head is the head of a token list containing both＇$@$＇and the suffix．

Our immediate problem is to see if this variable still exists．（Variable structures can change drastically whenever we call get＿x＿next；users aren＇t supposed to do this，but the fact that it is possible means that we must be cautious．）

The following procedure prints an error message when a variable unexpectedly disappears．Its help message isn＇t quite right for our present purposes，but we＇ll be able to fix that up．

```
procedure obliterated(q : pointer);
    begin print_err("Variable\sqcup"); show_token_list(q, null, 1000,0); print("\sqcuphas_been
    help5("It
    ("but\sqcupnevertheless\sqcupyou\sqcupnearly\sqcuphornswoggled
    ("While}\mp@subsup{|}{\sqcup}{}\mp@subsup{I}{\sqcupwas}{\sqcup
    ("command,\sqcupsomething\sqcuphappened, 年d\sqcupthe
    ("is漳longer
    end;
```

852．If the variable does exist，we also need to check for a few other special cases before deciding that a plain old ordinary variable has，indeed，been scanned．
〈Handle unusual cases that masquerade as variables，and goto restart or goto done if appropriate； otherwise make a copy of the variable and goto done 852$\rangle \equiv$
if post＿head \neq null then \langle Set up suffixed macro call and goto restart 854 ；
$q \leftarrow \operatorname{link}($ pre＿head $) ;$ free＿avail（pre＿head）；
if cur＿cmd $=m y_{-} v a r_{-} f l a g$ then
begin cur＿type \leftarrow token＿list；cur＿exp $\leftarrow q$ ；goto done；
end；
$p \leftarrow$ find＿variable (q) ；
if $p \neq$ null then make＿exp＿copy (p)
else begin obliterated (q) ；

put＿get＿flush＿error（0）；
end；
flush＿node＿list (q) ；goto done
This code is used in section 844.

853．The only complication associated with macro calling is that the prefix and＂at＂parameters must be packaged in an appropriate list of lists．
\langle Set up unsuffixed macro call and goto restart 853$\rangle \equiv$
begin $p \leftarrow$ get＿avail；info $($ pre＿head $) \leftarrow \operatorname{link}($ pre＿head $) ; \operatorname{link}($ pre＿head $) \leftarrow p ; \operatorname{info}(p) \leftarrow t ;$
macro＿call（value (q), pre＿head，null）；get＿x＿next；goto restart；
end
This code is used in section 845 ．

854．If the＂variable＂that turned out to be a suffixed macro no longer exists，we don＇t care，because we have reserved a pointer（macro＿ref）to its token list．
\langle Set up suffixed macro call and goto restart 854$\rangle \equiv$
begin back＿input $; p \leftarrow$ get＿avail；$q \leftarrow$ link $($ post＿head $)$ ；info（pre＿head $) \leftarrow \operatorname{link}($ pre＿head $)$ ；
link $($ pre＿head $) \leftarrow$ post＿head $; \operatorname{info}($ post＿head $) \leftarrow q ; \operatorname{link}($ post＿head $) \leftarrow p ; \operatorname{info}(p) \leftarrow \operatorname{link}(q)$ ；
link $(q) \leftarrow$ null；macro＿call（macro＿ref，pre＿head，null）；decr（ref＿count（macro＿ref））；get＿x＿next；
goto restart；
end
This code is used in section 852.
855．Our remaining job is simply to make a copy of the value that has been found．Some cases are harder than others，but complexity arises solely because of the multiplicity of possible cases．
\langle Declare the procedure called make＿exp＿copy 855$\rangle \equiv$
〈Declare subroutines needed by make＿exp＿copy 856〉
procedure make＿exp＿copy（ p ：pointer）；
label restart；
var q, r, t ：pointer；\｛registers for list manipulation \}
begin restart：cur＿type \leftarrow type (p) ；
case cur＿type of
vacuous，boolean＿type，known：cur＿exp $\leftarrow \operatorname{value}(p)$ ；
unknown＿types：cur＿exp \leftarrow new＿ring＿entry (p) ；
string＿type：begin cur＿exp \leftarrow value (p) ；add＿str＿ref（cur＿exp）；
end；
pen＿type：begin cur＿exp $\leftarrow \operatorname{value}(p)$ ；add＿pen＿ref（cur＿exp）；
end；
picture＿type：cur＿exp \leftarrow copy＿edges $(v a l u e(p))$ ；
path＿type，future＿pen：cur＿exp \leftarrow copy＿path（value $(p))$ ；
transform＿type，pair＿type：〈 Copy the big node p 857〉；
dependent，proto＿dependent：encapsulate（copy＿dep＿list（dep＿list（p）））；
numeric＿type：begin new＿indep (p) ；goto restart；
end；
independent：begin $q \leftarrow$ single＿dependency (p) ；
if $q=$ dep＿final $^{\text {then }}$
begin cur＿type \leftarrow known；cur＿exp $\leftarrow 0$ ；free＿node $(q$ ，dep＿node＿size）； end
else begin cur＿type \leftarrow dependent；encapsulate (q) ；
end；
end；
othercases confusion（＂copy＂）
endcases；
end；
This code is used in section 651.
856．The encapsulate subroutine assumes that dep＿final is the tail of dependency list p ．
\langle Declare subroutines needed by make＿exp＿copy 856$\rangle \equiv$
procedure encapsulate（ p ：pointer）；
 new＿dep（cur＿exp，p）；
end；
See also section 858.
This code is used in section 855.
857. The most tedious case arises when the user refers to a pair or transform variable; we must copy several fields, each of which can be independent, dependent, proto_dependent, or known.
\langle Copy the big node p 857 $\rangle \equiv$
begin if value $(p)=$ null then init_big_node $^{\prime}(p)$;
$t \leftarrow$ get_node $\left(v a l u e _n o d e _s i z e\right) ;$ name_type $(t) \leftarrow$ capsule $;$ type $(t) \leftarrow$ cur_type $;$ init_big_node (t);
$q \leftarrow$ value $(p)+$ big_node_size[cur_type]; $r \leftarrow$ value $(t)+$ big_node_size $[$ cur_type $]$;
repeat $q \leftarrow q-2 ; r \leftarrow r-2 ; \operatorname{install}(r, q)$;
until $q=\operatorname{value}(p)$;
cur_exp $\leftarrow t$;
end
This code is used in section 855.
858. The install procedure copies a numeric field q into field r of a big node that will be part of a capsule.
\langle Declare subroutines needed by make_exp_copy 856〉 $+\equiv$
procedure install(r, q : pointer);
var $p:$ pointer; $\{$ temporary register $\}$
begin if $\operatorname{type}(q)=$ known then
begin value $(r) \leftarrow \operatorname{value}(q)$; type $(r) \leftarrow$ known;
end
else if type $(q)=$ independent then
begin $p \leftarrow$ single_dependency (q);
if $p=$ dep_final then
begin type $(r) \leftarrow$ known; value $(r) \leftarrow 0$; free_node $(p$, dep_node_size);
end
else begin type $(r) \leftarrow$ dependent ; new_dep (r, p);
end;
end
else begin type $(r) \leftarrow$ type (q); new_dep $\left(r\right.$, copy_dep_list $\left.\left(\operatorname{dep_ list~}(q)\right)\right)$; end;
end;

859．Expressions of the form＇ $\mathrm{a}[\mathrm{b}, \mathrm{c}]$＇are converted into＇ $\mathrm{b}+\mathrm{a} *(\mathrm{c}-\mathrm{b})^{\prime}$＇，without checking the types of b or c ， provided that a is numeric．
\langle Scan a mediation construction 859$\rangle \equiv$
begin $p \leftarrow$ stash＿cur＿exp；get＿x＿next；scan＿expression；
if cur＿cmd \neq comma then
begin 〈Put the left bracket and the expression back to be rescanned 847〉；
unstash＿cur＿exp（p）；
end
else begin $q \leftarrow$ stash＿cur＿exp；get＿x＿next；scan＿expression；
if cur＿cmd \neq right＿bracket then
begin missing＿err（＂］＂）；

（＂I I_{\sqcup} shall $_{\sqcup} p r e t e n d_{\sqcup}$ that $_{\sqcup}$ one $_{\sqcup}$ was $_{\sqcup}$ there．＂）；
back＿error；
end；
$r \leftarrow$ stash＿cur＿exp；make＿exp＿copy (q) ；
do＿binary $(r$, minus $)$ ；do＿binary $(p$, times $) ;$ do＿binary $(q, p l u s) ;$ get＿x＿next；
end；
end
This code is used in section 823 ．
860．Here is a comparatively simple routine that is used to scan the suffix parameters of a macro．
\langle Declare the basic parsing subroutines 823$\rangle+\equiv$
procedure scan＿suffix；
label done；
var $h, t:$ pointer；；head and tail of the list being built \}
p ：pointer；\｛temporary register \}
begin $h \leftarrow$ get＿avail；$t \leftarrow h$ ；
loop begin if cur＿cmd $=$ left＿bracket then
〈Scan a bracketed subscript and set cur＿cmd \leftarrow numeric＿token 861〉；
if cur＿cmd $=$ numeric＿token then $p \leftarrow$ new＿num＿tok（cur＿mod）
else if $\left(\right.$ cur＿cmd $=t a g_{-}$token $) \vee($ cur＿cmd $=$ internal＿quantity $)$ then
begin $p \leftarrow$ get＿avail； $\operatorname{info}(p) \leftarrow$ cur＿sym；
end
else goto done；
link $(t) \leftarrow p ; t \leftarrow p ;$ get＿x＿next；
end；
done ：cur＿exp \leftarrow link (h) ；free＿avail (h) ；cur＿type \leftarrow token＿list；
end；
861. 〈Scan a bracketed subscript and set cur_cmd \leftarrow numeric_token 861$\rangle \equiv$
begin get_x_next; scan_expression;
if cur_type \neq known then bad_subscript;
if cur_cmd \neq right_bracket then
begin missing_err("]");

("so " $_{\sqcup} r i g h t_{\sqcup}$ bracket $_{\sqcup}$ should $_{\sqcup}$ have $_{\sqcup}$ come $_{\sqcup}$ next.")
("I I_{\sqcup} shall l_{\sqcup} pretend ${ }_{\sqcup}$ that $_{\sqcup}$ one $_{\sqcup}$ was $_{\sqcup}$ there.");
back_error;
end;
cur_cmd \leftarrow numeric_token $;$ cur_mod \leftarrow cur_exp;
end
This code is used in section 860 .
862. Parsing secondary and higher expressions. After the intricacies of scan_primary, the scan_secondary routine is refreshingly simple. It's not trivial, but the operations are relatively straightforward; the main difficulty is, again, that expressions and data structures might change drastically every time we call get_x_next, so a cautious approach is mandatory. For example, a macro defined by primarydef might have disappeared by the time its second argument has been scanned; we solve this by increasing the reference count of its token list, so that the macro can be called even after it has been clobbered.
\langle Declare the basic parsing subroutines 823$\rangle+\equiv$
procedure scan_secondary;
label restart, continue;
var p : pointer; \{ for list manipulation \}
c, d : halfword; \{ operation codes or modifiers \}
mac_name: pointer; \{ token defined with primarydef \}
begin restart: if (cur_cmd < min_primary_command $) \vee($ cur_cmd $>$ max_primary_command $)$ then
bad_exp("Aபsecondary");
scan_primary;
continue: if cur_cmd \leq max_secondary_command then
if cur_cmd \geq min_secondary_command then
begin $p \leftarrow$ stash_cur_exp $; c \leftarrow$ cur_mod $; d \leftarrow$ cur_cmd;
if $d=$ secondary_primary_macro then
begin mac_name \leftarrow cur_sym; add_mac_ref (c);
end;
get_x_next; scan_primary;
if $d \neq$ secondary_primary_macro then do_binary (p, c)
else begin back_input; binary_mac (p, c, mac_name); decr(ref_count(c)); get_x_next; goto restart; end;
goto continue;
end;
end;
863. The following procedure calls a macro that has two parameters, p and cur_exp.
procedure $\operatorname{binary_ mac}(p, c, n:$ pointer $)$;
var $q, r:$ pointer; \{ nodes in the parameter list \}
begin $q \leftarrow$ get_avail; $r \leftarrow$ get_avail; link $(q) \leftarrow r$;
$\operatorname{info}(q) \leftarrow p ;$ info $(r) \leftarrow$ stash_cur_exp;
macro_call (c, q, n);
end;
864. The next procedure, scan_tertiary, is pretty much the same deal.
\langle Declare the basic parsing subroutines 823$\rangle+\equiv$
procedure scan_tertiary;
label restart, continue;
var p : pointer; \{for list manipulation \}
c, d : halfword; $\quad\{$ operation codes or modifiers $\}$
mac_name: pointer; \{ token defined with secondarydef \}
begin restart: if (cur_cmd <min_primary_command $) \vee($ cur_cmd $>$ max_primary_command $)$ then
bad_exp("A」tertiary");
scan_secondary;
if cur_type $=$ future_pen then materialize_pen;
continue: if cur_cmd \leq max_tertiary_command then
if cur_cmd \geq min_tertiary_command then
begin $p \leftarrow$ stash_cur_exp $; c \leftarrow$ cur_mod $; d \leftarrow$ cur_cmd;
if $d=$ tertiary_secondary_macro then
begin mac_name \leftarrow cur_sym; add_mac_ref (c);
end;
get_x_next; scan_secondary;
if $d \neq$ tertiary_secondary_macro then do_binary (p, c)
else begin back_input; binary_mac(p, c, mac_name); decr(ref_count(c)); get_x_next; goto restart; end;
goto continue;
end;
end;
865. A future_pen becomes a full-fledged pen here.
procedure materialize_pen;
label common_ending;
var $a_{-} m i n u s_{-} b, a_{-} p l u s_{-} b$, major_axis, minor_axis: scaled; $\quad\{$ ellipse variables $\}$
theta: angle; \{amount by which the ellipse has been rotated \}
$p:$ pointer ; \{ path traverser \}
q : pointer; \{ the knot list to be made into a pen \}
begin $q \leftarrow$ cur_exp;
if left_type $(q)=$ endpoint then

cur_exp \leftarrow null_pen; goto common_ending;
end
else if left_type $(q)=$ open then \langle Change node q to a path for an elliptical pen 866\rangle;
cur_exp \leftarrow make_pen (q);
common_ending: toss_knot_list (q); cur_type \leftarrow pen_type;
end;
866. We placed the three points $(0,0),(1,0),(0,1)$ into a pencircle, and they have now been transformed to $(u, v),(A+u, B+v),(C+u, D+v)$; this gives us enough information to deduce the transformation $(x, y) \mapsto(A x+C y+u, B x+D y+v)$.

Given (A, B, C, D) we can always find (a, b, θ, ϕ) such that

$$
\begin{aligned}
& A=a \cos \phi \cos \theta-b \sin \phi \sin \theta ; \\
& B=a \cos \phi \sin \theta+b \sin \phi \cos \theta ; \\
& C=-a \sin \phi \cos \theta-b \cos \phi \sin \theta ; \\
& D=-a \sin \phi \sin \theta+b \cos \phi \cos \theta .
\end{aligned}
$$

In this notation, the unit circle $(\cos t, \sin t)$ is transformed into

$$
(a \cos (\phi+t) \cos \theta-b \sin (\phi+t) \sin \theta, a \cos (\phi+t) \sin \theta+b \sin (\phi+t) \cos \theta)+(u, v),
$$

which is an ellipse with semi-axes (a, b), rotated by θ and shifted by (u, v). To solve the stated equations, we note that it is necessary and sufficient to solve

$$
\begin{array}{ll}
A-D=(a-b) \cos (\theta-\phi), & A+D=(a+b) \cos (\theta+\phi), \\
B+C=(a-b) \sin (\theta-\phi), & B-C=(a+b) \sin (\theta+\phi) ;
\end{array}
$$

and it is easy to find $a-b, a+b, \theta-\phi$, and $\theta+\phi$ from these formulas.
The code below uses (txx, tyx, txy, tyy, tx, ty) to stand for (A, B, C, D, u, v).
\langle Change node q to a path for an elliptical pen 866$\rangle \equiv$
begin $t x \leftarrow x$ _coord (q); ty $\leftarrow y$ _coord (q); txx \leftarrow left_x $(q)-t x ;$ tyx \leftarrow left_y $(q)-t y$;
$t x y \leftarrow$ right_ $x(q)-t x ;$ tyy \leftarrow right_y $(q)-t y ; ~ a _m i n u s _b \leftarrow p y t h _a d d(t x x-t y y, t y x+t x y) ;$
a_plus_b \leftarrow pyth_add $($ txx + tyy, tyx - txy $)$; major_axis \leftarrow half $($ a_minus_ $b+$ a_plus_b $)$;
minor_axis $\leftarrow \operatorname{half}\left(a b s\left(a _p l u s _b-a _m i n u s _b\right)\right)$;
if major_axis $=$ minor_axis then theta $\leftarrow 0 \quad$ \{circle $\}$
else theta $\leftarrow \operatorname{half}\left(n_{_} \arg (t x x-t y y, t y x+t x y)+n_{_} \arg (t x x+t y y, t y x-t x y)\right)$;
free_node $(q$, knot_node_size); $q \leftarrow$ make_ellipse(major_axis, minor_axis, theta);
if $(t x \neq 0) \vee(t y \neq 0)$ then 〈Shift the coordinates of path $q 867\rangle$;
end
This code is used in section 865 .
867. 〈Shift the coordinates of path $q 867\rangle \equiv$
begin $p \leftarrow q$;
repeat $x_{-} \operatorname{coord}(p) \leftarrow x$ _coord $(p)+t x ; y_{-} \operatorname{coord}(p) \leftarrow y_{-} \operatorname{coord}(p)+t y ; p \leftarrow \operatorname{link}(p)$;
until $p=q$;
end
This code is used in section 866 .
868. Finally we reach the deepest level in our quartet of parsing routines. This one is much like the others; but it has an extra complication from paths, which materialize here.
define continue_path $=25$ \{a label inside of scan_expression $\}$
define finish_path $=26 \quad$ \{ another $\}$
\langle Declare the basic parsing subroutines 823$\rangle+\equiv$
procedure scan_expression;
label restart, done, continue, continue_path, finish_path, exit;
var $p, q, r, p p, q q$: pointer; \{ for list manipulation \}
c, d : halfword; \{operation codes or modifiers \}
my_var_flag: 0 .. max_command_code; \{initial value of var_flag \}
mac_name: pointer; \quad token defined with tertiarydef $\}$
cycle_hit: boolean; \{ did a path expression just end with 'cycle'? \}
x, y : scaled; \{ explicit coordinates or tension at a path join \}
t : endpoint . . open; \{knot type following a path join \}
begin $m y_{-} v a r_{-} f l a g \leftarrow v a r_{-} f l a g$;
restart: if (cur_cmd $<$ min_primary_command $) \vee($ cur_cmd $>$ max_primary_command $)$ then
bad_exp ("An");
scan_tertiary;
continue: if cur_cmd \leq max_expression_command then
if cur_cmd \geq min_expression_command then
if $($ cur_cmd \neq equals $) \vee\left(\right.$ my_var_flag $_{-} \neq$assignment $)$then
begin $p \leftarrow$ stash_cur_exp $; c \leftarrow$ cur_mod $; d \leftarrow$ cur_cmd;
if $d=$ expression_tertiary_macro then
begin mac_name \leftarrow cur_sym; add_mac_ref (c);
end;
if $(d<$ ampersand $) \vee((d=$ ampersand $) \wedge(($ type $(p)=$ pair_type $) \vee($ type $(p)=$ path_type $)))$ then
〈Scan a path construction operation; but return if p has the wrong type 869 〉
else begin get_x_next; scan_tertiary;
if $d \neq$ expression_tertiary_macro then $\operatorname{do_ } \operatorname{binary}(p, c)$
else begin back_input; binary_mac(p, c, mac_name); decr(ref_count(c)); get_x_next;
goto restart;
end;
end;
goto continue;
end;
exit: end;

869．The reader should review the data structure conventions for paths before hoping to understand the next part of this code．
\langle Scan a path construction operation；but return if p has the wrong type 869$\rangle \equiv$
begin cycle＿hit \leftarrow false；〈Convert the left operand，p ，into a partial path ending at q ；but return if p doesn＇t have a suitable type 870\rangle ；
continue＿path：〈Determine the path join parameters；but goto finish＿path if there＇s only a direction specifier 874\rangle ；
if cur＿cmd $=$ cycle then \langle Get ready to close a cycle 886 〉
else begin scan＿tertiary；〈Convert the right operand，cur＿exp，into a partial path from $p p$ to $q q 885\rangle$ ； end；
\langle Join the partial paths and reset p and q to the head and tail of the result 887\rangle ；
if cur＿cmd \geq min＿expression＿command then
if cur＿cmd \leq ampersand then
if \neg cycle＿hit then goto continue＿path；
finish＿path：〈Choose control points for the path and put the result into cur＿exp 891〉；
end
This code is used in section 868 ．
870．〈Convert the left operand，p ，into a partial path ending at q ；but return if p doesn＇t have a suitable type 870$\rangle \equiv$
begin unstash＿cur＿exp (p) ；
if cur＿type $=$ pair＿type then $p \leftarrow$ new＿knot
else if cur＿type $=$ path＿type then $p \leftarrow$ cur＿exp else return；
$q \leftarrow p$ ；
while $\operatorname{link}(q) \neq p$ do $q \leftarrow \operatorname{link}(q)$ ；
if left＿type $(p) \neq$ endpoint then $\{$ open up a cycle \}
begin $r \leftarrow$ copy＿knot $(p) ; \operatorname{link}(q) \leftarrow r ; q \leftarrow r ;$
end；
left＿type $(p) \leftarrow$ open；right＿type $(q) \leftarrow$ open；
end
This code is used in section 869 ．
871．A pair of numeric values is changed into a knot node for a one－point path when METAFONT discovers that the pair is part of a path．
〈Declare the procedure called known＿pair 872〉
function new＿knot：pointer；\｛convert a pair to a knot with two endpoints \}
var q ：pointer；\｛ the new node \}
begin $q \leftarrow$ get＿node $\left(k n o t _n o d e _s i z e\right) ;$ left＿type $(q) \leftarrow$ endpoint；right＿type $(q) \leftarrow$ endpoint； $\operatorname{link}(q) \leftarrow q$ ；
known＿pair；x_{-}coord $(q) \leftarrow$ cur＿x；y＿coord $(q) \leftarrow$ cur＿y；new＿knot $\leftarrow q$ ；
end；
872. The known_pair subroutine sets cur_x and cur_y to the components of the current expression, assuming that the current expression is a pair of known numerics. Unknown components are zeroed, and the current expression is flushed.
\langle Declare the procedure called known_pair 872$\rangle \equiv$
procedure known_pair;
var $p:$ pointer; $\{$ the pair node \}
begin if cur_type \neq pair_type then

end
else begin $p \leftarrow$ value(cur_exp);
\langle Make sure that both x and y parts of p are known; copy them into cur_x and cur-y 873〉;
flush_cur_exp (0);
end;
end;
This code is used in section 871.
873. 〈Make sure that both x and y parts of p are known; copy them into cur_x and cur_y 873$\rangle \equiv$
if type $\left(x_{-}\right.$part_loc $\left.(p)\right)=$ known then cur_ $x \leftarrow \operatorname{value}\left(x_{-} p a r t _l o c ~(p)\right)$

 cur_ $x \leftarrow 0$;
end;
if type $\left(y_{-}\right.$part_loc $\left.(p)\right)=$ known then cur_ $y \leftarrow$ value $\left(y_{-}\right.$part_loc $\left.(p)\right)$

 cur_y $\leftarrow 0$;
end
This code is used in section 872.

874．At this point cur＿cmd is either ampersand，left＿brace，or path＿join．
\langle Determine the path join parameters；but goto finish＿path if there＇s only a direction specifier 874$\rangle \equiv$
if cur＿cmd＝left＿brace then 〈Put the pre－join direction information into node q 879〉；
$d \leftarrow c u r_{-} c m d$ ；
if $d=$ path＿join then 〈Determine the tension and／or control points 881〉
else if $d \neq$ ampersand then goto finish＿path；
get＿x＿next；
if cur＿cmd $=$ left＿brace then \langle Put the post－join direction information into x and $t 880\rangle$
else if right＿type $(q) \neq$ explicit then
begin $t \leftarrow$ open；$x \leftarrow 0$ ；
end
This code is used in section 869 ．
875．The scan＿direction subroutine looks at the directional information that is enclosed in braces，and also scans ahead to the following character．A type code is returned，either open（if the direction was $(0,0)$ ）， or curl（if the direction was a curl of known value cur＿exp），or given（if the direction is given by the angle value that now appears in cur＿exp）．

There＇s nothing difficult about this subroutine，but the program is rather lengthy because a variety of potential errors need to be nipped in the bud．
function scan＿direction：small＿number；
var t ：given ．．open；\｛ the type of information found $\}$
x ：scaled；$\{$ an x coordinate $\}$
begin get＿x＿next；
if cur＿cmd $=$ curl＿command then 〈Scan a curl specification 876〉
else \langle Scan a given direction 877\rangle ；
if cur＿cmd \neq right＿brace then
begin missing＿err（＂\}");

back＿error；
end；
get＿x＿next；scan＿direction $\leftarrow t$ ；
end；
876．〈Scan a curl specification 876$\rangle \equiv$
begin get＿x＿next；scan＿expression；
if $($ cur＿type $\neq k$ nown $) \vee($ cur＿exp $<0)$ then

help1 (" A_{\sqcup} curl l_{\sqcup} must $_{\sqcup} \mathrm{be}_{\sqcup} \mathrm{a}_{\sqcup}$ known, \sqcup nonnegative \llcorner number. "); put_get_flush_error (unity);
end;
$t \leftarrow c u r l ;$
end
This code is used in section 875.

877．〈Scan a given direction 877$\rangle \equiv$
begin scan＿expression；
if cur＿type＞pair＿type then 〈Get given directions separated by commas 878〉
else known＿pair；
if $\left(c u r_{-} x=0\right) \wedge\left(c u r_{-} y=0\right)$ then $t \leftarrow$ open
else begin $t \leftarrow$ given ；cur＿exp $\leftarrow n_{-} \arg \left(\right.$ cur＿$_{-}$, cur＿$\left.y\right)$ ； end；
end
This code is used in section 875 ．
878．〈Get given directions separated by commas 878$\rangle \equiv$
begin if cur＿type $\neq k n o w n$ then
begin exp＿err $\left(\right.$＂Undefined x_{\sqcup} coordinate ${ }_{\sqcup} \mathrm{has}_{\sqcup} \mathrm{been}_{\sqcup} \mathrm{replaced}_{\sqcup} \mathrm{by}_{\sqcup} 0$＂）；

（＂（Chapter ${ }_{\sqcup} 2_{\sqcup}$ of $_{\llcorner }$The $_{\sqcup}$ METAFONTbook ${ }_{\sqcup}$ explains ${ }_{\sqcup}$ that＂）

end；
$x \leftarrow$ cur＿exp；
if cur＿cmd \neq comma then
begin missing＿err（＂，＂）；

end；
get＿x＿next；scan＿expression；
if cur＿type $\neq k n o w n$ then

```
            begin exp_err("Undefined}\sqcup\
```


(" (Chapter ${ }_{\llcorner } 2_{\sqcup}$ of $_{\llcorner }$The $_{\sqcup} M E T A F O N T b o o k_{\sqcup} \operatorname{explains}{ }_{\sqcup}$ that")

end;
cur_y $\leftarrow c u r_{-} e x p ; c u r_{-} x \leftarrow x ;$
end
This code is used in section 877 ．

879．At this point right＿type (q) is usually open，but it may have been set to some other value by a previous operation．We must maintain the value of $\operatorname{right}_{\text {type }}(q)$ in cases such as＇．．\｛curl2\}z\{0,0\}..'.
\langle Put the pre－join direction information into node $q 879\rangle \equiv$
begin $t \leftarrow$ scan＿direction；
if $t \neq$ open then
begin right＿type $(q) \leftarrow t$ ；right＿given $(q) \leftarrow$ cur＿exp；
if left＿type $(q)=$ open then
begin left＿type $(q) \leftarrow t$ ；left＿given $(q) \leftarrow$ cur＿exp；
end；$\quad\{$ note that left＿given $(q)=$ left＿curl $(q)\}$
end；
end
This code is used in section 874 ．

880．Since left＿tension and left＿y share the same position in knot nodes，and since left＿given is similarly equivalent to left＿x，we use x and y to hold the given direction and tension information when there are no explicit control points．
\langle Put the post－join direction information into x and $t 880\rangle \equiv$
begin $t \leftarrow$ scan＿direction；
if right＿type $(q) \neq$ explicit then $x \leftarrow$ cur＿exp
else $t \leftarrow$ explicit；$\quad\{$ the direction information is superfluous \}
end
This code is used in section 874 ．
881．〈Determine the tension and／or control points 881$\rangle \equiv$
begin get＿x＿next；
if cur＿cmd $=$ tension then \langle Set explicit tensions 882\rangle
else if cur＿cmd $=$ controls then 〈Set explicit control points 884\rangle
else begin right＿tension $(q) \leftarrow$ unity；$y \leftarrow$ unity；back＿input；$\quad\{$ default tension \}
goto done；
end；
if cur＿cmd \neq path＿join then
begin missing＿err（＂．．＂）；
 end；
done：end
This code is used in section 874 ．
882．〈Set explicit tensions 882$\rangle \equiv$
begin get＿x＿next；$y \leftarrow$ cur＿cmd；
if cur＿cmd $=$ at＿least then get＿x＿next；
scan＿primary；〈Make sure that the current expression is a valid tension setting 883〉；
if $y=$ at＿least then negate（cur＿exp）；
right＿tension $(q) \leftarrow$ cur＿exp；
if cur＿cmd $=$ and＿command then
begin get＿x＿next；$y \leftarrow c u r_{-} c m d$ ；
if cur＿cmd $=$ at＿least then get＿x＿next；
scan＿primary；〈Make sure that the current expression is a valid tension setting 883〉；
if $y=$ at＿least then negate（cur＿exp）；
end；
$y \leftarrow c u r_{-} e x p ;$
end
This code is used in section 881.
883．define min＿tension \equiv three＿quarter＿unit
\langle Make sure that the current expression is a valid tension setting 883$\rangle \equiv$
if（cur＿type $\neq k$ nown $) \vee($ cur＿exp $<$ min＿tension $)$ then

 end
This code is used in sections 882 and 882 ．
884. 〈Set explicit control points 884$\rangle \equiv$
begin right_type $(q) \leftarrow$ explicit; $t \leftarrow$ explicit; get_x_next; scan_primary;
known_pair; right_x $(q) \leftarrow$ cur_x; right_y $(q) \leftarrow$ cur_y;
if cur_cmd \neq and_command then begin $x \leftarrow$ right_ $x(q) ; y \leftarrow$ right_ $y(q)$; end
else begin get_x_next; scan_primary;
known_pair $; x \leftarrow$ cur_x $; y \leftarrow c u r_{-} y ;$ end;
end
This code is used in section 881 .
885. 〈Convert the right operand, cur_exp, into a partial path from $p p$ to $q q 885\rangle \equiv$
begin if cur_type \neq path_type then $p p \leftarrow$ new_knot
else $p p \leftarrow$ cur_exp;
$q q \leftarrow p p ;$
while $\operatorname{link}(q q) \neq p p$ do $q q \leftarrow \operatorname{link}(q q)$;
if left_type $(p p) \neq$ endpoint then $\{$ open up a cycle $\}$
begin $r \leftarrow$ copy_knot $(p p) ; \operatorname{link}(q q) \leftarrow r ; q q \leftarrow r ;$
end;
left_type $(p p) \leftarrow$ open; right_type $(q q) \leftarrow$ open;
end
This code is used in section 869 .
886. If a person tries to define an entire path by saying ' $(x, y) \& c y c l e$ ', we silently change the specification to ' (x, y). . cycle', since a cycle shouldn't have length zero.
\langle Get ready to close a cycle 886$\rangle \equiv$
begin cycle_hit \leftarrow true; get_x_next $; p p \leftarrow p ; q q \leftarrow p ;$
if $d=$ ampersand then
if $p=q$ then
begin $d \leftarrow$ path_join; right_tension $(q) \leftarrow u n i t y ; y \leftarrow u n i t y ;$
end;
end
This code is used in section 869 .

887．〈Join the partial paths and reset p and q to the head and tail of the result 887$\rangle \equiv$
begin if $d=$ ampersand then
if $\left(x_{-} \operatorname{coord}(q) \neq x_{-} \operatorname{coord}(p p)\right) \vee\left(y_{-} \operatorname{coord}(q) \neq y_{-} \operatorname{coord}(p p)\right)$ then

right＿tension $(q) \leftarrow$ unity；$y \leftarrow$ unity；
end；
〈Plug an opening in right＿type（ $p p$ ），if possible 889〉；
if $d=$ ampersand then 〈Splice independent paths together 890〉
else begin 〈Plug an opening in right＿type（ q ），if possible 888〉；
$\operatorname{link}(q) \leftarrow p p ;$ left＿y $(p p) \leftarrow y ;$
if $t \neq$ open then
begin left＿$x(p p) \leftarrow x$ ；left＿type $(p p) \leftarrow t$ ；
end；
end；
$q \leftarrow q q ;$
end
This code is used in section 869 ．
888．〈Plug an opening in right＿type（q），if possible 888$\rangle \equiv$
if right＿type $(q)=$ open then
if $($ left＿type $(q)=$ curl $) \vee($ left＿type $(q)=$ given $)$ then
begin right＿type $(q) \leftarrow$ left＿type (q) ；right＿given $(q) \leftarrow$ left＿given (q) ； end
This code is used in section 887 ．
889．〈Plug an opening in right＿type（ $p p$ ），if possible 889$\rangle \equiv$
if right＿type $(p p)=$ open then
if $(t=$ curl $) \vee(t=$ given $)$ then
begin right＿type $(p p) \leftarrow t$ ；right＿given $(p p) \leftarrow x$ ； end
This code is used in section 887 ．
890．〈Splice independent paths together 890$\rangle \equiv$
begin if left＿type $(q)=$ open then
if right＿type $(q)=$ open then
begin left＿type $(q) \leftarrow$ curl；left＿curl $(q) \leftarrow$ unity； end；
if right＿type $(p p)=o p e n$ then
if $t=o$ open then
begin right＿type $(p p) \leftarrow$ curl；right＿curl $(p p) \leftarrow$ unity； end；
right＿type $(q) \leftarrow$ right＿type $(p p) ; \operatorname{link}(q) \leftarrow \operatorname{link}(p p)$ ；
right＿$x(q) \leftarrow$ right＿$x(p p) ;$ right＿$y(q) \leftarrow$ right＿$y(p p) ;$ free＿node $(p p$, knot＿node＿size $)$ ；
if $q q=p p$ then $q q \leftarrow q$ ；
end
This code is used in section 887 ．
891. 〈Choose control points for the path and put the result into cur_exp 891$\rangle \equiv$
if cycle_hit then
begin if $d=$ ampersand then $p \leftarrow q$;
end
else begin left_type $(p) \leftarrow$ endpoint;
if right_type $(p)=$ open then
begin right_type $(p) \leftarrow$ curl; right_curl $(p) \leftarrow u n i t y$; end;
right_type $(q) \leftarrow$ endpoint;
if left_type $(q)=$ open then
begin left_type $(q) \leftarrow$ curl; left_curl $(q) \leftarrow$ unity; end;
$\operatorname{link}(q) \leftarrow p ;$
end;
make_choices $(p) ;$ cur_type \leftarrow path_type $;$ cur_exp $\leftarrow p$
This code is used in section 869.
892. Finally, we sometimes need to scan an expression whose value is supposed to be either true_code or false_code.
\langle Declare the basic parsing subroutines 823$\rangle+\equiv$
procedure get_boolean;
begin get_x_next; scan_expression;
if cur_type \neq boolean_type then

put_get_flush_error (false_code); cur_type \leftarrow boolean_type;
end;
end;
893. Doing the operations. The purpose of parsing is primarily to permit people to avoid piles of parentheses. But the real work is done after the structure of an expression has been recognized; that's when new expressions are generated. We turn now to the guts of METAFONT, which handles individual operators that have come through the parsing mechanism.

We'll start with the easy ones that take no operands, then work our way up to operators with one and ultimately two arguments. In other words, we will write the three procedures do_nullary, do_unary, and do_binary that are invoked periodically by the expression scanners.
First let's make sure that all of the primitive operators are in the hash table. Although scan_primary and its relatives made use of the $c m d$ code for these operators, the do routines base everything on the mod code. For example, do_binary doesn't care whether the operation it performs is a primary_binary or secondary_binary, etc.
\langle Put each of METAFONT's primitives into the hash table 192$\rangle+\equiv$
primitive("true", nullary, true_code);
primitive("false", nullary, false_code);
primitive("nullpicture", nullary, null_picture_code);
primitive("nullpen", nullary, null_pen_code);
primitive("jobname", nullary, job_name_op);
primitive("readstring", nullary, read_string_op);
primitive("pencircle", nullary, pen_circle);
primitive("normaldeviate", nullary, normal_deviate);
primitive("odd", unary, odd_op);
primitive("known", unary, known_op);
primitive("unknown", unary, unknown_op);
primitive("not", unary, not_op);
primitive("decimal", unary, decimal);
primitive ("reverse", unary, reverse);
primitive("makepath", unary, make_path_op);
primitive("makepen", unary, make_pen_op);
primitive("totalweight", unary, total_weight_op);
primitive ("oct", unary, oct_op);
primitive("hex", unary, hex_op);
primitive("ASCII", unary, ASCII_op);
primitive("char", unary, char_op);
primitive("length", unary, length_op);
primitive("turningnumber", unary, turning_op);
primitive("xpart", unary, x_part);
primitive("ypart", unary, y_part);
primitive("xxpart", unary, xx_part);
primitive("xypart", unary, xy_part);
primitive("yxpart", unary, yx_part);
primitive("yypart", unary, yy_part);
primitive("sqrt", unary, sqrt_op);
primitive("mexp", unary, m_exp_op);
primitive("mlog", unary, m_log_op);
primitive ("sind", unary, sin_d_op);
primitive("cosd", unary, cos_d_op);
primitive("floor", unary, floor_op);
primitive("uniformdeviate", unary, uniform_deviate);
primitive("charexists", unary, char_exists_op);
primitive("angle", unary, angle_op);
primitive("cycle", cycle, cycle_op);
primitive ("+", plus_or_minus, plus);
primitive("-", plus_or_minus, minus);
primitive("*", secondary_binary,times);
primitive ("/", slash, over); eqtb[frozen_slash] \leftarrow eqtb $[$ cur_sym $]$;
primitive("++", tertiary_binary, pythag_add);
primitive("+-+", tertiary_binary, pythag_sub);
primitive("and", and_command, and_op);
primitive ("or", tertiary_binary,or_op);
primitive("<", expression_binary, less_than);
primitive ("<=", expression_binary, less_or_equal);
primitive(">", expression_binary, greater_than);
primitive (">=", expression_binary, greater_or_equal);
primitive ("=", equals, equal_to);
primitive("<>", expression_binary, unequal_to);
primitive("substring", primary_binary, substring_of);
primitive("subpath", primary_binary, subpath_of);
primitive("directiontime", primary_binary, direction_time_of);
primitive("point", primary_binary, point_of);
primitive("precontrol", primary_binary, precontrol_of);
primitive("postcontrol", primary_binary, postcontrol_of);
primitive("penoffset", primary_binary, pen_offset_of);
primitive("\&", ampersand, concatenate);
primitive("rotated", secondary_binary, rotated_by);
primitive("slanted", secondary_binary, slanted_by);
primitive("scaled", secondary_binary, scaled_by);
primitive("shifted", secondary_binary, shifted_by);
primitive("transformed", secondary_binary,transformed_by);
primitive("xscaled", secondary_binary, x_scaled);
primitive("yscaled", secondary_binary, y_scaled);
primitive("zscaled", secondary_binary, z_scaled);
primitive("intersectiontimes", tertiary_binary, intersect);
894. 〈Cases of print_cmd_mod for symbolic printing of primitives 212$\rangle+\equiv$
nullary, unary, primary_binary, secondary_binary, tertiary_binary, expression_binary, cycle, plus_or_minus, slash, ampersand, equals, and_command: print_{-}op (m);

895．OK，let＇s look at the simplest do procedure first．
procedure do＿nullary（ $c:$ quarterword）；
var k ：integer；\｛all－purpose loop index \}
begin check＿arith；
if internal［tracing＿commands］＞two then show＿cmd＿mod（nullary，c）；
case c of
true＿code，false＿code：begin cur＿type \leftarrow boolean＿type $;$ cur＿exp $\leftarrow c$ ；
end；
null＿picture＿code：begin cur＿type \leftarrow picture＿type $;$ cur＿exp \leftarrow get＿node（edge＿header＿size）；
init＿edges（cur＿exp）；
end；
null＿pen＿code：begin cur＿type \leftarrow pen＿type $;$ cur＿exp \leftarrow null＿pen；
end；
normal＿deviate $:$ begin cur＿type \leftarrow known；cur＿exp \leftarrow norm＿rand；
end；
pen＿circle：〈Make a special knot node for pencircle 896\rangle ；
job＿name＿op：begin if job＿name $=0$ then open＿log＿file；
cur＿type \leftarrow string＿type ；cur＿exp \leftarrow job＿name；
end；
read＿string＿op：〈Read a string from the terminal 897〉；
end；\｛ there are no other cases \}
check＿arith；
end；

896．〈Make a special knot node for pencircle 896$\rangle \equiv$
begin cur＿type \leftarrow future＿pen；cur＿exp \leftarrow get＿node $\left(k n o t _n o d e _s i z e\right) ; ~ l e f t _t y p e ~\left(c u r _e x p\right) ~ \leftarrow o p e n ; ~$
right＿type $($ cur＿exp $) \leftarrow$ open；link $($ cur＿exp $) \leftarrow$ cur＿exp；
x_{-}coord $($cur＿exp $) \leftarrow 0 ; y_{-}$coord $($cur＿exp $) \leftarrow 0$ ；
left＿x $($ cur＿exp $) \leftarrow u n i t y ;$ left＿y $($ cur＿exp $) \leftarrow 0 ;$
right＿x $($ cur＿exp $) \leftarrow 0 ;$ right＿y $($ cur＿exp $) \leftarrow u n i t y ;$
end
This code is used in section 895 ．
897．〈Read a string from the terminal 897$\rangle \equiv$
begin if interaction \leq nonstop＿mode then
fatal＿error $\left(\right.$＂$* * *_{\sqcup}\left(\right.$ cannot $_{\sqcup}$ readstring in $_{\sqcup}$ nonstop ${ }_{\sqcup}$ modes）$)$ ）；
begin＿file＿reading；name $\leftarrow 1$ ；prompt＿input（＂＂）；str＿room（last－start）；
for $k \leftarrow$ start to last -1 do append＿char $(\operatorname{buffer}[k])$ ；
end＿file＿reading；cur＿type \leftarrow string＿type $;$ cur＿exp \leftarrow make＿string；
end
This code is used in section 895.

898．Things get a bit more interesting when there＇s an operand．The operand to do＿unary appears in cur＿type and cur＿exp．
〈Declare unary action procedures 899〉
procedure do＿unary（c：quarterword）；
var $p, q:$ pointer；$\quad\{$ for list manipulation $\}$
x ：integer；\｛a temporary register \}
begin check＿arith；
if internal［tracing＿commands］＞two then 〈Trace the current unary operation 902〉；
case c of
plus：if cur＿type＜pair＿type then
if cur＿type \neq picture＿type then bad＿unary $($ plus $)$ ；
minus：\langle Negate the current expression 903〉；
〈Additional cases of unary operators 905 〉
end；\｛ there are no other cases $\}$
check＿arith；
end；
899．The nice＿pair function returns true if both components of a pair are known．
\langle Declare unary action procedures 899$\rangle \equiv$
function nice＿pair（ $p:$ integer；$t:$ quarterword）：boolean；
label exit；
begin if $t=$ pair＿type then
begin $p \leftarrow$ value (p) ；
if type $(x$＿part＿loc $(p))=$ known then
if type $\left(y _p a r t _l o c(p)\right)=$ known then
begin nice＿pair \leftarrow true；return；
end；
end；
nice＿pair \leftarrow false；
exit：end；
See also sections 900，901，904，908，910，913，916，and 919.
This code is used in section 898.
900．〈Declare unary action procedures 899$\rangle+\equiv$
procedure print＿known＿or＿unknown＿type（ t ：small＿number；$v:$ integer $)$ ；
begin print＿char（＂（＂）；
if $t<$ dependent then
if $t \neq$ pair＿type then print＿type (t)
else if nice＿pair（v，pair＿type）then print（＂pair＂）
else print（＂unknown $_$pair＂）
else print（＂unknown \llcorner numeric＂）；
print＿char（＂）＂）；
end；
901．〈Declare unary action procedures 899$\rangle+\equiv$
procedure bad＿unary（c ：quarterword）；
begin exp＿err（＂Not＿implemented：」＂）；print＿op（c）；print＿known＿or＿unknown＿type（cur＿type，cur＿exp）；

end；

902．〈Trace the current unary operation 902$\rangle \equiv$
begin begin＿diagnostic；print＿nl（＂\｛＂）；print＿op（c）；print＿char（＂（＂）；
print＿exp（null， 0$) ;$ \｛show the operand，but not verbosely \}
print（＂）\}"); end_diagnostic(false);
end
This code is used in section 898.

903．Negation is easy except when the current expression is of type independent，or when it is a pair with one or more independent components．

It is tempting to argue that the negative of an independent variable is an independent variable，hence we don＇t have to do anything when negating it．The fallacy is that other dependent variables pointing to the current expression must change the sign of their coefficients if we make no change to the current expression．

Instead，we work around the problem by copying the current expression and recycling it afterwards（cf．the stash＿in routine）．
\langle Negate the current expression 903$\rangle \equiv$
case cur＿type of
pair＿type，independent：begin $q \leftarrow$ cur＿exp；make＿exp＿copy (q) ；
if cur＿type $=$ dependent then negate＿dep＿list $\left(\right.$ dep＿list $^{(}$cur＿exp $\left.)\right)$
else if cur＿type $=$ pair＿type then
begin $p \leftarrow$ value（cur＿exp）；
if type $\left(x_{-}\right.$part＿loc $\left.(p)\right)=$ known then negate $\left(\operatorname{value}\left(x_{-} p a r t _l o c(p)\right)\right)$
else negate＿dep＿list（dep＿list（ x_{-}part＿loc $\left.(p)\right)$ ）；
if type $\left(y_{-}\right.$part＿loc $\left.(p)\right)=$ known then negate $\left(\operatorname{value}\left(y_{-}\right.\right.$part＿loc $\left.\left.(p)\right)\right)$
else negate＿dep＿list（dep＿list（y＿part＿loc $(p))$ ）；
end；$\quad\{$ if cur＿type $=$ known then cur＿exp $=0\}$
recycle＿value (q) ；free＿node（ q ，value＿node＿size）；
end；
dependent，proto＿dependent：negate＿dep＿list（dep＿list（cur＿exp））；
known：negate（cur＿exp）；
picture＿type：negate＿edges（cur＿exp）；
othercases bad＿unary（minus）
endcases
This code is used in section 898 ．
904．〈Declare unary action procedures 899$\rangle+\equiv$
procedure negate＿dep＿list（ p ：pointer $)$ ；
label exit；
begin loop begin negate（value (p) ）；
if $\operatorname{info}(p)=$ null then return；
$p \leftarrow \operatorname{link}(p)$ ；
end；
exit：end；
905．〈Additional cases of unary operators 905$\rangle \equiv$ not＿op：if cur＿type \neq boolean＿type then bad＿unary（not＿op）
else cur＿exp \leftarrow true＿code + false＿code - cur＿exp；
See also sections 906，907，909，912，915，917，918，920，and 921.
This code is used in section 898.

906．define three＿sixty＿units $\equiv 23592960 \quad$ \｛ that＇s $360 *$ unity \}
define boolean＿reset（\＃）\equiv
if \＃then cur＿exp \leftarrow true＿code else cur＿exp \leftarrow false＿code
\langle Additional cases of unary operators 905$\rangle+\equiv$
sqrt＿op，$m_{-} e x p _o p, m_{-} l o g_{-} o p, s i n_{-} d_{-} o p$, cos＿d＿op，floor＿op，uniform＿deviate，odd＿op，char＿exists＿op：
if cur＿type \neq known then bad＿unary (c)
else case c of
sqrt＿op：cur＿exp \leftarrow square＿rt（cur＿exp）；
$m_{-} e x p _o p: c u r_{-} e x p \leftarrow m_{-} \exp \left(c u r_{-} e x p\right)$ ；
$m_{-} l o g_{-} o p: c u r_{-} e x p \leftarrow m_{-} l o g\left(c u r_{-} e x p\right)$ ；
sin＿d＿op，cos＿d＿op：begin $n_{_}$sin＿cos $(($cur＿exp $\mathbf{~ m o d}$ three＿sixty＿units $)$＊16）；
if $c=$ sin＿d＿op then cur＿exp \leftarrow round＿fraction $\left(n_{-} s i n\right)$
else cur＿exp \leftarrow round＿fraction（ $\left.n _\cos \right)$ ；
end；
floor＿op：cur＿exp \leftarrow floor＿scaled（cur＿exp）；
uniform＿deviate ：cur＿exp \leftarrow unif＿rand（cur＿exp）；
odd＿op：begin boolean＿reset（odd（round＿unscaled（cur＿exp）））；cur＿type \leftarrow boolean＿type；
end；
char＿exists＿op：〈Determine if a character has been shipped out 1181〉；
end；\｛ there are no other cases \}
907．〈Additional cases of unary operators 905$\rangle+\equiv$
angle＿op：if nice＿pair（cur＿exp，cur＿type）then
begin $p \leftarrow$ value（cur＿exp）；$x \leftarrow$ n＿arg（value（x＿part＿loc $(p))$ ，value（y＿part＿loc $(p))$ ）；
if $x \geq 0$ then flush＿cur＿exp $((x+8)$ div 16）
else flush＿cur＿exp $(-((-x+8) \operatorname{div} 16))$ ；
end
else bad＿unary（angle＿op）；
908．If the current expression is a pair，but the context wants it to be a path，we call pair＿to＿path．
\langle Declare unary action procedures 899$\rangle+\equiv$
procedure pair＿to＿path；
begin cur＿exp \leftarrow new＿knot；cur＿type \leftarrow path＿type；
end；
909．〈Additional cases of unary operators 905$\rangle+\equiv$
x＿part，y＿part：if（cur＿type \leq pair＿type $) \wedge\left(c u r_{-} t y p e \geq\right.$ transform＿type $)$ then take＿part (c)
else bad＿unary（c）；
xx＿part，$x y_{-}$part，yx＿part，yy＿part：if cur＿type $=$transform＿type then take＿part (c)
else bad＿unary（c）；
910．In the following procedure，cur＿exp points to a capsule，which points to a big node．We want to delete all but one part of the big node．
\langle Declare unary action procedures 899$\rangle+\equiv$
procedure take＿part（c ：quarterword）；
var p ：pointer；\｛ the big node \}
begin $p \leftarrow$ value $($ cur＿exp $) ;$ value $($ temp＿val $) \leftarrow p$ ；type $($ temp＿val $) \leftarrow$ cur＿type；link $(p) \leftarrow t e m p _v a l$ ；
free＿node（cur＿exp，value＿node＿size）；make＿exp＿copy $\left(p+2 *\left(c-x_{-} p a r t\right)\right)$ ；recycle＿value（temp＿val）；
end；

911．〈 Initialize table entries（done by INIMF only） 176$\rangle+\equiv$ name＿type $($ temp＿val $) \leftarrow$ capsule ；

912．〈Additional cases of unary operators 905$\rangle+\equiv$
char＿op：if cur＿type $\neq k n o w n$ then bad＿unary（char＿op）
else begin cur＿exp \leftarrow round＿unscaled $\left(\right.$ cur＿exp $\left.^{\prime}\right) \bmod 256$ ；cur＿type \leftarrow string＿type；
if cur＿exp <0 then cur＿exp \leftarrow cur＿exp +256 ；
if length（ cur＿exp $) \neq 1$ then
begin str＿room（1）；append＿char（cur＿exp）；cur＿exp \leftarrow make＿string； end；
end；
decimal：if cur＿type \neq known then bad＿unary（decimal）
else begin old＿setting \leftarrow selector $;$ selector \leftarrow new＿string ；print＿scaled（cur＿exp）；
cur＿exp \leftarrow make＿string；selector \leftarrow old＿setting ；cur＿type \leftarrow string＿type；
end；
oct＿op，hex＿op，ASCII＿op：if cur＿type \neq string＿type then bad＿unary (c)
else str＿to＿num（c）；
913．〈Declare unary action procedures 899$\rangle+\equiv$
procedure str＿to＿num $(c:$ quarterword $) ; \quad\{$ converts a string to a number $\}$
var n ：integer；\｛ accumulator \}
m：ASCII＿code；\｛current character \}
k ：pool＿pointer；\｛index into str＿pool $\}$
$b: 8 \ldots 16 ; \quad$ \｛radix of conversion \}
bad＿char：boolean；\｛ did the string contain an invalid digit？\}
begin if $c=A S C I I_{-} o p$ then
if length $($ cur＿exp $)=0$ then $n \leftarrow-1$
else $n \leftarrow$ so（str＿pool［str＿start［cur＿exp］］）
else begin if $c=$ oct＿op then $b \leftarrow 8$ else $b \leftarrow 16$ ；
$n \leftarrow 0 ;$ bad＿char \leftarrow false；
for $k \leftarrow$ str＿start $[$ cur＿exp］to str＿start $[$ cur＿exp +1$]-1$ do
begin $m \leftarrow$ so（str＿pool $[k])$ ；
if $(m \geq " 0 ") \wedge(m \leq " 9 ")$ then $m \leftarrow m-$＂m＂
else if $(m \geq$＂A＂$) \wedge(m \leq$＂F＂$)$ then $m \leftarrow m-$＂A＂+10
else if $(m \geq$＂a＂$) \wedge(m \leq " f ")$ then $m \leftarrow m-$＂a＂+10
else begin bad＿char \leftarrow true；$m \leftarrow 0$ ；
end；
if $m \geq b$ then
begin bad＿char \leftarrow true；$m \leftarrow 0$ ；
end；
if $n<32768$ div b then $n \leftarrow n * b+m$ else $n \leftarrow 32767$ ； end；
〈 Give error messages if bad＿char or $n \geq 4096914$ ；
end；
flush＿cur＿exp（ $n *$ unity）；
end；
914. 〈 Give error messages if bad_char or $n \geq 4096914\rangle \equiv$
if bad_char then
begin $\exp _{-} e r r\left(\right.$ "String \quad contains ${ }_{\sqcup}$ illegal ${ }_{\sqcup}$ digits");

put_get_error;
end;
if $n>4095$ then
begin print_err("Number tooblarge $_{\sqcup}($ "); print_int $(n) ;$ print_char(")");
 end
This code is used in section 913.
915. The length operation is somewhat unusual in that it applies to a variety of different types of operands.
\langle Additional cases of unary operators 905$\rangle+\equiv$
length_op: if cur_type $=$ string_type then flush_cur_exp $\left(l e n g t h\left(c u r _e x p\right) * u n i t y\right)$
else if cur_type $=$ path_type then flush_cur_exp $($ path_length $)$
else if cur_type $=$ known then cur_exp $\leftarrow a b s\left(c u r_{-} e x p\right)$
else if nice_pair (cur_exp, cur_type) then
flush_cur_exp $\left(p y t h-a d d\left(v a l u e\left(x_{-} p a r t_{-} l o c\left(v a l u e\left(c u r_{-} e x p\right)\right)\right)\right.\right.$, value $\left.\left.\left(y_{-} p a r t _l o c\left(v a l u e\left(c u r _e x p\right)\right)\right)\right)\right)$ else bad_unary (c);
916. 〈Declare unary action procedures 899$\rangle+\equiv$
function path_length: scaled; \{ computes the length of the current path \}
var n : scaled; $\quad\{$ the path length so far $\}$
$p:$ pointer; \{ traverser \}
begin $p \leftarrow$ cur_exp;
if left_type $(p)=$ endpoint then $n \leftarrow-$ unity else $n \leftarrow 0$;
repeat $p \leftarrow \operatorname{link}(p) ; n \leftarrow n+$ unity;
until $p=$ cur_exp;
path_length $\leftarrow n$;
end;
917. The turning number is computed only with respect to null pens. A different pen might affect the turning number, in degenerate cases, because autorounding will produce a slightly different path, or because excessively large coordinates might be truncated.
\langle Additional cases of unary operators 905$\rangle+\equiv$
turning_op: if cur_type $=$ pair_type then flush_cur_exp (0)
else if cur_type \neq path_type then bad_unary $($ turning_op $)$
else if left_type $($ cur_exp $)=$ endpoint then flush_cur_exp $(0) \quad$ \{not a cyclic path $\}$
else begin cur_pen \leftarrow null_pen; cur_path_type \leftarrow contour_code;
cur_exp \leftarrow make_spec (cur_exp, fraction_one - half_unit - 1 - el_gordo, 0);
flush_cur_exp (turning_number $*$ unity $) ; \quad\{$ convert to scaled $\}$
end;
918. define type_test_end \equiv flush_cur_exp(true_code)
else flush_cur_exp (false_code); cur_type \leftarrow boolean_type;
end
define type_range_end $(\#) \equiv($ cur_type $\leq \#)$ then type_test_end
define type_range (\#) \equiv
begin
if (cur_type \geq \#) \wedge type_range_end
define type_test $(\#) \equiv$
begin if cur_type $=\#$ then type_test_end
\langle Additional cases of unary operators 905$\rangle+\equiv$
boolean_type: type_range(boolean_type)(unknown_boolean);
string_type: type_range(string_type)(unknown_string);
pen_type: type_range(pen_type)(future_pen);
path_type: type_range(path_type)(unknown_path);
picture_type: type_range(picture_type)(unknown_picture);
transform_type, pair_type: type_test (c);
numeric_type: type_range(known)(independent);
known_op, unknown_op: test_known (c);
919. 〈Declare unary action procedures 899$\rangle+\equiv$
procedure test_known(c : quarterword);
label done;
var b: true_code .. false_code; \{ is the current expression known? \}
$p, q:$ pointer; $\{$ locations in a big node \}
begin $b \leftarrow$ false_code;
case cur_type of
vacuous, boolean_type, string_type, pen_type, future_pen, path_type, picture_type, known: $b \leftarrow$ true_code;
transform_type, pair_type: $\mathbf{b e g i n} p \leftarrow$ value (cur_exp); $q \leftarrow p+$ big_node_size[cur_type];
repeat $q \leftarrow q-2$;
if type $(q) \neq$ known then goto done;
until $q=p$;
$b \leftarrow$ true_code;
done: end;
othercases do_nothing
endcases;
if $c=k n o w n_{-} o p$ then flush_cur_exp (b)
else flush_cur_exp (true_code + false_code $-b$);
cur_type \leftarrow boolean_type;
end;
920. 〈Additional cases of unary operators 905$\rangle+\equiv$
cycle_op: begin if cur_type \neq path_type then flush_cur_exp (false_code)
else if left_type $($ cur_exp $) \neq$ endpoint then flush_cur_exp (true_code)
else flush_cur_exp(false_code);
cur_type \leftarrow boolean_type;
end;

921．〈Additional cases of unary operators 905$\rangle+\equiv$
make＿pen＿op：begin if cur＿type $=$ pair＿type then pair＿to＿path；
if cur＿type $=$ path＿type then cur＿type \leftarrow future＿pen
else bad＿unary（make＿pen＿op）；
end；
make＿path＿op：begin if cur＿type $=$ future＿pen then materialize＿pen；
if cur＿type \neq pen＿type then bad＿unary（make＿path＿op）
else begin flush＿cur＿exp（make＿path $($ cur＿exp $)$ ）；cur＿type \leftarrow path＿type；
end；
end；
total＿weight＿op： if cur＿type \neq picture＿type then bad＿unary（total＿weight＿op）
else flush＿cur＿exp（total＿weight（cur＿exp））；
reverse：if cur＿type $=$ path＿type then
begin $p \leftarrow h t a p-y p o c\left(c u r_{-} e x p\right)$ ；
if right＿type $(p)=$ endpoint then $p \leftarrow \operatorname{link}(p)$ ；
toss＿knot＿list（cur＿exp）；cur＿exp $\leftarrow p$ ；
end
else if cur＿type $=$ pair＿type then pair＿to＿path
else bad＿unary（reverse）；
922．Finally，we have the operations that combine a capsule p with the current expression．
〈Declare binary action procedures 923\rangle
procedure do＿binary（ p ：pointer；$c:$ quarterword）；
label done，done1，exit；
var $q, r, r r$ ：pointer；\｛ for list manipulation \}
old＿p，old＿exp：pointer；\｛capsules to recycle \}
v ：integer；\｛for numeric manipulation \}
begin check＿arith；
if internal［tracing＿commands］＞two then 〈Trace the current binary operation 924〉；
〈Sidestep independent cases in capsule p 926〉；
〈Sidestep independent cases in the current expression 927〉；
case c of
plus，minus：〈Add or subtract the current expression from $p 929\rangle$ ；
〈Additional cases of binary operators 936〉
end；\｛ there are no other cases $\}$
recycle＿value (p) ；free＿node（ p ，value＿node＿size）；$\quad\{$ return to avoid this $\}$
exit：check＿arith；\langle Recycle any sidestepped independent capsules 925〉；
end；
923．〈Declare binary action procedures 923$\rangle \equiv$
procedure bad＿binary（ p ：pointer；$c:$ quarterword）；
begin disp＿err（ p, ＂＂）；exp＿err（＂Not」implemented：ь＂）；
if $c \geq$ min＿of then print＿op (c) ；
print＿known＿or＿unknown＿type（type $(p), p$ ）；
if $c \geq$ min＿of then print（＂of＂）else print＿op（c）；
print＿known＿or＿unknown＿type（cur＿type，cur＿exp）；

end；
See also sections 928，930，943，946，949，953，960，961，962，963，966，976，977，978，982，984，and 985.
This code is used in section 922.
924. 〈Trace the current binary operation 924$\rangle \equiv$
begin begin_diagnostic; print_nl("\{("); print_exp $(p, 0)$; \{show the operand, but not verbosely \}
print_char(")"); print_op(c); print_char("(");
print_exp(null,0); print(")\}"); end_diagnostic(false);
end
This code is used in section 922 .
925. Several of the binary operations are potentially complicated by the fact that independent values can sneak into capsules. For example, we've seen an instance of this difficulty in the unary operation of negation. In order to reduce the number of cases that need to be handled, we first change the two operands (if necessary) to rid them of independent components. The original operands are put into capsules called old_p and old_exp, which will be recycled after the binary operation has been safely carried out.
\langle Recycle any sidestepped independent capsules 925$\rangle \equiv$
if old $-p \neq$ null then
begin recycle_value(old_p); free_node(old_p, value_node_size); end;
if old_exp \neq null then begin recycle_value(old_exp); free_node(old_exp, value_node_size); end
This code is used in section 922.
926. A big node is considered to be "tarnished" if it contains at least one independent component. We will define a simple function called 'tarnished' that returns null if and only if its argument is not tarnished.
\langle Sidestep independent cases in capsule $p 926\rangle \equiv$
case type (p) of
transform_type, pair_type: old_p $\leftarrow \operatorname{tarnished}(p)$;
independent: old_p \leftarrow void;
othercases old_p \leftarrow null
endcases;
if old $p \neq$ null then begin $q \leftarrow$ stash_cur_exp; old_p $\leftarrow p ;$ make_exp_copy $\left(o l d _p\right) ; p \leftarrow$ stash_cur_exp; unstash_cur_exp (q); end;
This code is used in section 922 .
927. 〈Sidestep independent cases in the current expression 927$\rangle \equiv$ case cur_type of
transform_type, pair_type: old_exp \leftarrow tarnished (cur_exp);
independent: old_exp \leftarrow void;
othercases old_exp \leftarrow null
endcases;
if old_exp \neq null then
begin old_exp \leftarrow cur_exp; make_exp_copy(old_exp); end
This code is used in section 922 .
928. 〈Declare binary action procedures 923$\rangle+\equiv$
function tarnished (p : pointer): pointer;
label exit;
var q : pointer; \{beginning of the big node \}
r : pointer; \{current position in the big node \}
begin $q \leftarrow$ value $(p) ; r \leftarrow q+$ big_node_size $[$ type $(p)]$;
repeat $r \leftarrow r-2$;
if type $(r)=$ independent then
begin tarnished \leftarrow void; return; end;
until $r=q$;
tarnished \leftarrow null;
exit: end;
929. 〈Add or subtract the current expression from $p 929\rangle \equiv$
if $($ cur_type $<$ pair_type $) \vee($ type $(p)<$ pair_type $)$ then
if $($ cur_type $=$ picture_type $) \wedge($ type $(p)=$ picture_type $)$ then begin if $c=$ minus then negate_edges (cur_exp); cur_edges \leftarrow cur_exp; merge_edges $($ value $(p))$; end
else bad_binary (p, c)
else if cur_type $=$ pair_type then
if type $(p) \neq$ pair_type then bad_binary (p, c)
else begin $q \leftarrow$ value $(p) ; r \leftarrow$ value $\left(c u r _e x p\right) ;$ add_or_subtract $\left(x _p a r t _l o c(q), x_{-} p a r t _l o c(r), c\right)$;
add_or_subtract($\left.y_{-} p a r t _l o c(q), y_{-} p a r t _l o c(r), c\right)$;
end
else if type $(p)=$ pair_type then $\operatorname{bad}_{-} \operatorname{binary}(p, c)$ else add_or_subtract (p, null, c)
This code is used in section 922.

930．The first argument to add＿or＿subtract is the location of a value node in a capsule or pair node that will soon be recycled．The second argument is either a location within a pair or transform node of cur＿exp， or it is null（which means that cur＿exp itself should be the second argument）．The third argument is either plus or minus．

The sum or difference of the numeric quantities will replace the second operand．Arithmetic overflow may go undetected；users aren＇t supposed to be monkeying around with really big values．
\langle Declare binary action procedures 923$\rangle+\equiv$
〈Declare the procedure called dep＿finish 935〉
procedure add＿or＿subtract（ p, q ：pointer ；$c: q u a r t e r w o r d)$ ；
label done，exit；
var s, t ：small＿number；\｛operand types \}
r ：pointer；\｛ list traverser \}
v ：integer；\｛second operand value \}
begin if $q=$ null then
begin $t \leftarrow$ cur＿type；
if $t<$ dependent then $v \leftarrow$ cur＿exp else $v \leftarrow$ dep＿list（cur＿exp）；
end
else begin $t \leftarrow$ type (q) ；
if $t<$ dependent then $v \leftarrow \operatorname{value}(q)$ else $v \leftarrow \operatorname{dep}$＿list (q) ；
end；
if $t=k n o w n$ then
begin if $c=$ minus then negate (v) ；
if type $(p)=$ known then
begin $v \leftarrow$ slow＿add（value $(p), v)$ ；
if $q=$ null then cur＿exp $\leftarrow v$ else value $(q) \leftarrow v$ ；
return；
end；
〈 Add a known value to the constant term of dep＿list $(p) 931\rangle$ ；
end
else begin if $c=$ minus then negate＿dep＿list (v) ；
\langle Add operand p to the dependency list $v 932\rangle$ ；
end；
exit：end；
931．〈Add a known value to the constant term of dep＿list $(p) 931\rangle \equiv$
$r \leftarrow$ dep＿list (p) ；
while $\operatorname{info}(r) \neq$ null do $r \leftarrow \operatorname{link}(r)$ ；
value $(r) \leftarrow$ slow＿add（value $(r), v)$ ；
if $q=$ null then
begin $q \leftarrow$ get＿node（value＿node＿size）；cur＿exp $\leftarrow q$ ；cur＿type \leftarrow type (p) ；name＿type $(q) \leftarrow$ capsule； end；
dep＿list $(q) \leftarrow$ dep＿list $(p) ;$ type $(q) \leftarrow$ type $(p) ;$ prev＿dep $(q) \leftarrow$ prev＿dep $(p) ; \operatorname{link}($ prev＿dep $(p)) \leftarrow q$ ；
type $(p) \leftarrow$ known；\quad \｛ this will keep the recycler from collecting non－garbage \}
This code is used in section 930.

932．We prefer dependent lists to proto＿dependent ones，because it is nice to retain the extra accuracy of fraction coefficients．But we have to handle both kinds，and mixtures too．
\langle Add operand p to the dependency list $v 932\rangle \equiv$
if type $(p)=$ known then \langle Add the known value (p) to the constant term of $v 933\rangle$
else begin $s \leftarrow$ type (p) ；$r \leftarrow \operatorname{dep}$＿list (p) ；
if $t=$ dependent then
begin if $s=$ dependent then
if max＿coef $(r)+$ max＿coef $(v)<$ coef＿bound then
begin $v \leftarrow p_{-}$plus＿q $(v, r$ ，dependent $)$ ；goto done；
end；\｛ fix＿needed will necessarily be false \}
$t \leftarrow$ proto＿dependent $; v \leftarrow$ p＿over＿v（ v ，unity，dependent，proto＿dependent）； end；
if $s=$ proto＿dependent then $v \leftarrow p_{-}$plus＿$q(v, r$, proto＿dependent $)$
else $v \leftarrow p_{-} p l u s_{-} f q(v$, unity，$r$ ，proto＿dependent，dependent $)$ ；
done：〈Output the answer，v（which might have become known）934〉；
end
This code is used in section 930 ．
933．〈Add the known value (p) to the constant term of $v 933\rangle \equiv$
begin while $\operatorname{info}(v) \neq$ null do $v \leftarrow \operatorname{link}(v)$ ；
value $(v) \leftarrow$ slow＿add（value (p) ，value (v) ）；
end
This code is used in section 932.
934．〈Output the answer，v（which might have become known） 934$\rangle \equiv$
if $q \neq$ null then dep＿finish (v, q, t)
else begin cur＿type $\leftarrow t$ ；dep＿finish $(v$, null,$t)$ ；
end
This code is used in section 932.
935．Here＇s the current situation：The dependency list v of type t should either be put into the current expression（if $q=$ null）or into location q within a pair node（otherwise）．The destination（cur＿exp or q ） formerly held a dependency list with the same final pointer as the list v ．
\langle Declare the procedure called dep＿finish 935$\rangle \equiv$
procedure dep＿finish（ v, q ：pointer；t ：small＿number）；
var $p:$ pointer；；the destination \}
$v v$ ：scaled；\｛ the value，if it is known \}
begin if $q=$ null then $p \leftarrow$ cur＿exp else $p \leftarrow q$ ；
dep＿list $(p) \leftarrow v$ ；type $(p) \leftarrow t$ ；
if $\operatorname{info}(v)=$ null then
begin $v v \leftarrow$ value (v) ；
if $q=$ null then flush＿cur＿exp（vv）
else begin recycle＿value $(p) ; \operatorname{type}(q) \leftarrow$ known；value $(q) \leftarrow v v$ ；

end；

end
else if $q=$ null then cur＿type $\leftarrow t$ ；
if fix＿needed then fix＿dependencies；
end；
This code is used in section 930 ．

936．Let＇s turn now to the six basic relations of comparison．
\langle Additional cases of binary operators 936$\rangle \equiv$
less＿than，less＿or＿equal，greater＿than，greater＿or＿equal，equal＿to，unequal＿to：begin
if $($ cur＿type $>$ pair＿type $) \wedge($ type $(p)>$ pair＿type $)$ then add＿or＿subtract $(p$, null，minus $)$
$\left\{c u r_{-} \exp \leftarrow(p)-c u r_{-} \exp \right\}$
else if cur＿type $\neq \operatorname{type}(p)$ then
begin bad＿binary (p, c) ；goto done；
end
else if cur＿type $=$ string＿type then flush＿cur＿exp $\left(s t r_{-} v s_{-} s t r\left(v a l u e(p), c u r_{-} \exp \right)\right)$
else if（cur＿type $=$ unknown＿string $) \vee($ cur＿type $=$ unknown＿boolean $)$ then
〈Check if unknowns have been equated 938\rangle
else if $($ cur＿type $=$ pair＿type $) \vee($ cur＿type $=$ transform＿type $)$ then
〈Reduce comparison of big nodes to comparison of scalars 939\rangle
else if cur＿type $=$ boolean＿type then flush＿cur＿exp $\left(\operatorname{cur}_{-} \exp -v a l u e(p)\right)$
else begin bad＿binary (p, c) ；goto done；
end；
〈Compare the current expression with zero 937〉；
done：end；
See also sections 940，941，948，951，952，975，983，and 988.
This code is used in section 922 ．

```
937. 〈Compare the current expression with zero 937\(\rangle \equiv\)
    if cur_type \(\neq\) known then
        begin if cur_type \(<\) known then
```



```
            end
```



```
        exp_err("Unknown relation \(_{\lrcorner}\)will \(l_{\sqcup} \mathrm{be}_{\llcorner }\)considered_false"); put_get_flush_error(false_code);
        end
    else case \(c\) of
        less_than: boolean_reset (cur_exp <0);
        less_or_equal: boolean_reset (cur_exp \(\leq 0\) );
        greater_than: boolean_reset (cur_exp \(>0\) );
        greater_or_equal: boolean_reset (cur_exp \(\geq 0\) );
        equal_to: boolean_reset (cur_exp \(=0\) );
        unequal_to: boolean_reset (cur_exp \(\neq 0\) );
        end; \{ there are no other cases \}
    cur_type \(\leftarrow\) boolean_type
```

This code is used in section 936.
938．When two unknown strings are in the same ring，we know that they are equal．Otherwise，we don＇t know whether they are equal or not，so we make no change．
\langle Check if unknowns have been equated 938$\rangle \equiv$
begin $q \leftarrow$ value（cur＿exp）；
while $(q \neq$ cur＿exp $) \wedge(q \neq p)$ do $q \leftarrow \operatorname{value}(q)$ ；
if $q=p$ then flush＿cur＿exp（0）；
end
This code is used in section 936.

939．〈Reduce comparison of big nodes to comparison of scalars 939$\rangle \equiv$
begin $q \leftarrow$ value $(p) ; r \leftarrow$ value（cur＿exp）；rr $\leftarrow r+$ big＿node＿size［cur＿type］－2；
loop begin add＿or＿subtract（ q, r ，minus $)$ ；
if type $(r) \neq k$ nown then goto done 1 ；
if value $(r) \neq 0$ then goto done1；
if $r=r r$ then goto done 1 ；
$q \leftarrow q+2 ; r \leftarrow r+2 ;$
end；
done1：take＿part（x＿part $\left.+\operatorname{half}\left(r-v a l u e\left(c u r _e x p\right)\right)\right)$ ；
end
This code is used in section 936.
940．Here we use the sneaky fact that and＿op－false＿code $=$ or＿op－true＿code．
\langle Additional cases of binary operators 936$\rangle+\equiv$
and＿op，or＿op：if $($ type $(p) \neq$ boolean＿type $) \vee\left(c u r _t y p e \neq b o o l e a n_{-} t y p e\right)$ then bad＿binary (p, c)
else if value $(p)=c+$ false＿code - and＿op then cur＿exp $\leftarrow \operatorname{value}(p)$ ；
941．〈Additional cases of binary operators 936$\rangle+\equiv$
times：if（cur＿type＜pair＿type）$\vee($ type $(p)<$ pair＿type）then bad＿binary $(p$, times $)$
else if（cur＿type $=$ known $) \vee($ type $(p)=$ known $)$ then
〈Multiply when at least one operand is known 942〉
else if $($ nice＿pair $(p$, type $(p)) \wedge($ cur＿type $>$ pair＿type $)) \vee\left(\right.$ nice＿pair $\left(c u r_{-}\right.$exp ， cur＿type $) \wedge($ type $(p)>$ pair＿type $))$ then
begin hard＿times (p) ；return； end
else bad＿binary（ p ，times）；
942．〈Multiply when at least one operand is known 942$\rangle \equiv$
begin if type $(p)=k n o w n$ then
begin $v \leftarrow$ value (p) ；free＿node（ p ，value＿node＿size）；
end
else begin $v \leftarrow$ cur＿exp；unstash＿cur＿exp (p) ；
end；
if cur＿type $=$ known then cur＿exp \leftarrow take＿scaled $($ cur＿exp,$v)$
else if cur＿type $=$ pair＿type then
begin $p \leftarrow$ value（cur＿exp）；dep＿mult（x＿part＿loc $(p), v$, true）；dep＿mult（y＿part＿loc $(p), v$, true $)$ ； end
else dep＿mult（null，v，true）；
return；
end
This code is used in section 941.

943．〈Declare binary action procedures 923$\rangle+\equiv$
procedure dep＿mult（ $p:$ pointer $; v:$ integer；v＿is＿scaled ：boolean $)$ ；
label exit；
var q ：pointer；$\quad\{$ the dependency list being multiplied by $v\}$
s, t ：small＿number；\｛its type，before and after \}
begin if $p=$ null then $q \leftarrow$ cur＿exp
else if type $(p) \neq$ known then $q \leftarrow p$
else begin if v_{-}is＿scaled then value $(p) \leftarrow$ take＿scaled $($ value $(p), v)$
else value $(p) \leftarrow$ take＿fraction $(\operatorname{value}(p), v)$ ；
return；
end；
$t \leftarrow$ type $(q) ; q \leftarrow d e p_{-} l i s t(q) ; s \leftarrow t ;$
if $t=$ dependent then
if $v_{-} i s_{-} s c a l e d$ then
if $a b_{-} v s_{-} c d\left(\max _{-} c o e f(q), a b s(v)\right.$, coef＿bound -1 ，unity $) \geq 0$ then $t \leftarrow$ proto＿dependent；
$q \leftarrow p_{-}$times＿v $\left(q, v, s, t, v_{-} i s_{-} s c a l e d\right) ; \operatorname{dep}_{-} \operatorname{finish}(q, p, t)$ ；
exit：end；
944．Here is a routine that is similar to times；but it is invoked only internally，when v is a fraction whose magnitude is at most 1 ，and when cur＿type \geq pair＿type．
procedure frac＿mult（ $n, d:$ scaled $) ; \quad\{$ multiplies cur＿exp by $n / d\}$
var $p:$ pointer；$\quad\{$ a pair node $\}$
old＿exp：pointer；\｛ a capsule to recycle $\}$
v ：fraction；$\{n / d\}$
begin if internal［tracing＿commands］＞two then 〈Trace the fraction multiplication 945\rangle ；
case cur＿type of
transform＿type，pair＿type：old＿exp \leftarrow tarnished（cur＿exp）；
independent：old＿exp \leftarrow void；
othercases old＿exp \leftarrow null
endcases；
if old＿exp \neq null then
begin old＿exp \leftarrow cur＿exp；make＿exp＿copy（old＿exp）； end；
$v \leftarrow$ make＿fraction (n, d) ；
if cur＿type $=k n o w n$ then cur＿exp \leftarrow take＿fraction $\left(c_{\text {＿}}\right.$＿exp,$\left.v\right)$
else if cur＿type $=$ pair＿type then
begin $p \leftarrow$ value $($ cur＿exp $) ;$ dep＿mult $\left(x_{-} p a r t _l o c(p), v, f a l s e\right) ;$ dep＿mult（y＿part＿loc $\left.(p), v, f a l s e\right)$ ； end
else dep＿mult（null，v, false）；
if old＿exp \neq null then
begin recycle＿value（old＿exp）；free＿node（old＿exp，value＿node＿size）；
end
end；
945．〈Trace the fraction multiplication 945$\rangle \equiv$
begin begin＿diagnostic；print＿nl（＂\｛（＂）；print＿scaled（n）；print＿char（＂／＂）；print＿scaled（d）；
print（＂）＊（＂）；print＿exp（null，0）；print（＂）\}"); end_diagnostic(false);
end
This code is used in section 944.

946．The hard＿times routine multiplies a nice pair by a dependency list．
\langle Declare binary action procedures 923$\rangle+\equiv$
procedure hard＿times（ p ：pointer）；
var q ：pointer；$\quad\{$ a copy of the dependent variable $p\}$
r ：pointer；$\quad\{$ the big node for the nice pair $\}$
u, v ：scaled；\｛ the known values of the nice pair \}
begin if type $(p)=$ pair＿type then
begin $q \leftarrow$ stash＿cur＿exp；unstash＿cur＿exp $(p) ; p \leftarrow q$ ；
end $; \quad$ \｛now cur＿type $=$ pair＿type $\}$
$r \leftarrow$ value $($ cur＿exp $) ; u \leftarrow$ value $\left(x_{-} p a r t_{-} l o c(r)\right) ; v \leftarrow v a l u e\left(y_{-} p a r t _l o c(r)\right) ;$
〈 Move the dependent variable p into both parts of the pair node $r 947$ 〉；
dep＿mult $\left(x _p a r t _l o c(r), u, t r u e\right) ;$ dep＿mult $\left(y _p a r t _l o c(r), v\right.$, true $)$ ；
end；
947．〈Move the dependent variable p into both parts of the pair node $r 947\rangle \equiv$
type $\left(y_{-} p a r t_{-} l o c(r)\right) \leftarrow$ type $(p) ;$ new＿dep $\left(y_{-} p a r t_{-} l o c(r)\right.$ ，copy＿dep＿list $\left.\left(\operatorname{dep} p_{-} l i s t(p)\right)\right)$ ；
type $\left(x _p a r t _l o c(r)\right) \leftarrow$ type $(p) ;$ mem $\left[\right.$ value＿loc $\left.\left(x_{-} p a r t _l o c(r)\right)\right] \leftarrow \operatorname{mem}\left[v a l u e _l o c(p)\right]$ ；
$\operatorname{link}(\operatorname{prev}$＿dep $(p)) \leftarrow x_{-} p a r t _l o c(r) ;$ free＿node $\left(p, v a l u e _n o d e _s i z e\right) ~$
This code is used in section 946.
948．〈Additional cases of binary operators 936$\rangle+\equiv$
over：if（cur＿type $\neq k n o w n) \vee($ type $(p)<$ pair＿type $)$ then bad＿binary $(p$, over $)$
else begin $v \leftarrow$ cur＿exp；unstash＿cur＿exp (p) ；
if $v=0$ then 〈Squeal about division by zero 950 〉
 else if cur＿type $=$ pair＿type then
begin $p \leftarrow v a l u e\left(c u r_{-} e x p\right) ;$ dep＿div $\left(x_{-} p a r t_{-} l o c(p), v\right)$ ；dep＿div $\left(y_{-} p a r t_{-} l o c(p), v\right)$ ； end
else dep＿div（null，v）； end；
return；
end；
949．〈Declare binary action procedures 923$\rangle+\equiv$
procedure dep＿div（ $p:$ pointer $; v:$ scaled $)$ ；
label exit；
var q ：pointer；$\quad\{$ the dependency list being divided by $v\}$
s, t ：small＿number；\｛its type，before and after \}
begin if $p=$ null then $q \leftarrow$ cur＿exp
else if type $(p) \neq$ known then $q \leftarrow p$
else begin value $(p) \leftarrow$ make＿scaled $(\operatorname{value}(p), v)$ ；return；
end；
$t \leftarrow$ type $(q) ; q \leftarrow d e p_{-} \operatorname{list}(q) ; s \leftarrow t ;$
if $t=$ dependent then
if ab＿vs＿cd $($ max＿coef (q) ，unity，coef＿bound $-1, a b s(v)) \geq 0$ then $t \leftarrow$ proto＿dependent；
$q \leftarrow p_{-} o v e r_{-} v(q, v, s, t) ;$ dep＿finish $(q, p, t) ;$
exit：end；

950．〈Squeal about division by zero 950$\rangle \equiv$
begin exp＿err（＂Division by $_{\mathrm{b}}$ zero＂）；

end
This code is used in section 948.
951．〈Additional cases of binary operators 936$\rangle+\equiv$
pythag＿add，pythag＿sub：if（cur＿type $=$ known $) \wedge($ type $(p)=k n o w n)$ then
if $c=p y t h a g_{-} a d d$ then $c u r_{-} e x p \leftarrow p y t h _a d d\left(v a l u e(p), c u r_{-} e x p\right)$
else cur＿exp \leftarrow pyth＿sub $(v a l u e ~(p)$, cur＿exp $)$
else bad＿binary (p, c) ；
952．The next few sections of the program deal with affine transformations of coordinate data．
\langle Additional cases of binary operators 936$\rangle+\equiv$
rotated＿by，slanted＿by，scaled＿by，shifted＿by，transformed＿by，x＿scaled，y＿scaled，$z _$＿scaled：
if $($ type $(p)=$ path＿type $) \vee($ type $(p)=$ future＿pen $) \vee($ type $(p)=$ pen＿type $)$ then begin path＿trans (p, c) ；return； end
else if $($ type $(p)=$ pair＿type $) \vee\left(\right.$ type $(p)=\operatorname{transform_ type)}$ then $\operatorname{big_ trans}(p, c)$ else if type $(p)=$ picture＿type then
begin edges＿trans (p, c) ；return；
end
else bad＿binary (p, c) ；
953．Let c be one of the eight transform operators．The procedure call set＿up＿trans（c）first changes cur＿exp to a transform that corresponds to c and the original value of cur＿exp．（In particular，cur＿exp doesn＇t change at all if $c=$ transformed＿by．）

Then，if all components of the resulting transform are known，they are moved to the global variables txx， $t x y, t y x, t y y, t x, t y$ ；and cur＿exp is changed to the known value zero．
\langle Declare binary action procedures 923$\rangle+\equiv$
procedure set＿up＿trans（c：quarterword）；
label done，exit；
var p, q, r ：pointer；\｛list manipulation registers \}
begin if $(c \neq$ transformed＿by $) \vee($ cur＿type \neq transform＿type $)$ then
〈Put the current transform into cur＿exp 955\rangle ；
＜If the current transform is entirely known，stash it in global variables；otherwise return 956 〉；
exit：end；

954．〈Global variables 13$\rangle+\equiv$
$t x x, t x y, t y x, t y y, t x, t y:$ scaled；\｛ current transform coefficients \}

955．〈Put the current transform into cur＿exp 955$\rangle \equiv$
begin $p \leftarrow$ stash＿cur＿exp；cur＿exp \leftarrow id＿transform；cur＿type \leftarrow transform＿type；$q \leftarrow$ value（cur＿exp）；
case c of
〈For each of the eight cases，change the relevant fields of cur＿exp and goto done；but do nothing if capsule p doesn＇t have the appropriate type 957）
end；$\quad\{$ there are no other cases $\}$

help3（＂The $\operatorname{expression}_{\sqcup}$ shown $_{\sqcup}$ above $_{\sqcup}$ has $_{\sqcup}$ the $_{\sqcup}$ wrong ${ }_{\llcorner }$type，＂）

done：recycle＿value (p) ；free＿node（ p ，value＿node＿size）；
end
This code is used in section 953.
956．〈If the current transform is entirely known，stash it in global variables；otherwise return 956$\rangle \equiv$
$q \leftarrow$ value $($ cur＿exp $) ; r \leftarrow q+$ transform＿node＿size $;$
repeat $r \leftarrow r-2$ ；
if type $(r) \neq k$ nown then return；
until $r=q$ ；
txx \leftarrow value $\left(x x_{-} p a r t_{-} l o c(q)\right) ;$ txy \leftarrow value $\left(x y_{-} p a r t_{-} l o c(q)\right) ;$ ty $x \leftarrow$ value $\left(y x_{-} p a r t _l o c(q)\right)$ ；
$t y y \leftarrow$ value $\left(y y_{-} \operatorname{part}\right.$＿loc $\left.(q)\right) ;$ tx \leftarrow value $\left(x_{-} p a r t _l o c(q)\right) ;$ ty \leftarrow value $\left(y_{-}\right.$part＿loc $\left.(q)\right) ;$ flush＿cur＿exp (0)
This code is used in section 953.

957．LFor each of the eight cases，change the relevant fields of cur＿exp and goto done ；but do nothing if capsule p doesn＇t have the appropriate type 957$\rangle \equiv$
rotated＿by：if type $(p)=$ known then \langle Install sines and cosines，then goto done 958〉；
slanted＿by：if type $(p)>$ pair＿type then
begin install（xy＿part＿loc $(q), p)$ ；goto done；
end；
scaled＿by：if type $(p)>$ pair＿type then begin install（xx＿part＿loc $(q), p)$ ；install（yy＿part＿loc $(q), p)$ ；goto done；
end；
shifted＿by：if type $(p)=$ pair＿type then
begin $r \leftarrow$ value (p) ；install $\left(x_{-} p a r t _l o c(q), x_{-} p a r t _l o c(r)\right) ;$ install $\left(y_{-} p a r t _l o c(q), y_{-} p a r t _l o c(r)\right)$ ；
goto done；
end；
$x _s c a l e d:$ if type $(p)>$ pair＿type then
begin install（ $x x_{\text {＿part＿loc }}(q), p$ ）；goto done； end；
y_{-}scaled：if type $(p)>$ pair＿type then
begin install（yy＿part＿loc $(q), p)$ ；goto done； end；
$z_{-} s c a l e d:$ if type $(p)=$ pair＿type then \langle Install a complex multiplier，then goto done 959\rangle ；
transformed＿by：do＿nothing；
This code is used in section 955.
958．〈Install sines and cosines，then goto done 958$\rangle \equiv$
begin $n_{_}$sin＿cos $((v a l u e(p)$ mod three＿sixty＿units $) * 16) ;$ value $\left(x x_{-} p a r t _l o c(q)\right) \leftarrow$ round＿fraction $\left(n_{-} \cos \right)$ ；
value $\left(y x_{-} p a r t _l o c(q)\right) \leftarrow$ round＿fraction $\left(n_{-} s i n\right) ;$ value $\left(x y _p a r t _l o c ~(q)\right) \leftarrow-v a l u e\left(y x _p a r t _l o c(q)\right)$ ；
value $\left(y y_{-} p a r t _l o c(q)\right) \leftarrow$ value $\left(x x_{-} p a r t _l o c(q)\right)$ ；goto done；
end
This code is used in section 957.
959. 〈Install a complex multiplier, then goto done 959$\rangle \equiv$
begin $r \leftarrow \operatorname{value}(p)$; install $\left(x x-p a r t _l o c(q), x_{-} p a r t _l o c(r)\right)$; install(yy_part_loc $\left.(q), x_{-} p a r t _l o c(r)\right)$;
install (yx_part_loc (q), y_part_loc (r));
if type $\left(y-p a r t _l o c(r)\right)=k n o w n$ then negate $\left(v a l u e\left(y _p a r t _l o c(r)\right)\right)$
else negate_dep_list (dep_list(y_part_loc(r)));
install($\left.x y-p a r t _l o c(q), y_{-} p a r t _l o c(r)\right)$; goto done;
end
This code is used in section 957.
960. Procedure set_up_known_trans is like set_up_trans, but it insists that the transformation be entirely known.
\langle Declare binary action procedures 923$\rangle+\equiv$
procedure set_up_known_trans(c : quarterword);
begin set_up_trans(c);
if cur_type \neq known then

 tyx $\leftarrow 0 ;$ tyy \leftarrow unity; $t x \leftarrow 0 ;$ ty $\leftarrow 0 ;$ end;
end;
961. Here's a procedure that applies the transform $t x x \ldots t y$ to a pair of coordinates in locations p and q.
\langle Declare binary action procedures 923$\rangle+\equiv$
procedure trans (p, q : pointer);
var v : scaled; \{ the new x value \}
begin $v \leftarrow$ take_scaled $($ mem $[p] . s c, t x x)+$ take_scaled $(\operatorname{mem}[q] . s c, t x y)+t x$;
mem $[q] . s c \leftarrow$ take_scaled $(\operatorname{mem}[p] . s c$, tyx $)+$ take_scaled $($ mem $[q] . s c$, tyy $)+t y ; \operatorname{mem}[p] . s c \leftarrow v$;
end;
962. The simplest transformation procedure applies a transform to all coordinates of a path. The null_pen remains unchanged if it isn't being shifted.
\langle Declare binary action procedures 923$\rangle+\equiv$
procedure path_trans ($p:$ pointer $; c:$ quarterword);
label exit;
var q : pointer; \{ list traverser \}
begin set_up_known_trans (c); unstash_cur_exp (p);
if cur_type $=$ pen_type then
begin if max_offset (cur_exp $)=0$ then
if $t x=0$ then
if $t y=0$ then return;
flush_cur_exp (make_path (cur_exp)); cur_type \leftarrow future_pen;
end;
$q \leftarrow$ cur_exp;
repeat if left_type $(q) \neq$ endpoint then trans $(q+3, q+4) ; \quad\{$ that's left_x and left_y $\}$
trans $(q+1, q+2) ; \quad\left\{\right.$ that's x_{-}coord and $\left.y_{\text {_coord }}\right\}$
if right_type $(q) \neq$ endpoint then trans $(q+5, q+6) ; \quad\{$ that's right_ x and right_ $y\}$
$q \leftarrow \operatorname{link}(q)$;
until $q=$ cur_exp;
exit: end;

963．The next simplest transformation procedure applies to edges．It is simple primarily because META－ FONT doesn＇t allow very general transformations to be made，and because the tricky subroutines for edge transformation have already been written．
\langle Declare binary action procedures 923$\rangle+\equiv$
procedure edges＿trans（ $p:$ pointer $; c: q u a r t e r w o r d)$ ；
label exit；
begin set＿up＿known＿trans (c) ；unstash＿cur＿exp (p) ；cur＿edges $\leftarrow c u r_{-}$exp $;$
if empty＿edges（cur＿edges）then return；\｛the empty set is easy to transform \}
if $t x x=0$ then
if $t y y=0$ then
if $t x y \bmod u n i t y=0$ then
if $\operatorname{tyx} \bmod$ unity $=0$ then
begin $x y$＿swap＿edges；txx $\leftarrow t x y ;$ tyy $\leftarrow t y x ; \quad t x y \leftarrow 0 ;$ tyx $\leftarrow 0$ ；
if empty＿edges（cur＿edges）then return；
end；
if $t x y=0$ then
if $t y x=0$ then
if $t x x \bmod u n i t y=0$ then
if tyy mod unity $=0$ then \langle Scale the edges，shift them，and return 964\rangle ；
print＿err（＂That $\operatorname{transformation}_{\sqcup}$ is $_{\llcorner } \mathrm{toO}_{\llcorner }$hard＂）；

（＂Proceed，பandபI＇llıomit」the」transformation．＂）；put＿get＿error；
exit：end；
964．〈Scale the edges，shift them，and return 964$\rangle \equiv$
begin if $(t x x=0) \vee(t y y=0)$ then
begin toss＿edges（cur＿edges）；cur＿exp \leftarrow get＿node（edge＿header＿size）；init＿edges（cur＿exp）；
end
else begin if $t x x<0$ then
begin x＿reflect＿edges；txx $\leftarrow-t x x$ ； end；
if tyy <0 then
begin y＿reflect＿edges；tyy \leftarrow－tyy； end；
if $t x x \neq u n i t y$ then $x_{-} s c a l e _e d g e s(t x x \operatorname{div} u n i t y)$ ；
if tyy \neq unity then y_{-}scale＿edges（tyy div unity）；
\langle Shift the edges by $(t x, t y)$ ，rounded 965\rangle ；
end；
return；
end
This code is used in section 963 ．

965．〈Shift the edges by $(t x, t y)$ ，rounded 965$\rangle \equiv$
$t x \leftarrow$ round＿unscaled（ $t x)$ ；ty \leftarrow round＿unscaled（ $t y$ ）；
if $\left(m_{_} \min (\right.$ cur＿edges $\left.)+t x \leq 0\right) \vee\left(m _m a x\left(c u r _e d g e s\right)+t x \geq 8192\right) \vee$
$\left(n_{_}\right.$min $($cur＿edges $\left.)+t y \leq 0\right) \vee\left(n_{-} \max (\right.$ cur＿edges $\left.)+t y \geq 8191\right) \vee$
$(a b s(t x) \geq 4096) \vee(a b s(t y) \geq 4096)$ then

end
else begin if $t x \neq 0$ then
begin if \neg valid＿range（ m＿offset $\left.\left(c u r _e d g e s\right)-t x\right)$ then fix＿offset；
$m_{_} m i n($ cur＿edges $) \leftarrow m_{-} \min ($ cur＿edges $)+t x ; m_{-} \max ($ cur＿edges $) \leftarrow m_{-} \max ($ cur＿edges $)+t x$ ；
$m_{\text {＿offset }}($ cur＿edges $) \leftarrow m_{\text {＿offset }}($ cur＿edges $)-t x ;$ last＿window＿time $($ cur＿edges $) \leftarrow 0$ ；
end；
if $t y \neq 0$ then
begin $n_{-} m i n\left(c u r_{-} e d g e s\right) \leftarrow n _m i n\left(c u r_{-} e d g e s\right)+t y ; n_{-} m a x\left(c u r_{-} e d g e s\right) \leftarrow n_{-} m a x\left(c u r_{-} e d g e s\right)+t y$ ；
$n_{\text {＿pos }}($ cur＿edges $) \leftarrow n_{-}$pos $($cur＿edges $)+t y ;$ last＿window＿time $($ cur＿edges $) \leftarrow 0$ ；
end；
end
This code is used in section 964.
966．The hard cases of transformation occur when big nodes are involved，and when some of their components are unknown．
\langle Declare binary action procedures 923$\rangle+\equiv$
〈Declare subroutines needed by big＿trans 968〉
procedure big＿trans（ $p:$ pointer ；$c:$ quarterword）；
label exit；
var $q, r, p p, q q$ ：pointer；\｛ list manipulation registers \} s：small＿number；\｛size of a big node \}
begin $s \leftarrow$ big＿node＿size $[$ type $(p)] ; q \leftarrow$ value $(p) ; r \leftarrow q+s$ ；
repeat $r \leftarrow r-2$ ；
if type $(r) \neq$ known then 〈Transform an unknown big node and return 967〉；
until $r=q$ ；
〈Transform a known big node 970\rangle ；
exit：end；\｛ node p will now be recycled by do＿binary \}
967．〈Transform an unknown big node and return 967$\rangle \equiv$
begin set＿up＿known＿trans (c) ；make＿exp＿copy $(p) ; r \leftarrow v a l u e\left(c u r _e x p\right) ;$
if cur＿type $=$ transform＿type then
begin bilin1（yy＿part＿loc (r) ，tyy，xy＿part＿loc (q), tyx, 0$)$ ；bilin1（ $y x_{-}$part＿loc (r) ，tyy，$\left.x x_{-} p a r t_{-} l o c(q), t y x, 0\right)$ ；
bilin1（xy＿part＿loc（r），txx，yy＿part＿loc（q），txy，0）；bilin1（xx＿part＿loc（r），txx，yx＿part＿loc（q），txy，0）；
end；
bilin1（y＿part＿loc (r), tyy，$\left.x_{-} p a r t _l o c(q), t y x, t y\right) ;$ bilin1（x＿part＿loc (r), txx，$\left.y_{-} p a r t _l o c(q), t x y, t x\right)$ ；return；
end
This code is used in section 966 ．
968. Let p point to a two-word value field inside a big node of $c u r_{-} \exp$, and let q point to a another value field. The bilin1 procedure replaces p by $p \cdot t+q \cdot u+\delta$.
\langle Declare subroutines needed by big_trans 968$\rangle \equiv$
procedure bilin1 (p : pointer $; t:$ scaled ; $q:$ pointer $; u$, delta : scaled);
var r : pointer; \{ list traverser \}
begin if $t \neq$ unity then dep_mult (p, t, true);
if $u \neq 0$ then
if type $(q)=$ known then delta \leftarrow delta + take_scaled $(v a l u e ~(q), u)$
else begin $\langle\operatorname{Ensure}$ that type $(p)=$ proto_dependent 969\rangle;
dep_list $(p) \leftarrow p_{-}$plus_f $q($ dep_list $(p), u$, dep_list (q), proto_dependent, type $(q))$;
end;
if type $(p)=$ known then $\operatorname{value}(p) \leftarrow \operatorname{value}(p)+$ delta
else begin $r \leftarrow$ dep_list (p);
while $\operatorname{info}(r) \neq$ null do $r \leftarrow \operatorname{link}(r)$;
delta $\leftarrow \operatorname{value}(r)+$ delta;
if $r \neq$ dep_list (p) then value $(r) \leftarrow$ delta
else begin recycle_value (p); type $(p) \leftarrow$ known; value $(p) \leftarrow$ delta; end;
end;
if fix_needed then fix_dependencies;
end;
See also sections 971, 972, and 974.
This code is used in section 966.
969. \langle Ensure that type $(p)=$ proto_dependent 969$\rangle \equiv$
if type $(p) \neq$ proto_dependent then
begin if $\operatorname{type}(p)=$ known then new_dep $(p$, const_dependency $(v a l u e(p)))$
else dep_list $(p) \leftarrow p_{\text {_times_v }}($ dep_list (p), unity, dependent, proto_dependent, true);
type $(p) \leftarrow$ proto_dependent;
end
This code is used in section 968.
970. 〈Transform a known big node 970$\rangle \equiv$
set_up_trans (c);
if cur_type $=$ known then \langle Transform known by known 973\rangle
else begin $p p \leftarrow$ stash_cur_exp $; q q \leftarrow$ value $(p p) ;$ make_exp_copy $(p) ; r \leftarrow v a l u e\left(c u r_{-} e x p\right)$;
if cur_type $=$ transform_type then
begin bilin2 $\left(y y _p a r t _l o c(r), y y_{-} p a r t_{-} l o c(q q)\right.$, value (xy_part_loc $\left.(q)\right)$, yx_part_loc $(q q)$, null);
bilin2 (yx_part_loc (r), yy_part_loc $(q q)$, value (xx_part_loc $(q))$, yx_part_loc $(q q)$, null);
bilin2 $\left(x y-p a r t _l o c(r), x x_{-} p a r t _l o c(q q), v a l u e\left(y y _p a r t _l o c(q)\right), x y_{-}\right.$part_loc $(q q)$, null);
bilin2 (xx_part_loc $(r), x x_{-} p a r t _l o c(q q)$, value (yx_part_loc $\left.(q)\right), x_{y}$ part_loc $(q q)$, null); end;
bilin2 (y_part_loc (r), yy_part_loc $(q q)$, value (x_part_loc $(q))$, yx_part_loc $\left.(q q), y_{-} p a r t_{-} l o c(q q)\right)$; bilin2 (x_part_loc (r), xx_part_loc $(q q)$, value (y_part_loc $\left.(q)), x_{-} \operatorname{part}_{-} l o c(q q), x_{-} p a r t _l o c(q q)\right)$; recycle_value ($p p$); free_node (p p, value_node_size);
end;
This code is used in section 966.
971. Let p be a proto_dependent value whose dependency list ends at dep_final. The following procedure adds v times another numeric quantity to p.
\langle Declare subroutines needed by big_trans 968〉 $+\equiv$
procedure add_mult_dep ($p:$ pointer $; v:$ scaled $; r:$ pointer $)$;
begin if type $(r)=$ known then value $($ dep_final $) \leftarrow$ value $($ dep_final $)+\operatorname{take}$ _scaled $(v a l u e(r), v)$
else begin dep_list $(p) \leftarrow p_{-} p l u s_{-} f q(\operatorname{dep}-l i s t(p), v$, dep_list (r), proto_dependent, type $(r))$;
if fix_needed then fix_dependencies;
end;
end;
972. The bilin2 procedure is something like bilin1, but with known and unknown quantities reversed. Parameter p points to a value field within the big node for cur_exp; and type $(p)=k n o w n$. Parameters t and u point to value fields elsewhere; so does parameter q, unless it is null (which stands for zero). Location p will be replaced by $p \cdot t+v \cdot u+q$.
\langle Declare subroutines needed by big_trans 968$\rangle+\equiv$
procedure bilin2 ($p, t:$ pointer $; v:$ scaled $; u, q:$ pointer $)$;
var vv: scaled; \{temporary storage for value $(p)\}$
begin $v v \leftarrow \operatorname{value}(p)$; type $(p) \leftarrow$ proto_dependent ; new_dep $(p$, const_dependency $(0))$;
$\{$ this sets dep_final $\}$
if $v v \neq 0$ then add_mult_dep $(p, v v, t) ; \quad\left\{d e p_{-} f i n a l\right.$ doesn't change $\}$
if $v \neq 0$ then add_mult_dep (p, v, u);
if $q \neq$ null then add_mult_dep $(p$, unity,$q)$;
if dep_list $(p)=$ dep_final then
begin $v v \leftarrow$ value (dep_final); recycle_value $(p) ;$ type $(p) \leftarrow$ known; value $(p) \leftarrow v v$;
end;
end;
973. 〈Transform known by known 973$\rangle \equiv$
begin make_exp_copy $(p) ; r \leftarrow$ value (cur_exp);
if cur_type $=$ transform_type then
begin $\operatorname{bilin3}$ (yy_part_loc (r), tyy, value (xy_part_loc (q)), tyx , 0);
bilin3 (yx_part_loc (r), tyy, value (xx_part_loc (q)), tyx , 0);
bilin3 (xy_part_loc (r), txx, value (yy_part_loc(q)), txy, 0);
bilin3 (xx_part_loc (r), txx, value (yx_part_loc (q)), txy, 0);
end;
bilin3 (y_part_loc (r), tyy, value (x_part_loc (q)), tyx, ty);
bilin3 (x_part_loc (r), txx, value (y_part_loc (q)), txy, tx);
end
This code is used in section 970.
974. Finally, in bilin3 everything is known.
\langle Declare subroutines needed by big_trans 968$\rangle+\equiv$
procedure bilin3 (p : pointer; t, v, u, delta : scaled);
begin if $t \neq$ unity then delta \leftarrow delta $+\operatorname{take_ scaled}(\operatorname{value}(p), t)$
else delta \leftarrow delta + value (p);
if $u \neq 0$ then $\operatorname{value}(p) \leftarrow$ delta + take_scaled (v, u)
else value $(p) \leftarrow$ delta;
end;

975．〈Additional cases of binary operators 936$\rangle+\equiv$
concatenate：if $($ cur＿type $=$ string＿type $) \wedge($ type $(p)=$ string＿type $)$ then $\operatorname{cat}(p)$
else bad＿binary（ p ，concatenate）；
substring＿of：if nice＿pair $(p$, type $(p)) \wedge($ cur＿type $=$ string＿type $)$ then chop＿string $(v a l u e(p))$
else bad＿binary（ p ，substring＿of $)$ ；
subpath＿of：begin if cur＿type $=$ pair＿type then pair＿to＿path；
if nice＿pair $(p$, type $(p)) \wedge($ cur＿type $=$ path＿type $)$ then chop＿path $(v a l u e(p))$
else bad＿binary（ p ，subpath＿of）；
end；

976．〈Declare binary action procedures 923$\rangle+\equiv$
procedure $\operatorname{cat}(p$ ：pointer $)$ ；
var a, b ：str＿number；\｛the strings being concatenated \}
k ：pool＿pointer；\｛index into str＿pool $\}$
begin $a \leftarrow$ value $(p) ; b \leftarrow$ cur＿exp $;$ str＿room $($ length $(a)+$ length $(b))$ ；
for $k \leftarrow$ str＿start $[a]$ to str＿start $[a+1]-1$ do append＿char $($ so $($ str＿pool $[k]))$ ；
for $k \leftarrow$ str＿start $[b]$ to str＿start $[b+1]-1$ do append＿char（so（str＿pool $[k])$ ）；
cur＿exp \leftarrow make＿string；delete＿str＿ref (b) ；
end；
977．〈Declare binary action procedures 923$\rangle+\equiv$
procedure chop＿string（ p ：pointer）；
var a, b ：integer；$\{$ start and stop points $\}$
l ：integer；\｛length of the original string \}
k ：integer；$\quad\{$ runs from a to $b\}$
s ：str＿number；\｛ the original string \}
reversed：boolean；$\quad\{$ was $a>b ?\}$
begin $a \leftarrow$ round＿unscaled $\left(\right.$ value $\left(x_{-}\right.$part＿loc $\left.\left.(p)\right)\right) ; b \leftarrow$ round＿unscaled $\left(\right.$ value $\left(y_{-}\right.$part＿loc $\left.\left.(p)\right)\right)$ ；
if $a \leq b$ then reversed \leftarrow false
else begin reversed \leftarrow true $; k \leftarrow a ; a \leftarrow b ; b \leftarrow k$ ；
end；
$s \leftarrow c u r_{-} \exp ; l \leftarrow \operatorname{length}(s) ;$
if $a<0$ then
begin $a \leftarrow 0$ ；
if $b<0$ then $b \leftarrow 0$ ；
end；
if $b>l$ then
begin $b \leftarrow l$ ；
if $a>l$ then $a \leftarrow l$ ；
end；
str＿room $(b-a)$ ；
if reversed then
for $k \leftarrow$ str＿start $[s]+b-1$ downto str＿start $[s]+a$ do append＿char $($ so $($ str＿pool $[k]))$
else for $k \leftarrow$ str＿start $[s]+a$ to str＿start $[s]+b-1$ do append＿char $($ so $($ str＿pool $[k]))$ ；
cur＿exp \leftarrow make＿string；delete＿str＿ref（s）；
end；

978．〈Declare binary action procedures 923$\rangle+\equiv$
procedure chop＿path（ p ：pointer）；
var q ：pointer；\｛ a knot in the original path \}
$p p, q q, r r, s s:$ pointer；\｛link variables for copies of path nodes \}
$a, b, k, l:$ scaled ；\｛indices for chopping \}
reversed：boolean；\｛ was $a>b ?\}$
begin $l \leftarrow$ path＿length；$a \leftarrow$ value $\left(x _p a r t _l o c ~(p)\right) ; b \leftarrow$ value $\left(y_{-}\right.$part＿loc $\left.(p)\right)$ ；
if $a \leq b$ then reversed \leftarrow false
else begin reversed \leftarrow true $; k \leftarrow a ; a \leftarrow b ; b \leftarrow k$ ；
end；
\langle Dispense with the cases $a<0$ and／or $b>l 979\rangle$ ；
$q \leftarrow$ cur＿exp；
while $a \geq$ unity do
begin $q \leftarrow \operatorname{link}(q) ; a \leftarrow a-$ unity $; b \leftarrow b$－unity；
end；
if $b=a$ then 〈Construct a path from $p p$ to $q q$ of length zero 981\rangle
else \langle Construct a path from $p p$ to $q q$ of length $\lceil b\rceil 980\rangle$ ；
left＿type $(p p) \leftarrow$ endpoint $;$ right＿type $(q q) \leftarrow$ endpoint $; \quad$ link $(q q) \leftarrow p p ;$ toss＿knot＿list $\left(c u r_{-} e x p\right)$ ；
if reversed then
begin cur＿exp \leftarrow link $\left(h t a p_{-} y p o c(p p)\right)$ ；toss＿knot＿list $(p p)$ ；
end
else cur＿exp $\leftarrow p p$ ；
end；
979．〈Dispense with the cases $a<0$ and／or $b>l 979\rangle \equiv$
if $a<0$ then
if left＿type $($ cur＿exp $)=$ endpoint then
begin $a \leftarrow 0$ ； if $b<0$ then $b \leftarrow 0$ ；
end
else repeat $a \leftarrow a+l ; b \leftarrow b+l$ ；
until $a \geq 0 ; \quad\{$ a cycle always has length $l>0\}$
if $b>l$ then
if left＿type $($ cur＿exp $)=$ endpoint then
begin $b \leftarrow l$ ；
if $a>l$ then $a \leftarrow l$ ；
end
else while $a \geq l$ do begin $a \leftarrow a-l ; b \leftarrow b-l$ ； end
This code is used in section 978.

980．〈Construct a path from $p p$ to $q q$ of length $\lceil b\rceil 980\rangle \equiv$
begin $p p \leftarrow$ copy＿knot $(q) ; q q \leftarrow p p$ ；
repeat $q \leftarrow \operatorname{link}(q) ; r r \leftarrow q q ; q q \leftarrow$ copy＿knot $(q) ; \operatorname{link}(r r) \leftarrow q q ; b \leftarrow b-$ unity；
until $b \leq 0$ ；
if $a>0$ then
begin $s s \leftarrow p p ; p p \leftarrow \operatorname{link}(p p) ;$ split＿cubic $\left(s s, a *\right.$＇10000，$\left.x_{-} \operatorname{coord}(p p), y_{-} \operatorname{coord}(p p)\right) ; p p \leftarrow \operatorname{link}(s s)$ ； free＿node（ss，knot＿node＿size）；
if $r r=s s$ then
begin $b \leftarrow$ make＿scaled $(b$, unity $-a) ; r r \leftarrow p p$ ；
end；
end；
if $b<0$ then
begin split＿cubic（rr，（b＋unity）＊＇10000，$x_{\text {＿coord }}(q q), y _$coord $\left.(q q)\right)$ ；free＿node $(q q$, knot＿node＿size $)$ ；
$q q \leftarrow \operatorname{link}(r r) ;$
end；
end
This code is used in section 978.
981．〈Construct a path from $p p$ to $q q$ of length zero 981$\rangle \equiv$
begin if $a>0$ then
begin $q q \leftarrow \operatorname{link}(q) ; \operatorname{split} c u b i c\left(q, a *{ }^{\prime} 10000, x_{-} \operatorname{coord}(q q), y_{-} \operatorname{coord}(q q)\right) ; q \leftarrow \operatorname{link}(q) ;$
end；
$p p \leftarrow$ copy＿knot $(q) ; q q \leftarrow p p ;$
end
This code is used in section 978.
982．The pair＿value routine changes the current expression to a given ordered pair of values．
\langle Declare binary action procedures 923$\rangle+\equiv$
procedure pair＿value（ $x, y:$ scaled）；
var p ：pointer；\｛ a pair node \}
begin $p \leftarrow$ get＿node $\left(v a l u e _n o d e _\right.$＿size $) ;$flush＿cur＿exp $(p) ;$ cur＿type \leftarrow pair＿type $;$ type $(p) \leftarrow$ pair＿type $;$
name＿type $(p) \leftarrow$ capsule；init＿big＿node $(p) ; p \leftarrow$ value (p) ；
type $(x$＿part＿loc $(p)) \leftarrow$ known $;$ value $\left(x _p a r t _l o c ~(p)\right) \leftarrow x$ ；
type $\left(y_{-}\right.$part＿loc $\left.(p)\right) \leftarrow$ known；value $\left(y-p a r t _l o c ~(p)\right) \leftarrow y$ ；
end；
983．〈Additional cases of binary operators 936$\rangle+\equiv$
point＿of，precontrol＿of，postcontrol＿of：begin if cur＿type＝pair＿type then pair＿to＿path；
if $($ cur＿type $=$ path＿type $) \wedge($ type $(p)=$ known $)$ then $\operatorname{find_ point~}(\operatorname{value}(p), c)$
else bad＿binary (p, c) ；
end；
pen＿offset＿of：begin if cur＿type $=$ future＿pen then materialize＿pen；
if $($ cur＿type $=$ pen＿type $) \wedge$ nice＿pair $(p$, type $(p))$ then $\operatorname{set_ up_ offset~}(v a l u e(p))$
else bad＿binary（p，pen＿offset＿of）；
end；
direction＿time＿of：begin if cur＿type $=$ pair＿type then pair＿to＿path；
if $($ cur＿type $=$ path＿type $) \wedge$ nice＿pair $(p$, type $(p))$ then set＿up＿direction＿time $(v a l u e ~(p))$
else bad＿binary（ p ，direction＿time＿of ）；
end；

984．〈Declare binary action procedures 923$\rangle+\equiv$
procedure set＿up＿offset（ p ：pointer）；
begin find＿offset（value（x＿part＿loc $(p))$ ，value $\left(y_{-} p a r t_{-} l o c(p)\right)$ ，cur＿exp）；pair＿value（cur＿x，cur＿y）； end；
procedure set＿up＿direction＿time（ p ：pointer）；
begin flush＿cur＿exp（find＿direction＿time（value $\left(x_{-} p a r t_{-} l o c(p)\right)$ ，value（y＿part＿loc $\left.(p)\right)$ ，cur＿exp））；
end；

985．〈Declare binary action procedures 923$\rangle+\equiv$
procedure find＿point（ $v:$ scaled；$c:$ quarterword）；
var p ：pointer；\｛ the path \}
n ：scaled；\｛its length \}
q ：pointer；$\quad\{$ successor of $p\}$
begin $p \leftarrow$ cur＿exp；
if left＿type $(p)=$ endpoint then $n \leftarrow$－unity else $n \leftarrow 0$ ；
repeat $p \leftarrow \operatorname{link}(p) ; n \leftarrow n+$ unity；
until $p=$ cur＿exp；
if $n=0$ then $v \leftarrow 0$
else if $v<0$ then
if left＿type $(p)=$ endpoint then $v \leftarrow 0$
else $v \leftarrow n-1-((-v-1) \bmod n)$
else if $v>n$ then
if left＿type $(p)=$ endpoint then $v \leftarrow n$
else $v \leftarrow v \bmod n$ ；
$p \leftarrow c u r_{-} \exp ;$
while $v \geq u n i t y$ do
begin $p \leftarrow \operatorname{link}(p) ; v \leftarrow v-$ unity； end；
if $v \neq 0$ then 〈Insert a fractional node by splitting the cubic 986\rangle ；
〈Set the current expression to the desired path coordinates 987〉；
end；
986．〈Insert a fractional node by splitting the cubic 986$\rangle \equiv$
begin $q \leftarrow \operatorname{link}(p) ; \operatorname{split}$＿cubic $\left(p, v *{ }^{\prime} 10000, x_{-} \operatorname{coord}(q), y_{-} \operatorname{coord}(q)\right) ; p \leftarrow \operatorname{link}(p)$ ；
end
This code is used in section 985.
987．〈Set the current expression to the desired path coordinates 987$\rangle \equiv$
case c of
point＿of：pair＿value $\left(x_{-} \operatorname{coord}(p), y_{-} \operatorname{coord}(p)\right)$ ；
precontrol＿of：if left＿type $(p)=$ endpoint then pair＿value $\left(x_{-} \operatorname{coord}(p), y_{-} \operatorname{coord}(p)\right)$
else pair＿value（left＿x (p) ，left＿y $(p))$ ；
postcontrol＿of：if right＿type $(p)=$ endpoint then pair＿value $\left(x_{-} \operatorname{coord}(p), y_{-} \operatorname{coord}(p)\right)$
else pair＿value $($ right＿$x(p)$ ，right＿$y(p))$ ；
end $\{$ there are no other cases $\}$
This code is used in section 985.
988. 〈Additional cases of binary operators 936$\rangle+\equiv$
intersect: begin if type $(p)=$ pair_type then
begin $q \leftarrow$ stash_cur_exp ; unstash_cur_exp $(p) ;$ pair_to_path; $p \leftarrow$ stash_cur_exp; unstash_cur_exp (q); end;
if cur_type $=$ pair_type then pair_to_path;
if $($ cur_type $=$ path_type $) \wedge($ type $(p)=$ path_type $)$ then
begin path_intersection (value (p), cur_exp); pair_value(cur_t, cur_tt);
end
else bad_binary (p, intersect);
end;

989．Statements and commands．The chief executive of METAFONT is the do＿statement routine， which contains the master switch that causes all the various pieces of METAFONT to do their things，in the right order．
In a sense，this is the grand climax of the program：It applies all the tools that we have worked so hard to construct．In another sense，this is the messiest part of the program：It necessarily refers to other pieces of code all over the place，so that a person can＇t fully understand what is going on without paging back and forth to be reminded of conventions that are defined elsewhere．We are now at the hub of the web．

The structure of do＿statement itself is quite simple．The first token of the statement is fetched using get＿x＿next．If it can be the first token of an expression，we look for an equation，an assignment，or a title． Otherwise we use a case construction to branch at high speed to the appropriate routine for various and sundry other types of commands，each of which has an＂action procedure＂that does the necessary work．

The program uses the fact that

$$
\text { min_primary_command }=\text { max_statement_command }=\text { type_name }
$$

to interpret a statement that starts with，e．g．，＇string＇，as a type declaration rather than a boolean expression．
〈Declare generic font output procedures 1154〉
〈Declare action procedures for use by do＿statement 995〉
procedure do＿statement；\｛ governs METAFONT＇s activities \}
begin cur＿type \leftarrow vacuous；get＿x＿next；
if cur＿cmd＞max＿primary＿command then 〈Worry about bad statement 990〉
else if cur＿cmd $>$ max＿statement＿command then
〈Do an equation，assignment，title，or＇〈 expression \rangle endgroup＇ 993\rangle
else 〈Do a statement that doesn＇t begin with an expression 992\rangle ；
if cur＿cmd＜semicolon then 〈Flush unparsable junk that was found after the statement 991〉；
error＿count $\leftarrow 0$ ；
end；
990．The only command codes＞max＿primary＿command that can be present at the beginning of a statement are semicolon and higher；these occur when the statement is null．

```
<Worry about bad statement 990\rangle \equiv
    begin if cur_cmd < semicolon then
        begin print_err(" (A S Statement
        print_char("`"); help5("I⿱山was\llcornerlooking\llcornerfor&the_beginning
```



```
        ("now
        ("(See_Chapter }\mp@subsup{\mp@code{L}}{\bullet}{27
        back_error; get_x_next;
        end;
    end
```

This code is used in section 989.

991．The help message printed here says that everything is flushed up to a semicolon，but actually the commands end＿group and stop will also terminate a statement．
\langle Flush unparsable junk that was found after the statement 991$\rangle \equiv$

back＿error；scanner＿status \leftarrow flushing；
repeat get＿next；〈Decrease the string reference count，if the current token is a string 743\rangle ；
until end＿of＿statement；\｛cur＿cmd $=$ semicolon，end＿group，or stop $\}$
scanner＿status \leftarrow normal；
end
This code is used in section 989.
992．If do＿statement ends with cur＿cmd $=$ end＿group，we should have cur＿type $=$ vacuous unless the statement was simply an expression；in the latter case，cur＿type and cur＿exp should represent that expression．
\langle Do a statement that doesn＇t begin with an expression 992$\rangle \equiv$
begin if internal［tracing＿commands］>0 then show＿cur＿cmd＿mod；
case cur＿cmd of
type＿name：do＿type＿declaration；
macro＿def：if cur＿mod＞var＿def then make＿op＿def
else if cur＿mod $>$ end＿def then scan＿def；
〈Cases of do＿statement that invoke particular commands 1020〉
end；\｛ there are no other cases \}
cur＿type \leftarrow vacuous；
end
This code is used in section 989.
993．The most important statements begin with expressions．
\langle Do an equation，assignment，title，or＇〈 expression〉 endgroup＇ 993$\rangle \equiv$
begin var＿flag \leftarrow assignment；scan＿expression；
if cur＿cmd＜end＿group then
begin if cur＿cmd $=$ equals then do＿equation
else if cur＿cmd＝assignment then do＿assignment else if cur＿type $=$ string＿type then \langle Do a title 994〉
else if cur＿type \neq vacuous then
begin exp＿err（＂Isolatedபexpression＂）；

（＂expression that $_{\sqcup} i_{\sqcup}$ shown $_{\sqcup}$ above $_{\sqcup}$ this $_{\sqcup}$ error $_{\sqcup}$ message，＂）

end；
flush＿cur＿exp $(0) ;$ cur＿type \leftarrow vacuous；
end；
end
This code is used in section 989.

994．〈Do a title 994$\rangle \equiv$
begin if internal［tracing＿titles］>0 then
begin print＿nl（＂＂）；slow＿print（cur＿exp）；update＿terminal； end；
if internal［proofing］>0 then \langle Send the current expression as a title to the output file 1179〉；
end
This code is used in section 993.
995．Equations and assignments are performed by the pair of mutually recursive routines do＿equation and do＿assignment．These routines are called when cur＿cmd $=$ equals and when cur＿cmd $=$ assignment， respectively；the left－hand side is in cur＿type and cur＿exp，while the right－hand side is yet to be scanned． After the routines are finished，cur＿type and cur＿exp will be equal to the right－hand side（which will normally be equal to the left－hand side）．
\langle Declare action procedures for use by do＿statement 995$\rangle \equiv$
〈Declare the procedure called try＿eq 1006〉
〈Declare the procedure called make＿eq 1001〉
procedure do＿assignment；forward；
procedure do＿equation；
var lhs：pointer；\｛ capsule for the left－hand side \}
p ：pointer；\｛ temporary register \}
begin lhs \leftarrow stash＿cur＿exp；get＿x＿next；var＿flag \leftarrow assignment；scan＿expression；
if cur＿cmd $=$ equals then do＿equation
else if cur＿cmd $=$ assignment then do＿assignment；
if internal［tracing＿commands］＞two then 〈Trace the current equation 997〉；
if cur＿type $=$ unknown＿path then
if type（lhs）$=$ pair＿type then
begin $p \leftarrow$ stash＿cur＿exp ；unstash＿cur＿exp（lhs）；lhs $\leftarrow p$ ；
end；$\{$ in this case make＿eq will change the pair to a path \}
make＿eq（lhs）；$\quad\{$ equate lhs to（cur＿type，cur＿exp）\}
end；
See also sections $996,1015,1021,1029,1031,1034,1035,1036,1040,1041,1044,1045,1046,1049,1050,1051,1054,1057$ ， 1059，1070，1071，1072，1073，1074，1082，1103，1104，1106，1177，and 1186.
This code is used in section 989.

996．And do＿assignment is similar to do＿equation：
\langle Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿assignment；
var lhs：pointer；\｛ token list for the left－hand side \}
p ：pointer；$\{$ where the left－hand value is stored \}
q ：pointer；\｛temporary capsule for the right－hand value \}
begin if cur＿type \neq token＿list then

error；do＿equation；
end
else begin lhs \leftarrow cur＿exp；cur＿type \leftarrow vacuous；
get＿x＿next；var＿flag \leftarrow assignment ；scan＿expression；
if cur＿cmd $=$ equals then do＿equation
else if cur＿cmd $=$ assignment then do＿assignment；
if internal［tracing＿commands］＞two then 〈Trace the current assignment 998〉；
if info（lhs）＞hash＿end then 〈Assign the current expression to an internal variable 999〉
else \langle Assign the current expression to the variable lhs 1000\rangle ；
flush＿node＿list（lhs）；
end；
end；
997．〈Trace the current equation 997$\rangle \equiv$
begin begin＿diagnostic；print＿nl（＂\｛（＂）；print＿exp（lhs，0）；print（＂）＝（＂）；print＿exp（null，0）；print（＂）\}");
end＿diagnostic（false）；
end
This code is used in section 995 ．
998．〈Trace the current assignment 998〉 \equiv
begin begin＿diagnostic；print＿nl（＂\｛＂）；
if info $($ lhs $)>$ hash＿end then slow＿print（int＿name $[$ info（lhs $)-($ hash＿end $)]$ ）
else show＿token＿list（lhs，null，1000，0）；
print（＂：＝＂）；print＿exp（null，0）；print＿char（＂\}"); end_diagnostic(false);
end
This code is used in section 996.
999．〈Assign the current expression to an internal variable 999$\rangle \equiv$
if cur＿type $=$ known then internal $[$ info（lhs $)-($ hash＿end $)] \leftarrow$ cur＿exp
else begin exp＿err（＂Internal」quantityப｀＂）；slow＿print（int＿name［info（lhs）－（hash＿end）］）；
print（＂＂$\left\llcorner\right.$ must receive $_{\llcorner } \mathrm{a}_{\llcorner }$known ${ }_{\llcorner }$value＂）；

end
This code is used in section 996.

1000．〈Assign the current expression to the variable lhs 1000$\rangle \equiv$
begin $p \leftarrow$ find＿variable（lhs）；
if $p \neq$ null then
begin $q \leftarrow$ stash＿cur＿exp；cur＿type \leftarrow und＿type (p) ；recycle＿value (p) ；type $(p) \leftarrow$ cur＿type；
$\operatorname{value}(p) \leftarrow$ null；make＿exp＿copy $(p) ; p \leftarrow$ stash＿cur＿exp；unstash＿cur＿exp $(q) ;$ make＿eq (p) ；
end
else begin obliterated（lhs）；put＿get＿error；
end；
end
This code is used in section 996.
1001．And now we get to the nitty－gritty．The make＿eq procedure is given a pointer to a capsule that is to be equated to the current expression．
\langle Declare the procedure called make＿eq 1001〉 \equiv
procedure make＿eq（lhs ：pointer）；
label restart，done，not＿found；
var t ：small＿number；\｛type of the left－hand side \}
v ：integer；\｛ value of the left－hand side \}
$p, q:$ pointer ；\｛ pointers inside of big nodes \}
begin restart：$t \leftarrow$ type（lhs）；
if $t \leq$ pair＿type then $v \leftarrow$ value（lhs）；
case t of
〈For each type t ，make an equation and goto done unless cur＿type is incompatible with t 1003〉 end；\｛ all cases have been listed \}
〈Announce that the equation cannot be performed 1002〉；
done：check＿arith；recycle＿value（lhs）；free＿node（lhs，value＿node＿size）；
end；
This code is used in section 995.
1002．〈Announce that the equation cannot be performed 1002$\rangle \equiv$

if type（lhs）\leq pair＿type then print＿type（type（lhs））else $\operatorname{print}($＂numeric＂）；
print＿char（＂＝＂）；
if cur＿type \leq pair＿type then print＿type（cur＿type）else print（＂numeric＂）；
print＿char（＂）＂）；

This code is used in section 1001.

1003．〈For each type t ，make an equation and goto done unless cur＿type is incompatible with $t 1003\rangle \equiv$ boolean＿type，string＿type，pen＿type，path＿type，picture＿type：if cur＿type $=t+$ unknown＿tag then
begin nonlinear＿eq（v，cur＿exp，false）；unstash＿cur＿exp（cur＿exp）；goto done； end
else if cur＿type $=t$ then \langle Report redundant or inconsistent equation and goto done 1004〉；
unknown＿types：if cur＿type $=t-u n k n o w n _t a g$ then
begin nonlinear＿eq（cur＿exp，lhs，true）；goto done；
end
else if cur＿type $=t$ then
begin ring＿merge（lhs，cur＿exp）；goto done；
end
else if cur＿type $=$ pair＿type then
if $t=$ unknown＿path then
begin pair＿to＿path；goto restart；
end；
transform＿type，pair＿type：if cur＿type $=t$ then \langle Do multiple equations and goto done 1005\rangle ； known，dependent，proto＿dependent，independent：if cur＿type \geq known then
begin try＿eq（lhs，null）；goto done；
end；
vacuous：do＿nothing；
This code is used in section 1001.
1004．〈Report redundant or inconsistent equation and goto done 1004$\rangle \equiv$
begin if cur＿type \leq string＿type then
begin if cur＿type $=$ string＿type then
begin if str＿vs＿str $(v$, cur＿exp $) \neq 0$ then goto not＿found；
end
else if $v \neq$ cur＿exp then goto not＿found；
〈Exclaim about a redundant equation 623\rangle ；
goto done；
end；
print＿err（＂Redundant $\operatorname{bor}_{\sqcup}$ inconsistent $_{\bullet}$ equation＂）；

not＿found：print＿err（＂Inconsistent＿equation＂）；

end
This code is used in section 1003.
1005．〈Do multiple equations and goto done 1005$\rangle \equiv$
begin $p \leftarrow v+$ big＿node＿size $[t] ; q \leftarrow$ value $($ cur＿exp $)+$ big＿node＿size $[t]$ ；
repeat $p \leftarrow p-2 ; q \leftarrow q-2 ; \operatorname{try}-e q(p, q)$ ；
until $p=v$ ；
goto done；
end
This code is used in section 1003.

1006．The first argument to try＿eq is the location of a value node in a capsule that will soon be recycled． The second argument is either a location within a pair or transform node pointed to by cur＿exp，or it is null （which means that cur＿exp itself serves as the second argument）．The idea is to leave cur＿exp unchanged， but to equate the two operands．
\langle Declare the procedure called try＿eq 1006〉 \equiv
procedure try＿eq（l，r：pointer）；
label done，done1；
var p ：pointer；\｛dependency list for right operand minus left operand \}
t ：known ．．independent；\｛ the type of list $p\}$
q ：pointer；$\{$ the constant term of p is here $\}$
$p p:$ pointer；$\{$ dependency list for right operand $\}$
$t t$ ：dependent ．．independent；\｛ the type of list $p p\}$
copied：boolean；\｛ have we copied a list that ought to be recycled？\}
begin 〈Remove the left operand from its container，negate it，and put it into dependency list p with constant term q 1007＞；
〈 Add the right operand to list p 1009〉；
if $\operatorname{info}(p)=$ null then 〈Deal with redundant or inconsistent equation 1008〉
else begin linear＿eq (p, t) ；
if $r=$ null then
if cur＿type $\neq k$ nown then
if type $($ cur＿exp $)=$ known then
begin $p p \leftarrow$ cur＿exp；cur＿exp \leftarrow value（cur＿exp）；cur＿type $\leftarrow k n o w n$ ；
free＿node（pp，value＿node＿size）；
end；
end；
end；
This code is used in section 995.
1007．〈Remove the left operand from its container，negate it，and put it into dependency list p with constant term q 1007 $\rangle \equiv$
$t \leftarrow$ type (l) ；
if $t=$ known then
begin $t \leftarrow$ dependent $; p \leftarrow$ const＿dependency $(-$ value $(l)) ; q \leftarrow p$ ；
end
else if $t=$ independent then
begin $t \leftarrow$ dependent $; p \leftarrow$ single＿dependency $(l) ;$ negate $(v a l u e ~(p)) ; q \leftarrow$ dep＿final；
end
else begin $p \leftarrow$ dep＿list $(l) ; q \leftarrow p$ ；
loop begin negate（value (q) ）；
if $\operatorname{info}(q)=$ null then goto done；
$q \leftarrow \operatorname{link}(q) ;$
end；
done： $\operatorname{link}($ prev＿dep $(l)) \leftarrow \operatorname{link}(q) ; \operatorname{prev_ dep}(\operatorname{link}(q)) \leftarrow \operatorname{prev_ dep}(l) ;$ type $(l) \leftarrow k n o w n ;$ end
This code is used in section 1006.

1008．〈Deal with redundant or inconsistent equation 1008〉 \equiv
begin if $\operatorname{abs}(\operatorname{value}(p))>64$ then $\{$ off by .001 or more $\}$
begin print＿err（＂Inconsistent＿equation＂）；
print（＂ь（off」byப＂）；print＿scaled（value（p））；print＿char（＂）＂）；

end
else if $r=$ null then \langle Exclaim about a redundant equation 623\rangle ；
free＿node（ p ，dep＿node＿size）；
end
This code is used in section 1006.
1009．〈Add the right operand to list p 1009〉 \equiv
if $r=$ null then
if cur＿type $=$ known then
begin $\operatorname{value}(q) \leftarrow \operatorname{value}(q)+$ cur＿exp $;$ goto done1；
end
else begin $t t \leftarrow$ cur＿type；
if $t t=$ independent then $p p \leftarrow$ single＿dependency（cur＿exp）
else $p p \leftarrow$ dep＿list（cur＿exp）；
end
else if type $(r)=$ known then
begin $\operatorname{value}(q) \leftarrow \operatorname{value}(q)+\operatorname{value}(r)$ ；goto done1；
end
else begin $t t \leftarrow$ type (r) ；
if $t t=$ independent then $p p \leftarrow$ single＿dependency (r)
else $p p \leftarrow d e p_{-} \operatorname{list}(r)$ ；
end；
if $t t \neq$ independent then copied \leftarrow false
else begin copied \leftarrow true；tt \leftarrow dependent；
end；
\langle Add dependency list $p p$ of type $t t$ to dependency list p of type $t 1010\rangle$ ；
if copied then flush＿node＿list（pp）；
done1：
This code is used in section 1006.
1010．〈Add dependency list $p p$ of type $t t$ to dependency list p of type $t 1010\rangle \equiv$ watch＿coefs \leftarrow false；
if $t=t t$ then $p \leftarrow p_{-}$plus＿q $(p, p p, t)$
else if $t=$ proto＿dependent then $p \leftarrow p_{\text {＿plus＿f }} q(p$ ，unity，$p p$ ，proto＿dependent，dependent）
else begin $q \leftarrow p$ ；
while $\operatorname{info}(q) \neq$ null do
begin value $(q) \leftarrow$ round＿fraction $(v a l u e ~(q)) ; q \leftarrow \operatorname{link}(q)$ ； end；
$t \leftarrow$ proto＿dependent $; p \leftarrow p_{-}$plus＿$q(p, p p, t) ;$
end；
watch＿coefs \leftarrow true；
This code is used in section 1009.

1011．Our next goal is to process type declarations．For this purpose it＇s convenient to have a procedure that scans a＜declared variable〉 and returns the corresponding token list．After the following procedure has acted，the token after the declared variable will have been scanned，so it will appear in cur＿cmd，cur＿mod， and cur＿sym．
\langle Declare the function called scan＿declared＿variable 1011$\rangle \equiv$
function scan＿declared＿variable：pointer；
label done；
var x ：pointer；；hash address of the variable＇s root \}
h, t ：pointer；\｛ head and tail of the token list to be returned \}
l ：pointer；$\{$ hash address of left bracket \}
begin get＿symbol；$x \leftarrow$ cur＿sym；
if cur＿cmd \neq tag＿token then clear＿symbol（ x, false ）；
$h \leftarrow$ get＿avail $; \operatorname{info}(h) \leftarrow x ; t \leftarrow h ;$
loop begin get＿x＿next；
if cur＿sym $=0$ then goto done；
if cur＿cmd \neq tag＿token then
if cur＿cmd \neq internal＿quantity then
if cur＿cmd $=$ left＿bracket then \langle Descend past a collective subscript 1012〉
else goto done；
$\operatorname{link}(t) \leftarrow$ get＿avail $; t \leftarrow \operatorname{link}(t) ;$ info $(t) \leftarrow$ cur＿sym；
end；
done： if eq＿type (x) mod outer＿tag \neq tag＿token then clear＿symbol（ x, false $)$ ；
if equiv $(x)=$ null then new＿root (x) ；
scan＿declared＿variable $\leftarrow h$ ；
end；
This code is used in section 697.
1012．If the subscript isn＇t collective，we don＇t accept it as part of the declared variable．
\langle Descend past a collective subscript 1012$\rangle \equiv$
begin $l \leftarrow$ cur＿sym；get＿x＿next；
if cur＿cmd \neq right＿bracket then
begin back＿input；cur＿sym $\leftarrow l$ ；cur＿cmd \leftarrow left＿bracket；goto done；
end
else cur＿sym \leftarrow collective＿subscript；
end
This code is used in section 1011.
1013．Type declarations are introduced by the following primitive operations．
\langle Put each of METAFONT＇s primitives into the hash table 192$\rangle+\equiv$
primitive（＂numeric＂，type＿name，numeric＿type）；
primitive（＂string＂，type＿name，string＿type）；
primitive（＂boolean＂，type＿name，boolean＿type）；
primitive（＂path＂，type＿name，path＿type）；
primitive（＂pen＂，type＿name，pen＿type）；
primitive（＂picture＂，type＿name，picture＿type）；
primitive（＂transform＂，type＿name，transform＿type）；
primitive（＂pair＂，type＿name，pair＿type）；
1014．〈Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$ type＿name：print＿type（m）；
1015. Now we are ready to handle type declarations, assuming that a type_name has just been scanned.
\langle Declare action procedures for use by do_statement 995$\rangle+\equiv$
procedure do_type_declaration;
var t : small_number; \{ the type being declared \}
$p:$ pointer; $\{$ token list for a declared variable $\}$
q : pointer; \{ value node for the variable \}
begin if cur_mod \geq transform_type then $t \leftarrow$ cur_mod else $t \leftarrow$ cur_mod + unknown_tag;
repeat $p \leftarrow$ scan_declared_variable; flush_variable (equiv $(\operatorname{info}(p)), \operatorname{link}(p)$, false $)$;
$q \leftarrow$ find_variable (p);
if $q \neq$ null then
begin type $(q) \leftarrow t$; value $(q) \leftarrow$ null;
end

end;
flush_list(p);
if cur_cmd < comma then 〈Flush spurious symbols after the declared variable 1016〉;
until end_of_statement;
end;
1016. \langle Flush spurious symbols after the declared variable 1016$\rangle \equiv$

if cur_cmd $=$ numeric_token then

put_get_error; scanner_status \leftarrow flushing;
repeat get_next; \langle Decrease the string reference count, if the current token is a string 743\rangle;
until cur_cmd \geq comma; $\quad\{$ either end_of_statement or cur_cmd $=$ comma $\}$
scanner_status \leftarrow normal;
end
This code is used in section 1015.
1017. METAFONT's main_control procedure just calls do_statement repeatedly until coming to the end of the user's program. Each execution of do_statement concludes with cur_cmd $=$ semicolon, end_group, or stop.

```
procedure main_control;
    begin repeat do_statement;
        if cur_cmd = end_group then
        begin print_err("Extra\sqcup`endgroup`");
        help2("I`m}\mp@subsup{m}{\llcorner}{\primenot
```



```
        end;
    until cur_cmd = stop;
    end;
```

1018. 〈 Put each of METAFONT's primitives into the hash table 192$\rangle+\equiv$ primitive ("end", stop, 0);
primitive("dump", stop, 1);
1019. 〈Cases of print_cmd_mod for symbolic printing of primitives 212$\rangle+\equiv$ stop: if $m=0$ then $\operatorname{print}(" e n d ")$ else $\operatorname{print}($ "dump");

1020．Commands．Let＇s turn now to statements that are classified as＂commands＂because of their imperative nature．We＇ll begin with simple ones，so that it will be clear how to hook command processing into the do＿statement routine；then we＇ll tackle the tougher commands．
Here＇s one of the simplest：
\langle Cases of do＿statement that invoke particular commands 1020$\rangle \equiv$
random＿seed：do＿random＿seed；
See also sections 1023，1026，1030，1033，1039，1058，1069，1076，1081，1100，and 1175.
This code is used in section 992.
1021．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿random＿seed；
begin get＿x＿next；
if cur＿cmd \neq assignment then

back＿error；
end；
get＿x＿next；scan＿expression；
if cur＿type \neq known then

put＿get＿flush＿error（0）；
end
else \langle Initialize the random seed to cur＿exp 1022〉；
end；
1022．〈Initialize the random seed to cur＿exp 1022$\rangle \equiv$
begin init＿randoms（cur＿exp）；
if selector \geq log＿only then
begin old＿setting \leftarrow selector；selector \leftarrow log＿only；print＿nl（＂\｛randomseed：$=$＂）；
print＿scaled（cur＿exp）；print＿char（＂\}"); print_nl(""); selector \leftarrow old＿setting；
end；
end
This code is used in section 1021.
1023．And here＇s another simple one（somewhat different in flavor）：
\langle Cases of do＿statement that invoke particular commands 1020 $\rangle+\equiv$
mode＿command：begin print＿ln；interaction \leftarrow cur＿mod；
〈Initialize the print selector based on interaction 70〉；
if log＿opened then selector \leftarrow selector +2 ；
get＿x＿next；
end；
1024．〈Put each of METAFONT＇s primitives into the hash table 192〉＋三
primitive（＂batchmode＂，mode＿command，batch＿mode）；
primitive（＂nonstopmode＂，mode＿command，nonstop＿mode）；
primitive（＂scrollmode＂，mode＿command，scroll＿mode）；
primitive（＂errorstopmode＂，mode＿command，error＿stop＿mode）；

1025．〈 Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$ mode＿command：case m of
batch＿mode：print（＂batchmode＂）；
nonstop＿mode：print（＂nonstopmode＂）；
scroll＿mode：print（＂scrollmode＂）；
othercases print（＂errorstopmode＂）
endcases；
1026．The＇inner＇and＇outer＇commands are only slightly harder．
\langle Cases of do＿statement that invoke particular commands 1020〉＋三 protection＿command：do＿protection；

1027．〈Put each of METAFONT＇s primitives into the hash table 192〉＋三 primitive（＂inner＂，protection＿command，0）；
primitive（＂outer＂，protection＿command，1）；
1028．〈Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$ protection＿command：if $m=0$ then $\operatorname{print}(" i n n e r ")$ else print（＂outer＂）；

1029．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿protection；
var $m: 0 \ldots 1 ; \quad\{0$ to unprotect， 1 to protect $\}$
t ：halfword；\｛ the eq＿type before we change it \}
begin $m \leftarrow$ cur＿mod；
repeat get＿symbol；$t \leftarrow$ eq＿type $($ cur＿sym $)$ ；
if $m=0$ then
begin if $t \geq$ outer＿tag then eq＿type $($ cur＿sym $) \leftarrow t$－outer＿tag； end
else if $t<$ outer＿tag then eq＿type $($ cur＿sym $) \leftarrow t+$ outer＿tag；
get＿x＿next；
until cur＿cmd \neq comma；
end；
1030．METAFONT never defines the tokens＇（＇and＇）＇to be primitives，but plain METAFONT begins with the declaration＇delimiters（）＇．Such a declaration assigns the command code left＿delimiter to＇（＇and right＿delimiter to＇）＇；the equiv of each delimiter is the hash address of its mate．
\langle Cases of do＿statement that invoke particular commands 1020〉＋三
delimiters：def＿delims；

1031．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure def＿delims；
var l＿delim，r＿delim：pointer；\｛ the new delimiter pair \}
begin get＿clear＿symbol；l＿delim \leftarrow cur＿sym；
get＿clear＿symbol；r＿delim \leftarrow cur＿sym；
eq＿type $\left(l_{-} d e l i m\right) \leftarrow$ left＿delimiter $;$ equiv $\left(l_{-} d e l i m\right) \leftarrow r_{-} d e l i m ;$
eq＿type $\left(r_{-}\right.$delim $) \leftarrow$ right＿delimiter $;$ equiv $\left(r_{-}\right.$delim $) \leftarrow l_{-}$delim $;$
get＿x＿next；
end；

1032．Here is a procedure that is called when METAFONT has reached a point where some right delimiter is mandatory．
\langle Declare the procedure called check＿delimiter 1032〉三
procedure check＿delimiter（l＿delim，r＿delim ：pointer）；
label exit；
begin if cur＿cmd $=$ right＿delimiter then
if cur＿mod $=l_{-}$delim then return；
if cur＿sym $\neq r_{-}$delim then
begin missing＿err（text（r＿delim））；

end
else begin print＿err（＂The token $_{\sqcup}{ }^{-}$＂）；slow＿print $\left(t e x t\left(r_{-} d e l i m\right)\right)$ ；

help3（＂Strange： This $_{\sqcup}$ token $_{\sqcup}$ has $_{\sqcup}$ lost $_{\sqcup}$ its $_{\sqcup}$ former $_{\sqcup}$ meaning！＂）

end；
exit：end；
This code is used in section 697.

1033．The next four commands save or change the values associated with tokens．
\langle Cases of do＿statement that invoke particular commands 1020〉＋三
save＿command：repeat get＿symbol；save＿variable（cur＿sym）；get＿x＿next；
until cur＿cmd \neq comma；
interim＿command：do＿interim；
let＿command：do＿let；
new＿internal：do＿new＿internal；
1034．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$ procedure do＿statement；forward；
procedure do＿interim；
begin get＿x＿next；
if cur＿cmd \neq internal＿quantity then
begin print＿err（＂The」token ${ }_{\sqcup}$＂）；
if cur＿sym $=0$ then $\operatorname{print}($（ $(\%$ CAPSULE）＂）
else slow＿print（text（cur＿sym））；

 end
else begin save＿internal（cur＿mod）；back＿input；
end；
do＿statement；
end；
1035. The following procedure is careful not to undefine the left-hand symbol too soon, lest commands like 'let $\mathrm{x}=\mathrm{x}$ ' have a surprising effect.
\langle Declare action procedures for use by do_statement 995$\rangle+\equiv$
procedure do_let;
var $l:$ pointer; $\quad\{$ hash location of the left-hand symbol $\}$
begin get_symbol; $l \leftarrow$ cur_sym; get_x_next;
if cur_cmd \neq equals then
if cur_cmd \neq assignment then

end;
get_symbol;
case cur_cmd of
defined_macro, secondary_primary_macro, tertiary_secondary_macro, expression_tertiary_macro: add_mac_ref (cur_mod);
othercases do_nothing
endcases;
clear_symbol $(l$, false $)$; eq_type $(l) \leftarrow$ cur_cmd;
if cur_cmd $=$ tag_token then equiv $(l) \leftarrow$ null
else equiv $(l) \leftarrow$ cur_mod;
get_x_next;
end;
1036. 〈Declare action procedures for use by do_statement 995$\rangle+\equiv$
procedure do_new_internal;

get_clear_symbol; incr $($ int_ptr $) ;$ eq_type $($ cur_sym $) \leftarrow$ internal_quantity; equiv $($ cur_sym $) \leftarrow$ int_ptr;
int_name $[$ int_ptr $] \leftarrow$ text $($ cur_sym $) ;$ internal $[$ int_ptr $] \leftarrow 0 ;$ get_x_next;
until cur_cmd \neq comma;
end;
1037. The various 'show' commands are distinguished by modifier fields in the usual way.
define show_token_code $=0 \quad$ \{show the meaning of a single token \}
define show_stats_code $=1 \quad$ \{show current memory and string usage \}
define show_code $=2 \quad$ \{show a list of expressions \}
define show_var_code $=3 \quad$ \{show a variable and its descendents $\}$
define show_dependencies_code $=4$ \{show dependent variables in terms of independents $\}$
\langle Put each of METAFONT's primitives into the hash table 192 $\rangle+\equiv$
primitive("showtoken", show_command, show_token_code);
primitive("showstats", show_command, show_stats_code);
primitive("show", show_command, show_code);
primitive("showvariable", show_command, show_var_code);
primitive("showdependencies", show_command, show_dependencies_code);

1038．〈Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$
show＿command：case m of
show＿token＿code：print（＂showtoken＂）；
show＿stats＿code：print（＂showstats＂）；
show＿code：print（＂show＂）；
show＿var＿code：print（＂showvariable＂）；
othercases print（＂showdependencies＂）
endcases；
1039．〈Cases of do＿statement that invoke particular commands 1020$\rangle+\equiv$ show＿command：do＿show＿whatever；

1040．The value of cur＿mod controls the verbosity in the print＿exp routine：If it＇s show＿code，complicated structures are abbreviated，otherwise they aren＇t．
\langle Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿show；
begin repeat get＿x＿next；scan＿expression；print＿nl（＂＞＞ப＂）；print＿exp（null，2）；flush＿cur＿exp（0）；
until cur＿cmd \neq comma；
end；
1041．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure disp＿token；
begin print＿nl（＂＞ப＂）；
if cur＿sym $=0$ then 〈Show a numeric or string or capsule token 1042〉
else begin slow＿print（text（cur＿sym））；print＿char（＂＝＂）；
if eq＿type（cur＿sym）\geq outer＿tag then print（＂（outer） ＂$^{\prime}$ ）；
print＿cmd＿mod（cur＿cmd，cur＿mod）；
if cur＿cmd $=$ defined＿macro then
begin print＿ln；show＿macro（cur＿mod，null，100000）；
end；\｛ this avoids recursion between show＿macro and print＿cmd＿mod \}
end；
end；
1042．〈Show a numeric or string or capsule token 1042$\rangle \equiv$
begin if cur＿cmd $=$ numeric＿token then print＿scaled（cur＿mod）
else if cur＿cmd $=$ capsule＿token then
begin g＿pointer \leftarrow cur＿mod；print＿capsule； end
else begin print＿char（＂＂＂＂）；slow＿print（cur＿mod）；print＿char（＂＂＂＂）；delete＿str＿ref（cur＿mod）； end；
end
This code is used in section 1041.

1043．The following cases of print＿cmd＿mod might arise in connection with disp＿token，although they don＇t necessarily correspond to primitive tokens．
\langle Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$
left＿delimiter，right＿delimiter：begin if $c=$ left＿delimiter then print（＂lef＂）
else $\operatorname{print}($＂righ＂）；
$\operatorname{print}\left(" t_{\llcorner }\right.$delimiter $_{\sqcup}$ that $_{\llcorner }$matches $_{\sqcup}$＂）；slow＿print $(t e x t(m))$ ；
end；
tag＿token：if $m=$ null then $\operatorname{print}(" t a g ")$ else print（＂variable＂）；
defined＿macro：print（＂macro：＂）；
secondary＿primary＿macro，tertiary＿secondary＿macro，expression＿tertiary＿macro：begin print＿cmd＿mod（macro＿def，c）；print（＂${ }^{\text {d}}$ 」macro：＂）；print＿ln；
show＿token＿list（link（link（m）），null，1000，0）；
end；
repeat＿loop：print（＂［repeat」the பloop］＂）；
internal＿quantity：slow＿print（int＿name［m］）；
1044．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿show＿token；
begin repeat get＿next；disp＿token；get＿x＿next；
until cur＿cmd \neq comma；
end；
1045．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿show＿stats；
begin print＿nl（＂Memory u usage \sqcup＂）；
stat print＿int（var＿used）；print＿char（＂\＆＂）；print＿int（dyn＿used）；
if false then

tats

print（＂unknown＂）；print（＂ь（＂）；print＿int（hi＿mem＿min－lo＿mem＿max－1）；
print（＂பstill＿untouched）＂）；print＿ln；print＿nl（＂String」usage ${ }_{\bullet}$＂）；print＿int（str＿ptr－init＿str＿ptr）；
print＿char（＂\＆＂）；print＿int（pool＿ptr－init＿pool＿ptr）；print（＂ப（＂）；print＿int（max＿strings－max＿str＿ptr）；
print＿char（＂\＆＂）；print＿int（pool＿size－max＿pool＿ptr）；print（＂பstill＿untouched）＂）；print＿ln；get＿x＿next；
end；
1046．Here＇s a recursive procedure that gives an abbreviated account of a variable，for use by do＿show＿var．
\langle Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure disp＿var（ p ：pointer）；
var q ：pointer；\｛ traverses attributes and subscripts \}
n： 0 ．．max＿print＿line；\｛amount of macro text to show \}
begin if type $(p)=$ structured then \langle Descend the structure 1047〉
else if type $(p) \geq$ unsuffixed＿macro then 〈Display a variable macro 1048〉
else if type $(p) \neq$ undefined then
begin print＿nl（＂＂）；print＿variable＿name（p）；print＿char（＂＝＂）；print＿exp（p，0）；
end；
end；

1047．〈Descend the structure 1047$\rangle \equiv$
begin $q \leftarrow$ attr＿head (p) ；
repeat disp＿var $(q) ; q \leftarrow \operatorname{link}(q)$ ；
until $q=$ end＿attr；
$q \leftarrow$ subscr＿head (p) ；
while name＿type $(q)=$ subscr do
begin disp＿var $(q) ; q \leftarrow \operatorname{link}(q)$ ；
end；
end
This code is used in section 1046.
1048．〈Display a variable macro 1048〉三
begin print＿nl（＂＂）；print＿variable＿name（p）；
if type $(p)>$ unsuffixed＿macro then $\operatorname{print}($＂＠\＃＂）；\｛ suffixed＿macro $\}$
print（＂＝macro：＂）；
if file＿offset \geq max＿print＿line -20 then $n \leftarrow 5$
else $n \leftarrow$ max＿print＿line - file＿offset -15 ；
show＿macro（value (p) ，null,$n)$ ；
end
This code is used in section 1046.
1049．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$ procedure do＿show＿var；
label done；
begin repeat get＿next；
if cur＿sym >0 then
if cur＿sym $\leq h a s h _e n d$ then if cur＿cmd $=$ tag＿token then
if cur＿mod \neq null then
begin disp＿var（cur＿mod）；goto done； end；
disp＿token；
done：get＿x＿next；
until cur＿cmd \neq comma；
end；

1050．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿show＿dependencies；
var p ：pointer；\｛link that runs through all dependencies \}
begin $p \leftarrow$ link（dep＿head）；
while $p \neq$ dep＿head do
begin if interesting (p) then
begin print＿nl（＂＂）；print＿variable＿name（p）；
if type $(p)=$ dependent then print＿char $("=")$
else $\operatorname{print}(" \sqcup=\sqcup$＂）；$\quad\{$ extra spaces imply proto－dependency $\}$
print＿dependency $(\operatorname{dep}$＿list (p) ，type $(p))$ ；
end；
$p \leftarrow$ dep＿list (p) ；
while $\operatorname{info}(p) \neq$ null do $p \leftarrow \operatorname{link}(p)$ ；
$p \leftarrow \operatorname{link}(p)$ ；
end；
get＿x＿next；
end；
1051．Finally we are ready for the procedure that governs all of the show commands．
\langle Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿show＿whatever；
begin if interaction＝error＿stop＿mode then wake＿up＿terminal；
case cur＿mod of
show＿token＿code：do＿show＿token；
show＿stats＿code：do＿show＿stats；
show＿code：do＿show；
show＿var＿code：do＿show＿var；
show＿dependencies＿code：do＿show＿dependencies；
end；\｛ there are no other cases \}
if internal［showstopping］>0 then
begin print＿err（＂OK＂）；
if interaction＜error＿stop＿mode then
begin help0；decr（error＿count）； end

if cur＿cmd $=$ semicolon then error else put＿get＿error；
end；
end；
1052．The＇addto＇command needs the following additional primitives：
define d rop＿code $=0 \quad\{$ command modifier for＇dropping＇$\}$
define keep＿code $=1 \quad\{$ command modifier for＇keeping＇$\}$
\langle Put each of METAFONT＇s primitives into the hash table 192〉＋三
primitive（＂contour＂，thing＿to＿add，contour＿code）；
primitive（＂doublepath＂，thing＿to＿add，double＿path＿code）；
primitive（＂also＂，thing＿to＿add，also＿code）；
primitive（＂withpen＂，with＿option，pen＿type）；
primitive（＂withweight＂，with＿option，known）；
primitive（＂dropping＂，cull＿op，drop＿code）；
primitive（＂keeping＂，cull＿op，keep＿code）；

1053．〈Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$
thing＿to＿add：if $m=$ contour＿code then print（＂contour＂）
else if $m=$ double＿path＿code then $\operatorname{print}($＂doublepath＂）
else print（＂also＂）；
with＿option：if $m=$ pen＿type then print（＂withpen＂）
else print（＂withweight＂）；
cull＿op：if $m=$ drop＿code then print（＂dropping＂）
else print（＂keeping＂）；
1054．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
function scan＿with：boolean；
var t ：small＿number；\｛known or pen＿type \} result：boolean；\｛ the value to return \}
begin $t \leftarrow$ cur＿mod；cur＿type \leftarrow vacuous；get＿x＿next；scan＿expression；result \leftarrow false；
if cur＿type $\neq t$ then 〈Complain about improper type 1055〉
else if cur＿type $=$ pen＿type then result \leftarrow true else \langle Check the tentative weight 1056\rangle ；
scan＿with \leftarrow result；
end；
1055．〈Complain about improper type 1055$\rangle \equiv$
begin exp＿err（＂Improper＿type＂）；

if $t=$ pen＿type then help＿line $[1] \leftarrow$＂Next $_{\lrcorner}$time $_{\lrcorner}$say $_{\sqcup}{ }^{\prime}$ withpen $_{\lrcorner}<$known $_{\lrcorner}$pen $_{\lrcorner}$expression＞${ }^{\prime}$ ；＂；
put＿get＿flush＿error（0）；
end
This code is used in section 1054.
1056．〈Check the tentative weight 1056$\rangle \equiv$
begin cur＿exp \leftarrow round＿unscaled（cur＿exp）；
if $($ abs $($ cur＿exp $)<4) \wedge($ cur＿exp $\neq 0)$ then result \leftarrow true

 end；
end
This code is used in section 1054.

1057．One of the things we need to do when we＇ve parsed an addto or similar command is set cur＿edges to the header of a supposed picture variable，given a token list for that variable．
\langle Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure find＿edges＿var（ t ：pointer $)$ ；
var p ：pointer；
begin $p \leftarrow$ find＿variable (t) ；cur＿edges \leftarrow null；
if $p=$ null then
begin obliterated（ t ）；put＿get＿error；
end
else if type $(p) \neq$ picture＿type then

print＿type（type（p））；print＿char（＂）＂）；

end
else cur＿edges $\leftarrow \operatorname{value}(p)$ ；
flush＿node＿list (t) ；
end；
1058．〈Cases of do＿statement that invoke particular commands 1020$\rangle+\equiv$ add＿to＿command：do＿add＿to；

1059．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$ procedure do＿add＿to；
label done，not＿found；
var lhs，rhs：pointer；\｛ variable on left，path on right \}
w ：integer；\｛tentative weight \}
$p:$ pointer ；\quad \｛ list manipulation register \}
q ：pointer；\｛beginning of second half of doubled path \}
add＿to＿type：double＿path＿code ．．also＿code；\｛ modifier of addto \}
begin get＿x＿next；var＿flag \leftarrow thing＿to＿add；scan＿primary；
if cur＿type \neq token＿list then 〈Abandon edges command because there＇s no variable 1060〉
else begin lhs \leftarrow cur＿exp；add＿to＿type \leftarrow cur＿mod；
cur＿type \leftarrow vacuous；get＿x＿next；scan＿expression；
if add＿to＿type $=$ also＿code then \langle Augment some edges by others 1061〉
else \langle Get ready to fill a contour，and fill it 1062\rangle ；
end；
end；
1060．〈Abandon edges command because there＇s no variable 1060$\rangle \equiv$
begin exp＿err（＂Not \mathbf{Q}_{\sqcup} suitable $_{\sqcup}$ variable＂）；

end
This code is used in sections 1059，1070，1071，and 1074.
1061. 〈Augment some edges by others 1061$\rangle \equiv$
begin find_edges_var (lhs);
if cur_edges $=$ null then flush_cur_exp (0)
else if cur_type \neq picture_type then
begin exp_err("Improper ${ }_{\sqcup}$-addto-");
help2("This $\operatorname{expression}_{\sqcup}$ should $_{\sqcup}$ have $_{\sqcup}$ specified $_{\sqcup} a_{\sqcup}$ known $_{\sqcup}$ picture.")

end
else begin merge_edges (cur_exp); flush_cur_exp(0); end;
end
This code is used in section 1059.
1062. \langle Get ready to fill a contour, and fill it 1062$\rangle \equiv$
begin if cur_type $=$ pair_type then pair_to_path;
if cur_type \neq path_type then
begin exp_err $^{\prime}\left(\right.$ Improper ${ }_{\sqcup}$ addto $^{-1 ") ; ~}$
help2("This $\operatorname{expression}_{\sqcup}$ should hhave $_{\sqcup}$ been $_{\sqcup} a_{\sqcup}$ known $_{\sqcup}$ path.")

end
else begin $r h s \leftarrow$ cur_exp $; w \leftarrow 1$; cur_pen \leftarrow null_pen;
while cur_cmd $=$ with_option do
if scan_with then
if cur_type $=$ known then $w \leftarrow$ cur_exp
else 〈Change the tentative pen 1063\rangle;
\langle Complete the contour filling operation 1064 \rangle;
delete_pen_ref (cur_pen);
end;
end
This code is used in section 1059.
1063. We could say 'add_pen_ref (cur_pen); flush_cur_exp (0)' after changing cur_pen here. But that would have no effect, because the current expression will not be flushed. Thus we save a bit of code (at the risk of being too tricky).
\langle Change the tentative pen 1063$\rangle \equiv$
begin delete_pen_ref (cur_pen); cur_pen \leftarrow cur_exp;
end
This code is used in section 1062.

1064．〈 Complete the contour filling operation 1064$\rangle \equiv$
find＿edges＿var（lhs）；
if cur＿edges $=$ null then toss＿knot＿list（rhs）
else begin lhs \leftarrow null；cur＿path＿type \leftarrow add＿to＿type；
if left＿type（rhs）$=$ endpoint then
if cur＿path＿type $=$ double＿path＿code then \langle Double the path 1065〉
else 〈Complain about non－cycle and goto not＿found 1067〉
else if cur＿path＿type $=$ double＿path＿code then $l h s \leftarrow h t a p _y p o c(r h s)$ ；
cur＿wt $\leftarrow w ; r h s \leftarrow$ make＿spec $(r h s$, max＿offset $($ cur＿pen $)$ ，internal［tracing＿specs］$)$ ；
\langle Check the turning number 1068〉；
if max＿offset（cur＿pen）$=0$ then fill＿spec（rhs）
else fill＿envelope（rhs）；
if lhs \neq null then
begin rev＿turns \leftarrow true；lhs \leftarrow make＿spec（lhs，max＿offset（cur＿pen），internal［tracing＿specs］）；
rev＿turns \leftarrow false；
if max＿offset（cur＿pen）$=0$ then fill＿spec（lhs）
else fill＿envelope（lhs）；
end；
not＿found：end
This code is used in section 1062.

1065．〈Double the path 1065$\rangle \equiv$
if $\operatorname{link}(r h s)=r h s$ then \langle Make a trivial one－point path cycle 1066\rangle
else begin $p \leftarrow h t a p_{-} y p o c(r h s) ; q \leftarrow \operatorname{link}(p)$ ；
right＿$x($ path＿tail $) \leftarrow$ right＿$x(q) ;$ right＿$y($ path＿tail $) \leftarrow$ right＿$y(q) ;$ right＿type $($ path＿tail $) \leftarrow$ right＿type $(q) ;$
$\operatorname{link}($ path＿tail $) \leftarrow \operatorname{link}(q) ;$ free＿node $(q$, knot＿node＿size $)$ ；
right＿$x(p) \leftarrow$ right＿$x($ rhs $) ;$ right＿$y(p) \leftarrow$ right＿$y($ rhs $) ;$ right＿type $(p) \leftarrow$ right＿type $(r h s) ;$
$\operatorname{link}(p) \leftarrow \operatorname{link}(r h s) ;$ free＿node（rhs，knot＿node＿size）；
$r h s \leftarrow p ;$
end
This code is used in section 1064.
1066．〈Make a trivial one－point path cycle 1066$\rangle \equiv$
begin right＿x $(r h s) \leftarrow x_{-}$coord $(r h s) ;$ right＿y $(r h s) \leftarrow y_{-}$coord $(r h s) ;$ left＿x $(r h s) \leftarrow x_{-}$coord $(r h s)$ ；
left＿y $(r h s) \leftarrow y_{-}$coord $(r h s) ;$ left＿type $(r h s) \leftarrow$ explicit $;$ right＿type $(r h s) \leftarrow$ explicit $;$
end
This code is used in section 1065.
1067．〈Complain about non－cycle and goto not＿found 1067〉 \equiv
begin print＿err（＂Not $\left.\mathbf{a}_{\sqcup} c y c l e "\right)$ ；

 end

This code is used in section 1064.

1068．〈Check the turning number 1068$\rangle \equiv$
if turning＿number ≤ 0 then
if cur＿path＿type \neq double＿path＿code then
if internal［turning＿check］>0 then
if $($ turning＿number $<0) \wedge($ link $($ cur＿pen $)=$ null $)$ then negate $($ cur＿wt $)$
else begin if turning＿number $=0$ then
if $($ internal $[$ turning＿check $] \leq$ unity $) \wedge(\operatorname{link}($ cur＿pen $)=$ null $)$ then goto done
else print＿strange（＂Strange $\operatorname{bpath}_{\sqcup}\left(\right.$ turning $_{\sqcup}$ number $_{\sqcup}$ is $\left._{\sqcup} z e r o\right)$＂）
else print＿strange（＂Backwards $\operatorname{path}_{\sqcup}$（turning number $_{\sqcup} i_{\sqcup}{ }_{\sqcup}$ negative）＂）；
help3（＂The $\operatorname{path}_{\sqcup}$ doesn $^{-} \mathrm{t}_{\sqcup}$ have $_{\sqcup} \mathrm{a}_{\sqcup}$ counterclockwise $_{\sqcup}$ orientation，＂）
（＂soபI $\left.{ }^{-1} l_{\sqcup} p r o b a b l y \sqcup h a v e_{\sqcup} t r o u b l e_{\sqcup} d r a w i n g \sqcup i t . "\right)$
 end；
done：
This code is used in section 1064.
1069．〈 Cases of do＿statement that invoke particular commands 1020$\rangle+\equiv$
ship＿out＿command：do＿ship＿out；
display＿command：do＿display；
open＿window：do＿open＿window；
cull＿command：do＿cull；
1070．〈Declare action procedures for use by do＿statement 995〉＋三
〈Declare the function called tfm＿check 1098〉
procedure do＿ship＿out；
label exit；
var c ：integer；\｛ the character code \}
begin get＿x＿next；var＿flag \leftarrow semicolon；scan＿expression；
if cur＿type \neq token＿list then
if cur＿type $=$ picture＿type then cur＿edges \leftarrow cur＿exp
else begin 〈Abandon edges command because there＇s no variable 1060〉；
return；
end
else begin find＿edges＿var $($ cur＿exp $)$ ；cur＿type $\leftarrow v a c u o u s ;$
end；
if cur＿edges \neq null then
begin $c \leftarrow$ round＿unscaled（internal［char＿code］）mod 256 ；
if $c<0$ then $c \leftarrow c+256$ ；
〈Store the width information for character code c 1099〉；
if internal［proofing］≥ 0 then ship＿out (c) ；
end；
flush＿cur＿exp（0）；
exit：end；

1071．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿display；
label not＿found，common＿ending，exit；
var e ：pointer；\｛ token list for a picture variable \}
begin get＿x＿next；var＿flag \leftarrow in＿window；scan＿primary；
if cur＿type \neq token＿list then 〈Abandon edges command because there＇s no variable 1060〉
else begin $e \leftarrow$ cur＿exp；cur＿type \leftarrow vacuous；get＿x＿next；scan＿expression；
if cur＿type $\neq k$ nown then goto common＿ending；
cur＿exp \leftarrow round＿unscaled（cur＿exp）；
if cur＿exp <0 then goto not＿found；
if cur＿exp >15 then goto not＿found；
if \neg window＿open $[$ cur＿exp $]$ then goto not＿found；
find＿edges＿var（e）；
if cur＿edges \neq null then disp＿edges（cur＿exp）；
return；
not＿found：cur＿exp \leftarrow cur＿exp $*$ unity；
common＿ending：exp＿err（＂Bad」window \llcorner number＂）；

flush＿token＿list（e）；
end；
exit：end；
1072．The only thing difficult about＇openwindow＇is that the syntax allows the user to go astray in many ways．The following subroutine helps keep the necessary program reasonably short and sweet．
\langle Declare action procedures for use by do＿statement 995$\rangle+\equiv$
function get＿pair（ c ：command＿code）：boolean；
var $p:$ pointer；$\quad\{$ a pair of values that are known（we hope）$\}$
b ：boolean；\｛ did we find such a pair？\}
begin if cur＿cmd $\neq c$ then get＿pair \leftarrow false
else begin get＿x＿next；scan＿expression；
if nice＿pair（cur＿exp，cur＿type）then
begin $p \leftarrow$ value $($ cur＿exp $)$ ；cur＿$x \leftarrow$ value $\left(x_{-} p a r t _l o c(p)\right)$ ；cur＿y $\leftarrow v a l u e\left(y_{-} p a r t _l o c(p)\right) ; b \leftarrow$ true ； end
else $b \leftarrow$ false；
flush＿cur＿exp (0) ；get＿pair $\leftarrow b$ ；
end；
end；

1073．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿open＿window；
label not＿found，exit；
var k ：integer；\｛ the window number in question \} $r 0, c 0, r 1, c 1:$ scaled；\｛ window coordinates \}
begin get＿x＿next；scan＿expression；
if cur＿type \neq known then goto not＿found；
$k \leftarrow$ round＿unscaled（cur＿exp）；
if $k<0$ then goto not＿found；
if $k>15$ then goto not＿found；
if \neg get＿pair（from＿token）then goto not＿found；
$r 0 \leftarrow$ cur＿x $; c 0 \leftarrow$ cur＿y；
if \neg get＿pair（to＿token）then goto not＿found；
$r 1 \leftarrow$ cur＿x；c1 \leftarrow cur＿y；
if \neg get＿pair（at＿token）then goto not＿found；
open＿a＿window（k，r0，c0，r1，c1，cur＿x，cur＿y）；return；
not＿found：print＿err（＂Improper \sqcup_{\sqcup} openwindow＂$)$ ；

exit：end；
1074．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿cull；
label not＿found，exit；
var e ：pointer；\｛ token list for a picture variable \}
keeping：drop＿code ．．keep＿code；\｛ modifier of cull＿op \}
$w, w_{_} i n, w_{-}$out：integer；\｛culling weights \}
begin $w \leftarrow 1$ ；get＿x＿next；var＿flag \leftarrow cull＿op；scan＿primary；
if cur＿type \neq token＿list then 〈Abandon edges command because there＇s no variable 1060〉
else begin $e \leftarrow$ cur＿exp；cur＿type \leftarrow vacuous；keeping \leftarrow cur＿mod；
if \neg get＿pair（cull＿op）then goto not＿found；
while $($ cur＿cmd $=$ with＿option $) \wedge($ cur＿mod $=$ known $)$ do if scan＿with then $w \leftarrow$ cur＿exp；
〈Set up the culling weights，or goto not＿found if the thresholds are bad 1075〉；
find＿edges＿var（e）；
if cur＿edges \neq null then
cull＿edges（floor＿unscaled（cur＿x＋unity－1），floor＿unscaled（cur＿y），w＿out，w＿in）；
return；
not＿found：print＿err（＂Bad」culling」amounts＂）；
 end；
exit：end；

1075．〈Set up the culling weights，or goto not＿found if the thresholds are bad 1075$\rangle \equiv$
if cur＿x $>$ cur＿y then goto not＿found；
if keeping $=$ drop＿code then
begin if $($ cur＿x $>0) \vee($ cur＿y $<0)$ then goto not＿found；
w_{-}out $\leftarrow w ; w_{-} i n \leftarrow 0$ ；
end
else begin if $($ cur＿s $\leq 0) \wedge\left(c u r_{-} y \geq 0\right)$ then goto not＿found；
$w_{\text {＿out }} \leftarrow 0 ; w_{-}$in $\leftarrow w$ ；
end
This code is used in section 1074.
1076．The everyjob command simply assigns a nonzero value to the global variable start＿sym．
\langle Cases of do＿statement that invoke particular commands 1020$\rangle+\equiv$
every＿job＿command：begin get＿symbol；start＿sym \leftarrow cur＿sym；get＿x＿next；
end；
1077．〈Global variables 13$\rangle+\equiv$
start＿sym：halfword；\｛ a symbolic token to insert at beginning of job \}
1078．〈Set initial values of key variables 21$\rangle+\equiv$
start＿sym $\leftarrow 0$ ；
1079．Finally，we have only the＂message＂commands remaining．
define message＿code $=0$
define err＿message＿code $=1$
define err＿help＿code $=2$
\langle Put each of METAFONT＇s primitives into the hash table 192 $\rangle+\equiv$ primitive（＂message＂，message＿command，message＿code）；
primitive（＂errmessage＂，message＿command，err＿message＿code）；
primitive（＂errhelp＂，message＿command，err＿help＿code）；
1080．〈Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$ message＿command：if $m<$ err＿message＿code then $\operatorname{print}($（＂message＂）
else if $m=$ err＿message＿code then print（＂errmessage＂）
else print（＂errhelp＂）；
1081．〈Cases of do＿statement that invoke particular commands 1020$\rangle+\equiv$ message＿command：do＿message；

1082．〈Declare action procedures for use by do＿statement 995〉＋三
procedure do＿message；
var m：message＿code ．．err＿help＿code；\｛ the type of message \}
begin $m \leftarrow$ cur＿mod；get＿x＿next；scan＿expression；
if cur＿type \neq string＿type then

put＿get＿error；
end
else case m of
message＿code：begin print＿nl（＂＂）；slow＿print（cur＿exp）；
end；
err＿message＿code：〈Print string cur＿exp as an error message 1086〉；
err＿help＿code：〈Save string cur＿exp as the err＿help 1083〉；
end；\｛ there are no other cases \}
flush＿cur＿exp（0）；
end；
1083．The global variable err＿help is zero when the user has most recently given an empty help string，or if none has ever been given．
\langle Save string cur＿exp as the err＿help 1083〉 \equiv
begin if err＿help $\neq 0$ then delete＿str＿ref（err＿help）；
if length $($ cur＿exp $)=0$ then err＿help $\leftarrow 0$
else begin err＿help \leftarrow cur＿exp；add＿str＿ref（err＿help）；
end；
end
This code is used in section 1082.

1084．If errmessage occurs often in scroll＿mode，without user－defined errhelp，we don＇t want to give a long help message each time．So we give a verbose explanation only once．
\langle Global variables 13$\rangle+\equiv$
long＿help＿seen：boolean；\｛ has the long errmessage help been used？\}
1085．〈Set initial values of key variables 21$\rangle+\equiv$ long＿help＿seen \leftarrow false；

1086．〈Print string cur＿exp as an error message 1086$\rangle \equiv$
begin print＿err（＂＂）；slow＿print（cur＿exp）；
if err＿help $\neq 0$ then use＿err＿help \leftarrow true
else if long＿help＿seen then help1（＂（That ${ }_{\sqcup}$ was $_{\sqcup}$ another $_{\sqcup}{ }^{\text {errmessage｀．）＂）}}$
else begin if interaction＜error＿stop＿mode then long＿help＿seen \leftarrow true；

end；
put＿get＿error；use＿err＿help \leftarrow false；
end
This code is used in section 1082.
1087. Font metric data. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ gets its knowledge about fonts from font metric files, also called TFM files; the ' T ' in 'TFM' stands for $T_{E} X$, but other programs know about them too. One of METAFONT's duties is to write TFM files so that the user's fonts can readily be applied to typesetting.
The information in a TFM file appears in a sequence of 8 -bit bytes. Since the number of bytes is always a multiple of 4 , we could also regard the file as a sequence of 32 -bit words, but METAFONT uses the byte interpretation. The format of TFM files was designed by Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds of information in a compact but useful form.
\langle Global variables 13$\rangle+\equiv$
tfm_file: byte_file; \{ the font metric output goes here \}
metric_file_name: str_number; \{full name of the font metric file \}
1088. The first 24 bytes (6 words) of a TFM file contain twelve 16 -bit integers that give the lengths of the various subsequent portions of the file. These twelve integers are, in order:

$$
\begin{aligned}
l f & =\text { length of the entire file, in words; } \\
l h & =\text { length of the header data, in words; } \\
b c & =\text { smallest character code in the font; } \\
e c & =\text { largest character code in the font; } \\
n w & =\text { number of words in the width table; } \\
n h & =\text { number of words in the height table; } \\
n d & =\text { number of words in the depth table; } \\
n i & =\text { number of words in the italic correction table; } \\
n l & =\text { number of words in the lig } / \text { kern table; } \\
n k & =\text { number of words in the kern table; } \\
n e & =\text { number of words in the extensible character table; } \\
n p & =\text { number of font parameter words. }
\end{aligned}
$$

They are all nonnegative and less than 2^{15}. We must have $b c-1 \leq e c \leq 255$, $n e \leq 256$, and

$$
l f=6+l h+(e c-b c+1)+n w+n h+n d+n i+n l+n k+n e+n p .
$$

Note that a font may contain as many as 256 characters (if $b c=0$ and $e c=255$), and as few as 0 characters (if $b c=e c+1$).

Incidentally, when two or more 8 -bit bytes are combined to form an integer of 16 or more bits, the most significant bytes appear first in the file. This is called BigEndian order.
1089. The rest of the TFM file may be regarded as a sequence of ten data arrays having the informal specification

$$
\begin{aligned}
& \text { header : array }[0 \ldots l h-1] \text { of stuff } \\
& \text { char_info: array }[b c \ldots e c] \text { of } \text { char_info_word } \\
& \text { width : array }[0 \ldots n w-1] \text { of fix_word } \\
& \text { height: array }[0 \ldots n h-1] \text { of fix_word } \\
& \text { depth : array }[0 \ldots n d-1] \text { of fix_word } \\
& \text { italic : array }[0 \ldots n i-1] \text { of fix_word } \\
& \text { lig_kern : array }[0 \ldots n l-1] \text { of } \text { lig_kern_command } \\
& \text { kern : array }[0 \ldots n k-1] \text { of fix_word } \\
& \text { exten : array }[0 \ldots n e-1] \text { of extensible_recipe } \\
& \text { param : array }[1 \ldots n p] \text { of fix_word }
\end{aligned}
$$

The most important data type used here is a fix_word, which is a 32-bit representation of a binary fraction. A fix_word is a signed quantity, with the two's complement of the entire word used to represent negation. Of the 32 bits in a fix_word, exactly 12 are to the left of the binary point; thus, the largest fix_word value is $2048-2^{-20}$, and the smallest is -2048 . We will see below, however, that all but two of the fix_word values must lie between -16 and +16 .
1090. The first data array is a block of header information, which contains general facts about the font. The header must contain at least two words, header [0] and header [1], whose meaning is explained below. Additional header information of use to other software routines might also be included, and METAFONT will generate it if the headerbyte command occurs. For example, 16 more words of header information are in use at the Xerox Palo Alto Research Center; the first ten specify the character coding scheme used (e.g., 'XEROX TEXT' or 'TEX MATHSY'), the next five give the font family name (e.g., 'HELVETICA' or 'CMSY'), and the last gives the "face byte."
header [0] is a 32-bit check sum that METAFONT will copy into the GF output file. This helps ensure consistency between files, since $\mathrm{TEX}_{\mathrm{E}}$ records the check sums from the TFM's it reads, and these should match the check sums on actual fonts that are used. The actual relation between this check sum and the rest of the TFM file is not important; the check sum is simply an identification number with the property that incompatible fonts almost always have distinct check sums.
header [1] is a fix_word containing the design size of the font, in units of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ points. This number must be at least 1.0 ; it is fairly arbitrary, but usually the design size is 10.0 for a " 10 point" font, i.e., a font that was designed to look best at a 10-point size, whatever that really means. When a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ user asks for a font 'at $\delta \mathrm{pt}$ ', the effect is to override the design size and replace it by δ, and to multiply the x and y coordinates of the points in the font image by a factor of δ divided by the design size. All other dimensions in the TFM file are fix_word numbers in design-size units. Thus, for example, the value of param [6], which defines the em unit, is often the fix_word value $2^{20}=1.0$, since many fonts have a design size equal to one em. The other dimensions must be less than 16 design-size units in absolute value; thus, header [1] and param [1] are the only fix_word entries in the whole TFM file whose first byte might be something besides 0 or 255 .
1091. Next comes the char_info array, which contains one char_info_word per character. Each word in this part of the file contains six fields packed into four bytes as follows.
first byte: width_index (8 bits)
second byte: height_index (4 bits) times 16, plus depth_index (4 bits)
third byte: italic_index (6 bits) times 4 , plus tag (2 bits)
fourth byte: remainder (8 bits)
The actual width of a character is width[width_index], in design-size units; this is a device for compressing information, since many characters have the same width. Since it is quite common for many characters to have the same height, depth, or italic correction, the TFM format imposes a limit of 16 different heights, 16 different depths, and 64 different italic corrections.

Incidentally, the relation width $[0]=$ height $[0]=\operatorname{depth}[0]=\operatorname{italic}[0]=0$ should always hold, so that an index of zero implies a value of zero. The width_index should never be zero unless the character does not exist in the font, since a character is valid if and only if it lies between $b c$ and $e c$ and has a nonzero width_index.
1092. The tag field in a char_info_word has four values that explain how to interpret the remainder field. tag $=0$ (no_tag) means that remainder is unused.
tag $=1$ (lig_tag) means that this character has a ligature/kerning program starting at location remainder in the lig_kern array.
tag $=2($ list_tag $)$ means that this character is part of a chain of characters of ascending sizes, and not the largest in the chain. The remainder field gives the character code of the next larger character.
$t a g=3($ ext_tag $)$ means that this character code represents an extensible character, i.e., a character that is built up of smaller pieces so that it can be made arbitrarily large. The pieces are specified in exten [remainder].
Characters with $\operatorname{tag}=2$ and $\operatorname{tag}=3$ are treated as characters with $\operatorname{tag}=0$ unless they are used in special circumstances in math formulas. For example, T_{E} 's \sum operation looks for a list_tag, and the \left } operation looks for both list_tag and ext_tag.
define no_tag $=0 \quad\{$ vanilla character $\}$
define lig_tag $^{\prime}=1 \quad\{$ character has a ligature/kerning program $\}$
define list_tag $=2 \quad\{$ character has a successor in a charlist $\}$
define ext_tag $=3 \quad\{$ character is extensible $\}$
1093. The lig_kern array contains instructions in a simple programming language that explains what to do for special letter pairs. Each word in this array is a lig_kern_command of four bytes.
first byte: skip_byte, indicates that this is the final program step if the byte is 128 or more, otherwise the next step is obtained by skipping this number of intervening steps.
second byte: next_char, "if next_char follows the current character, then perform the operation and stop, otherwise continue."
third byte: op_byte, indicates a ligature step if less than 128, a kern step otherwise.
fourth byte: remainder.
In a kern step, an additional space equal to kern $[256 *$ (op_byte -128$)+$ remainder $]$ is inserted between the current character and next_char. This amount is often negative, so that the characters are brought closer together by kerning; but it might be positive.

There are eight kinds of ligature steps, having op_byte codes $4 a+2 b+c$ where $0 \leq a \leq b+c$ and $0 \leq b, c \leq 1$. The character whose code is remainder is inserted between the current character and next_char; then the current character is deleted if $b=0$, and next_char is deleted if $c=0$; then we pass over a characters to reach the next current character (which may have a ligature/kerning program of its own).
If the very first instruction of the lig_kern array has skip_byte $=255$, the next_char byte is the so-called boundary character of this font; the value of next_char need not lie between $b c$ and ec. If the very last instruction of the lig_kern array has skip_byte $=255$, there is a special ligature/kerning program for a boundary character at the left, beginning at location $256 *$ op_byte + remainder. The interpretation is that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ puts implicit boundary characters before and after each consecutive string of characters from the same font. These implicit characters do not appear in the output, but they can affect ligatures and kerning.
If the very first instruction of a character's lig_kern program has skip_byte >128, the program actually begins in location $256 *$ op_byte + remainder. This feature allows access to large lig_kern arrays, because the first instruction must otherwise appear in a location ≤ 255.
Any instruction with skip_byte >128 in the lig_kern array must satisfy the condition

$$
256 * \text { op_byte }+ \text { remainder }<n l .
$$

If such an instruction is encountered during normal program execution, it denotes an unconditional halt; no ligature or kerning command is performed.

```
define stop_flag \(=128+\) min_quarterword \(\quad\) \{value indicating 'STOP' in a lig/kern program \}
define kern_flag \(=128+\) min_quarterword \(\quad\{\) op code for a kern step \(\}\)
define skip_byte (\#) \(\equiv\) lig_kern[\#].b0
define next_char \((\#) \equiv\) lig_kern \([\#] . b 1\)
define op_byte(\#) \(\equiv\) lig_kern [\#].b2
define rem_byte \((\#) \equiv\) lig_kern \([\#] . b 3\)
```

1094. Extensible characters are specified by an extensible_recipe, which consists of four bytes called top, mid, bot, and rep (in this order). These bytes are the character codes of individual pieces used to build up a large symbol. If top, mid, or bot are zero, they are not present in the built-up result. For example, an extensible vertical line is like an extensible bracket, except that the top and bottom pieces are missing.

Let T, M, B, and R denote the respective pieces, or an empty box if the piece isn't present. Then the extensible characters have the form $T R^{k} M R^{k} B$ from top to bottom, for some $k \geq 0$, unless M is absent; in the latter case we can have $T R^{k} B$ for both even and odd values of k. The width of the extensible character is the width of R; and the height-plus-depth is the sum of the individual height-plus-depths of the components used, since the pieces are butted together in a vertical list.

```
define ext_top \((\#) \equiv\) exten \([\#] . b 0 \quad\{\) top piece in a recipe \(\}\)
define ext_mid \((\#) \equiv\) exten \([\#] . b 1 \quad\{\) mid piece in a recipe \(\}\)
define ext_bot \((\#) \equiv\) exten[\#].b2 \(\quad\{\) bot piece in a recipe \(\}\)
define ext_rep \((\#) \equiv\) exten \([\#] . b 3 \quad\{\) rep piece in a recipe \(\}\)
```

1095. The final portion of a TFM file is the param array, which is another sequence of fix_word values.
$\operatorname{param}[1]=$ slant is the amount of italic slant, which is used to help position accents. For example, slant $=.25$ means that when you go up one unit, you also go .25 units to the right. The slant is a pure number; it is the only fix_word other than the design size itself that is not scaled by the design size.
$\operatorname{param}[2]=$ space is the normal spacing between words in text. Note that character ' 40 in the font need not have anything to do with blank spaces.
$\operatorname{param}[3]=$ space_stretch is the amount of glue stretching between words.
param $[4]=$ space_shrink is the amount of glue shrinking between words.
param $[5]=x_{-}$height is the size of one ex in the font; it is also the height of letters for which accents don't have to be raised or lowered.
$\operatorname{param}[6]=q u a d$ is the size of one em in the font.
param $[7]=$ extra_space is the amount added to param $[2]$ at the ends of sentences.
If fewer than seven parameters are present, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ sets the missing parameters to zero.
```
define slant_code \(=1\)
    define space_code \(=2\)
    define space_stretch_code \(=3\)
    define space_shrink_code \(=4\)
    define \(x_{-} h e i g h t\) _code \(=5\)
    define quad_code \(=6\)
    define extra_space_code \(=7\)
```

1096. So that is what TFM files hold. One of METAFONT's duties is to output such information, and it does this all at once at the end of a job. In order to prepare for such frenetic activity, it squirrels away the necessary facts in various arrays as information becomes available.

Character dimensions (charwd, charht, chardp, and charic) are stored respectively in tfm_width, $t f m_{-} h e i g h t$, tfm_depth, and tfm_ital_corr. Other information about a character (e.g., about its ligatures or successors) is accessible via the char_tag and char_remainder arrays. Other information about the font as a whole is kept in additional arrays called header_byte, lig_kern, kern, exten, and param.
define undefined_label \equiv lig_table_size $\quad\{$ an undefined local label $\}$
\langle Global variables 13$\rangle+\equiv$
bc, ec: eight_bits; \{smallest and largest character codes shipped out \}
tfm_width: array [eight_bits] of scaled; \{charwd values \}
tfm_height: array [eight_bits] of scaled; \{charht values \}
tfm_depth: array [eight_bits] of scaled; \{chardp values\}
tfm_ital_corr: array [eight_bits] of scaled; \{charic values \}
char_exists: array [eight_bits] of boolean; \{ has this code been shipped out? \}
char_tag: array [eight_bits] of no_tag ..ext_tag; \{remainder category \}
char_remainder: array [eight_bits] of 0 .. lig_table_size; \{ the remainder byte \}
header_byte: array $[1 .$. header_size $]$ of $-1 . .255 ;$ \{ bytes of the TFM header, or -1 if unset \}
lig_kern: array [0..lig_table_size] of four_quarters; \{ the ligature/kern table \}
$n l: 0 . .32767-256 ; \quad$ \{ the number of ligature/kern steps so far \}
kern: array $[0$. max_kerns $]$ of scaled; \{distinct kerning amounts \}
$n k: 0 \ldots$ max_kerns; $\quad\{$ the number of distinct kerns so far \}
exten: array [eight_bits] of four_quarters; \{extensible character recipes \}
$n e: 0 . .256$; $\{$ the number of extensible characters so far \}
param: array [1.. max_font_dimen] of scaled; \{fontdimen parameters $\}$
$n p: 0 \ldots$ max_font_dimen; \{ the largest fontdimen parameter specified so far \}
$n w, n h, n d, n i: 0 . .256 ; \quad$ \{ sizes of TFM subtables $\}$
skip_table: array [eight_bits] of 0 .. lig_table_size; \{local label status \}
lk_started: boolean; \{ has there been a lig/kern step in this command yet? \}
bchar: integer; \{right boundary character \}
bch_label: 0 . . lig_table_size; \{ left boundary starting location \}
ll, lll: 0 .. lig_table_size; \{registers used for lig/kern processing \}
label_loc: array $[0 \ldots 256]$ of -1 .. lig_table_size; \{lig/kern starting addresses \}
label_char: array [1..256] of eight_bits; \{characters for label_loc \}
label_ptr: 0. . 256; \{ highest position occupied in label_loc \}
1097. 〈Set initial values of key variables 21$\rangle+\equiv$
for $k \leftarrow 0$ to 255 do
begin tfm_width $[k] \leftarrow 0$; tfm_height $[k] \leftarrow 0$; tfm_depth $[k] \leftarrow 0$; tfm_ital_corr $[k] \leftarrow 0$;
char_exists $[k] \leftarrow$ false; char_tag $[k] \leftarrow$ no_tag; char_remainder $[k] \leftarrow 0$; skip_table $[k] \leftarrow$ undefined_label; end;
for $k \leftarrow 1$ to header_size do header_byte $[k] \leftarrow-1$;
$b c \leftarrow 255 ; e c \leftarrow 0 ; n l \leftarrow 0 ; n k \leftarrow 0 ; n e \leftarrow 0 ; n p \leftarrow 0 ;$
internal[boundary_char] \leftarrow-unity; bch_label \leftarrow undefined_label;
label_loc $[0] \leftarrow-1 ;$ label_ptr $\leftarrow 0 ;$

1098．〈Declare the function called tfm＿check 1098〉 \equiv
function $t f m_{-}$check（ m ：small＿number）：scaled；
begin if abs $($ internal $[m]) \geq$ fraction＿half then

help1（＂Font metric $_{\sqcup}$ dimensions $_{\sqcup}$ must $_{\sqcup} \mathrm{be}_{\sqcup} l_{\text {less }}^{\sqcup} \mathrm{than}_{\sqcup} 2048 \mathrm{pt} . "$ ）；put＿get＿error；
if internal $[m]>0$ then $t f m_{-}$check \leftarrow fraction＿half -1
else t fm＿check $\leftarrow 1$－fraction＿half；
end
else $t f m_{-}$check \leftarrow internal $[m]$ ；
end；
This code is used in section 1070.
1099．〈Store the width information for character code c 1099〉 \equiv
if $c<b c$ then $b c \leftarrow c$ ；
if $c>e c$ then $e c \leftarrow c$ ；
char＿exists $[c] \leftarrow$ true $; ~ g f_{-} d x[c] \leftarrow$ internal $[$ char＿d $] ;$ gf＿dy $[c] \leftarrow$ internal $[$ char＿dy］；
$t f m_{-} w i d t h[c] \leftarrow t f m_{-} c h e c k\left(c h a r_{-} w d\right) ; t f m_{-} h e i g h t[c] \leftarrow t f m_{-} c h e c k\left(c h a r _h t\right) ;$
$t f m_{-} d e p t h[c] \leftarrow t f m_{-} c h e c k\left(c h a r_{-} d p\right) ; t f m_{-} i t a l _c o r r[c] \leftarrow t f m_{-} c h e c k\left(c h a r_{-} i c\right)$
This code is used in section 1070.

1100．Now let＇s consider METAFONT＇s special TFM－oriented commands．
\langle Cases of do＿statement that invoke particular commands 1020〉＋三
tfm＿command：do＿tfm＿command；
1101．define char＿list＿code $=0$
define lig＿table＿code $=1$
define extensible＿code $=2$
define header＿byte＿code $=3$
define font＿dimen＿code $=4$
\langle Put each of METAFONT＇s primitives into the hash table 192$\rangle+\equiv$ primitive（＂charlist＂，tfm＿command，char＿list＿code）；
primitive（＂ligtable＂，tfm＿command，lig＿table＿code）；
primitive（＂extensible＂，tfm＿command，extensible＿code）；
primitive（＂headerbyte＂，tfm＿command，header＿byte＿code）；
primitive（＂fontdimen＂，tfm＿command，font＿dimen＿code）；
1102．〈Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$
tfm＿command：case m of
char＿list＿code：print（＂charlist＂）；
lig＿table＿code：print（＂ligtable＂）；
extensible＿code：print（＂extensible＂）；
header＿byte＿code：print（＂headerbyte＂）；
othercases print（＂fontdimen＂）
endcases；

1103．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
function get＿code：eight＿bits；\｛scans a character code value\}
label found；
var c ：integer ；\｛ the code value found \}
begin get＿x＿next；scan＿expression；
if cur＿type $=$ known then
begin $c \leftarrow$ round＿unscaled（cur＿exp）；
if $c \geq 0$ then
if $c<256$ then goto found；
end
else if cur＿type $=$ string＿type then if length $($ cur＿exp $)=1$ then
begin $c \leftarrow$ so（str＿pool［str＿start［cur＿exp］］）；goto found；
end；
exp＿err（＂Invalid $\operatorname{licode}_{\lrcorner}$has $_{\lrcorner}$been $_{\lrcorner}$replaced $_{\lrcorner}$by $_{\lrcorner} 0$＂）；

found：get＿code $\leftarrow c$ ；
end；
1104．\langle Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure set＿tag（ $c:$ halfword $; t:$ small＿number $; r:$ halfword $)$ ；
begin if char＿tag $[c]=$ no＿tag then
begin char＿tag $[c] \leftarrow t$ ；char＿remainder $[c] \leftarrow r$ ；
if $t=$ lig＿tag $^{\text {then }}$
begin incr（label＿ptr）；label＿loc［label＿ptr］$\leftarrow r$ ；label＿char［label＿ptr $] \leftarrow c$ ；
end；
end
else \langle Complain about a character tag conflict 1105〉；
end；
1105．〈Complain about a character tag conflict 1105$\rangle \equiv$
begin print＿err（＂Character ${ }_{\sqcup}$＂）；
if $(c>" \mathrm{"}$＂）$\wedge(c<127)$ then $\operatorname{print}(c)$
else if $c=256$ then $\operatorname{print}("|\mid ")$
else begin print（＂code $\sqcup ") ;$ print＿int（c）；
end；
print（＂цisцalreadyч＂）；
case char＿tag $[c]$ of
lig＿tag：print（＂in」a」ligtable＂）；

ext＿tag：print（＂extensible＂）；
end；\｛ there are no other cases \}

end
This code is used in section 1104.

1106．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$ procedure do＿tfm＿command；
label continue，done；
var $c, c c: 0 . .256 ; \quad\{$ character codes \}
$k: 0$ ．．max＿kerns；\｛index into the kern array \}
j ：integer；\｛ index into header＿byte or param \}
begin case cur＿mod of
char＿list＿code：begin $c \leftarrow$ get＿code；\｛ we will store a list of character successors \}
while cur＿cmd $=$ colon do
begin $c c \leftarrow$ get＿code；set＿tag $(c$, list＿tag，$c c) ; c \leftarrow c c$ ；
end；
end；
lig＿table＿code：\langle Store a list of ligature／kern steps 1107〉；
extensible＿code：\langle Define an extensible recipe 1113〉；
header＿byte＿code，font＿dimen＿code：begin $c \leftarrow$ cur＿mod；get＿x＿next；scan＿expression；
if $($ cur＿type $\neq k n o w n) \vee($ cur＿exp $<$ half＿unit $)$ then
begin exp＿err（＂Improper＿location＂）；

end
else begin $j \leftarrow$ round＿unscaled（cur＿exp）；
if cur＿cmd \neq colon then
begin missing＿err（＂：＂）；

end；
if $c=$ header＿byte＿code then \langle Store a list of header bytes 1114〉
else \langle Store a list of font dimensions 1115\rangle ；
end；
end；
end；\｛ there are no other cases \}
end；

1107．〈Store a list of ligature／kern steps 1107$\rangle \equiv$
begin lk＿started \leftarrow false；
continue：get＿x＿next；
if $\left(\right.$ cur＿cmd $\left.=s k i p_{-} t o\right) \wedge l k_{-}$started then \langleProcess a skip＿to command and goto done 1110\rangle ；
if cur＿cmd $=$ bchar＿label then
begin $c \leftarrow 256$ ；cur＿cmd \leftarrow colon；end
else begin back＿input；$c \leftarrow$ get＿code；end；
if $($ cur＿cmd $=$ colon $) \vee($ cur＿cmd $=$ double＿colon $)$ then
\langle Record a label in a lig／kern subprogram and goto continue 1111〉；
if cur＿cmd $=$ lig＿kern＿token then \langle Compile a ligature／kern command 1112〉
else begin print＿err（＂Illegal」ligtable ${ }_{\sqcup}$ step＂）；

op＿byte $(n l) \leftarrow q i(0) ;$ rem＿byte $(n l) \leftarrow q i(0)$ ；
skip＿byte $(n l) \leftarrow$ stop＿flag $+1 ; \quad$ \｛ this specifies an unconditional stop $\}$ end；
if $n l=$ lig＿table＿size then overflow（＂ligtable」size＂，lig＿table＿size）；
$\operatorname{incr}(n l)$ ；
if cur＿cmd $=$ comma then goto continue；
if skip＿byte $(n l-1)<$ stop＿flag then skip＿byte $(n l-1) \leftarrow$ stop＿flag；
done：end
This code is used in section 1106.
1108．〈Put each of METAFONT＇s primitives into the hash table 192$\rangle+\equiv$
primitive（＂＝：＂，lig＿kern＿token，0）；primitive（＂＝：｜＂，lig＿kern＿token，1）；
primitive（＂＝：｜＞＂，lig＿kern＿token，5）；primitive（＂｜＝：＂，lig＿kern＿token，2）；
primitive（＂｜＝：＞＂，lig＿kern＿token，6）；primitive（＂｜＝：｜＂，lig＿kern＿token，3）；
primitive（＂｜＝：｜＞＂，lig＿kern＿token，7）；primitive（＂｜＝：｜＞＞＂，lig＿kern＿token，11）；
primitive（＂kern＂，lig＿kern＿token，128）；
1109．〈 Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$
lig＿kern＿token：case m of
0：print（＂＝：＂）；
1：print（＂＝：｜＂）；
2：print（＂｜＝：＂）；
3：print（＂｜＝：｜＂）；
5：print（＂＝：｜＞＂）；
6：print（＂｜＝：＞＂）；
7：print（＂｜＝：｜＞＂）；
11： $\operatorname{print}("|=:| \gg ")$ ；
othercases print（＂kern＂）
endcases；
1110. Local labels are implemented by maintaining the skip_table array, where skip_table $[c]$ is either undefined_label or the address of the most recent lig/kern instruction that skips to local label c. In the latter case, the skip_byte in that instruction will (temporarily) be zero if there were no prior skips to this label, or it will be the distance to the prior skip.

We may need to cancel skips that span more than $127 \mathrm{lig} / \mathrm{kern}$ steps.
define cancel_skips $(\#) \equiv l l \leftarrow \#$;
repeat $l l l \leftarrow q o($ skip_byte $(l l))$; skip_byte $(l l) \leftarrow$ stop_flag; $l l \leftarrow l l-l l l$;
until $l l l=0$
define skip_error (\#) \equiv

cancel_skips(\#);
end
\langle Process a skip_to command and goto done 1110$\rangle \equiv$
begin $c \leftarrow$ get_code;
if $n l-$ skip_table $[c]>128$ then
begin skip_error(skip_table $[c]$); skip_table $[c] \leftarrow$ undefined_label;
end;
if skip_table $[c]=$ undefined_label then skip_byte $(n l-1) \leftarrow q i(0)$
else skip_byte $(n l-1) \leftarrow q i(n l-$ skip_table $[c]-1)$;
skip_table $[c] \leftarrow n l-1$; goto done;
end
This code is used in section 1107.
1111. 〈Record a label in a lig/kern subprogram and goto continue 1111$\rangle \equiv$
begin if cur_cmd $=$ colon then
if $c=256$ then bch_label $\leftarrow n l$
else set_tag $(c$, lig_tag, $n l)$
else if skip_table $[c]$ < undefined_label then
begin $l l \leftarrow$ skip_table $[c]$; skip_table $[c] \leftarrow$ undefined_label;
repeat $l l l \leftarrow q o($ skip_byte $(l l))$;
if $n l-l l>128$ then
begin skip_error(ll); goto continue;
end;
skip_byte $(l l) \leftarrow q i(n l-l l-1) ; l l \leftarrow l l-l l l ;$ until $l l l=0$; end;
goto continue;
end
This code is used in section 1107.
1112. \langle Compile a ligature/kern command 1112$\rangle \equiv$
begin next_char $(n l) \leftarrow q i(c)$; skip_byte $(n l) \leftarrow q i(0)$;
if cur_mod <128 then $\{$ ligature op $\}$
begin op_byte $(n l) \leftarrow q i($ cur_mod $)$; rem_byte $(n l) \leftarrow q i($ get_code $)$;
end
else begin get_x_next; scan_expression;
if cur_type \neq known then
begin exp_err("Improper_kern");

 end;
kern $[n k] \leftarrow$ cur_exp $; k \leftarrow 0$; while kern $[k] \neq$ cur_exp do $\operatorname{incr}(k)$; if $k=n k$ then
begin if $n k=$ max_kerns then overflow("kern", max_kerns);
incr ($n k$);
end;
op_byte $(n l) \leftarrow k e r n _$_flag $+(k \operatorname{div} 256) ;$ rem_byte $(n l) \leftarrow q i((k \bmod 256))$;
end;
$l k$ _started \leftarrow true;
end
This code is used in section 1107.
1113. define missing_extensible_punctuation $(\#) \equiv$
 end
\langle Define an extensible recipe 1113$\rangle \equiv$
begin if $n e=256$ then overflow("extensible", 256);
$c \leftarrow$ get_code ; set_tag (c, ext_tag, ne);
if cur_cmd \neq colon then missing_extensible_punctuation(": ");
ext_top $(n e) \leftarrow q i($ get_code $)$;
if cur_cmd \neq comma then missing_extensible_punctuation(", ");
ext_mid $(n e) \leftarrow q i($ get_code $)$;
if cur_cmd \neq comma then missing_extensible_punctuation(", ");
ext_bot $(n e) \leftarrow q i($ get_code $)$;
if cur_cmd \neq comma then missing_extensible_punctuation(", ");
ext_rep $(n e) \leftarrow q i($ get_code $) ;$ incr $(n e)$;
end
This code is used in section 1106.
1114. 〈Store a list of header bytes 1114$\rangle \equiv$
repeat if $j>$ header_size then overflow("headerbyte", header_size);
header_byte $[j] \leftarrow$ get_code; incr (j);
until cur_cmd \neq comma
This code is used in section 1106.
1115. 〈Store a list of font dimensions 1115$\rangle \equiv$

```
repeat if \(j>\) max_font_dimen \(^{\text {then }}\) overflow("fontdimen", max_font_dimen);
    while \(j>n p\) do
        begin \(\operatorname{incr}(n p)\); param \([n p] \leftarrow 0\);
        end;
    get_x_next; scan_expression;
    if cur_type \(\neq k n o w n\) then
        begin exp_err ("Improper \(_{\sqcup}\) font \({ }_{\sqcup}\) parameter");
```



```
        end;
    \(\operatorname{param}[j] \leftarrow\) cur_exp; incr \((j)\);
    until cur_cmd \(\neq\) comma
```

This code is used in section 1106.
1116. OK: We've stored all the data that is needed for the TFM file. All that remains is to output it in the correct format.

An interesting problem needs to be solved in this connection, because the TFM format allows at most 256 widths, 16 heights, 16 depths, and 64 italic corrections. If the data has more distinct values than this, we want to meet the necessary restrictions by perturbing the given values as little as possible.

METAFONT solves this problem in two steps. First the values of a given kind (widths, heights, depths, or italic corrections) are sorted; then the list of sorted values is perturbed, if necessary.

The sorting operation is facilitated by having a special node of essentially infinite value at the end of the current list.
\langle Initialize table entries (done by INIMF only) 176$\rangle+\equiv$
value $($ inf_val $) \leftarrow$ fraction_four ;
1117. Straight linear insertion is good enough for sorting, since the lists are usually not terribly long. As we work on the data, the current list will start at link (temp_head) and end at inf_val; the nodes in this list will be in increasing order of their value fields.

Given such a list, the sort_in function takes a value and returns a pointer to where that value can be found in the list. The value is inserted in the proper place, if necessary.

At the time we need to do these operations, most of METAFONT's work has been completed, so we will have plenty of memory to play with. The value nodes that are allocated for sorting will never be returned to free storage.
define clear_the_list \equiv link $($ temp_head $) \leftarrow$ inf_val
function sort_in ($v:$ scaled $)$: pointer;
label found;
var p, q, r : pointer; \{list manipulation registers \}
begin $p \leftarrow$ temp_head;
loop begin $q \leftarrow \operatorname{link}(p)$;
if $v \leq \operatorname{value}(q)$ then goto found;
$p \leftarrow q$;
end;
found: if $v<\operatorname{value}(q)$ then
begin $r \leftarrow$ get_node(value_node_size); value $(r) \leftarrow v ; \operatorname{link}(r) \leftarrow q ; \operatorname{link}(p) \leftarrow r ;$
end;
sort_in $\leftarrow \operatorname{link}(p)$;
end;
1118. Now we come to the interesting part, where we reduce the list if necessary until it has the required size. The min_cover routine is basic to this process; it computes the minimum number m such that the values of the current sorted list can be covered by m intervals of width d. It also sets the global value perturbation to the smallest value $d^{\prime}>d$ such that the covering found by this algorithm would be different.

In particular, min_cover (0) returns the number of distinct values in the current list and sets perturbation to the minimum distance between adjacent values.
function min_cover (d: scaled): integer;
var p : pointer; \{runs through the current list \}
l : scaled; \{ the least element covered by the current interval \}
m : integer; \{lower bound on the size of the minimum cover \}
begin $m \leftarrow 0 ; p \leftarrow$ link(temp_head); perturbation \leftarrow el_gordo;
while $p \neq$ inf_val do
begin incr (m); $l \leftarrow \operatorname{value}(p)$;
repeat $p \leftarrow \operatorname{link}(p)$;
until $\operatorname{value}(p)>l+d$;
if $\operatorname{value}(p)-l<$ perturbation then perturbation $\leftarrow \operatorname{value}(p)-l$;
end;
min_cover $\leftarrow m$;
end;
1119. 〈Global variables 13$\rangle+\equiv$ perturbation: scaled; \{quantity related to TFM rounding \}
excess: integer; \{ the list is this much too long \}
1120. The smallest d such that a given list can be covered with m intervals is determined by the threshold routine, which is sort of an inverse to min_cover. The idea is to increase the interval size rapidly until finding the range, then to go sequentially until the exact borderline has been discovered.

```
function threshold( \(m:\) integer): scaled;
    var \(d\) : scaled; \{lower bound on the smallest interval size \}
    begin excess \(\leftarrow\) min_cover \((0)-m\);
    if excess \(\leq 0\) then threshold \(\leftarrow 0\)
    else begin repeat \(d \leftarrow\) perturbation;
        until min_cover \((d+d) \leq m\);
        while min_cover \((d)>m\) do \(d \leftarrow\) perturbation;
        threshold \(\leftarrow d\);
        end;
    end;
```

1121. The skimp procedure reduces the current list to at most m entries, by changing values if necessary. It also sets $\operatorname{info}(p) \leftarrow k$ if $\operatorname{value}(p)$ is the k th distinct value on the resulting list, and it sets perturbation to the maximum amount by which a value field has been changed. The size of the resulting list is returned as the value of skimp.
function $\operatorname{skimp}(m:$ integer $)$: integer;
var d : scaled; $\quad\{$ the size of intervals being coalesced $\}$
$p, q, r:$ pointer; $\{$ list manipulation registers $\}$
l : scaled; $\quad\{$ the least value in the current interval $\}$
$v:$ scaled; \{ a compromise value \}
begin $d \leftarrow$ threshold (m); perturbation $\leftarrow 0 ; q \leftarrow$ temp_head; $m \leftarrow 0 ; p \leftarrow \operatorname{link}($ temp_head $)$;
while $p \neq$ inf_val do
begin $\operatorname{incr}(m) ; l \leftarrow \operatorname{value}(p) ;$ info $(p) \leftarrow m$;
if $\operatorname{value}(\operatorname{link}(p)) \leq l+d$ then \langle Replace an interval of values by its midpoint 1122\rangle;
$q \leftarrow p ; p \leftarrow \operatorname{link}(p) ;$
end;
skimp $\leftarrow m$;
end;
1122. \langle Replace an interval of values by its midpoint 1122$\rangle \equiv$
begin repeat $p \leftarrow \operatorname{link}(p)$; $\operatorname{info}(p) \leftarrow m$; decr $($ excess $)$; if excess $=0$ then $d \leftarrow 0$;
until value $(\operatorname{link}(p))>l+d$;
$v \leftarrow l+\operatorname{half}(\operatorname{value}(p)-l)$;
if $\operatorname{value}(p)-v>$ perturbation then perturbation $\leftarrow \operatorname{value}(p)-v$;
$r \leftarrow q$;
repeat $r \leftarrow \operatorname{link}(r) ; \operatorname{value}(r) \leftarrow v$;
until $r=p$;
$\operatorname{link}(q) \leftarrow p ; \quad$ \{remove duplicate values from the current list \}
end
This code is used in section 1121.
1123. A warning message is issued whenever something is perturbed by more than $1 / 16 \mathrm{pt}$.
procedure tfm_warning (m : small_number);
begin print_nl("(some " $\left.^{\prime \prime}\right) ;$ print(int_name $\left.[m]\right)$;

end;
1124. Here's an example of how we use these routines. The width data needs to be perturbed only if there are 256 distinct widths, but METAFONT must check for this case even though it is highly unusual.

An integer variable k will be defined when we use this code. The dimen_head array will contain pointers to the sorted lists of dimensions.
\langle Massage the TFM widths 1124$\rangle \equiv$
clear_the_list;
for $k \leftarrow b c$ to $e c$ do
if char_exists $[k]$ then $t f m_{-}$width $[k] \leftarrow$ sort_in (tfm_width $[k]$);
$n w \leftarrow \operatorname{skimp}(255)+1 ;$ dimen_head $[1] \leftarrow$ link $($ temp_head $)$;
if perturbation $\geq{ }^{\prime} 10000$ then tfm_warning (char_wd)
This code is used in section 1206.
1125. 〈Global variables 13$\rangle+\equiv$
dimen_head: array [1.. 4] of pointer; \{ lists of TFM dimensions \}
1126. Heights, depths, and italic corrections are different from widths not only because their list length is more severely restricted, but also because zero values do not need to be put into the lists.
\langle Massage the TFM heights, depths, and italic corrections 1126$\rangle \equiv$
clear_the_list;
for $k \leftarrow b c$ to $e c$ do
if char_exists $[k]$ then
if $t f m_{-}$height $[k]=0$ then $t f m_{_} h e i g h t[k] \leftarrow$ zero_val else tfm_height $[k] \leftarrow$ sort_in (tfm_height $[k])$;
$n h \leftarrow \operatorname{skimp}(15)+1$; dimen_head $[2] \leftarrow \operatorname{link}($ temp_head $) ;$
if perturbation \geq ' 10000 then tfm_warning (char_ht);
clear_the_list;
for $k \leftarrow b c$ to $e c$ do
if char_exists $[k]$ then
if tfm_depth $[k]=0$ then tfm_depth $[k] \leftarrow$ zero_val else tfm_depth $[k] \leftarrow$ sort_in (tfm_depth $[k])$;
$n d \leftarrow \operatorname{skimp}(15)+1$; dimen_head $[3] \leftarrow$ link $($ temp_head $)$;
if perturbation \geq ' 10000 then tfm_warning (char_dp);
clear_the_list;
for $k \leftarrow b c$ to $e c$ do
if char_exists $[k]$ then
if tfm_ital_corr $[k]=0$ then $t f m_{\text {_ }}$ ital_corr $[k] \leftarrow$ zero_val else tfm_ital_corr $[k] \leftarrow$ sort_in (tfm_ital_corr $[k])$;
$n i \leftarrow \operatorname{skimp}(63)+1 ;$ dimen_head $[4] \leftarrow \operatorname{link}($ temp_head $)$;
if perturbation \geq ' 10000 then tfm_warning (char_ic)
This code is used in section 1206.
1127. 〈 Initialize table entries (done by INIMF only) 176$\rangle+\equiv$ value $($ zero_val $) \leftarrow 0$; info $($ zero_val $) \leftarrow 0$;
1128. Bytes $5-8$ of the header are set to the design size, unless the user has some crazy reason for specifying them differently.

Error messages are not allowed at the time this procedure is called, so a warning is printed instead.
The value of max_tfm_dimen is calculated so that

$$
\text { make_scaled }(16 * \text { max_tfm_dimen, internal }[\text { design_size] }])<\text { three_bytes. }
$$

define three_bytes $\equiv{ }^{\prime} 100000000 \quad\left\{2^{24}\right\}$
procedure fix_design_size;
var $d:$ scaled; $\{$ the design size $\}$
begin $d \leftarrow$ internal[design_size];
if $(d<$ unity $) \vee(d \geq$ fraction_half $)$ then

$d \leftarrow ' 40000000$; internal[design_size] $\leftarrow d$;
end;
if header_byte[5] < 0 then
if header_byte $[6]<0$ then
if header_byte $[7]<0$ then
if header_byte $[8]<0$ then
begin header_byte $[5] \leftarrow d \operatorname{div}{ }^{\prime} 4000000$; header_byte $[6] \leftarrow(d \operatorname{div} 4096) \bmod 256$;
header_byte $[7] \leftarrow(d \operatorname{div} 16) \bmod 256 ;$ header_byte $[8] \leftarrow(d \bmod 16) * 16$;
end;
max_tfm_dimen $\leftarrow 16 *$ internal $[$ design_size $]-1-$ internal [design_size] div '10000000;
if max_tfm_dimen \geq fraction_half then max_tfm_dimen \leftarrow fraction_half -1 ;
end;
1129. The dimen_out procedure computes a fix_word relative to the design size. If the data was out of range, it is corrected and the global variable tfm_changed is increased by one.

```
function dimen_out ( \(x\) : scaled): integer;
    begin if abs \((x)>\) max_tfm_dimen then
        begin incr (tfm_changed);
        if \(x>0\) then \(x \leftarrow\) max_tfm_dimen else \(x \leftarrow\)-max_tfm_dimen;
        end;
    \(x \leftarrow\) make_scaled \((x * 16\), internal \([\) design_size \(]) ;\) dimen_out \(\leftarrow x ;\)
    end;
```

1130. 〈Global variables 13$\rangle+\equiv$
max_tfm_dimen: scaled; \{bound on widths, heights, kerns, etc. $\}$
tfm_changed: integer; \{ the number of data entries that were out of bounds \}
1131. If the user has not specified any of the first four header bytes, the fix_check_sum procedure replaces them by a "check sum" computed from the tfm_width data relative to the design size.
procedure fix_check_sum;
label exit;
var k : eight_bits; \{runs through character codes \}
$b 1, b 2, b 3, b 4$: eight_bits; $\quad\{$ bytes of the check sum $\}$
x : integer; \{ hash value used in check sum computation \}
begin if header_byte $[1]<0$ then
if header_byte $[2]<0$ then
if header_byte $[3]<0$ then
if header_byte[4] <0 then
begin \langle Compute a check sum in $(b 1, b 2, b 3, b 4) 1132\rangle$;
header_byte $[1] \leftarrow b 1$; header_byte $[2] \leftarrow b 2$; header_byte $[3] \leftarrow b 3$; header_byte $[4] \leftarrow b_{4}$; return; end;
for $k \leftarrow 1$ to 4 do
if header_byte $[k]<0$ then header_byte $[k] \leftarrow 0$;
exit: end;
1132. 〈Compute a check sum in $(b 1, b 2, b 3, b 4) 1132\rangle \equiv$
$b 1 \leftarrow b c ; b 2 \leftarrow e c ; b 3 \leftarrow b c ; b 4 \leftarrow e c ;$ tfm_changed $\leftarrow 0 ;$
for $k \leftarrow b c$ to $e c$ do
if char_exists [k] then
begin $x \leftarrow$ dimen_out $\left(\right.$ value $\left.\left(t f m_{-w i d t h}[k]\right)\right)+(k+4) *$ '20000000; $\quad\{$ this is positive $\}$ $b 1 \leftarrow(b 1+b 1+x) \bmod 255 ; b 2 \leftarrow(b 2+b 2+x) \bmod 253 ; b 3 \leftarrow(b 3+b 3+x) \bmod 251 ;$ $b_{4} \leftarrow\left(b_{4}+b_{4}+x\right) \bmod 247$; end
This code is used in section 1131.
1133. Finally we're ready to actually write the TFM information. Here are some utility routines for this purpose.
define tfm_out $(\#) \equiv$ write (tfm_file, \#) \quad \{output one byte to $t f m_{-}$file $\}$
procedure $t f m_{_} t w o(x:$ integer $) ; \quad$ \{ output two bytes to $t f m_{-}$file \}
begin $t f m_{\text {_out }}(x \operatorname{div} 256)$; tfm_out ($x \bmod 256$);
end;
procedure tfm_four (x : integer); \{ output four bytes to $t f m_{-}$file \}
begin if $x \geq 0$ then tfm_out (x div three_bytes)
else begin $x \leftarrow x+{ }^{\prime} 10000000000 ;$ \{ use two's complement for negative values \}
$x \leftarrow x+$ '10000000000; tfm_out ($(x$ div three_bytes $)+128)$; end;
$x \leftarrow x \bmod$ three_bytes; tfm_out(x div unity) ; $x \leftarrow x \bmod$ unity; tfm_out (x div '400);
$t f m_{-}$out ($x \bmod { }^{\prime} 400$);
end;
procedure $t f m_{_} q q q q(x$: four_quarters $)$; \{output four quarterwords to $t f m_{-}$file \}
begin tfm_out(qo(x.b0)); tfm_out(qo(x.b1)); tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
end;

1134．〈Finish the TFM file 1134$\rangle \equiv$
if job＿name $=0$ then open＿log＿file；
pack＿job＿name（＂．tfm＂）；
while $\neg b_{_}$open＿out（tfm＿file）do prompt＿file＿name（＂file＿name」for＿font」metrics＂，＂．tfm＂）；
metric＿file＿name $\leftarrow b_{-}$make＿name＿string（tfm＿file）；〈 Output the subfile sizes and header bytes 1135〉；
〈Output the character information bytes，then output the dimensions themselves 1136〉；
〈Output the ligature／kern program 1139〉；
〈Output the extensible character recipes and the font metric parameters 1140\rangle ；
stat if internal $[$ tracing＿stats $]>0$ then \langle Log the subfile sizes of the TFM file 1141\rangle ；tats
print＿nl（＂Font＿metrics Fwritten $_{\sqcup} \mathrm{on}_{\sqcup}$＂）；slow＿print（metric＿file＿name）；print＿char（＂．＂）；
b_{-}close（tfm＿file）
This code is used in section 1206.
1135．Integer variables $l h, k$ ，and $l k$＿offset will be defined when we use this code．
\langle Output the subfile sizes and header bytes 1135$\rangle \equiv$
$k \leftarrow$ header＿size；
while header＿byte $[k]<0$ do $\operatorname{decr}(k)$ ；
$l h \leftarrow(k+3) \operatorname{div} 4 ; \quad\{$ this is the number of header words $\}$
if $b c>e c$ then $b c \leftarrow 1 ; \quad\{$ if there are no characters，$e c=0$ and $b c=1\}$
\langle Compute the ligature／kern program offset and implant the left boundary label 1137〉；
$t f m_{-} t w o\left(6+l h+(e c-b c+1)+n w+n h+n d+n i+n l+l k _o f f s e t+n k+n e+n p\right)$ ；
\｛this is the total number of file words that will be output \}
$t f m_{-} t w o(l h) ;$ tfm＿two（bc）；tfm＿two（ec）；tfm＿two（nw）；tfm＿two（nh）；tfm＿two（nd）；tfm＿two（ni）；
tfm＿two（nl＋lk＿offset）；tfm＿two（nk）；tfm＿two（ne）；tfm＿two（np）；
for $k \leftarrow 1$ to $4 * l h$ do
begin if header＿byte $[k]<0$ then header＿byte $[k] \leftarrow 0$ ；
$t f m_{-}$out（header＿byte $[k]$ ）；
end
This code is used in section 1134.
1136．\langle Output the character information bytes，then output the dimensions themselves 1136$\rangle \equiv$
for $k \leftarrow b c$ to $e c$ do
if \neg char＿exists $[k]$ then $t f m_{-}$four（ 0 ）
else begin tfm＿out（info（tfm＿width $[k])$ ）；\｛ the width index $\}$
tfm＿out $\left(\left(\right.\right.$ info $\left.\left(t f m_{n} h e i g h t[k]\right)\right) * 16+$ info（tfm＿depth $\left.\left.[k]\right)\right)$ ；
tfm＿out $(($ info（tfm＿ital＿corr $[k])) * 4+$ char＿tag $[k]) ;$ tfm＿out（char＿remainder $[k])$ ；
end；
tfm＿changed $\leftarrow 0$ ；
for $k \leftarrow 1$ to 4 do
begin t fm＿four $(0) ; p \leftarrow$ dimen＿head $[k]$ ；
while $p \neq$ inf＿val do
begin $t f m_{-}$four（dimen＿out $($value $\left.(p))\right) ; p \leftarrow \operatorname{link}(p)$ ；
end；
end
This code is used in section 1134.

1137．We need to output special instructions at the beginning of the lig＿kern array in order to specify the right boundary character and／or to handle starting addresses that exceed 255．The label＿loc and label＿char arrays have been set up to record all the starting addresses；we have $-1=$ label＿loc $[0]<$ label＿loc $[1] \leq \cdots \leq$ label＿loc［label＿ptr］．
\langle Compute the ligature／kern program offset and implant the left boundary label 1137〉 \equiv bchar \leftarrow round＿unscaled（internal［boundary＿char］）； if $($ bchar $<0) \vee($ bchar $>255)$ then
begin bchar $\leftarrow-1$ ；lk＿started \leftarrow false；lk＿offset $\leftarrow 0$ ；end
else begin $l k$＿started \leftarrow true；lk＿offset $\leftarrow 1$ ；end；
〈Find the minimum lk＿offset and adjust all remainders 1138〉；
if bch＿label＜undefined＿label then
begin skip＿byte $(n l) \leftarrow q i(255)$ ；next＿char $(n l) \leftarrow q i(0)$ ；
op＿byte $(n l) \leftarrow q i\left(\left(\left(b c h _l a b e l+l k _o f f s e t\right)\right.\right.$ div 256$\left.)\right)$ ；
rem＿byte $(n l) \leftarrow q i\left(\left(\left(b c h _l a b e l+l k _o f f s e t\right) \bmod 256\right)\right) ;$ incr $(n l) ; \quad\{$ possibly $n l=$ lig＿table＿size +1$\}$
end
This code is used in section 1135.
1138．〈Find the minimum lk＿offset and adjust all remainders 1138$\rangle \equiv$
$k \leftarrow$ label＿ptr；$\quad\{$ pointer to the largest unallocated label \}
if label＿loc $[k]+l k$＿offset >255 then
begin lk＿offset $\leftarrow 0$ ；lk＿started \leftarrow false；\quad \｛ location 0 can do double duty \}
repeat char＿remainder $[$ label＿char $[k]] \leftarrow l k$＿offset；
while label＿loc $[k-1]=$ label＿loc $[k]$ do
begin decr (k) ；char＿remainder $[$ label＿char $[k]] \leftarrow l k _o f f s e t ;$ end；
incr（lk＿offset）；decr（k）；
until lk＿offset＋label＿loc $[k]<256 ; \quad\{$ N．B．：lk＿offset $=256$ satisfies this when $k=0\}$
end；
if $l k$＿offset >0 then
while $k>0$ do
begin char＿remainder［label＿char $[k]] \leftarrow$ char＿remainder $[$ label＿char $[k]]+l k _$－offset；decr (k) ； end

This code is used in section 1137.

1139．〈 Output the ligature／kern program 1139〉 \equiv
for $k \leftarrow 0$ to 255 do
if skip＿table $[k]<$ undefined＿label then
begin print＿nl（＂（local」label」＂）；print＿int（ k ）；print（＂：：பwas missing）＂）；
cancel＿skips（skip＿table［k］）；
end；
if $l k_{-}$started then $\left\{l k_{-} o f f s e t=1\right.$ for the special bchar $\}$
begin tfm＿out（255）；tfm＿out（bchar）；tfm＿two（0）；
end
else for $k \leftarrow 1$ to $l k_{-} o f f s e t$ do $\quad\{$ output the redirection specs $\}$
begin $l l \leftarrow$ label＿loc［label＿ptr］；
if bchar <0 then
begin tfm＿out（254）；tfm＿out（0）； end else begin $t f m_{\text {＿out }}(255)$ ；tfm＿out（bchar）；
end；
tfm＿two（ll＋lk＿offset）；
repeat decr（label＿ptr）；
until label＿loc［label＿ptr］＜ll； end；
for $k \leftarrow 0$ to $n l-1$ do $t f m_{-} q q q q($ lig＿kern $[k])$ ；
for $k \leftarrow 0$ to $n k-1$ do tfm－four（dimen＿out $(k e r n[k]))$
This code is used in section 1134.
1140．\langle Output the extensible character recipes and the font metric parameters 1140$\rangle \equiv$ for $k \leftarrow 0$ to $n e-1$ do $t f m_{-} q q q q($ exten $[k])$ ；
for $k \leftarrow 1$ to $n p$ do
if $k=1$ then
if abs $($ param［1］$)<$ fraction＿half then tfm＿four $(\operatorname{param}[1] * 16)$
else begin incr（tfm＿changed）；
if param［1］>0 then tfm＿four（el＿gordo）
else tfm＿four（－el＿gordo）；
end
else t fm＿four（dimen＿out（param $[k])$ ）；
if $t f m_{-}$changed >0 then
begin if $t f m_{-}$changed $=1$ then $p r i n t _n l\left("\left(a_{\sqcup} f o n t_{\sqcup} m e t r i c_{\sqcup} d i m e n s i o n "\right)\right.$
else begin print＿nl（＂（＂）；print＿int（tfm＿changed）；print（＂$\sqcup f$ ont」metric＿dimensions＂）； end；
$\operatorname{print}\left(\right.$＂$\sqcup$ had $_{\sqcup}$ to $_{\sqcup} \mathrm{be}_{\sqcup}$ decreased）＂）；
end
This code is used in section 1134.

1141．$\langle\log$ the subfile sizes of the TFM file 1141$\rangle \equiv$
begin wlog＿ln（ $\left.{ }^{-} \sqcup^{-}\right)$；
if bch＿label＜undefined＿label then $\operatorname{decr}(n l)$ ；

 lig＿table＿size ： $1,^{\prime} 1,^{\prime}$ ，max＿kerns $: 1,{ }^{\prime} \mathrm{k}, 256 \mathrm{e},{ }^{\prime}$ ，max＿font＿dimen ：1，＇p）＇）；
end
This code is used in section 1134.
1142. Generic font file format. The most important output produced by a typical run of METAFONT is the "generic font" (GF) file that specifies the bit patterns of the characters that have been drawn. The term generic indicates that this file format doesn't match the conventions of any name-brand manufacturer; but it is easy to convert GF files to the special format required by almost all digital phototypesetting equipment. There's a strong analogy between the DVI files written by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and the GF files written by METAFONT; and, in fact, the file formats have a lot in common.

A GF file is a stream of 8-bit bytes that may be regarded as a series of commands in a machine-like language. The first byte of each command is the operation code, and this code is followed by zero or more bytes that provide parameters to the command. The parameters themselves may consist of several consecutive bytes; for example, the 'boc' (beginning of character) command has six parameters, each of which is four bytes long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters can be either positive or negative, hence they range in value from -2^{31} to $2^{31}-1$. As in TFM files, numbers that occupy more than one byte position appear in BigEndian order, and negative numbers appear in two's complement notation.

A GF file consists of a "preamble," followed by a sequence of one or more "characters," followed by a "postamble." The preamble is simply a pre command, with its parameters that introduce the file; this must come first. Each "character" consists of a boc command, followed by any number of other commands that specify "black" pixels, followed by an eoc command. The characters appear in the order that METAFONT generated them. If we ignore no-op commands (which are allowed between any two commands in the file), each eoc command is immediately followed by a boc command, or by a post command; in the latter case, there are no more characters in the file, and the remaining bytes form the postamble. Further details about the postamble will be explained later.

Some parameters in GF commands are "pointers." These are four-byte quantities that give the location number of some other byte in the file; the first file byte is number 0 , then comes number 1 , and so on.
1143. The GF format is intended to be both compact and easily interpreted by a machine. Compactness is achieved by making most of the information relative instead of absolute. When a GF-reading program reads the commands for a character, it keeps track of two quantities: (a) the current column number, m; and (b) the current row number, n. These are 32 -bit signed integers, although most actual font formats produced from GF files will need to curtail this vast range because of practical limitations. (METAFONT output will never allow $|m|$ or $|n|$ to get extremely large, but the GF format tries to be more general.)
How do GF's row and column numbers correspond to the conventions of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and METAFONT? Well, the "reference point" of a character, in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$'s view, is considered to be at the lower left corner of the pixel in row 0 and column 0 . This point is the intersection of the baseline with the left edge of the type; it corresponds to location $(0,0)$ in METAFONT programs. Thus the pixel in GF row 0 and column 0 is METAFONT's unit square, comprising the region of the plane whose coordinates both lie between 0 and 1 . The pixel in GF row n and column m consists of the points whose METAFONT coordinates (x, y) satisfy $m \leq x \leq m+1$ and $n \leq y \leq n+1$. Negative values of m and x correspond to columns of pixels left of the reference point; negative values of n and y correspond to rows of pixels below the baseline.

Besides m and n, there's also a third aspect of the current state, namely the paint_switch, which is always either black or white. Each paint command advances m by a specified amount d, and blackens the intervening pixels if paint_switch = black; then the paint_switch changes to the opposite state. GF's commands are designed so that m will never decrease within a row, and n will never increase within a character; hence there is no way to whiten a pixel that has been blackened.
1144. Here is a list of all the commands that may appear in a GF file. Each command is specified by its symbolic name (e.g., boc), its opcode byte (e.g., 67), and its parameters (if any). The parameters are followed by a bracketed number telling how many bytes they occupy; for example, ' $d[2]$ ' means that parameter d is two bytes long.
paint_0 0 . This is a paint command with $d=0$; it does nothing but change the paint_switch from black to white or vice versa.
paint_1 through paint_63 (opcodes 1 to 63). These are paint commands with $d=1$ to 63 , defined as follows: If paint_switch $=$ black, blacken d pixels of the current row n, in columns m through $m+d-1$ inclusive. Then, in any case, complement the paint_switch and advance m by d.
paint1 $64 d[1]$. This is a paint command with a specified value of d; METAFONT uses it to paint when $64 \leq d<256$.
paint2 $65 d[2]$. Same as paint1, but d can be as high as 65535 .
paint3 $66 d[3]$. Same as paint1, but d can be as high as $2^{24}-1$. METAFONT never needs this command, and it is hard to imagine anybody making practical use of it; surely a more compact encoding will be desirable when characters can be this large. But the command is there, anyway, just in case.
boc $67 c[4] p[4]$ min_m [4] max_m [4] min_n [4] max_n [4]. Beginning of a character: Here c is the character code, and p points to the previous character beginning (if any) for characters having this code number modulo 256. (The pointer p is -1 if there was no prior character with an equivalent code.) The values of registers m and n defined by the instructions that follow for this character must satisfy $m i n _m \leq m \leq m a x _m$ and $m i n _n \leq n \leq m a x _n$. (The values of max_m and min_n need not be the tightest bounds possible.) When a GF-reading program sees a boc, it can use min_m, max_m, min_n, and max_n to initialize the bounds of an array. Then it sets $m \leftarrow \min m, n \leftarrow \max _n$, and paint_switch \leftarrow white.
boc1 68 c[1] del_m[1] max_m[1] del_n[1] max_n[1]. Same as boc, but p is assumed to be -1 ; also del_m $=$ $m a x _m-m i n _m$ and $d e l _n=m a x_{_} n-m i n_{_} n$ are given instead of min_m and min_n. The one-byte parameters must be between 0 and 255 , inclusive. (This abbreviated boc saves 19 bytes per character, in common cases.)
eoc 69. End of character: All pixels blackened so far constitute the pattern for this character. In particular, a completely blank character might have eoc immediately following boc.
skip0 70. Decrease n by 1 and set $m \leftarrow$ min_m, paint_switch \leftarrow white. (This finishes one row and begins another, ready to whiten the leftmost pixel in the new row.)
skip1 $71 d[1]$. Decrease n by $d+1$, set $m \leftarrow$ min_ m, and set paint_switch $\leftarrow w h i t e$. This is a way to produce d all-white rows.
skip2 $72 d[2]$. Same as skip1, but d can be as large as 65535 .
skip3 $73 d[3]$. Same as skip1, but d can be as large as $2^{24}-1$. METAFONT obviously never needs this command.
new_row_0 74. Decrease n by 1 and set $m \leftarrow$ min_m, paint_switch \leftarrow black. (This finishes one row and begins another, ready to blacken the leftmost pixel in the new row.)
new_row_1 through new_row_164 (opcodes 75 to 238). Same as new_row_0, but with $m \leftarrow$ min_m +1 through min_m +164 , respectively.
$x x x 1239 k[1] x[k]$. This command is undefined in general; it functions as a $(k+2)$-byte no_op unless special GF-reading programs are being used. METAFONT generates $x x x$ commands when encountering a special string; this occurs in the GF file only between characters, after the preamble, and before the postamble. However, $x x x$ commands might appear within characters, in GF files generated by other processors. It is recommended that x be a string having the form of a keyword followed by possible parameters relevant to that keyword.
$x x x 2240 k[2] x[k]$. Like $x x x 1$, but $0 \leq k<65536$.
$x x x 3241 k[3] x[k]$. Like $x x x 1$, but $0 \leq k<2^{24}$. METAFONT uses this when sending a special string whose length exceeds 255.
$x x x 4242 k[4] x[k]$. Like $x x x 1$, but k can be ridiculously large; k mustn't be negative.
yyy $243 y[4]$. This command is undefined in general; it functions as a 5 -byte no_op unless special GF-reading programs are being used. METAFONT puts scaled numbers into yyy's, as a result of numspecial commands; the intent is to provide numeric parameters to $x x x$ commands that immediately precede.
no_op 244. No operation, do nothing. Any number of no_op's may occur between GF commands, but a no_op cannot be inserted between a command and its parameters or between two parameters.
char_loc $245 c[1] d x[4] d y[4] w[4] p[4]$. This command will appear only in the postamble, which will be explained shortly.
char_loc0 $246 c[1] d m[1] w[4] p[4]$. Same as char_loc, except that $d y$ is assumed to be zero, and the value of $d x$ is taken to be $65536 * d m$, where $0 \leq d m<256$.
pre $247 i[1] k[1] x[k]$. Beginning of the preamble; this must come at the very beginning of the file. Parameter i is an identifying number for GF format, currently 131 . The other information is merely commentary; it is not given special interpretation like $x x x$ commands are. (Note that $x x x$ commands may immediately follow the preamble, before the first boc.)
post 248 . Beginning of the postamble, see below.
post_post 249 . Ending of the postamble, see below.
Commands 250-255 are undefined at the present time.
define gf_id_byte $=131 \quad\{$ identifies the kind of GF files described here $\}$
1145. METAFONT refers to the following opcodes explicitly.
define paint_ $0=0 \quad\{$ beginning of the paint commands $\}$
define paint1 $=64 \quad\{$ move right a given number of columns, then black \leftrightarrow white $\}$
define boc $=67 \quad\{$ beginning of a character $\}$
define boc1 $=68 \quad\{$ short form of boc $\}$
define $e o c=69 \quad\{$ end of a character $\}$
define skip $0=70 \quad\{$ skip no blank rows $\}$
define skip1 $=71 \quad$ \{skip over blank rows $\}$
define new_row_ $0=74 \quad\{$ move down one row and then right $\}$
define max_new_row $=164$ \{ the largest new_row command is new_row_164 \}
define $x x x 1=239 \quad\{$ for special strings $\}$
define $x x x 3=241 \quad\{$ for long special strings $\}$
define yyy $=243 \quad\{$ for numspecial numbers $\}$
define char_loc $=245 \quad\{$ character locators in the postamble $\}$
define pre $=247 \quad$ \{preamble $\}$
define post $=248 \quad$ \{ postamble beginning $\}$
define post_post $=249 \quad\{$ postamble ending $\}$
1146. The last character in a GF file is followed by 'post'; this command introduces the postamble, which summarizes important facts that METAFONT has accumulated. The postamble has the form

```
post \(p[4] d s[4]\) cs[4] hppp[4] vppp [4] min_m [4] max_m [4] min_n [4] max_n [4]
< character locators 〉
post_post \(q[4] i[1] 223\) 's \([\geq 4]\)
```

Here p is a pointer to the byte following the final $e o c$ in the file (or to the byte following the preamble, if there are no characters); it can be used to locate the beginning of $x x x$ commands that might have preceded the postamble. The $d s$ and $c s$ parameters give the design size and check sum, respectively, which are exactly the values put into the header of the TFM file that METAFONT produces (or would produce) on this run. Parameters hppp and vppp are the ratios of pixels per point, horizontally and vertically, expressed as scaled integers (i.e., multiplied by 2^{16}); they can be used to correlate the font with specific device resolutions, magnifications, and "at sizes." Then come min_m, max_m, min_n, and max_n, which bound the values that registers m and n assume in all characters in this GF file. (These bounds need not be the best possible; max_m and min_n may, on the other hand, be tighter than the similar bounds in boc commands. For example, some character may have min_n $=-100$ in its $b o c$, but it might turn out that n never gets lower than -50 in any character; then min_n can have any value ≤-50. If there are no characters in the file, it's possible to have min_m > max_m and/or min_n > max_n.)
1147. Character locators are introduced by char_loc commands, which specify a character residue c, character escapements ($d x, d y$), a character width w, and a pointer p to the beginning of that character. (If two or more characters have the same code c modulo 256 , only the last will be indicated; the others can be located by following backpointers. Characters whose codes differ by a multiple of 256 are assumed to share the same font metric information, hence the TFM file contains only residues of character codes modulo 256. This convention is intended for oriental languages, when there are many character shapes but few distinct widths.)

The character escapements ($d x, d y$) are the values of METAFONT's chardx and chardy parameters; they are in units of scaled pixels; i.e., $d x$ is in horizontal pixel units times 2^{16}, and $d y$ is in vertical pixel units times 2^{16}. This is the intended amount of displacement after typesetting the character; for DVI files, $d y$ should be zero, but other document file formats allow nonzero vertical escapement.

The character width w duplicates the information in the TFM file; it is a fix_word value relative to the design size, and it should be independent of magnification.

The backpointer p points to the character's boc, or to the first of a sequence of consecutive xxx or yyy or no_op commands that immediately precede the boc, if such commands exist; such "special" commands essentially belong to the characters, while the special commands after the final character belong to the postamble (i.e., to the font as a whole). This convention about p applies also to the backpointers in boc commands, even though it wasn't explained in the description of boc.

Pointer p might be -1 if the character exists in the TFM file but not in the GF file. This unusual situation can arise in METAFONT output if the user had proofing <0 when the character was being shipped out, but then made proofing ≥ 0 in order to get a GF file.
1148. The last part of the postamble, following the post_post byte that signifies the end of the character locators, contains q, a pointer to the post command that started the postamble. An identification byte, i, comes next; this currently equals 131, as in the preamble.
The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., ' 337 in octal). METAFONT puts out four to seven of these trailing bytes, until the total length of the file is a multiple of four bytes, since this works out best on machines that pack four bytes per word; but any number of 223's is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the very end.
This curious way to finish off a GF file makes it feasible for GF-reading programs to find the postamble first, on most computers, even though METAFONT wants to write the postamble last. Most operating systems permit random access to individual words or bytes of a file, so the GF reader can start at the end and skip backwards over the 223's until finding the identification byte. Then it can back up four bytes, read q, and move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can be read, so the GF reader can discover all the information needed for individual characters.
Unfortunately, however, standard Pascal does not include the ability to access a random position in a file, or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities, so GF format has been designed to work most efficiently with modern operating systems. But if GF files have to be processed under the restrictions of standard Pascal, one can simply read them from front to back. This will be adequate for most applications. However, the postamble-first approach would facilitate a program that merges two GF files, replacing data from one that is overridden by corresponding data in the other.

1149．Shipping characters out．The ship＿out procedure，to be described below，is given a pointer to an edge structure．Its mission is to describe the positive pixels in GF form，outputting a＂character＂to gf＿－file．

Several global variables hold information about the font file as a whole：$g f$＿min＿m，gf＿max＿m，gf＿min＿n， and $g f_{-} m a x_{-} n$ are the minimum and maximum GF coordinates output so far；$g f_{-} p r e v _p t r$ is the byte number following the preamble or the last eoc command in the output；total＿chars is the total number of characters （i．e．，boc ．e eoc segments）shipped out．There＇s also an array，char＿ptr，containing the starting positions of each character in the file，as required for the postamble．If character code c has not yet been output， char＿ptr $[c]=-1$ ．
\langle Global variables 13$\rangle+\equiv$
gf＿min＿m，gf＿max＿m，gf＿min＿n，gf＿max＿n：integer；\｛bounding rectangle \}
gf＿prev＿ptr：integer；\｛ where the present／next character started／starts \}
total＿chars：integer；\｛ the number of characters output so far \}
char＿ptr：array［eight＿bits］of integer；\｛where individual characters started \}
$g f_{-} d x, g f_{-} d y$ ：array［eight＿bits］of integer；\｛ device escapements \}
1150．〈Set initial values of key variables 21$\rangle+\equiv$
gf＿prev＿ptr $\leftarrow 0$ ；total＿chars $\leftarrow 0$ ；
1151．The GF bytes are output to a buffer instead of being sent byte－by－byte to $g f$＿file，because this tends to save a lot of subroutine－call overhead．METAFONT uses the same conventions for $g f$－file as $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ uses for its dvi＿file；hence if system－dependent changes are needed，they should probably be the same for both programs．

The output buffer is divided into two parts of equal size；the bytes found in gf＿buf［0 ．．half＿buf－1］ constitute the first half，and those in $g f_{-} b u f\left[h a l f_{-} b u f ~ . . g f_{-} b u f_{-} s i z e ~-~ 1\right] ~ c o n s t i t u t e ~ t h e ~ s e c o n d . ~ T h e ~ g l o b a l ~$ variable $g f$＿ptr points to the position that will receive the next output byte．When $g f$＿ptr reaches $g f-l i m i t$ ， which is always equal to one of the two values half＿buf or $g f_{-} b u f_{-} s i z e$ ，the half buffer that is about to be invaded next is sent to the output and gf＿limit is changed to its other value．Thus，there is always at least a half buffer＇s worth of information present，except at the very beginning of the job．
Bytes of the GF file are numbered sequentially starting with 0 ；the next byte to be generated will be number $g f_{-}$offset $+g f_{-} p t r$ ．
\langle Types in the outer block 18〉＋三
$g f_{-}$index $=0 . . g f_{-}$buf＿size；$\{$an index into the output buffer $\}$
1152．Some systems may find it more efficient to make $g f$＿buf a packed array，since output of four bytes at once may be facilitated．
\langle Global variables 13$\rangle+\equiv$
gf＿buf：array［gf＿index］of eight＿bits；\｛buffer for GF output \}
half＿buf：gf＿index；\｛ half of gf＿buf＿size \}
gf＿limit：gf＿index；\｛ end of the current half buffer \}
$g f_{-} p t r: g f _i n d e x ;$ \｛ the next available buffer address \}
gf＿offset：integer；\｛gf＿buf＿size times the number of times the output buffer has been fully emptied \}
1153．Initially the buffer is all in one piece；we will output half of it only after it first fills up．
\langle Set initial values of key variables 21$\rangle+\equiv$
$h a l f_{-} b u f \leftarrow g f_{_}$buf＿size div 2；gf＿limit \leftarrow gf＿buf＿size ；gf＿ptr $\leftarrow 0 ;$ gf＿offset $\leftarrow 0$ ；
1154. The actual output of $g f_{-} b u f[a \ldots b]$ to $g f_{-}$_ile is performed by calling write_gf (a, b). It is safe to assume that a and $b+1$ will both be multiples of 4 when write_gf (a, b) is called; therefore it is possible on many machines to use efficient methods to pack four bytes per word and to output an array of words with one system call.
\langle Declare generic font output procedures 1154$\rangle \equiv$
procedure write_gf ($a, b: g f_{-}$index);
var k : gf_index;
begin for $k \leftarrow a$ to b do write (gf_file, gf_buf $[k]$);
end;
See also sections $1155,1157,1158,1159,1160,1161,1163$, and 1165.
This code is used in section 989.
1155. To put a byte in the buffer without paying the cost of invoking a procedure each time, we use the macro gf_out.
define $g f_{-}$out $(\#) \equiv$ begin $g f _b u f[g f-p t r] \leftarrow \# ;$ incr $\left(g f _p t r\right)$;
if $g f_{-}$ptr $=g f_{-}$limit then $g f_{\text {_swap }}$;
end
\langle Declare generic font output procedures 1154$\rangle+\equiv$
procedure gf_swap; \{ outputs half of the buffer \}
begin if $g f_{\text {_limit }}=g f_{\text {_buf_size }}$ then begin write_gf $(0$, half_buf -1$)$; gf_limit \leftarrow half_buf ; gf_offset \leftarrow gf_offset $+g f_{-} b u f_{-} s i z e ;$ gf_ptr $\leftarrow 0$; end
else begin write_gf (half_buf, gf_buf_size - 1); gf_limit $\leftarrow g f_{_} b u f_{-} s i z e ;$ end;
end;
1156. Here is how we clean out the buffer when METAFONT is all through; gf_ptr will be a multiple of 4 .
\langle Empty the last bytes out of gf_buf 1156$\rangle \equiv$
if $g f_{-}$limit $=$half_buf then write_gf (half_buf, gf_buf_size -1);
if $g f$ _ptr >0 then write_gf $\left(0, g f _p t r-1\right)$
This code is used in section 1182.
1157. The $g f_{-}$four procedure outputs four bytes in two's complement notation, without risking arithmetic overflow.
\langle Declare generic font output procedures 1154$\rangle+\equiv$
procedure $g f_{-}$four (x : integer);
begin if $x \geq 0$ then gf_out (x div three_bytes)
else begin $x \leftarrow x+{ }^{\prime} 10000000000 ; x \leftarrow x+$ '10000000000; gf_out $((x$ div three_bytes $)+128)$; end;
$x \leftarrow x$ mod three_bytes $;$ gf_out (x div unity) $; x \leftarrow x \bmod$ unity; gf_out (x div '400); gf_out($x \bmod { }^{\prime} 400$);
end;
1158. Of course, it's even easier to output just two or three bytes.
\langle Declare generic font output procedures 1154$\rangle+\equiv$
procedure $g f_{_}$two (x : integer);
begin $g f_{\text {_out }}\left(x \operatorname{div}{ }^{\prime} 400\right)$; gf_out $\left(x \bmod { }^{\prime} 400\right)$;
end;
procedure $g f_{-}$three (x : integer);
begin gf_out (x div unity); gf_out (($x \bmod$ unity) div '400); gf_out $\left(x \bmod { }^{\prime} 400\right)$;
end;
1159. We need a simple routine to generate a paint command of the appropriate type.
\langle Declare generic font output procedures 1154$\rangle+\equiv$
procedure gf_paint($d:$ integer $) ; \quad\{$ here $0 \leq d<65536\}$
begin if $d<64$ then $g f_{-}$out (paint_ $0+d$)
else if $d<256$ then
begin gf_out(paint1); gf_out(d);
end
else begin gf_out (paint1 +1); gf_two (d);
end;
end;
1160. And $g f$ _string outputs one or two strings. If the first string number is nonzero, an $x x x$ command is generated.
\langle Declare generic font output procedures 1154$\rangle+\equiv$
procedure $g f$ _string (s, t : str_number);
var k : pool_pointer; l : integer; \{length of the strings to output \}
begin if $s \neq 0$ then
begin $l \leftarrow$ length (s);
if $t \neq 0$ then $l \leftarrow l+$ length (t);
if $l \leq 255$ then
begin $g f_{-}$out (xxx1); gf_out (l);
end
else begin $g f_{-}$out (xxx3); gf_three(l);
end;
for $k \leftarrow$ str_start $[s]$ to str_start $[s+1]-1$ do gf_out (so(str_pool $[k])$);
end;
if $t \neq 0$ then
for $k \leftarrow$ str_start $[t]$ to str_start $[t+1]-1$ do gf_out $\left(\right.$ so $\left.\left(s t r_{-p o o l ~}[k]\right)\right)$;
end;
1161. The choice between boc commands is handled by $g f-b o c$.

> define one_byte $(\#) \equiv \# \geq 0$ then
> if $\#<256$
\langle Declare generic font output procedures 1154$\rangle+\equiv$
procedure $g f$ _boc (min_m, max_m, min_n, max_n : integer);
label exit;
begin if min_m $<g f_{-} m i n_{-} m$ then $g f_{-} m i n_{-} m \leftarrow$ min_m;
if max_n $>$ gf_max_n then $g f _m a x _n ~ \leftarrow ~ m a x _n$;
if $b o c_{-} p=-1$ then
if one_byte(boc_c) then
if one_byte (max_m - min_m) then if one_byte (max_m) then
if one_byte(max_n - min_n) then
if one_byte (max_n) then
begin gf_out(boc1); gf_out(boc_c);

end;
gf_out(boc); gf_four(boc_c); gf_four(boc_p);
gf_four (min_m); gf_four(max_m); gf_four(min_n); gf_four(max_n);
exit: end;

1162．Two of the parameters to $g f_{-} b o c$ are global．
\langle Global variables 13$\rangle+\equiv$
boc＿c，boc＿p：integer；\｛parameters of the next boc command \}
1163．Here is a routine that gets a GF file off to a good start．
define check＿gf \equiv if output＿file＿name $=0$ then init＿gf
\langle Declare generic font output procedures 1154$\rangle+\equiv$
procedure init＿gf；
var k ：eight＿bits；\｛runs through all possible character codes \}
t ：integer；\｛ the time of this run \}
begin gf＿min＿m $\leftarrow 4096$ ；gf＿max＿m $\leftarrow-4096$ ；gf＿min＿n $\leftarrow 4096$ ；gf＿max＿n $\leftarrow-4096$ ；
for $k \leftarrow 0$ to 255 do char＿ptr $[k] \leftarrow-1$ ；
〈Determine the file extension，gf＿ext 1164〉；
set＿output＿file＿name；gf＿out（pre）；gf＿out（gf＿id＿byte）；\｛begin to output the preamble \}
old＿setting \leftarrow selector $;$ selector \leftarrow new＿string；print（＂ЧMETAFONT＿output ${ }_{\sqcup}$＂）；
print＿int（round＿unscaled（internal［year］））；print＿char（＂．＂）；print＿dd（round＿unscaled（internal［month］））；
print＿char（＂．＂）；print＿dd（round＿unscaled（internal［day］））；print＿char（＂：＂）；
$t \leftarrow$ round＿unscaled（internal［time］）；print＿dd（ t div 60 ）；print＿dd（ t mod 60 ）；
selector \leftarrow old＿setting；gf＿out（cur＿length）；gf＿string（0，make＿string）；decr（str＿ptr）；
pool＿ptr \leftarrow str＿start［str＿ptr］；\｛flush that string from memory \}
gf＿prev＿ptr $\leftarrow g f$＿offset $+g f_{-} p t r ;$
end；
1164．〈Determine the file extension，gf＿ext 1164$\rangle \equiv$
if internal $[h p p p] \leq 0$ then $g f_{-}$ext $\leftarrow " . g f "$
else begin old＿setting \leftarrow selector；selector \leftarrow new＿string；print＿char（＂．＂）；
print＿int（make＿scaled（internal［hppp］，59429463））；\｛ $\left.2^{32} / 72.27 \approx 59429463.07\right\}$
print（＂gf＂）；gf＿ext \leftarrow make＿string；selector \leftarrow old＿setting；
end
This code is used in section 1163.

1165．With those preliminaries out of the way，ship＿out is not especially difficult．
\langle Declare generic font output procedures 1154$\rangle+\equiv$
procedure ship＿out（ c ：eight＿bits）；
label done；
var f ：integer；\｛current character extension \}
prev＿m，m，mm：integer；\｛ previous and current pixel column numbers \}
prev＿n，n ：integer；$\quad\{$ previous and current pixel row numbers \}
$p, q:$ pointer；$\quad\{$ for list traversal $\}$
prev＿w，$w, w w$ ：integer；\｛ old and new weights \}
d ：integer；$\quad\{$ data from edge－weight node $\}$
delta：integer；\quad number of rows to skip \}
cur＿min＿m：integer；\｛starting column，relative to the current offset \}
$x_{_}$off ，y＿off：integer；\｛ offsets，rounded to integers \}
begin check＿gf ；$f \leftarrow$ round＿unscaled（internal［char＿ext］）；
x＿off \leftarrow round＿unscaled（internal［x＿offset］）；y＿off \leftarrow round＿unscaled（internal［y＿offset］）；
if term＿offset＞max＿print＿line－ 9 then print＿ln
else if（term＿offset $>0) \vee($ file＿offset $>0)$ then print＿char（＂ப＂）；
print＿char（＂［＂）；print＿int（c）；
if $f \neq 0$ then
begin print＿char（＂．＂）；print＿int（f）；
end；
update＿terminal；boc＿c $\leftarrow 256 * f+c$ ；boc＿$p \leftarrow$ char＿ptr $[c]$ ；char＿ptr $[c] \leftarrow g f_{-} p r e v _p t r ;$
if internal［proofing］>0 then 〈Send nonzero offsets to the output file 1166\rangle ；
〈Output the character represented in cur＿edges 1167〉；
gf＿out $($ eoc $) ;$ gf＿prev＿ptr $\leftarrow g f_{\text {＿offset }}+g f$＿ptr；incr（total＿chars）；print＿char（＂］＂）；update＿terminal； \｛ progress report \}

end；
1166．〈Send nonzero offsets to the output file 1166$\rangle \equiv$
begin if x_{-}off $\neq 0$ then
begin $g f_{-}$string（＂xoffset＂，0）；gf＿out（yyy）；gf＿four（x＿off＊unity）； end；
if $y_{\text {＿off }} \neq 0$ then
begin $g f$＿string（＂yoffset＂，0）；gf＿out（yyy）；gf＿four（y＿off＊unity）；
end；
end
This code is used in section 1165.
1167．〈Output the character represented in cur＿edges 1167〉三
prev＿n $\leftarrow 4096 ; p \leftarrow k n i l\left(c u r_{-}-d g e s\right) ; n \leftarrow n _m a x\left(c u r_{-} e d g e s\right)-z e r o-f i e l d ;$
while $p \neq$ cur＿edges do
begin 〈Output the pixels of edge row p to font row $n 1169\rangle$ ；
$p \leftarrow \operatorname{knil}(p) ; \operatorname{decr}(n)$ ；
end；
if prev＿n $=4096$ then \langle Finish off an entirely blank character 1168〉
else if $p r e v _n+y _o f f<g f _m i n _n$ then $g f_{-} m i n _n \leftarrow p r e v _n+y_{-} o f f$
This code is used in section 1165.

1168．〈Finish off an entirely blank character 1168$\rangle \equiv$
begin $g f_{-} b o c(0,0,0,0)$ ；
if $g f_{-}$max＿$m<0$ then $g f_{-}$max＿m $\leftarrow 0$ ；
if $g f_{-}$min＿$n>0$ then $g f_{-}$min＿$n \leftarrow 0$ ；
end
This code is used in section 1167.

1169．In this loop， $\operatorname{prev}_{-} w$ represents the weight at column prev＿m，which is the most recent column reflected in the output so far；w represents the weight at column m ，which is the most recent column in the edge data．Several edges might cancel at the same column position，so we need to look ahead to column $m m$ before actually outputting anything．
\langle Output the pixels of edge row p to font row $n 1169\rangle \equiv$
if unsorted $(p)>$ void then sort＿edges (p) ；
$q \leftarrow \operatorname{sorted}(p) ; w \leftarrow 0 ;$ prev＿$m \leftarrow-$ fraction＿one $; \quad$ \｛fraction＿one $\approx \infty$ \}
$w w \leftarrow 0 ; p r e v_{-} w \leftarrow 0 ; m \leftarrow p r e v_{-} m ;$
repeat if $q=$ sentinel then $m m \leftarrow$ fraction＿one
else begin $d \leftarrow h o(\operatorname{info}(q)) ; m m \leftarrow d \operatorname{div} 8 ; w w \leftarrow w w+(d \bmod 8)-z e r o _w ;$ end；
if $m m \neq m$ then
begin if prev＿$w \leq 0$ then
begin if $w>0$ then \langle Start black at $(m, n) 1170\rangle$ ；
end
else if $w \leq 0$ then \langle Stop black at $(m, n) 1171\rangle ;$
$m \leftarrow m m$ ；
end；
$w \leftarrow w w ; q \leftarrow \operatorname{link}(q) ;$
until $m m=$ fraction＿one；
if $w \neq 0$ then $\quad\{$ this should be impossible $\}$
print＿nl（＂（There｀s unbounded＿black ${ }_{\sqcup}$ in $_{\sqcup}$ character $_{\sqcup}$ shipped $_{\sqcup}$ out！）＂）；
if $p r e v_{-} m-m_{-} o f f s e t\left(c u r_{-} e d g e s\right)+x_{-} o f f>g f_{-} m a x _m$ then
$g f_{-} m a x _m \leftarrow p r e v _m-m_{-}$offset $\left(c u r_{-} e d g e s\right)+x_{-} o f f$
This code is used in section 1167.
1170．〈Start black at $(m, n) 1170\rangle \equiv$
begin if $p r e v _m=-$ fraction＿one then \langle Start a new row at $(m, n) 1172\rangle$
else $g f_{-} p a i n t\left(m-p r e v _m\right)$ ；
$p r e v _m \leftarrow m$ ；prev＿$w \leftarrow w$ ；
end
This code is used in section 1169.
1171．〈Stop black at $(m, n) 1171\rangle \equiv$
begin $g f_{-}$paint $\left(m-p r e v _m\right) ;$ prev＿$m \leftarrow m$ ；prev＿w $\leftarrow w$ ；
end
This code is used in section 1169.

1172．〈Start a new row at $(m, n) 1172\rangle \equiv$
begin if prev＿n $=4096$ then
begin $g f_{-} b o c\left(m_{-} m i n\left(c u r_{-} e d g e s\right)+x_{-} o f f-z e r o _f i e l d, m_{-} m a x\left(c u r_{-} e d g e s\right)+x_{-} o f f-z e r o _f i e l d\right.$, $\left.n _m i n\left(c u r _e d g e s\right)+y _o f f-z e r o _f i e l d, n+y_{-} o f f\right) ;$
cur＿min＿m $\leftarrow m_{-}$min $\left(c u r_{-} e d g e s\right)-z e r o _f i e l d+m_{-} o f f s e t\left(c u r_{-} e d g e s\right)$ ；
end
else if prev＿$n>n+1$ then $\left\langle\right.$ Skip down prev＿$_{-} n-n$ rows 1174\rangle
else 〈Skip to column m in the next row and goto done，or skip zero rows 1173〉；
$g f$＿paint $(m-$ cur＿min＿m $) ; \quad\{$ skip to column m ，painting white $\}$
done：prev＿$n \leftarrow n$ ；
end
This code is used in section 1170.
1173．〈Skip to column m in the next row and goto done，or skip zero rows 1173$\rangle \equiv$
begin delta $\leftarrow m-$ cur＿min＿m；
if delta＞max＿new＿row then $g f_{-}$out $(\operatorname{skip} 0)$
else begin $g f_{-}$out（ $n e w_{-} r o w_{-} 0+$ delta $)$ ；goto done；
end；
end
This code is used in section 1172.
1174．〈Skip down prev＿n $-n$ rows 1174$\rangle \equiv$
begin delta \leftarrow prev＿n $-n-1$ ；
if delta＜＇ 400 then
begin gf＿out（skip1）；gf＿out（delta）；
end
else begin $g f_{-} o u t($ skip $1+1)$ ；gf＿two（delta）； end；
end
This code is used in section 1172.
1175．Now that we＇ve finished ship＿out，let＇s look at the other commands by which a user can send things to the GF file．
\langle Cases of do＿statement that invoke particular commands 1020〉＋三 special＿command：do＿special；

1176．〈Put each of METAFONT＇s primitives into the hash table 192$\rangle+\equiv$ primitive（＂special＂，special＿command，string＿type）；
primitive（＂numspecial＂，special＿command，known）；

1177．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
procedure do＿special；
var m ：small＿number；\｛ either string＿type or known \}
begin $m \leftarrow$ cur＿mod；get＿x＿next；scan＿expression；
if internal $[$ proofing $] \geq 0$ then
if cur＿type $\neq m$ then 〈Complain about improper special operation 1178〉
else begin check＿gf；
if $m=$ string＿type then $g f_{-}$string $($cur＿exp, 0$)$
else begin $g f_{-} o u t(y y y)$ ；gf＿four（cur＿exp）；
end；
end；
flush＿cur＿exp（0）；
end；
1178．〈Complain about improper special operation 1178$\rangle \equiv$
begin $\exp p_{-}$err（＂Unsuitable expression＂）；

end
This code is used in section 1177.
1179．〈Send the current expression as a title to the output file 1179 〉三
begin check＿gf；gf＿string（＂title」＂，cur＿exp）；
end
This code is used in section 994.

1180．〈 Cases of print＿cmd＿mod for symbolic printing of primitives 212$\rangle+\equiv$ special＿command：if $m=$ known then print（＂numspecial＂）
else print（＂special＂）；
1181．〈Determine if a character has been shipped out 1181$\rangle \equiv$
begin cur＿exp \leftarrow round＿unscaled $($ cur＿exp $) \bmod 256$ ；
if cur＿exp <0 then cur＿exp $\leftarrow c u r_{-} \exp +256$ ；
boolean＿reset（char＿exists［cur＿exp］）；cur＿type \leftarrow boolean＿type；
end
This code is used in section 906.
1182. At the end of the program we must finish things off by writing the postamble. The TFM information should have been computed first.

An integer variable k and a scaled variable x will be declared for use by this routine.
\langle Finish the GF file 1182$\rangle \equiv$
begin $g f_{\text {_out }}$ (post); \{beginning of the postamble \}
gf_four (gf_prev_ptr); gf_prev_ptr $\leftarrow g f_{-}$offset $+g f_{-} p t r-5 ; \quad$ \{ post location $\}$
gf_four (internal[design_size] * 16);
for $k \leftarrow 1$ to 4 do gf_out (header_byte[k]); \{ the check sum \}
gf_four(internal[hppp]); gf-four(internal[vppp]);
gf_four (gf_min_m); gf_four(gf_max_m); gf_four(gf_min_n); gf_four(gf_max_n);
for $k \leftarrow 0$ to 255 do
if char_exists $[k]$ then
begin $x \leftarrow g f_{-} d x[k]$ div unity;
if $\left(g f_{-} d y[k]=0\right) \wedge(x \geq 0) \wedge(x<256) \wedge\left(g f_{-} d x[k]=x *\right.$ unity $)$ then
begin gf_out (char_loc +1); gf_out (k); gf_out (x);
end
else begin gf_out(char_loc); gf_out(k); gf_four(gf_dx[k]); gf_four(gf_dy[k]);
end;
$x \leftarrow$ value(tfm_width $[k])$;
if abs $(x)>$ max_tfm_dimen then
if $x>0$ then $x \leftarrow$ three_bytes -1 else $x \leftarrow 1$-three_bytes
else $x \leftarrow$ make_scaled $(x * 16$, internal[design_size]);
gf_four (x); gf_four (char_ptr [k]);
end;
gf_out(post_post); gf_four(gf_prev_ptr); gf_out(gf_id_byte);
$k \leftarrow 4+\left(\left(g f_{-} b u f_{-} s i z e-g f_{-} p t r\right) \bmod 4\right) ; \quad\{$ the number of 223 's $\}$
while $k>0$ do
begin gf_out(223); decr (k);
end;
\langle Empty the last bytes out of gf_buf 1156\rangle;

print("ucharacter");
if total_chars $\neq 1$ then print_char("s");
print(", ப"); print_int(gf_offset + gf_ptr); print("பbytes)."); b_close(gf_file);
end
This code is used in section 1206.

1183．Dumping and undumping the tables．After INIMF has seen a collection of macros，it can write all the necessary information on an auxiliary file so that production versions of METAFONT are able to initialize their memory at high speed．The present section of the program takes care of such output and input．We shall consider simultaneously the processes of storing and restoring，so that the inverse relation between them is clear．

The global variable base＿ident is a string that is printed right after the banner line when METAFONT is ready to start．For INIMF this string says simply＇（INIMF）＇；for other versions of METAFONT it says，for example，＇（preloaded base＝plain 1984．2．29）＇，showing the year，month，and day that the base file was created．We have base＿ident $=0$ before METAFONT＇s tables are loaded．
\langle Global variables 13$\rangle+\equiv$
base＿ident：str＿number；
1184．〈Set initial values of key variables 21$\rangle+\equiv$
base＿ident $\leftarrow 0$ ；
1185．〈Initialize table entries（done by INIMF only） 176$\rangle+\equiv$ base＿ident \leftarrow＂$($ INIMF）＂；

1186．〈Declare action procedures for use by do＿statement 995$\rangle+\equiv$
init procedure store＿base＿file；
var k ：integer；\｛all－purpose index \}
$p, q:$ pointer；\｛ all－purpose pointers \}
x ：integer；\｛something to dump \}
w：four＿quarters；\｛four ASCII codes \}
begin 〈Create the base＿ident，open the base file，and inform the user that dumping has begun 1200〉；
\langle Dump constants for consistency check 1190\rangle ；
〈Dump the string pool 1192〉；
\langle Dump the dynamic memory 1194〉；
〈Dump the table of equivalents and the hash table 1196〉；
\langle Dump a few more things and the closing check word 1198〉；
〈 Close the base file 1201〉；
end；
tini

1187．Corresponding to the procedure that dumps a base file，we also have a function that reads one in． The function returns false if the dumped base is incompatible with the present METAFONT table sizes，etc．
define off＿base $=6666$ \｛ go here if the base file is unacceptable \}
define too＿small $(\#) \equiv$
begin wake＿up＿terminal；wterm＿ln（－－－－！」Must ${ }_{\llcorner }$increase ${ }_{\sqcup}$ the $_{\sqcup}{ }^{-}$，\＃）；goto off＿base； end
〈Declare the function called open＿base＿file 779〉
function load＿base＿file：boolean；
label off＿base，exit；
var k ：integer；\｛ all－purpose index \}
$p, q:$ pointer；$\{$ all－purpose pointers \}
x ：integer；\｛ something undumped $\}$
w：four＿quarters；\｛four ASCII codes \}
begin 〈Undump constants for consistency check 1191〉；
〈Undump the string pool 1193〉；
〈Undump the dynamic memory 1195〉；
〈Undump the table of equivalents and the hash table 1197〉；
〈Undump a few more things and the closing check word 1199〉；
load＿base＿file \leftarrow true；return；；it worked！\}

load＿base＿file \leftarrow false；
exit：end；
1188．Base files consist of memory＿word items，and we use the following macros to dump words of different types：
define dump＿wd（\＃）\equiv
begin base＿file $\uparrow \leftarrow$ \＃；put（base＿file）；end
define dump＿int（\＃）\equiv
begin base＿file \uparrow ．int $\leftarrow \#$ ；put（base＿file）；end
define dump＿hh（\＃）\equiv
begin base＿file $\uparrow . h h \leftarrow \#$ ；put（base＿file）；end
define dump＿qqqq（\＃）三
begin base＿file $\uparrow . q q q q \leftarrow$ \＃；put（base＿file）；end
\langle Global variables 13$\rangle+\equiv$
base＿file：word＿file；\｛ for input or output of base information \}

1189．The inverse macros are slightly more complicated，since we need to check the range of the values we are reading in．We say＇$u n d u m p(a)(b)(x)$＇to read an integer value x that is supposed to be in the range $a \leq x \leq b$ ．System error messages should be suppressed when undumping．
define undump＿wd $(\#) \equiv$
begin get（base＿file）；\＃\leftarrow base＿file \uparrow ；end
define undump＿int（\＃）\equiv
begin get（base＿file）；\＃\leftarrow base＿file \uparrow ．int ；end
define undump＿hh（\＃）三
begin get（base＿file）；\＃\leftarrow base＿file $\uparrow . h h$ ；end
define undump＿qqqq（\＃）三
begin get（base＿file）；\＃\leftarrow base＿file $\uparrow . q q q q$ ；end
define undump＿end＿end $(\#) \equiv \# \leftarrow x$ ；end
define undump＿end $(\#) \equiv(x>\#)$ then goto off＿base else undump＿end＿end
define undump（\＃）\equiv
begin undump＿int (x) ；
if $(x<\#) \vee$ undump＿end
define $u n d u m p _s i z e _e n d _e n d(\#) \equiv$ too＿small（\＃）else undump＿end＿end
define undump＿size＿end（\＃）\equiv
if $x>$ \＃then undump＿size＿end＿end
define undump＿size（\＃）\equiv
begin undump＿int (x) ；
if $x<$ \＃then goto off＿base；
undump＿size＿end
1190．The next few sections of the program should make it clear how we use the dump／undump macros．
\langle Dump constants for consistency check 1190$\rangle \equiv$
dump＿int（＠\＄）；
dump＿int（mem＿min）；
dump＿int（ mem＿top）；
dump＿int（hash＿size）；
dump＿int（hash＿prime）；
dump＿int（max＿in＿open）
This code is used in section 1186.
1191．Sections of a WEB program that are＂commented out＂still contribute strings to the string pool； therefore INIMF and METAFONT will have the same strings．（And it is，of course，a good thing that they do．）
\langle Undump constants for consistency check 1191〉 \equiv
$x \leftarrow$ base＿file \uparrow ．int；
if $x \neq @ \$$ then goto off＿base；$\{$ check that strings are the same $\}$
undump＿int（ x ）；
if $x \neq$ mem＿min then goto off＿base；
undump＿int（ x ）；
if $x \neq$ mem＿top then goto off＿base；
undump＿int（ x ）；
if $x \neq$ hash＿size then goto off＿base；
undump＿int（ x ）；
if $x \neq$ hash＿prime then goto off＿base；
undump＿int（x）；
if $x \neq$ max＿in＿open then goto off＿base
This code is used in section 1187.
1192. define dump_four_ASCII $\equiv w . b 0 \leftarrow q i\left(s o\left(s t r_{-} p o o l[k]\right)\right) ; w . b 1 \leftarrow q i\left(s o\left(s t r _p o o l[k+1]\right)\right)$; $w . b 2 \leftarrow q i($ so $($ str_pool $[k+2])) ; w . b 3 \leftarrow q i($ so $($ str_pool $[k+3])) ;$ dump_qqqq (w)
\langle Dump the string pool 1192$\rangle \equiv$
dump_int (pool_ptr); dump_int(str_ptr);
for $k \leftarrow 0$ to str_ptr do dump_int(str_start $[k])$;
$k \leftarrow 0$;
while $k+4<$ pool_ptr do
begin dump_four_ASCII; $k \leftarrow k+4$;
end;
$k \leftarrow$ pool_ptr - 4; dump_four_ASCII; print_ln; print_int(str_ptr);

This code is used in section 1186.
1193. define undump_four_ASCII $\equiv \operatorname{undump_ qqqq}(w) ;$ str_pool $[k] \leftarrow \operatorname{si}(q o(w . b 0))$;

$$
\text { str_pool }[k+1] \leftarrow \operatorname{si}(q o(w . b 1)) ; \text { str_pool }[k+2] \leftarrow \operatorname{si}(q o(w . b 2)) ; \text { str_pool }[k+3] \leftarrow \operatorname{si}(q o(w . b 3))
$$

\langle Undump the string pool 1193$\rangle \equiv$
undump_size $(0)($ pool_size $)(-$ string \lrcorner pool $_{\sqcup}$ Size $\left.^{-}\right)($pool_ptr $) ;$
undump_size (0)(max_strings) (${ }^{-}$max $_{\sqcup}$ strings $\left.^{-}\right)$(str_ptr);
for $k \leftarrow 0$ to $s t r_{-} p t r$ do
begin $\operatorname{undump}(0)($ pool_ptr $)($ str_start $[k]) ;$ str_ref $[k] \leftarrow$ max_str_ref;
end;
$k \leftarrow 0 ;$
while $k+4<$ pool_ptr do
begin undump_four_ASCII; $k \leftarrow k+4$;
end;
$k \leftarrow$ pool_ptr - 4; undump_four_ASCII; init_str_ptr \leftarrow str_ptr ; init_pool_ptr \leftarrow pool_ptr;
max_str_ptr \leftarrow str_ptr $;$ max_pool_ptr \leftarrow pool_ptr
This code is used in section 1187.
1194. By sorting the list of available spaces in the variable-size portion of mem, we are usually able to get by without having to dump very much of the dynamic memory.

We recompute var_used and dyn_used, so that INIMF dumps valid information even when it has not been gathering statistics.
\langle Dump the dynamic memory 1194$\rangle \equiv$
sort_avail; var_used $\leftarrow 0$; dump_int (lo_mem_max); dump_int(rover); $p \leftarrow$ mem_min $; q \leftarrow$ rover $; x \leftarrow 0$;
repeat for $k \leftarrow p$ to $q+1$ do dump_wd (mem $[k])$;
$x \leftarrow x+q+2-p ;$ var_used \leftarrow var_used $+q-p ; p \leftarrow q+$ node_size $(q) ; q \leftarrow r \operatorname{link}(q) ;$
until $q=$ rover;
var_used \leftarrow var_used + lo_mem_max $-p ;$ dyn_used \leftarrow mem_end +1 -hi_mem_min;
for $k \leftarrow p$ to lo_mem_max do dump_wd (mem $[k])$;
$x \leftarrow x+$ lo_mem_max $+1-p$; dump_int(hi_mem_min); dump_int(avail);
for $k \leftarrow h i _m e m_{-} m i n$ to mem_end do dump_wd (mem $\left.[k]\right)$;
$x \leftarrow x+$ mem_end +1 -hi_mem_min $; p \leftarrow$ avail;
while $p \neq$ null do
begin decr (dyn_used); $p \leftarrow \operatorname{link}(p)$;
end;
dump_int(var_used); dump_int(dyn_used); print_ln; print_int(x);

print_int(dyn_used)
This code is used in section 1186.

1195．〈Undump the dynamic memory 1195$\rangle \equiv$
undump（lo＿mem＿stat＿max＋1000）（hi＿mem＿stat＿min－1）（lo＿mem＿max）；
undump（lo＿mem＿stat＿max +1 ）（lo＿mem＿max $)($ rover $) ; p \leftarrow$ mem＿min $; q \leftarrow$ rover $;$
repeat for $k \leftarrow p$ to $q+1$ do undump＿wd（mem $[k])$ ；
$p \leftarrow q+$ node＿size (q) ；
if $(p>$ lo＿mem＿max $) \vee((q \geq \operatorname{rlink}(q)) \wedge(\operatorname{rlink}(q) \neq$ rover $))$ then goto off＿base；
$q \leftarrow \operatorname{rlink}(q)$ ；
until $q=$ rover；
for $k \leftarrow p$ to lo＿mem＿max do undump＿wd（ $\operatorname{mem}[k])$ ；
undump $($ lo＿mem＿max +1$)($ hi＿mem＿stat＿min $)\left(h i _m e m _m i n\right) ; ~ u n d u m p(n u l l)\left(m e m _t o p\right)(a v a i l) ;$
mem＿end \leftarrow mem＿top；

undump＿int（var＿used）；undump＿int（dyn＿used）
This code is used in section 1187.
1196．A different scheme is used to compress the hash table，since its lower region is usually sparse．When $\operatorname{text}(p) \neq 0$ for $p \leq h a s h _u s e d$ ，we output three words：$p, h a s h[p]$ ，and $e q t b[p]$ ．The hash table is，of course， densely packed for $p \geq$ hash＿used，so the remaining entries are output in a block．
\langle Dump the table of equivalents and the hash table 1196$\rangle \equiv$
dump＿int（hash＿used）；st＿count \leftarrow frozen＿inaccessible $-1-$ hash＿used；
for $p \leftarrow 1$ to hash＿used do if $\operatorname{text}(p) \neq 0$ then
begin dump＿int (p) ；dump＿hh（hash $[p])$ ；dump＿hh（eqtb $[p]) ;$ incr（st＿count）； end；
for $p \leftarrow h a s h _u s e d+1$ to $h a s h_{-} e n d$ do
begin dump＿hh（hash $[p])$ ；dump＿hh（eqtb $[p])$ ；
end；
dump＿int（st＿count）；
print＿ln；print＿int（st＿count）；print（＂பsymbolic」tokens＂）
This code is used in section 1186.
1197．〈Undump the table of equivalents and the hash table 1197〉三
undump $(1)($ frozen＿inaccessible $)($ hash＿used $) ; p \leftarrow 0$ ；
repeat $\operatorname{undump}(p+1)($ hash＿used $)(p)$ ；undump＿hh（hash $[p])$ ；undump＿hh（eqtb $[p])$ ；
until $p=h a s h _u s e d ;$
for $p \leftarrow h a s h_{-} u s e d+1$ to $h a s h_{-} e n d$ do
begin undump＿hh（hash［p］）；undump＿hh（eqtb［p］）；
end；
undump＿int（st＿count）
This code is used in section 1187.

1198．We have already printed a lot of statistics，so we set tracing＿stats $\leftarrow 0$ to prevent them from appearing again．
\langle Dump a few more things and the closing check word 1198$\rangle \equiv$
dump＿int（int＿ptr）；
for $k \leftarrow 1$ to int＿ptr do
begin dump＿int（internal $[k])$ ；dump＿int（int＿name $[k]$ ）；
end；
dump＿int（start＿sym）；dump＿int（interaction）；dump＿int（base＿ident）；dump＿int（bg＿loc）；
dump＿int（eg＿loc）；dump＿int（serial＿no）；dump＿int（69069）；internal［tracing＿stats］$\leftarrow 0$
This code is used in section 1186.

1199．〈Undump a few more things and the closing check word 1199$\rangle \equiv$ undump（max＿given＿internal）（max＿internal）（int＿ptr）；
for $k \leftarrow 1$ to int＿ptr do
begin undump＿int（internal［k］）；undump（0）（str＿ptr）（int＿name［k］）；
end；
$\operatorname{undump}(0)($ frozen＿inaccessible $)($ start＿sym $) ; ~ u n d u m p($ batch＿mode）（error＿stop＿mode）（interaction）；
undump $(0)($ str＿ptr $)($ base＿ident $) ; ~ u n d u m p(1)\left(h a s h _e n d\right)\left(b g_{-} l o c\right) ; ~ u n d u m p(1)\left(h a s h _e n d\right)\left(e g _l o c\right) ;$
undump＿int（serial＿no）；
undump＿int (x) ；if $(x \neq 69069) \vee$ eof（base＿file）then goto off＿base
This code is used in section 1187.
1200．〈Create the base＿ident，open the base file，and inform the user that dumping has begun 1200$\rangle \equiv$ selector \leftarrow new＿string ；print $(" \sqcup($ preloaded」base＝＂）；print（job＿name）；print＿char（＂ь＂）；
print＿int（round＿unscaled（internal［year］））；print＿char（＂．＂）；print＿int（round＿unscaled（internal［month］））； print＿char（＂．＂）；print＿int（round＿unscaled（internal［day］））；print＿char（＂）＂）；
if interaction $=$ batch＿mode then selector \leftarrow log＿only
else selector \leftarrow term＿and＿log；
str＿room (1) ；base＿ident \leftarrow make＿string；str＿ref $[$ base＿ident $] \leftarrow$ max＿str＿ref；
pack＿job＿name（base＿extension）；
while $\neg w_{\text {＿open＿out（base＿file）}}$ do prompt＿file＿name（＂base $\mathrm{ff}^{\mathrm{f}} \mathrm{lle}_{\llcorner }$name＂，base＿extension）； print＿nl（＂Beginning」to」dump」on」file」＂）；slow＿print（w＿make＿name＿string（base＿file））； flush＿string（str＿ptr－1）；print＿nl（＂＂）；slow＿print（base＿ident）
This code is used in section 1186.
1201．〈Close the base file 1201$\rangle \equiv$ w＿close（base＿file）
This code is used in section 1186.

1202．The main program．This is it：the part of METAFONT that executes all those procedures we have written．

Well－almost．We haven＇t put the parsing subroutines into the program yet；and we＇d better leave space for a few more routines that may have been forgotten．

〈Declare the basic parsing subroutines 823〉
〈Declare miscellaneous procedures that were declared forward 224〉
〈Last－minute procedures 1205〉
1203．We＇ve noted that there are two versions of METAFONT84．One，called INIMF，has to be run first；it initializes everything from scratch，without reading a base file，and it has the capability of dumping a base file．The other one is called＇VIRMF＇；it is a＂virgin＂program that needs to input a base file in order to get started．VIRMF typically has a bit more memory capacity than INIMF，because it does not need the space consumed by the dumping／undumping routines and the numerous calls on primitive，etc．

The VIRMF program cannot read a base file instantaneously，of course；the best implementations therefore allow for production versions of METAFONT that not only avoid the loading routine for Pascal object code， they also have a base file pre－loaded．This is impossible to do if we stick to standard Pascal；but there is a simple way to fool many systems into avoiding the initialization，as follows：（1）We declare a global integer variable called ready＿already．The probability is negligible that this variable holds any particular value like 314159 when VIRMF is first loaded．（2）After we have read in a base file and initialized everything，we set ready＿already $\leftarrow 314159$ ．（3）Soon VIRMF will print＇$*$＇，waiting for more input；and at this point we interrupt the program and save its core image in some form that the operating system can reload speedily．（4）When that core image is activated，the program starts again at the beginning；but now ready＿already $=314159$ and all the other global variables have their initial values too．The former chastity has vanished！

In other words，if we allow ourselves to test the condition ready＿already $=314159$ ，before ready＿already has been assigned a value，we can avoid the lengthy initialization．Dirty tricks rarely pay off so handsomely．

On systems that allow such preloading，the standard program called MF should be the one that has plain base preloaded，since that agrees with The METAFONT book．Other versions，e．g．，CMMF，should also be provided for commonly used bases such as cmbase．
\langle Global variables 13$\rangle+\equiv$
ready＿already：integer；\｛ a sacrifice of purity for economy \}

1204．Now this is really it：METAFONT starts and ends here．
The initial test involving ready＿already should be deleted if the Pascal runtime system is smart enough to detect such a＂mistake．＂
begin $\{$ start＿here $\}$
history \leftarrow fatal＿error＿stop $; \quad$ \｛ in case we quit during initialization $\}$
t＿open＿out；\｛open the terminal for output \}
if ready＿already $=314159$ then goto start＿of＿MF；
〈 Check the＂constant＂values for consistency 14〉
if $\mathrm{bad}>0$ then

goto final＿end；
end；
initialize；\quad \｛ set global variables to their starting values \}
init if \neg get＿strings＿started then goto final＿end；
init＿tab；\｛ initialize the tables \}
init＿prim；\｛call primitive for each primitive $\}$
init＿str＿ptr \leftarrow str＿ptr；init＿pool＿ptr \leftarrow pool＿ptr；
max＿str＿ptr \leftarrow str＿ptr；max＿pool＿ptr \leftarrow pool＿ptr；fix＿date＿and＿time；
tini
ready＿already $\leftarrow 314159$ ；
start＿of＿MF：〈Initialize the output routines 55\rangle ；
\langle Get the first line of input and prepare to start 1211〉；
history \leftarrow spotless ；\｛ready to go！\}
if start＿sym >0 then $\{$ insert the＇everyjob＇symbol\}
begin cur＿sym \leftarrow start＿sym；back＿input；
end；
main＿control；\｛ come to life $\}$
final＿cleanup；\｛ prepare for death $\}$
end＿of＿MF：close＿files＿and＿terminate；
final＿end：ready＿already $\leftarrow 0$ ；
end．

1205．Here we do whatever is needed to complete METAFONT＇s job gracefully on the local operating system．The code here might come into play after a fatal error；it must therefore consist entirely of＂safe＂ operations that cannot produce error messages．For example，it would be a mistake to call str＿room or make＿string at this time，because a call on overflow might lead to an infinite loop．
If final＿cleanup is bypassed，this program doesn＇t bother to close the input files that may still be open．
\langle Last－minute procedures 1205$\rangle \equiv$
procedure close＿files＿and＿terminate；
var k ：integer；$\{$ all－purpose index $\}$
$l h$ ：integer；\｛ the length of the TFM header，in words \}
lk＿offset： $0 . .256$ ；\｛ extra words inserted at beginning of lig＿kern array \}
p：pointer；\｛runs through a list of TFM dimensions \}
x ：scaled；\｛a tfm＿width value being output to the GF file \}
begin stat if internal $[$ tracing＿stats $]>0$ then 〈Output statistics about this job 1208〉；tats
wake＿up＿terminal；\langle Finish the TFM and GF files 1206 \rangle ；
if $l o g_{\text {＿opened }}$ then
begin wlog＿cr；a＿close（log＿file）；selector \leftarrow selector -2 ；
if selector $=$ term＿only then
begin print＿nl（＂Transcript＿written $\mathrm{U}_{\sqcup} \mathrm{n}_{\sqcup}$＂）；slow＿print（log＿name）；print＿char（＂．＂）；
end；
end；
end；
See also sections 1209，1210，and 1212.
This code is used in section 1202.
1206．We want to finish the GF file if and only if it has already been started；this will be true if and only if gf＿prev＿ptr is positive．We want to produce a TFM file if and only if fontmaking is positive．The TFM widths must be computed if there＇s a GF file，even if there＇s going to be no TFM file．
We reclaim all of the variable－size memory at this point，so that there is no chance of another memory overflow after the memory capacity has already been exceeded．
\langle Finish the TFM and GF files 1206$\rangle \equiv$
if（gf＿prev＿ptr $>0) \vee($ internal $[$ fontmaking $]>0)$ then begin 〈Make the dynamic memory into one big available node 1207〉；〈 Massage the TFM widths 1124〉；
fix＿design＿size；fix＿check＿sum；
if internal［fontmaking］>0 then
begin \langle Massage the TFM heights，depths，and italic corrections 1126\rangle ；
internal［fontmaking］$\leftarrow 0 ; \quad$ \｛ avoid loop in case of fatal error \}
\langle Finish the TFM file 1134〉；
end；
if $g f$＿prev＿ptr >0 then 〈Finish the GF file 1182〉； end
This code is used in section 1205.
1207．〈Make the dynamic memory into one big available node 1207$\rangle \equiv$
rover \leftarrow lo＿mem＿stat＿max $+1 ;$ link $($ rover $) \leftarrow$ empty＿flag；lo＿mem＿max \leftarrow hi＿mem＿min -1 ；
if lo＿mem＿max－rover $>$ max＿halfword then lo＿mem＿max \leftarrow max＿halfword + rover ；
node＿size $($ rover $) \leftarrow$ lo＿mem＿max－rover $;$ llink $($ rover $) \leftarrow$ rover $;$ rlink $($ rover $) \leftarrow$ rover $;$
link $($ lo＿mem＿max $) \leftarrow$ null；info $\left(l o _m e m _m a x\right) ~ \leftarrow n u l l ~$
This code is used in section 1206.
1208. The present section goes directly to the log file instead of using print commands, because there's no need for these strings to take up str_pool memory when a non-stat version of METAFONT is being used.
\langle Output statistics about this job 1208〉 \equiv
if log_opened $^{\text {then }}$

$w \log \left({ }^{-} \sqcup^{\prime}\right.$, max_str_ptr - init_str_ptr : 1, 'ustring');
if max_str_ptr \neq init_str_ptr +1 then $w \log \left({ }^{\prime} \mathbf{s}^{\prime}\right)$;
wlog_ln(${ }^{-}{ }^{\circ} \mathrm{out}_{\sqcup} \mathrm{of}_{\sqcup}{ }^{\prime}$, max_strings - init_str_ptr : 1);

pool_size - init_pool_ptr : 1);
$w l o g _l n\left({ }^{\prime} \sqcup^{\prime}, l o _m e m _m a x-m e m _m i n+m e m _e n d-h i _m e m _m i n ~+2: 1, ~\right.$

end
This code is used in section 1205.

1209．We get to the final＿cleanup routine when end or dump has been scanned．
\langle Last－minute procedures 1205$\rangle+\equiv$
procedure final＿cleanup；
label exit；
var c ：small＿number；$\{0$ for end， 1 for dump $\}$
begin $c \leftarrow$ cur＿mod；
if job＿name $=0$ then open＿log＿file；
while input＿ptr >0 do
if token＿state then end＿token＿list else end＿file＿reading；
while loop＿ptr \neq null do stop＿iteration；
while open＿parens >0 do
begin print（＂\sqcup ）＂）；decr（open＿parens）；
end；
while cond＿ptr \neq null do
begin print＿nl（＂（endபoccurredபwhen ${ }^{\bullet}$＂）；
print＿cmd＿mod（fi＿or＿else，cur＿if）；\｛＇if＇or＇elseif＇or＇else＇\}
if $i f$＿line $\neq 0$ then
begin print（＂ч๐пபline \sqcup＂）；print＿int（if＿line）；
end；
print（＂৬was＿incomplete）＂）；if＿line $\leftarrow i f_{-}$line＿field（cond＿ptr）；cur＿if \leftarrow name＿type（cond＿ptr）；
loop＿ptr \leftarrow cond＿ptr $;$ cond＿ptr \leftarrow link（cond＿ptr）；free＿node（loop＿ptr，if＿node＿size）；
end；
if history \neq spotless then
if $(($ history $=$ warning＿issued $) \vee($ interaction $<$ error＿stop＿mode $))$ then
if selector $=$ term＿and＿log then
begin selector \leftarrow term＿only；

selector \leftarrow term＿and＿log；
end；
if $c=1$ then
begin init store＿base＿file；return；tini

end；
exit：end；
1210．〈Last－minute procedures 1205$\rangle+\equiv$
init procedure init＿prim；\｛initialize all the primitives \}
begin 〈Put each of METAFONT＇s primitives into the hash table 192 \rangle ；
end；
procedure init＿tab；\quad \｛ initialize other tables $\}$
var k ：integer；\｛all－purpose index \}
begin 〈Initialize table entries（done by INIMF only） 176 〉
end；
tini
1211. When we begin the following code, METAFONT's tables may still contain garbage; the strings might not even be present. Thus we must proceed cautiously to get bootstrapped in.

But when we finish this part of the program, METAFONT is ready to call on the main_control routine to do its work.
\langle Get the first line of input and prepare to start 1211$\rangle \equiv$
begin 〈Initialize the input routines 657\rangle;
if (base_ident $=0) \vee($ buffer $[l o c]=" \& ")$ then
begin if base_ident $\neq 0$ then initialize; \{ erase preloaded base \}
if \neg open_base_file then goto final_end;
if \neg load_base_file then
begin w_close(base_file); goto final_end;
end;
w_close(base_file);
while $(l o c<l i m i t) \wedge\left(b u f f e r[l o c]=\right.$ " $\left.\mathrm{U}^{\prime}\right)$ do incr (loc);
end;
buffer $[$ limit $] \leftarrow$ "\%";
fix_date_and_time ; init_randoms(sys_time + sys_day $*$ unity);
\langle Initialize the print selector based on interaction 70\rangle;
if loc < limit then
if buffer $[l o c] \neq " \backslash "$ then start_input; \{input assumed \}
end
This code is used in section 1204.

1212．Debugging．Once METAFONT is working，you should be able to diagnose most errors with the show commands and other diagnostic features．But for the initial stages of debugging，and for the revelation of really deep mysteries，you can compile METAFONT with a few more aids，including the Pascal runtime checks and its debugger．An additional routine called debug＿help will also come into play when you type＇D＇ after an error message；debug＿help also occurs just before a fatal error causes METAFONT to succumb．
The interface to debug＿help is primitive，but it is good enough when used with a Pascal debugger that allows you to set breakpoints and to read variables and change their values．After getting the prompt ＇debug \＃＇，you type either a negative number（this exits debug＿help），or zero（this goes to a location where you can set a breakpoint，thereby entering into dialog with the Pascal debugger），or a positive number m followed by an argument n ．The meaning of m and n will be clear from the program below．（If $m=13$ ， there is an additional argument，l ．）
define breakpoint $=888$ \｛place where a breakpoint is desirable \}
\langle Last－minute procedures 1205$\rangle+\equiv$
debug procedure debug＿help；\｛routine to display various things \}
label breakpoint，exit；
var k, l, m, n ：integer；
begin clear＿terminal；
loop
begin wake＿up＿terminal；print＿nl（＂debug」\＃ப（－1」to $\boldsymbol{\iota}_{\perp}$ exit）：＂）；update＿terminal；read（term＿in，m）； if $m<0$ then return
else if $m=0$ then
begin goto breakpoint；
\｛ go to every declared label at least once \}
breakpoint：$m \leftarrow 0$ ；©\｛｀BREAKPOINT＇＠\}
end
else begin read（term＿in，n ）；
case m of
〈Numbered cases for debug＿help 1213〉
othercases print（＂？＂）
endcases；
end；
end；
exit：end；
gubed

1213．〈Numbered cases for debug＿help 1213〉 三
1：print＿word（mem $[n]$ ）；\｛display mem $[n]$ in all forms \}
2：print＿int（info（n））；
3：print＿int（link（n））；
4：begin print＿int（eq＿type（n））；print＿char（＂：＂）；print＿int（equiv（n））； end；
5：print＿variable＿name（n）；
6：print＿int（internal［n］）；
7：do＿show＿dependencies；
9：show＿token＿list（ n ，null，100000，0）；
10：slow＿print（ n ）；
11：check＿mem $(n>0) ; \quad\{$ check wellformedness；print new busy locations if $n>0\}$
12：search＿mem $(n) ; \quad\{$ look for pointers to $n\}$
13：begin read（term＿in，l）；print＿cmd＿mod（n，l）； end；
14：for $k \leftarrow 0$ to n do $\operatorname{print}(b u f f e r[k])$ ；
15：panicking $\leftarrow \neg$ panicking；
This code is used in section 1212.
1214. System-dependent changes. This section should be replaced, if necessary, by any special modifications of the program that are necessary to make METAFONT work at a particular installation. It is usually best to design your change file so that all changes to previous sections preserve the section numbering; then everybody's version will be consistent with the published program. More extensive changes, which introduce new sections, can be inserted here; then only the index itself will get a new section number.
1215. Index. Here is where you can find all uses of each identifier in the program, with underlined entries pointing to where the identifier was defined. If the identifier is only one letter long, however, you get to see only the underlined entries. All references are to section numbers instead of page numbers.

This index also lists error messages and other aspects of the program that you might want to look up some day. For example, the entry for "system dependencies" lists all sections that should receive special attention from people who are installing METAFONT in a new operating environment. A list of various things that can't happen appears under "this can't happen". Approximately 25 sections are listed under "inner loop"; these account for more than 60% of METAFONT's running time, exclusive of input and output.
\& primitive: 893.
!: 68, 807.

* primitive: 893.
**: 36, 788.
*: 679.
+ primitive: $\underline{893}$.
++ primitive: 893.
+-+ primitive: 893.
, primitive: 211.
- primitive: $\underline{893}$.
->: 227.
. token: 669 .
. . primitive: $\underline{211}$.
/ primitive: 893.
: primitive: $\underline{211 .}$
:: primitive: 211.
||: primitive: 211.
:= primitive: $\underline{211 .}$
; primitive: 211.
< primitive: 893.
<= primitive: 893.
<> primitive: 893.
= primitive: 893.
=:|> primitive: $\underline{1108}$.
|=:> primitive: 1108.
|=:|>> primitive: $\underline{1108 .}$
|=:|> primitive: $\underline{1108}$.
=:| primitive: $\underline{1108}$.
|=:| primitive: $\underline{1108}$.
I=: primitive: $\underline{1108}$.
=: primitive: 1108.
=>: 682.
> primitive: 893.
$>=$ primitive: $\underline{893}$.
>>: 807, 1040.
>: 398, 1041.
??: 261, 263.
???: 59, 60, 257, 258.
?: 78, 638.
[primitive: 211.
] primitive: 211.
\{ primitive: 211.
\ primitive: 211.
\#\#\#\#: 603.
\#\#\#: 817.
\#\#: 613.
\#@ primitive: $\underline{688}$.
@\# primitive: $\underline{688}$.
© primitive: 688 .
© Octant...: 509.
@ retrograde line...: 510.
@ transition line...: 515, 521.
\} primitive: 211 .
$a: \underline{47}, \underline{102}, \underline{117}, \underline{124}, \underline{126}, \underline{321}, \underline{391}, \underline{429}, \underline{431}, \underline{433}$, $\underline{440}, \underline{568}, \underline{722}, \underline{773}, \underline{774}, \underline{778}, \underline{976}, \underline{977}, \underline{978}, \underline{1154}$.
a font metric dimension...: 1140 .
A group...never ended: 832.
A primary expression...: 823.
A secondary expression...: 862.
A statement can't begin with x: 990.
A tertiary expression...: 864.
a_close: 27, 51, 655, 1205.
a_make_name_string: 780, 788, 793.
a_minus_b: 865, 866.
a_open_in: 26, 51, 793.
a_open_out: 26, 788 .
a_plus_b: 865, 866.
a_tension: 296.
$a a: \underline{286}, 288,290,291,301, \underline{321}, 322, \underline{440}$, 444, 445, 446.
aaa: 321, 322.
$a b _v s _c d: ~ \underline{117}, 152,300,306,317,375,376,479$, $488,502,516,522,546,548,549,943,949$.
abnegate: 390, 413, 421.
abort_find: 242, 243.
abs: 65, 124, 126, 150, 151, 152, 260, 288, 289, 292, 294, 295, 299, 300, 302, 321, 326, 362, 378, 404, 408, 426, 433, 434, 437, 441, 445, 457, 459, $479,496,498,502,529,533,540,543,589,591$, $595,596,598,599,600,603,611,612,615,616$, 812, 814, 837, 866, 915, 943, 949, 965, 1008, 1056, 1098, 1129, 1140, 1182.
absorbing: $\quad \underline{659}, 664,665,730$.
acc: 116, 286, 290.
add_mac_ref: $\quad \underline{226}, 720,845,862,864,868,1035$.
add_mult_dep: 971, 972.
add_or_subtract: $929,930,936,939$.
add_pen_ref: 487, 621, 855, 1063.
add_str_ref: $\underline{42}, 621,678,855,1083$.
addto primitive: 211.
add_to_command: 186, 211, 212, 1058.
add_to_type: 1059, 1064.
after: $426, \underline{427}, 429,436,439,440,444,446$.
all_safe: 426, 440, 446.
alpha: 296, 433, 436, 439, 440, 444, 527, 528, 529, 530, 533.
alpha_file: $\underline{24}, 26,27,30,31,50,54,631,780$.
already_there: 577, 578, 583, 584.
also primitive: $\underline{1052}$.
also_code: 403, 1052, 1059.
ampersand: $\underline{186}, 868,869,874,886,887,891$, 893, 894.
An expression...: 868.
and primitive: 893.
and_command: 186, 882, 884, 893, 894.
and_op: 189, 893, 940.
angle: 106, 137, 139, 144, 145, 256, 279, 283, $527,542,865,875$.
angle $(0,0) . . . z e r o: 140$.
angle primitive: $\underline{893}$.
angle_op: 189, 893, 907.
app_lc_hex: 48.
append_char: 41, 48, 52, 58, 207, 671, 771, 780, 897, 912, 976, 977.
append_to_name: 774, 778.
appr_t: 556, 557.
appr_tt: 556, 557.
area_delimiter: 768, 770, 771, 772.
arg_list: $\quad 719,720,721,724,725,726,728,734,736$.
arith_error: $\quad \underline{97}, 98,99,100,107,109,112,114$, 124, 135, 269, 270.
Arithmetic overflow: 99.
ASCII code: 17.
ASCII primitive: 893.
ASCII_code: 18, 19, 20, 28, 29, 30, 37, 41, 54, 58, $77,198,667,771,774,778,913$.
ASCII_op: 189, 893, 912, 913.
assignment: 186, 211, 212, 693, 733, 755, 821, 841, 868, 993, 995, 996, 1021, 1035.
at primitive: $\underline{211}$.
at_least: 186, 211, 212, 882.
atleast primitive: $\underline{211}, 256$.
at_token: 186, 211, 212, 1073.
attr: 188, 229, 236, 239, 240, 245.
attr_head: 228, 229, 239, 241, 242, 244, 245, 246, 247, 850, 1047.
attr_loc: $\quad \underline{229}, 236,239,241,244,245,246,850$.
attr_loc_loc: 229, 241.
attr_node_size: $\underline{229}, 239,241,245,247$.
autorounding: $\underline{190}, 192,193,402$.
autorounding primitive: 192.
avail: $161,163,164,165,176,177,181,1194,1195$.
AVAIL list clobbered...: 181.
axis: 393, 459, 507, 517, 519.
$b: \quad \underline{124}, \underline{126}, \underline{321}, \underline{391}, \underline{429}, \underline{431}, \underline{433}, \underline{440}, \underline{568}, \underline{580}$, $\underline{723}, \underline{778}, \underline{913}, \underline{919}, \underline{976}, \underline{977}, \underline{978}, \underline{1072}, \underline{1154}$.
b_close: 27, 1134, 1182 .
b_make_name_string: 780, 791, 1134.
b_open_out: 26, 791, 1134.
b_tension: 296.
back_error: 653, 693, 703, 713, 726, 727, 734, $735,747,755,756,765,820,832,839,859$, $861,875,878,881,990,991,1021,1032,1034$, 1035, 1106, 1107, 1113.
back_expr: 847, 848.
back_input: $6 \underline{652}, 653,715,716,733,751,824$, $825,837,841,847,854,862,864,868,881$, 1012, 1034, 1107, 1204.
back_list: $\quad \underline{49}, 652,662,715,848$.
backed_up: 632, 635, 636, 638, 649, 650.
backpointers: 1147.
Backwards path...: 1068.
BAD: 219.
bad: $\underline{13}, 14,154,204,214,310,553,777,1204$.
Bad culling amounts: 1074.
Bad flag...: 183.
Bad PREVDEP...: 617.
Bad window number: 1071.
bad_binary: 923, 929, 936, 940, 941, 948, 951, 952, $975,983,988$.
bad_char: 913, 914.
bad_exp: 823, 824, 862, 864, 868.
bad_for: 754, 765 .
bad_pool: 51, 52, 53.
bad_subscript: 846, 849, 861.
bad_unary: 898, 901, 903, 905, 906, 907, 909, 912, $915,917,921$.
bad_vardef: 175, 698, 701, 702.
balance: 685, 687, 730, 731, 732.
banner: 2, 61, 790, 1183.
base: $\underline{374}, 375,376, \underline{697}, 703,704$.
base_area_length: 775, 779.
base_default_length: 775, 777, 778, 779.
base_ext_length: 775, 778, 779.
base_extension: 775, 784, 1200.
base_file: 779, 1188, 1189, 1191, 1199, 1200, 1201, 1211.
base_ident: $34,61,790,1183,1184,1185,1198$, 1199, $1200,1211$.
batch_mode: $\underline{68}, 70,81,86,87,88,789,1024$, $1025,1199,1200$.
batchmode primitive: 1024.
$b b: \quad \underline{286}, 287,288,291, \underline{440}, 444,445,446$.
$b c: 1088,1089,1091,1093,1096,1097,1099$, 1124, 1126, 1132, 1135, 1136.
bch_label: 1096, 1097, 1111, 1137, 1141.
bchar: 1096, 1137, 1139.
bchar_label: 186, 211, 212, 1107.
be_careful: $107,108, \underline{109}, \underline{112}, \underline{114}, 115,119$.
before: 426, 427, 429, 436, 439, 444, 446.
before_and_after: 429, 434, 437, 441.
begin: 7, 8.
begin_diagnostic: 71, 195, 197, 254, 603, 613, $626,721,728,734,750,762,817,902,924$, 945, 997, 998.
begin_edge_tracing: $\underline{372}, 465,506$.
begin_file_reading: $73,82, \underline{654}, 717,793,897$.
begin_group: 186, 211, 212, 732, 823.
begingroup primitive: $\underline{211 .}$
begin_iteration: 706, 707, 755, 764.
begin_name: 767, 770, 781, 787.
begin_pseudoprint: 642, 644, 645.
begin_token_list: 649, 677, 736, 760.
Beginning to dump...: 1200.
Bernshteĭn, Sergeı̆ Natanovich: 303.
beta: 296, 440, 444, $\underline{527}, 528,529,530,533,536$.
Bézier, Pierre Etienne: 255.
bg_loc: 211, 698, 699, 1198, 1199.
big: 124, 126 .
big_node_size: $\quad \underline{230}, 231,232,803,810,857,919$, 928, 939, 966, 1005.
big_trans: 952, 966.
BigEndian order: 1088.
bilin1: 967, 968, 972.
bilin2: 970, 972.
bilin3: 973, 974.
binary_mac: 862, 863, 864, 868.
bisect_ptr: 309, 311, 312, 314, 553, 558, 559, 561.
bisect_stack: 309, 553.
bistack_size: 11, 309, 310, 553, 557.
black: 565, 568, 577, 579, 580, 583, 584, 1143, 1144.
blank_line: 195.
blank_rectangle: 564, 566, 567, 569, 571, 572, 574, 577.
boc: $1142,1144, \underline{1145}, 1146,1147,1149,1161$, 1162.
boc_c: 1161, 1162, 1165.
boc_p: 1161, 1162, 1165.
boc1: 1144, 1145, 1161.
boolean: 26, 30, 36, 45, 47, 71, 74, 91, 97, 107, $109,112,114,124,126,178,180,195,197,238$, $246,249,257,332,406,426,440,453,455,473$, $497,527,564,569,572,577,592,599,600,621$,

661, 680, 771, 779, 782, 801, 868, 899, 913, 943, $977,978,1006,1054,1072,1084,1096,1187$.
boolean primitive: 1013.
boolean_reset: 906, 937, 1181.
boolean_type: $187,216,248,621,798,799,802$, $809,855,892,895,905,906,918,919,920$, 936, 937, 940, 1003, 1013, 1181.
bot: 1094.
bot_row: $567, \underline{572}, 574,577$.
boundary_char: 190, 192, 193, 1097, 1137.
boundarychar primitive: 192.
break: 33.
break_in: 33.
breakpoint: 1212.
Brocot, Achille: 526.
buf_size: 11, 29, 30, 34, 66, 154, 641, 654, 667, 682, 707, 717, 779, 786, 788, 1208.
buffer: $\underline{29}, 30,35,36,45,66,78,82,83,205,206$, 207, 208, 210, 629, 630, 641, 644, 667, 669, 671, $673,674,679,681,682,717,778,779,781$, 786, 787, 788, 794, 897, 1211, 1213.
Buffer size exceeded: 34.
bypass_eoln: 30.
byte_file: $\underline{24}, 26,27,780,791,1087$.
b0: 153, 156, 157, 214, 255, 1093, 1094, 1133, 1192, 1193.
b1: $153, \underline{156}, 157,214,255,1093,1094,1131$, $1132,1133,1192,1193$.
b2: $153, \underline{156}, 157,1093,1094,1131,1132,1133$, 1192, 1193.
b3: $153, \underline{156}, 157,1093,1094, \underline{1131}, 1132,1133$, 1192, 1193.
b4: 1131, 1132.
$c: \quad \underline{47}, \underline{77}, \underline{189}, \underline{210}, \underline{217}, \underline{391}, \underline{440}, \underline{491}, \underline{527}, \underline{567}$, $\underline{568}, \underline{625}, \underline{626}, \underline{667}, \underline{697}, \underline{771}, \underline{774}, \underline{778}, \underline{823}, \underline{862}$, $\underline{863}, \underline{864}, \underline{868}, \underline{895}, \underline{898}, \underline{901}, \underline{910}, \underline{913}, \underline{919}, \underline{922}$, $\underline{923}, \underline{930}, \underline{953}, \underline{960}, \underline{962}, \underline{963}, \underline{966}, \underline{985}, \underline{1070}$, $\underline{1072}, 1103,1104,1106,1165,1209$.
cancel_skips: 1110, 1139.
CAPSULE: 237.
capsule: 188, 214, 219, 233, 237, 238, 619, 799, 806, 830, 856, 857, 911, 931, 982.
capsule_token: 186, 651, 676, 678, 823, 1042.
cat: 975, 976.
cc: $\underline{286}, 288,289,290,294,295, \underline{440}, 444,445$, 446, 1106.
$c f: \quad \underline{116}, 297, \underline{298}, 299,300,301$.
change_if_limit: 746, 748.
char: 19, 25, 775, 788.
char primitive: 893.
char_class: $\quad 22, \underline{198}, 199,217,223,669,673,674$.
char_code: 190, 192, 193, 1070.
charcode primitive: 192.
char_dp: 190, 192, 193, 1099, 1126.
chardp primitive: 192.
char_dx: 190, 192, 193, 1099.
chardx primitive: 192.
char_dy: 190, 192, 193, 1099.
chardy primitive: 192.
char_exists: 1096, 1097, 1099, 1124, 1126, 1132, 1136, 1181, 1182.
charexists primitive: 893.
char_exists_op: 189, 893, 906.
char_ext: 190, 192, 193, 1165.
charext primitive: 192.
char_ht: 190, 192, 193, 1099, 1126.
charht primitive: 192.
char_ic: 190, 192, 193, 1099, 1126.
charic primitive: 192.
char_info: 1091.
char_info_word: 1089, 1091, 1092.
charlist primitive: 1101.
char_list_code: 1101, 1102, 1106.
char_loc: 1144, 1145, 1147, 1182.
char_loc0: 1144.
char_op: 189, 893, 912.
char_ptr: 1149, 1163, 1165, 1182.
char_remainder: 1096, 1097, 1104, 1136, 1138.
char_tag: 1096, 1097, 1104, 1105, 1136.
char_wd: 190, 192, 193, 1099, 1124.
charwd primitive: 192.
Character c is already... : 1105.
character set dependencies: 22, 49.
check sum: $53,1090,1131,1146$.
check_arith: $\underline{99}, 269,815,823,837,895,898$, 922, 1001.
check_colon: 747, 748.
check_delimiter: 703, 826, 830, 1032.
check_equals: 693, 694, 697.
check_gf: 1163, 1165, 1177, 1179.
check_interrupt: $\underline{91}, 650,669,825$.
check_mem: $178,180,617,825,1213$.
check_outer_validity: 661, 668, 681.
Chinese characters: 1147.
chop_path: 975, 978.
chop_string: 975, 977.
chopped: 402, 404.
chr: 19, 20, 23.
class: $\underline{217}, 220,221,223, \underline{667}, 669$.
clear_arith: 9.
clear_for_error_prompt: $73,78, \underline{656}, 670,672$.
clear_symbol: $\underline{249}, 252,254,692,1011,1035$.
clear_terminal: $33,656,786,1212$.
clear_the_list: $\underline{1117}, 1124,1126$.
clobbered: 180, 181, 182.
CLOBBERED: 218.
clockwise: 452, 453, 454, 458.
close: 27.
close_files_and_terminate: 73, 76, 1204, 1205.
cmbase: 1203.
coef_bound: 592, 595, 596, 598, 599, 600, 932, 943, 949.
collective_subscript: $\underline{229}, 239,241,244,246$, 850, 1012.
colon: 186, 211, 212, 747, 756, 764, 1106, 1107, 1111, 1113.
comma: 186, 211, 212, 704, 725, 726, 727, 764, $826,859,878,1015,1016,1029,1033,1036$, 1040, 1044, 1049, 1107, 1113, 1114, 1115.
command_code: 186, 685, 694, 1072.
common_ending: 15, 865, 1071.
compromise: 432, 435, 438, 443.
concatenate: 189, 893, 975.
cond_ptr: $\underline{738}, 739,744,745,746,748,749,1209$.
conditional: 706, 707, 748.
confusion: $\underline{90}, 107,114,216,236,239,311,362$, $378,517,523,589,655,746,802,809,855$.
const_dependency: $\underline{607}, 608,969,972,1007$.
constant_x: 406, 407, 413, 417.
continue: 15, 77, 78, 79, 83, 84, 311, 314, 402, $406,417,447,556,755,764,862,864,868$, 1106, 1107, 1111.
continue_path: 868, 869.
contour primitive: 1052.
contour_code: 403, 917, 1052, 1053.
control?: 258.
controls: 186, 211, 212, 881.
controls primitive: 211.
coord_node_size: 175, 472, 476, 481, 487.
coordinates, explained: 576.
copied: 1006, 1009.
copy_dep_list: $6 \underline{609}, 855,858,947$.
copy_edges: 334, 621, 855.
copy_knot: $\quad \underline{264}, 870,885,980,981$.
copy_path: 265, 621, 855.
cosd primitive: 893.
cos_d_op: 189, 893, 906.
cosine: 280, 281.
crossing_point: $\quad \underline{391}, 392,407,411,413,415,420$, 424, 497, 499, 503, 545, 547, 549.
cs: 1146 .
ct: 116, 297, 298, 299, 300, 301.
cubic_intersection: 555, 556, 557, 562.
cull primitive: $\underline{211}$.
cull_command: 186, 211, 212, 1069.
cull_edges: 348, 1074.
cull_op: 186, 1052, 1053, 1074.
cur_area: $\quad \underline{767}, 772,784,786,793,795$.
cur_cmd: $83,186, \underline{624}, 626,651,652,658,667$, $668,671,675,676,678,685,686,691,693,697$, $700,703,704,705,706,707,713,715,718$, $725,726,727,731,732,733,734,735,742$, $743,747,755,756,764,765,796,823,824$, $826,832,837,839,841,844,846,847,851$, $852,859,860,861,862,864,868,869,874$, $875,878,881,882,884,989,990,991,992$, $993,995,996,1011,1012,1015,1016,1017$, 1021, 1029, 1032, 1033, 1034, 1035, 1036, 1040, 1041, 1042, 1044, 1049, 1051, 1062, 1072, 1074, $1106,1107,1111,1113,1114,1115$.
cur_edges: $\quad \underline{327}, 328,329,330,331,332,333,336$, $337,340,341,342,343,348,352,353,354$, $355,356,364,365,366,367,373,374,375$, $376,377,378,381,382,383,384,465,577$, 581, 804, 929, 963, 964, 965, 1057, 1061, 1064, 1070, 1071, 1074, 1167, 1169, 1172.
cur_exp: 603, 615, 651, 713, 716, 717, 718, 726, $728,730,748,750,760,761,764,765,796,797$, $798,799,800,801,808,816,819,823,827,829$, $830,833,837,840,841,846,852,855,856,857$, $860,861,863,865,870,872,875,876,877,878$, $879,880,882,883,885,891,895,896,897,898$, $901,903,905,906,907,908,910,912,913,915$, 916, 917, 919, 920, 921, 923, 927, 929, 930, 931, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 946, 948, 949, 951, 953, 955, 956, 962, 963, 964, $967,968,970,972,973,976,977,978,979,984$, 985, 988, 992, 994, 995, 996, 999, 1003, 1004, $1005,1006,1009,1022,1056,1059,1061,1062$, $1063,1070,1071,1072,1073,1074,1082,1083$, $1086,1103,1106,1112,115,1177,1179,1181$.
cur_ext: 767, 772, 784, 786, 793, 795.
cur_file: 631, 655, 681, 793, 794.
cur_gran: 430, 431, 432, 433, 442.
cur_if: $\quad \underline{738}, 739,744,745,748,1209$.
cur_input: $34,35,82, \underline{628}, 629,635,647,648,788$. cur_length: 40, 1163.
cur_min_m: 1165, 1172, 1173.
cur_mod: $83, \underline{624}, 626,651,652,658,667,668$, $671,675,676,678,687,690,691,694,697,700$, $703,705,707,711,718,726,727,731,735,742$, $743,748,749,751,755,796,823,824,826,833$, $834,835,837,839,841,846,847,851,860,861$, $862,864,868,990,992,1011,1015,1023,1029$, 1032, 1034, 1035, 1040, 1041, 1042, 1049, 1051, 1054, 1059, 1074, 1082, 1106, 1112, 1177, 1209.
cur_name: 767, 772, 784, 786, 793, 795.
cur_path_type: $\underline{403}, 435,438,442,917,1064,1068$.
cur_pen: $402, \underline{403}, 435,438,442,506,917,1062$, 1063, 1064, 1068.
cur_rounding_ptr: 426, 427, 429, 433, 436, 439, 440, 444, 446.
cur_spec: $394,399,400,402, \underline{403}, 404,406,407$, 417, 419, 421, 433, 440, 447, 450, 452.
cur_sym: $83,210,211, \underline{624}, 651,652,658,661$, $662,663,664,667,668,669,676,677,683,685$, $686,690,691,692,694,700,703,704,705,707$, $718,726,735,740,751,755,796,823,824$, $826,837,846,847,851,860,862,864,868$, 893, 1011, 1012, 1029, 1031, 1032, 1033, 1034, 1035, 1036, 1041, 1049, 1076, 1204.
cur_t: $555,556,558,559,560,561,562,988$.
cur_tok: 651, 652, 685, 715, 730, 844.
cur_tt: $\quad \underline{555}, 556,558,559,560,561,562,988$.
cur_type: $603,615,651,716,718,726,728,730$, $760,764,765, \underline{796}, 798,799,800,801,808,816$, $819,823,826,827,830,832,833,837,840,841$, $846,852,855,856,857,860,861,864,865,870$, $872,876,877,878,883,885,891,892,895,896$, 897, 898, 901, 903, 905, 906, 907, 908, 909, 910, 912, 915, 917, 918, 919, 920, 921, 923, 927, 929, 930, 931, 934, 935, 936, 937, 939, 940, 941, 942, 944, 946, 948, 951, 953, 955, 960, 962, 967, 970, 973, 975, 982, 983, 988, 989, 992, 993, 995, 996, $999,1000,1002,1003,1004,1006,1009,1021$, 1054, 1059, 1061, 1062, 1070, 1071, 1072, 1073, $1074,1082,1103,1106,1112,1115,1177,1181$.
cur_wt: $\underline{327}, 372,373,374,375,376,378,381$, 382, 383, 384, 465, 1064, 1068.
cur_x: $387,388,389,390,394,413,421,445,447$, $451,454,457,481,485,488,489,510,871,872$, 873, 877, 878, 884, 984, 1072, 1073, 1074, 1075.
cur_y: $387,388,389,390,394,413,421,445,447$, 451, 454, 457, 481, 485, 488, 489, 510, 871, 872, 873, 877, 878, 884, 984, 1072, 1073, 1074, 1075.
curl: $256,258,259,263,271,282,284,285,290$, $875,876,888,889,890,891$.
curl primitive: $\underline{211 .}$
curl_command: 186, 211, 212, 875.
curl_ratio: 294, 295, $\underline{296}$.
curvature: 275.
Curve out of range: 404.
cycle: 186, 823, 869, 893, 894.
cycle spec: $\underline{393}$.
Cycle spec at line...: 394.
cycle primitive: 893.
cycle_hit: 868, 869, 886, 891.
cycle_op: 189, 893, 920.
c0: 574, 575, 576, 1073.
c1: $\underline{574}, 575, \underline{1073}$.
$d: \quad \underline{333}, \underline{348}, \underline{373}, \underline{391}, \underline{440}, \underline{527}, \underline{580}, \underline{862}, \underline{864}, \underline{868}$, $\underline{944}, \underline{1118}, \underline{1120}, \underline{1121}, \underline{1128}, \underline{1159}, \underline{1165}$.
day: 190, 192, 193, 194, 1163, 1200.
day primitive: 192.
$d d: \quad \underline{286}, 288,289, \underline{440}, 444,445,446$.
dead cubics: 402.
debug: $\underline{7}, \underline{9}, \underline{73}, \underline{79}, \underline{88}, \underline{157}, \underline{178}, \underline{179}, \underline{180}$, $185,1212$.
debug \#: 1212.
debug_help: $73,79,88,1212$.
debugging: $7,79,91,157,178,1212$.
decimal: 189, 893, 912.
decimal primitive: $\underline{893}$.
Declared variable conflicts...: 1015.
decr: 16, 43, 46, 63, 66, 81, 83, 84, 86, 87, 102, $121,123,149,163,164,177,195,207,226,291$, $315,322,330,331,332,333,352,364,375,376$, $377,382,383,384,436,439,458,459,483,487$, $488,497,515,516,521,522,556,560,577,635$, $648,650,655,681,687,731,732,742,854$, $862,864,868,1051,1122,1135,1138,1139$, 1141, 1163, 1167, 1182, 1194, 1209.
def primitive: $\underline{683}$.
def_delims: 1030, 1031.
def_ref: 720, 721, 736.
defined_macro: 186, 249, 700, 706, 707, 718, 1035, 1041, 1043.
del: $\underline{406}, 407,408,413, \underline{419}, 420, \underline{453}, 454$.
del_m: 1144 .
del_n: 1144.
delete_mac_ref: $\underline{226}, 249,650,809$.
delete_pen_ref: 487, 808, 809, 1062, 1063.
delete_str_ref: $\underline{43}, 216,691,743,808,809,976$, 977, 1042, 1083.
deletions_allowed: $\underline{71}, 72,79,80,93,661,670$, 672, 675.
delimiters: $\quad \underline{186}, 211,212,1030$.
delimiters primitive: $\underline{211 .}$
delta: $\underline{103}, \underline{279}, 281,288, \underline{328}, \underline{329}, 330,331, \underline{342}$, $343, \underline{366}, 367, \underline{378}, 381,382,383,384,527,530$, $531,533,534,535, \underline{968}, \underline{974}, \underline{1165}, 1173,1174$.
delta_a: $\underline{426}$.
delta_b: 426 .
delta_x: 279, 281, 292, 293, 299, 301, 302.
delta_y: 279, 281, 292, 293, 299, 301, 302.
delx: $\underline{280}, 282, \underline{374}, 375,376, \underline{511}, 516,522,552$, $553,556, \underline{557}, 558,559,560,561$.
dely: $\quad \underline{280}, 282, \underline{374}, 375,376, \underline{511}, 516,522,552$, $553,556,557,558,559,560,561$.
del1: $\underline{406}, 407,408,409,413,414, \underline{419}, 420$, 421, 423.
del2: $\underline{406}, 407,408,409,411,413,414,415, \underline{419}$, 420, 421, 423, 424.
del3: $\underline{406}, 407,408,409,411,413,414,415, \underline{419}$, 420, 421, $423,424$.
denom: 116, 296, 836, 837.
dep_div: 948, 949 .
dep_final: $\underline{592}, 594,597,601,606,607,608,609$, $615,818,819,829,855,856,858,971,972,1007$.
dep_finish: $934, \underline{935}, 943,949$.
dep_head: 175, 587, 588, 604, 606, 614, 617, 812, 1050.
dep_list: $585, \underline{587}, 604,605,606,614,617,798$, $799,801,803,811,812,816,818,819,827,855$, 858, 903, 930, 931, 932, 935, 943, 947, 949, 959, 968, 969, 971, 972, 1007, 1009, 1050.
dep_mult: $942, \underline{943}, 944,946,968$.
dep_node_size: \quad 587, 595, 596, 597, 598, 599, 600, $601,603,605,607,608,609,612,615,616$, 818, 819, 829, 855, 858, 1008.
dependent: $\quad \underline{187}, 216,248,585,587,588,589,590$, $594,595,596,597,599,600,601,603,610,612$, $613,615,798,799,800,801,802,808,809,812$, $813,815,816,817,818,819,829,855,857$, 858, 900, 903, 930, 932, 943, 949, 969, 1003, 1006, 1007, 1009, 1010, 1050.
depth_index: 1091.
design size: 1090, 1095, 1128, 1146.
design_size: $\quad \underline{190}, 192,193,1128,1129,1182$.
designsize primitive: 192.
dest_x: 406, 407, 409, 411, 412, 413, 415, 416, $\underline{419}, 421,423,424,425$.
dest_y: $\underline{406}, 407,411,412,413,414,415,416$, 419, 421, 423, 424, 425.
diag_offset: 442, 443.
diag_round: 402, 440.
diagonal: $\underline{393}, 459,507,508,509,519,523$.
dig: $\underline{54}, 63,64,102,674$.
digit_class: $198,199,220,669,673,674$.
dimen_head: $1124,1125,1126,1136$.
dimen_out: $\underline{1129,} 1132,1136,1139,1140$.
directiontime primitive: $\underline{893}$.
direction_time_of: 189, 893, 983.
dirty Pascal: $\underline{3}, 157,185,1203$.
discard_suffixes: 246.
disp_edges: 577, 1071.
disp_err: 716, 754, 807, 873, 923, 937, 955, 1002.
disp_token: 1041, 1043, 1044, 1049.
disp_var: 1046, 1047, 1049.
display primitive: $\underline{211 .}$
display_command: 186, 211, 212, 1069.
div: 95.
Division by zero: 838, 950.
$d m: 1144$.
$d \max : 404, \underline{406}, 408, \underline{419}, \underline{453}, 457$.
do_add_to: 1058, 1059.
do_assignment: 993, 995, 996.
do_binary: $834,837,839,859,862,864,868$, 893, 922, 966.
do_cull: 1069, 1074.
do_display: 1069, 1071.
do_equation: 993, 995, 996.
do_interim: 1033, 1034.
do_let: 1033, 1035.
do_message: 1081, 1082.
do_new_internal: 1033, 1036 .
do_nothing: $\quad 16,33,57,58,79,146,216,223,249$, 669, 707, 794, 808, 809, 919, 957, 1003, 1035.
do_nullary: 834, 893, 895 .
do_open_window: 1069, 1073.
do_protection: 1026, 1029.
do_random_seed: 1020, 1021.
do_ship_out: 1069, 1070.
do_show: 1040, 1051.
do_show_dependencies: 1050, 1051, 1213.
do_show_stats: 1045, 1051.
do_show_token: 1044, 1051.
do_show_var: 1046, 1049, 1051.
do_show_whatever: 1039, 1051.
do_special: 1175, 1177.
do_statement: $832,989,992,1017,1020,1034$.
do_tfm_command: 1100, 1106.
do_type_declaration: 992, 1015.
do_unary: $834,835,893,898$.
done: $\underline{15}, 47,53,124,125,126,127,177,257,269$, $272,311,317,344,345,346,347,348,349,354$, $358,366,368,374,375,378,381,382,383,384$, $394,402,452,458,477,479,488,491,502,506$, $512,518,527,531,532,539,546,547,548,577$, $578,584,594,597,604,605,609,635,650,667$, $673,685,687,730,731,732,742,748,749,755$, $764,765,781,786,787,793,809,812,823,835$, 837, 839, 840, 841, 852, 860, 868, 881, 919, 922, 930, 932, 936, 953, 955, 957, 958, 959, 1001, $1003,1004,1005,1006,1007,1011,1012,1049$, 1059, 1068, 1106, 1107, 1110, 1165, 1172, 1173.
done1: 15, 180, 181, 257, 258, 261, 374, 376, $477,481,506,516,518,522,527,536,823$, 844, 922, 939, 1006, 1009.
done2: 15, 180, 182, 823, 850.
done3: 15.
done4: 15.
done5: 15.
done6: 15.
double: 16, 108, 115, 123, 132, 142, 143, 392, 408, 457, 496, 543, 556, 559.
Double-AVAIL list clobbered...: 182.
double_colon: 186, 211, 212, 1107.
double_dot: 189.
doublepath primitive: 1052.
double_path_code: 403, 435, 438, 442, 1052, 1053, 1059, 1064, 1068.
Doubly free location...: 182.
drop_code: 1052, 1053, 1074, 1075.
dropping primitive: 1052.
dry rot: 90.
$d s: \quad 1146$.
$d u: ~ 495, ~ 497, ~ 498$.
dual_moves: 512, 518.
dump...only by INIMF: 1209.
dump primitive: 1018.
dump_four_ASCII: 1192.
dump_hh: 1188, 1196.
dump_int: $\quad \underline{1188}, 1190,1192,1194,1196,1198$.
dump_qqqq: 1188, 1192.
dump_wd: 1188, 1194.
dup_offset: $476,483$.
$d v: ~ \underline{495}, \underline{497}, 498$.
$d w: \quad 357,358$.
$d x: \quad \underline{378}, 380,381,382,383,384, \underline{477}, 479,480$, 494, 495, 501, 502, 1144, 1147.
$d x 1: \quad \underline{453}, 454,457$.
dx2: 453, 454, 457.
$d y: \quad \underline{477}, 479,480, \underline{495}, 501,502,1144,1147$.
dyn_used: $160,163,164,165,176,177,1045$, 1194, 1195.
dy1: $\underline{453}, 454,457$.
dy2: 453, 454, 457.
$d 0: \quad \underline{464}, 467,468,508,517,523$.
$d 1: ~ 463, \underline{464}, 467,468,508,517,523$.
$e: \quad \underline{773}, \underline{774}, \underline{786}, \underline{1071}, \underline{1074}$.
east_edge: 435.
ec: 1088, 1089, 1091, 1093, 1096, 1097, 1099, $1124,1126,1132,1135,1136$.
edge_and_weight: $\quad \underline{378}, 381,382,383,384$.
edge_header_size: 326, 334, 385, 895, 964.
edge_prep: 329, 366, 375, 376, 380.
edges_trans: 952, 963.
ee: 286, 288, 289.
eg_loc: 211, 698, 699, 1198, 1199.
eight_bits: $\quad \underline{24}, 63,624,1096,1103,1131,1149$, 1152, 1163, 1165.
eighth_octant: 139, 141, 380, 387, 388, 390, 396, 426, 443, 449, 461, 462.
el_gordo: $\underline{95}, 100,107,109,112,114,124,135$, $235,244,585,917,1118,1140$.
else: 10 .
else primitive: $\underline{740}$.
else_code: 738, 740, 741.
elseif primitive: 740 .
else_if_code: 738, 740, 748.
Emergency stop: 88.
empty_edges: $\underline{326}, 329,963$.
empty_flag: $\quad \underline{166}, 168,172,176,1207$.
encapsulate: $855, \underline{856}$.
end: $7,8,10$.
end occurred...: 1209.
End of file on the terminal: 36,66 .
end primitive: 1018.
end_attr: 175, 229, 239, 247, 1047.
end_cycle: 272, 281, 282, 284, 287.
end_def: 683, 992.
enddef primitive: $\underline{683}$.
end_diagnostic: $\quad \underline{195}, 254,257,332,372,394,473$, $603,613,626,721,728,734,750,762,817$, 902, 924, 945, 997, 998.
end_edge_tracing: 372, 465, 506.
end_file_reading: $\underline{655}, 656,679,681,714,793$, 897, 1209.
end_for: 683, 707.
endfor primitive: $\underline{683}$.
end_group: $186,211,212,732,832,991,992$, 993, 1017.
endinput primitive: 709.
end_name: 767, 772, 781, 787.
end_of_MF: $\underline{6}, 76,1204$.
end_of_statement: $\underline{186}, 732,991,1015,1016$.
end_round: 463, 464, 467, 508.
end_token_list: 650, 652, 676, 712, 714, 736, 795, 1209.
endcases: 10.
endgroup primitive: 211.
endpoint: $\underline{255}, 256,257,258,266,273,393,394$, $398,399,400,401,402,451,452,457,465$, 466, 491, 506, 512, 518, 539, 562, 563, 865, 868, 870, 871, 885, 891, 916, 917, 920, 921, 962, 978, 979, 985, 987, 1064.
Enormous chardp...: 1098.
Enormous charht...: 1098.
Enormous charic...: 1098.
Enormous charwd...: 1098.
Enormous designsize...: 1098.
Enormous number...: 675.
entering the nth octant: 394.
env_move: $\underline{507}, 513,514,515,516,517,519$, 520, 521, 522, 523.
eoc: $1142,1144, \underline{1145}, 1146,1149,1165$.
eof: 25, 30, 52, 1199.
eoln: 30, 52.
eq_type: 200, 202, 203, 210, 211, 213, 229, 242, $249,254,668,694,700,702,759,850,1011$, 1029, 1031, 1035, 1036, 1041, 1213.
eqtb: 158, 200, 201, 202, 210, 211, 212, 213, $249,250,252,254,625,632,683,740,893$, 1196, 1197.
equal_to: 189, 893, 936, 937.
equals: $186,693,733,755,868,893,894,993$, 995, 996, 1035.
Equation cannot be performed: 1002.
equiv: 200, 202, 209, 210, 211, 213, 229, 234, 239, $242,249,254,664,668,694,700,702,850$, 1011, 1015, 1030, 1031, 1035, 1036, 1213.
err_help: 74, 75, 85, 1083, 1086.
errhelp primitive: 1079.
err_help_code: 1079, 1082.
errmessage primitive: 1079.
err_message_code: 1079, 1080, 1082.
error: $67,70,71,73,74, \underline{77}, 83,88,93,99,122$, $128,134,140,602,653,670,672,675,701$, $708,712,713,725,751,778,789,795,820$, 838, 996, 1032, 1051, 1110.
error_count: 71, 72, 77, 81, 989, 1051.
error_line: $11,14,54,58,635,641,642,643,665$.
error_message_issued: 71, 77, 90.
error_stop_mode: $67, \underline{68}, 69,77,78,88,93,398$, 807, 1024, 1051, 1086, 1199, 1209.
errorstopmode primitive: 1024.
erstat: 26 .
eta_corr: 306, 311, 313, 314, 317.
ETC: 217, 227.
everyjob primitive: $\underline{211 .}$
every_job_command: 186, 211, 212, 1076.
excess: 1119, 1120, 1122.
exit: 15, 16, 36, 46, 47, 77, 117, 167, 217, 227, $235,242,246,265,266,284,311,391,406$, 488, 497, 539, 556, 562, 589, 622, 667, 746, $748,760,779,868,899,904,922,928,930$, 943, 949, 953, 962, 963, 966, 1032, 1070, 1071, $1073,1074,1131,1161,1187,1209,1212$.
exitif primitive: $\underline{211}$.
exit_test: 186, 211, 212, 706, 707.
exp_err: $\underline{807}, 830,849,872,876,878,883,892$, 901, 914, 923, 937, 950, 960, 993, 996, 999, 1002, 1021, 1055, 1060, 1061, 1062, 1071, 1082, 1103, 1106, 1112, 1115, 1178.
expand: 707, 715, 718.
expand_after: 186, 211, 212, 706, 707.
expandafter primitive: $\underline{211 .}$
explicit: 256, 258, 261, 262, 266, 271, 273, 280, $282,299,302,393,407,486,563,874,880$,

884, 1066.
EXPR: 222.
expr primitive: 695.
expr_base: $\quad \underline{214}, 218,222,676,683,684,694,695$, $696,697,703,705,725,727,755,764$.
expr_macro: $\underline{226}, 227,705,733$.
expression_binary: 186, 893, 894.
expression_tertiary_macro: 186, 249, 683, 868, 1035, 1043.
ext_bot: 1094, 1113.
ext_delimiter: 768, 770, 771, 772.
ext_mid: 1094, 1113.
ext_rep: 1094, 1113.
ext_tag: 1092, 1096, 1105, 1113.
ext_top: 1094, 1113.
exten: 1092, 1094, 1096, 1140.
extensible primitive: 1101.
extensible_code: 1101, 1102, 1106.
extensible_recipe: 1089, 1094.
extensions to METAFONT: 2.
Extra 'endfor': 708.
Extra 'endgroup': 1017.
Extra else: 751.
Extra elseif: 751.
Extra fi: 751.
Extra tokens will be flushed: 991.
extra_space: 1095.
extra_space_code: 1095.
extras: 362, 363.
$f: \underline{26}, \underline{27}, \underline{30}, \underline{107}, \underline{109}, \underline{112}, \underline{114}, \underline{398}, \underline{594}$, 667, 780, 1165.
false: $26,30,36,45,47,51,71,75,83,84,93,98$, $99,107,110,114,124,126,179,180,181,182$, $254,269,270,407,426,446,452,454,455$, $456,474,497,503,505,530,564,570,573$, $577,592,593,600,603,604,613,626,653$, $657,661,670,672,675,680,681,692,721$, $728,734,750,762,767,771,779,783,794$, 801, 804, 817, 825, 869, 899, 902, 913, 924, $944,945,977,978,997,998,1003,1009,1010$, 1011, 1015, 1035, 1045, 1054, 1064, 1072, 1085, 1086, 1097, 1107, 1137, 1138, 1187.
false primitive: 893.
false_code: 189, 798, 892, 893, 895, 905, 906, 918, 919, 920, 937, 940.
fast_case_down: 378, 380.
fast_case_up: 378, 380.
fast_get_avail: $165,381,382,383,384,651,844$.
Fatal base file error: 1187.
fatal_error: $66, \underline{88}, 679,714,786,789,897$.
fatal_error_stop: 71, 72, 77, 88, 1204.
ff : $\underline{286}, 287,289,290,295, \underline{296}, 302$.
fi primitive: 740.
fi_code: 738, 740, 741, 742, 748, 749, 751.
fi_or_else: 186, 706, 707, 738, 740, 741, 742, 751, 1209.
fifth_octant: 139, 141, 380, 387, 388, 390, 396, 426, 443, 449, 461, 462.
File ended while scanning...: 663.
File names can't...: 795.
file_name_size: $11,25,774,777,778,780$.
file_offset: $\underline{54}, 55,57,58,62,333,372,793$, 1048, 1165.
file_ptr: $79,80, \underline{634}, 635,636,637$.
file_state: $\underline{632}, 635,636,656,667,714,795$.
fill_envelope: 481, 506, 518, 1064.
fill_spec: 465, 506, 511, 1064.
fillin: 190, 192, 193, 525, 533.
fillin primitive: 192.
fin_numeric_token: 667, 669, 673.
fin_offset_prep: 497, 503, 504, 505.
final_cleanup: 1204, 1205, 1209.
final_end: $\underline{6}, 34,657,1204,1211$.
final_node: 610, 612, 615.
final_value: 752, 761, 765.
find_direction_time: 539, 540, 984.
find_edges_var: 1057, 1061, 1064, 1070, 1071, 1074.
find_offset: 488, 984.
find-point: 983, 985.
find_variable: $\underline{242}, 700,852,1000,1015,1057$.
finish_path: 868, 869, 874.
firm_up_the_line: $666,681, \underline{682}, 794$.
first: $\underline{29}, 30,34,35,36,66,78,82,83,654,655$, $657,679,681,682,717,787,794$.
first_count: $\underline{54}, 641,642,643$.
first_octant: $139,141,378,379,380,387,388,390$, $395,396,406,407,409,411,426,435,443,448$, 449, 461, 462, 473, 480, 484, 488, 489.
first_text_char: 19, 23.
first_x: 406, 407, 440, 444, 445.
first_y: 406, 407, 440, 444, 445.
fix_check_sum: 1131, 1206.
fix_date_and_time: 194, 1204, 1211.
fix_dependencies: $\underline{604}, 610,815,935,968,971$.
fix_design_size: 1128, 1206.
fix_needed: \quad 592, 593, 595, 596, 598, 599, 600, 604, 610, 815, 932, 935, 968, 971.
fix_offset: $\underline{328}, 329,965$.
fix_word: 1089, 1090, 1095, 1129, 1147.
floor primitive: 893.
floor_op: 189, 893, 906.
floor_scaled: 119, 516, 522, 906.
floor_unscaled: $119,306,463,513,515,516,519$, 521, 522, 1074.
flush_below_variable: 246, 247, 249.
flush_cur_exp: 717, 808, 820, 872, 907, 913, 915, 917, 918, 919, 920, 921, 935, 936, 938, 956, 962, 982, 984, 993, 1040, 1061, 1063, 1070, 1072, 1082, 1177.
flush_error: 820, 849, 1017.
flush_list: 177, 385, 700, 736, 1015.
flush_node_list: 177, 685, 811, 815, 852, 996, 1009, 1057.
flush_p: 621.
flush_string: 43, 210, 793, 1200.
flush_token_list: 216, 224, 226, 235, 650, 698, 763, 840, 1062, 1071, 1074.
flush_variable: 246, 700, 1015.
flushing: 659, 664, 665, 991, 1016.
font metric dimensions...: 1140.
font metric files: 1087.
Font metrics written...: 1134.
fontdimen primitive: 1101.
font_dimen_code: 1101, 1106.
fontmaking: 190, 192, 193, 1206.
fontmaking primitive: 192.
for primitive: 683.
forsuffixes primitive: 683.
Forbidden token found...: 663.
force_eof: 657, 680, 681, 711.
forever primitive: 683.
forever_text: 632, 638, 714, 760.
forty-five_deg: 106, 145.
forward: 73, 216, 217, 224, 225, 666, 706, 820, 995, 1034.
found: 15, 167, 170, 171, 205, 206, 207, 235, 236, 284, 291, 292, 295, 477, 527, 532, 539, 541, 543, 544, 547, 548, 577, 582, 667, 669, 685, 686, $720,726,748,755,779,1103,1117$.
found1: 15.
found2: 15.
four_quarters: $156,1096,1133,1186,1187$.
fourth_octant: 139, 141, 380, 387, 388, 390, 393, 396, 426, 435, 443, 449, 461, 462, 472.
frac_mult: 837, 944.
fraction: 105, 107, 109, 114, 116, 119, 124, 126, $144,145,148,149,150,187,259,280,283$, 286, 296, 298, 299, 391, 406, 410, 419, 433, 440, 493, 495, 497, 542, 585, 587, 591, 592, 594, 599, 612, 932, 944.
fraction_four: 105, 111, 113, 116, 121, 123, 125, 126, 127, 132, 133, 296, 1116.
fraction_half: 105, 111, 152, 288, 408, 496, 543, 1098, 1128, 1140.
fraction_one: 105, 107, 108, 109, 142, 145, 148, $149,150,285,288,290,291,295,300,311,391$,

392, 402, 407, 411, 413, 415, 420, 424, 436, 439, 444, 457, 477, 478, 497, 499, 503, 530, 540, 547, 549, 599, 603, 612, 615, 816, 917, 1169, 1170.
fraction_three: 105, 116, 288, 296.
fraction_threshold: 594, 597 .
fraction_two: 105, 116, 121, 124, 142.
free: 178, 180, 181, 182, 183, 184.
free_avail: 164, 177, 216, 254, 349, 360, 604, $760,763,852,860$.
free_node: 172, 177, 216, 246, 247, 249, 254, 268, $352,353,354,358,385,405,452,487,532$, $536,537,595,598,599,600,601,603,605$, $612,615,616,650,745,763,800,808,810$, 818, 819, 827, 829, 837, 855, 858, 866, 890, 903, 910, 922, 925, 942, 944, 947, 955, 970, 980, 1001, 1006, 1008, 1065, 1209.
from primitive: 211.
from_token: 186, 211, 212, 1073.
frozen_bad_vardef: 201, 203, 702.
frozen_colon: 201, 203, 211, 751.
frozen_end_def: 201, 203, 664, 683.
frozen_end_for: 201, 203, 664, 683.
frozen_end_group: 201, 203, 211, 664, 698.
frozen_fi: 201, 203, 661, 740.
frozen_inaccessible: 201, 203, 691, 1196, 1197, 1199.
frozen_left_bracket: 201, 203, 211, 847.
frozen_repeat_loop: 201, 757, 758, 759.
frozen_right_delimiter: 201, 203, 664.
frozen_semicolon: 201, 203, 211, 664.
frozen_slash: 201, 203, 837, 893.
frozen_undefined: 201, 249.
Fuchs, David Raymond: 2, 1148.
future_pen: 187, 216, 248, 798, 802, 804, 808, 809, 855, 864, 865, 896, 918, 919, 921, 952, 962, 983.
g : 47.
g_pointer: 216, 219, 224, 225, 1042.
gamma: 296, 527, 528, 529, 530.
general_macro: 226, 227, 694, 697, 725.
get: 25, 28, 30, 32, 794, 1189.
get_avail: $163,165,235,236,250,335,350,362$, $375,376,605,662,694,697,698,704,728,734$, $758,764,841,845,853,854,860,863,1011$.
get_boolean: 706, 713, 748, 892.
get_clear_symbol: 692, 694, 700, 1031, 1036.
get_code: 1103, 1106, 1107, 1110, 1112, 1113, 1114.
get_next: 71, 73, 83, 624, 658, 659, 666, 667, $676,679,685,690,691,694,700,703,704$, $705,706,715,718,720,730,742,781,991$, 1016, 1044, 1049.
get_node: 167, 173, 215, 232, 233, 234, 239, 240, $241,244,245,252,253,264,265,266,330,331$,

334, 341, 355, 364, 410, 451, 476, 477, 481, 486, $528,535,536,537,596,597,607,608,609,619$, $651,694,704,705,744,755,765,799,830,856$, 857, 871, 895, 896, 931, 964, 982, 1117.
get_pair: 1072, 1073, 1074.
get_strings_started: 47, 51, 1204.
get_symbol: 691, 692, 694, 704, 705, 755, 757, 1011, 1029, 1033, 1035, 1076.
get_x_next: $\quad 694,697,706,707,716,718,726,729$, $733,734,735,748,751,752,755,764,765,799$, $800,820,823,824,825,826,830,835,837,839$, $840,841,844,846,850,851,853,854,859,860$, 861, 862, 864, 868, 874, 875, 876, 878, 881, 882, 884, 886, 892, 989, 990, 995, 996, 1011, 1012, 1021, 1023, 1029, 1031, 1033, 1034, 1035, $1036,1040,1044,1045,1049,1050,1054,1059$, 1070, 1071, 1072, 1073, 1074, 1076, 1082, 1103, 1106, 1107, 1112, 1115, 1177.
gf_boc: $1161,1162,1168,1172$.
gf_buf: 1151, 1152, 1154, 1155.
gf_buf_size: 11, 14, 1151, 1152, 1153, 1155, 1156, 1182.
$g f_{-} d x: 1099,1149,1182$.
$g f_{-} d y: 1099,1149,1182$.
gf_ext: 785, 791, 1164.
gf_file: 791, 1149, 1151, 1154, 1182.
gf_four: $1157,1161,1166,1177,1182$.
gf_id_byte: $1144,1163,1182$.
gf_index: 1151, 1152, 1154.
gf_limit: $1151, \underline{1152}, 1153,1155,1156$.
gf_max_m: 1149, 1163, 1168, 1169, 1182.
gf_max_n: $\underline{1149}, 1161,1163,1182$.
gf_min_m: $\underline{1149}, 1161,1163,1182$.
$g f _m i n _n: \quad 1149,1163,1167,1168,1182$.
gf_offset: $\quad 1151,1152,1153,1155,1163,1165,1182$.
gf_out: $\underline{1155,1157,1158,1159, ~ 1160, ~ 1161, ~ 1163, ~}$ $1165,1166,1173,1174,1177,1182$.
gf_paint: $1159,1170,1171,1172$.
gf_prev_ptr: $\underline{1149,1150, ~ 1163, ~ 1165, ~ 1182, ~} 1206$.
gf_ptr: 1151, 1152, 1153, 1155, 1156, 1163, 1165, 1182.
gf_string: $\quad \underline{1160}, 1163,1166,1177,1179$.
gf_swap: 1155.
gf_three: 1158, 1160.
gf_two: 1158, 1159, 1174.
given: 256, 258, 259, 273, 282, 284, 285, 875, 877, 888, 889.
good_val: 431, 432, 435, 438, 442.
goto: 34, 76.
granularity: 190, 192, 193, 430, 433.
granularity primitive: 192.
greater_or_equal: 189, 893, 936, 937.
greater_than: 189, 893, 936, 937.
group_line: 831, 832.
gubed: 7 .
Guibas, Leonidas Ioannis: 2, 469.
$h: \quad \underline{205}, \underline{257}, \underline{269}, \underline{326}, \underline{334}, \underline{344}, \underline{346}, \underline{366}, \underline{369}$, $\underline{385}, \underline{402}, \underline{465}, \underline{473}, \underline{477}, \underline{484}, \underline{488}, \underline{491}, \underline{506}$, 518, 527, 539, 562, 860, 1011.
half: 96, 102, 111, 113, 121, 126, 133, 142, 150, $232,313,314,317,392,404,432,442,445$, $556,559,561,596,866,939,1122$.
half_buf: 1151, 1152, 1153, 1155, 1156.
half_error_line: 11, 14, 635, 641, 642, 643.
half_fraction_threshold: 594, 599, 600, 612, 616.
half_scaled_threshold: 594, 599, 600.
half_unit: 101, 113, 119, 374, 402, 462, 463, 468, 477, 478, 512, 515, 518, 521, 528, 530, 533, $917,1106$.
halfword: $153, \underline{156}, 158,172,210,246,253,284$, $329,346,366,491,497,624,627,697,755$, 862, 864, 868, 1029, 1077, 1104.
hard_times: 941, 946.
hash: $200,201,202,205,207,625,658,1196,1197$.
hash_base: 200, 201, 205.
hash_end: 201, 202, 204, 209, 214, 229, 250, 253, 254, 699, 841, 996, 998, 999, 1049, 1196, 1197, 1199.
hash_is_full: 200, 207.
hash_prime: 12, 14, 205, 208, 1190, 1191.
hash_size: 12, 14, 201, 207, 208, 1190, 1191, 1208.
hash_top: 201.
hash_used: 200, 203, 207, 1196, 1197.
header: 1090.
header_byte: $1096,1097,1106,1114,1128,1131$, 1135, 1182.
headerbyte primitive: 1101.
header_byte_code: 1101, 1102, 1106.
header_size: 11, 14, 1096, 1097, 1114, 1135.
Hedrick, Charles Locke: 3.
height_index: 1091.
help_line: 74, 84, 86, 661, 664, 691, 852, 1016, 1055.
help_ptr: 74, 75, 84, 86.
help0: 74, 1051.
help1: 74, 88, 90, 703, 713, 734, 751, 838, 839, 876, 881, 883, 914, 937, 1021, 1034, 1051, $1056,1071,1074,1082,1086,1098,1106,1107$, $1110,1113,1115,1178$.
help2: $67, \underline{74}, 83,84,89,90,122,128,134,140$, $270,478,623,670,675,701,708,712,713$, $716,727,735,747,765,832,865,878,892$, 937, 950, 996, 999, 1002, 1004, 1008, 1015, 1017, 1021, 1032, 1055, 1057, 1061, 1062, 1067,

1073, 1103, 1105, 1106, 1112.
help3: 67, $\underline{74}, ~ 93,340,342,478,661,672,691$, $725,726,727,755,756,795,849,859,861$, $875,887,901,923,955,960,963,965,993$, 1032, $1035,1068$.
help4: $\underline{74}, 84,99,404,602,663,754,824,830$, 1060, 1086.
help5: $\quad \underline{74}, 693,851,872,873,878,990,1016$.
help6: 74, 991.
Here is how much...: 1208.
hex primitive: 893.
hex_op: 189, 893, 912.
$h h: 153, \underline{156}, 157,161,214,250,255, \underline{334}, \underline{477}$, $479,562,563,1188,1189$.
hi_mem_min: $159,161,163,167,168,176,177$, $178,180,181,184,185,216,218,242,676$, 850, 1045, 1194, 1195, 1207, 1208.
hi_mem_stat_min: 175, 176, 1195.
history: \quad 71, 72, 77, 88, 90, 195, 1204, 1209.
hlp1: 74.
hlp2: 74.
hlp3: 74.
hlp4: 74.
hlp5: $\underline{74}$.
hlp6: 74.
ho: $155,324,333,343,344,349,352,358,359$, 360, 370, 373, 582, 1169.
Hobby, John Douglas: 274, 354, 432, 524.
hold_head: 175, 665, 685, 697, 730.
hppp: $\underline{190}, 192,193,785, \underline{1146}, 1164,1182$.
hppp primitive: 192.
htap_ypoc: 266, 921, 978, 1064, 1065.
i : 19, 150, $\underline{641}$.
I can't find file $x: 786$.
I can't find PLAIN...: 779.
I can't go on...: 90 .
I can't read MF.POOL: 51.
I can't write on file x: 786.
id_lookup: 205, 210, 669.
id_transform: 233, 955.
if primitive: $\underline{740}$.
if_code: 738, 740, 741, 744, 751.
if_limit: $\quad 738,739,744,745,746,748,751$.
if_line: 738, 739, 744, 745, 748, 1209.
if_line_field: $\quad \mathbf{7 3 8}, 744,745,1209$.
if_node_size: 738, 744, 745, 1209.
if_test: 186, 706, 707, 740, 741, 742, 748.
illegal design size...: 1128.
Illegal ligtable step: 1107.
Illegal suffix...flushed: 1016.
IMPOSSIBLE: 218.
Improper ':=': 996.

Improper 'addto': 1061, 1062.
Improper 'openwindow': 1073.
Improper curl: 876.
Improper font parameter: 1115.
Improper kern: 1112.
Improper location: 1106.
Improper subscript...: 849.
Improper tension: 883.
Improper transformation argument: 955.
Improper type: 1055.
Improper...replaced by 0: 754.
in_open: 631, 654, 655, 657.
in_state_record: 627, 628.
in_window: 186, 211, 212, 1071.
inwindow primitive: 211.
Incomplete if...: 661.
Incomplete string token...: 672.
Inconsistent equation: 1004, 1008.
incr: $16,30,36,41,42,44,45,46,53,58,59,60$, $64,66,77,85,86,93,108,115,123,136,143$, $147,163,165,183,207,226,281,284,297,314$, $315,317,319,320,321,322,333,348,352,362$, $364,366,375,376,377,381,382,383,384,404$, $429,458,459,481,483,487,497,502,514,515$, $516,520,521,522,560,568,574,577,583,584$, $647,654,669,671,673,674,681,687,704,705$, $717,721,724,728,731,732,734,736,737,742$, $772,774,779,781,787,793,1036,1104,1107$, $1112,1113,1114,1115,1118,1121,1129,1137$, 1138, 1140, 1155, 1165, 1196, 1211.
independent: $187,216,219,232,248,585,589$, $592,604,615,798,799,800,801,802,803,808$, $809,816,827,828,855,857,858,903,918,925$, 926, 927, 928, 944, 1003, 1006, 1007, 1009.
independent_being_fixed: $\underline{605}$.
independent_needing_fix: 592, 595, 596, 598, 599, 600.
index: $627, \underline{629}, 630,631,632,654,655,657$. index_field: 627, 629.
inf_val: $\underline{175}, 617,1116,1117,1118,1121,1136$.
info: $161,166,168,176,185,214,218,221,226$, $227,228,229,235,236,242,245,246,250,252$, $253,254,324,325,326,328,333,335,337,338$, $339,342,343,344,345,346,347,349,350,351$, $358,359,360,362,366,367,368,370,373,375$, $376,378,381,382,383,384,472,473,475,481$, 484, 488, 491, 509, 512, 519, 580, 582, 587, 589, 591, 594, 595, 596, 597, 598, 599, 600, 601, 604, $605,607,608,609,610,611,612,614,615,616$, $617,651,662,676,685,686,694,697,698,700$, $704,705,714,719,721,722,725,726,727,728$, $729,733,734,736,752,755,758,760,763,764$,
$805,811,812,816,818,819,841,850,853,854$, 860, 863, 904, 931, 933, 935, 968, 996, 998, 999, 1006, 1007, 1010, 1011, 1015, 1050, 1121, $1122,1127,1136,1169,1207,1213$.
INIMF : 8, 11, 12, 47, 50, 159, 1183, 1203.
init: $\underline{8}, \underline{47}, \underline{50}, \underline{173}, \underline{210}, \underline{564}, \underline{567}, \underline{568}, \underline{1186}$, $1204,1209,1210$.
init_big_node: $\quad \underline{232}, 233,830,857,982$.
init_edges: $\underline{326}, 353,364,895,964$.
init_gf: 1163.
init_pool_ptr: $\quad \underline{38}, 41,1045,1193,1204,1208$.
init_prim: 1204, 1210.
init_randoms: $\underline{150}, 1022,1211$.
init_screen: $\underline{564}, 567,568,569,570,571$.
init_str_ptr: $\quad \underline{38}, 44,772,1045,1193,1204,1208$.
init_tab: 1204, 1210.
init_terminal: 36, 657.
initialize: 4, 1204, 1211.
inner loop: $30,107,108,109,111,112,113,163$, $165,167,169,172,177,242,244,408,650$, $651,667,668,669,676,718,850$.
inner primitive: 1027.
input: 186, 706, 707, 709, 710.
input primitive: $\underline{709}$.
input_file: 631.
input_ln: $29, \underline{30}, 36,58,66,681,794$.
input_ptr: 628, 635, 636, 647, 648, 656, 657, 679, 788, 1209.
input_stack: $79,80, \underline{628}, 635,647,648,788$.
ins_error: $6 \underline{653}, 661,663,691,751,824$.
insert>: 82.
inserted: 632, 638, 650, 653.
install: 857, 858, 957, 959.
int: $153,156,157,214,326,738,1188,1189,1191$.
int_increment: 553, 559, 561.
int_name: 190, 193, 254, 998, 999, 1036, 1043, 1098, 1123, 1198, 1199.
int_packets: 553, 558, 560.
int_ptr: 190, 191, 1036, 1198, 1199, 1208.
integer: $13,19,45,46,47,54,59,60,64,65,77$, 89, 91, 100, 101, 102, 105, 106, 107, 109, 112, $114,116,117,119,121,124,126,129,130,132$, $135,139,145,152,153,156,160,167,185,196$, $200,205,217,227,242,299,308,309,311,321$, $327,328,329,332,333,337,340,342,348,354$, $357,363,366,369,371,373,374,378,391,398$, $402,403,453,464,473,477,484,488,495,497$, $507,511,527,555,557,562,572,574,577,580$, $585,589,594,597,599,600,601,608,610,621$, $624,625,626,631,633,641,651,659,667$, $685,707,720,723,730,738,742,773,774$, $778,788,796,801,809,813,831,895,898$,

899, 900, 913, 922, 930, 943, 977, 1001, 1059, $1070,1073,1074,1096,1103,1106,1118,1119$, $1120,1121,1129,1130,1131,1133,1149,1152$, $1157,1158,1159,1160,1161,1162,1163,1165$, 1186, 1187, 1203, 1205, 1210, 1212.
interaction: $66,67, \underline{68}, 69,70,77,78,79,81,86$, 87, 88, 93, 398, 679, 682, 786, 807, 897, 1023, 1051, 1086, 1198, 1199, 1200, 1209.
interesting: $\underline{238}, 603,613,817,1050$.
interim primitive: $\underline{211 .}$
interim_command: $\underline{186}, 211,212,1033$.
internal: 190, 191, 194, 195, 238, 253, 254, 269, $375,376,381,382,383,384,402,430,433$, $465,468,477,506,508,510,515,517,521$, $523,533,602,603,610,682,707,713,720$, $728,734,748,760,804,816,832,841,895$, 898, 922, 944, 992, 994, 995, 996, 999, 1036, 1051, 1064, 1068, 1070, 1097, 1098, 1099, 1128, $1129,1134,1137,1163,1164,1165,1177,1182$, 1198, 1199, 1200, 1205, 1206, 1213.
Internal quantity...: 999.
internal_quantity: $\underline{186}, 192,823,844,860,1011$, 1034, 1036, 1043.
interrupt: 91, 92, 93, 825.
Interruption: 93.
intersect: 189, 893, 988.
intersectiontimes primitive: $\underline{893}$.
Invalid code...: 1103.
invalid_class: 198, 199, 669.
is_empty: 166, 169, 182, 183.
Isolated expression: 993.
isolated_classes: 198, 223, 669.
italic_index: 1091.
iteration: 186, 683, 684, 685, 706, 707, 758.
$j: \underline{45}, \underline{46}, \underline{59}, \underline{60}, \underline{77}, \underline{150}, \underline{205}, \underline{210}, \underline{357}, \underline{378}$, 707, 774, 778, 779, 1106.
j_random: 148, 149, 151, 152.
Japanese characters: 1147.
Jensen, Kathleen: 10.
$j j: ~ 150, ~ 357,364$.
job aborted: 679.
job aborted, file error...: 786.
job_name: 87, 782, 783, 784, 788, 791, 793, 895, 1134, $1200,1209$.
jobname primitive: $\underline{893}$.
job_name_op: 189, 893, 895.
jump_out: 76, 77, 79, 88.
$k: \underline{45}, \underline{46}, \underline{47}, \underline{63}, \underline{64}, \underline{66}, \underline{102}, \underline{121}, \underline{130}, \underline{132}, \underline{135}$, $\underline{139}, \underline{145}, \underline{149}, \underline{150}, \underline{205}, \underline{210}, \underline{264}, \underline{280}, \underline{284}, \underline{299}$, $\underline{321}, \underline{346}, \underline{363}, \underline{366}, \underline{378}, \underline{402}, \underline{426}, \underline{440}, \underline{473}, \underline{477}$, $\underline{484}, \underline{487}, \underline{491}, \underline{497}, \underline{511}, \underline{568}, \underline{574}, \underline{577}, \underline{667}, \underline{682}$, $\underline{697}, \underline{707}, \underline{774}, \underline{778}, \underline{780}, \underline{786}, \underline{788}, \underline{895}, \underline{913}$,
$\underline{976}, \underline{977}, \underline{978}, \underline{1073}, \underline{1106}, \underline{1131}, \underline{1154}, \underline{1160}$, $\underline{1163}, \underline{1186}, \underline{1187}, \underline{1205}, \underline{1210}, \underline{1212}$.
keep_code: 1052, 1074.
keeping: 1074, 1075.
keeping primitive: 1052.
kern: 1093, 1096, 1106, 1112, 1139.
kern primitive: 1108.
kern_flag: 1093, 1112.
knil: $325,326,330,331,332,334,336,341,352$, $354,355,364,376,377,382,384,442,472,473$, $475,476,482,483,484,497,503,505,508,509$, $513,515,517,519,521,523,1167$.
knot_node_size: $\quad \underline{255}, 264,265,266,268,405,410$, $451,452,486,528,532,535,536,537,866$, 871, 890, 896, 980, 1065.
knots: 269, 271, 272.
known: 187, 214, 215, 216, 219, 233, 248, 585, $594,603,615,651,678,726,760,765,798,799$, $802,803,808,809,823,826,827,829,830,837$, $841,846,855,857,858,861,873,876,878,883$, $895,899,903,906,912,915,918,919,930,931$, 932, 935, 937, 939, 941, 942, 943, 944, 948, 949, $951,953,956,957,959,960,966,968,969,970$, 971, 972, 974, 982, 983, 999, 1003, 1006, 1007, 1009, 1021, 1052, 1054, 1062, 1071, 1073, 1074, $1103,1106,1112,1115,1176,1177,1180$.
known primitive: 893.
known_op: 189, 893, 918, 919.
known_pair: 871, 872, 877, 884.
Knuth, Donald Ervin: 2, 81.
$l: \quad \underline{46}, \underline{47}, \underline{152}, \underline{205}, \underline{210}, \underline{217}, \underline{227}, \underline{311}, \underline{641}, \underline{742}$, $\underline{746}, \underline{788}, \underline{977}, \underline{978}, \underline{1006}, \underline{1011}, \underline{1035}, \underline{1118}$, $1121,1160,1212$.
l_delim: $\underline{697}, 703, \underline{720}, 726,727,729, \underline{730}, 731$, $735, \underline{823}, 826,830,1031,1032$.
l_packets: 553, 559, 560.
label_char: 1096, 1104, 1137, 1138.
label_loc: $\quad \underline{1096}, 1097,1104,1137,1138,1139$.
label_ptr: 1096, 1097, 1104, 1137, 1138, 1139.
Lane, Jeffrey Michael: 303.
last: $\underline{29}, 30,34,35,36,66,78,82,83,657,679$, 682, 779, 787, 897.
last_nonblank: $3 \underline{30}$.
last_text_char: 19, 23.
last_window: 326, 334, 577.
last_window_time: 326, 334, 336, 337, 340, 342, 344, 348, 364, 577, 965.
left_brace: 186, 211, 212, 874.
left_bracket: $\quad \underline{186}, 211,212,823,844,847,860$, 1011, 1012.
left_bracket_class: 198, 199, 220, 221.
left_col: $5 \underline{567}, \underline{572}, 574,577,581$.
left_curl: $\underline{256}, 259,271,282,295,879,890,891$.
left_delimiter: 186, 697, 703, 726, 731, 735, 823, 1030, 1031, 1043.
left_given: $\quad \underline{256}, 259,282,292,301,879,880,888$.
left_length: $\quad \underline{528}, 531,532,534,535$.
left_octant: $393,394,398,401,451,452,458$, $459,465,506$.
left_tension: 256, 258, 260, 288, 289, 294, 295, 299, 300, 302, 880.
left_transition: 393, 459, 508.
left_type: $\underline{255}, 256,257,258,259,261,262,263$, 265, 266, 269, 271, 272, 273, 281, 282, 284, 285, 287, 299, 302, 393, 394, 397, 398, 399, 400, 401, $402,404,410,451,452,465,486,506,528,865$, 870, 871, 879, 885, 887, 888, 890, 891, 896, 916, 917, 920, 962, 978, 979, 985, 987, 1064, 1066.
left_v: $\underline{528}, 531,534,535$.
left_x: 255, 256, 261, 265, 266, 271, 282, 299, 302, 393, 397, 404, 407, 409, 410, 411, 412, $415,416,418,419,421,423,424,425,434$, $436,441,444,447,451,457,468,486,492$, $496,512,518,528,543,558,563,866,880$, 887, 896, 962, 987, 1066.
left_y: $\underline{255}, 256,261,265,266,271,282,299,302$, $393,397,404,409,410,413,414,415,416,419$, 423, 424, 425, 437, 439, 444, 447, 451, 457, 468, 486, 492, 496, 512, 518, 528, 543, 558, 563, 866, 880, 887, 896, 962, 987, 1066.
length: 39, 46, 205, 671, 716, 717, 793, 912, 913, $915,976,977,1083,1103,1160$.
length primitive: 893.
length_op: 189, 893, 915.
less_or_equal: 189, 893, 936, 937.
less_than: 189, 893, 936, 937.
let primitive: $\underline{211}$.
let_command: 186, 211, 212, 1033.
letter_class: $\underline{198}, 199,218,223$.
lf: 1088.
$l h: 153, \underline{156}, 157,161,200, \underline{491}, 502,505,1088$, $1089,1135,1205$.
lhs: 995, 996, 997, 998, 999, 1000, 1001, 1002, $1003,1059,1061,1062,1064$.
lig_kern: 1092, 1093, 1096, 1137, 1139, 1205.
lig_kern_command: 1089, 1093.
lig_kern_token: 186, 1107, 1108, 1109.
ligtable primitive: 1101.
lig_table_code: 1101, 1102, 1106.
lig_table_size: $11,14,1096,1107,1137,1141$.
lig_tag: 1092, 1104, 1105, 1111.
limit: $627, \underline{629}, 630,632,644,654,656,657,669$, $671,672,679,681,682,717,793,794,1211$.
limit_field: $\quad 34,82, \underline{627}, 629,788$.
line: 79, 197, 631, 637, 654, 655, 657, 681, 742, 744, 748, 794, 832.
line_edges: $\quad \underline{374}, 378,507,510$.
line_stack: 631, 654, 655.
linear_eq: 610, 1006.
linearform: 801, 805.
link: 161, 163, 164, 165, 166, 167, 168, 172, 176, $177,181,185,216,217,227,228,229,230,232$, $234,235,236,237,238,239,240,241,242,244$, $245,246,247,250,252,253,254,255,257,265$, 266, 268, 271, 272, 273, 281, 284, 297, 324, 325, $326,328,330,331,332,334,335,336,337,338$, $339,341,343,344,345,346,347,348,349,350$, $351,352,353,354,355,359,360,362,364,366$, $367,368,369,370,375,376,377,381,382,383$, 384, 385, 394, 398, 399, 400, 401, 402, 404, 405, $406,410,411,412,413,415,416,418,419,424$, $425,433,435,436,439,440,442,444,447,450$, $451,452,458,459,465,466,468,472,473,475$, $476,477,479,481,482,483,484,485,487,488$, 491, 492, 493, 497, 499, 502, 503, 504, 506, 508, $509,512,513,515,517,518,519,521,523,528$, $532,535,536,537,539,556,558,562,577,582$, $587,589,591,594,595,596,597,598,599,600$, $601,603,604,605,606,608,609,611,612,614$, $616,617,639,640,650,651,665,676,678,685$, $686,694,697,698,700,702,704,705,719,720$, $721,722,723,724,725,727,728,730,734,736$, $738,744,745,746,752,758,760,762,763,764$, $799,805,811,812,814,815,816,818,819,827$, $844,845,848,850,851,852,853,854,860,863$, $867,870,871,885,887,890,891,896,904,910$, $916,921,931,933,947,962,968,978,980,981$, $985,986,1007,1010,1011,1015,1043,1047$, $1050,1065,1068,1117,1118,1121,1122,1124$, 1126, 1136, 1169, 1194, 1207, 1209, 1213.
list_tag: 1092, 1105, 1106.
lk_offset: $1135,1137,1138,1139, \underline{1205}$.
lk_started: $\quad \underline{1096}, 1107,112,1137,1138,1139$.
$l l: \quad 1096,1110,1111,1139$.
llink: $166,168,169,171,172,173,176,182,1207$.
lll: 1096, 1110, 1111.
lo_mem_max: $\underline{159}, 163,167,168,176,178,180$, $182,183,184,185,1045,1194,1195,1207,1208$.
lo_mem_stat_max: $175,176,1195,1207$.
load_base_file: 1187, 1211.
loc: $3 \underline{35}, 36,82,627, \underline{629}, 630,632,636,638,644$, $645,649,652,654,656,657,669,671,672$, $673,674,676,678,679,681,712,717,736$, 779, 781, 793, 794, 795, 1211.
loc_field: $34,35, \underline{627}, 629$.
local label l:: was missing: 1139.
log_file: \quad 54, 56, 70, 788, 1205.
log_name: \quad 782, 788, 1205.
log_only: $54,57,58,62,70,93,679,788,1022$, 1200.
log_opened: 87, 88, 782, 783, 788, 789, 1023, 1205, 1208.
Logarithm...replaced by 0: 134 .
long_help_seen: 1084, 1085, 1086.
loop: 15, 16.
loop confusion: 714.
loop value=n: 762.
loop_defining: 659, 664, 665, 758.
loop_list: 752, 760, 763, 764.
loop_list_loc: 752, 764.
loop_node_size: 752, 755, 763.
loop_ptr: 712, 713, 714, 752, 753, 758, 760, 763, 1209.
loop_text: 632, 638, 714, 760.
loop_type: $\quad \underline{752}, 755,760,763,764,765$.
Lost loop: 712.
ls: 46.
$l t: \quad \underline{46}, \underline{286}, 289,294,295, \underline{299}, 302$.
$m: \quad \underline{47}, \underline{64}, \underline{311}, \underline{333}, \underline{337}, \underline{348}, \underline{357}, \underline{369}, \underline{373}, \underline{473}$, $\underline{484}, \underline{511}, \underline{574}, \underline{580}, \underline{608}, \underline{625}, \underline{626}, \underline{641}, \underline{694}, \underline{697}$, $\underline{755}, \underline{788}, \underline{913}, \underline{1029}, \underline{1082}, \underline{1098}, \underline{1118}, \underline{1120}$, $1121,1123,1165,1177,1212$.
m_adjustment: \quad 580, 581, 582.
m_exp: 135, 906.
mexp primitive: 893 .
m_exp_op: 189, 893, $906 . ~_{\text {. }}$
m_log: 132, 134, 152, 906.
mlog primitive: 893.
$m_{-} l_{o g}$ op: $189,893,906$.
m_magic: $\underline{354}, 361,362,365$.
$m_{-} \max : \quad \underline{326}, 329,334,337,342,348,352,354$, 356, 357, 364, 366, $965,1172$.
m_min: $\quad \underline{326}, 329,334,337,342,348,352,354$, 356, 357, 364, 365, 366, 965, 1172.
$m_{-} o f f s e t: \quad \underline{326}, 328,329,333,334,337,342,348$, $352,364,365,366,367,373,375,376,381$, 382, 383, 384, 581, 965, 1169, 1172.
m_spread: $356, \underline{357}, 364$.
m_window: 572, 576, 581.
mac_name: $862,864,868$.
macro: 632, 638, 645, 649, 736.
macro_at: 688, 689 .
macro_call: $707,718,719,720,853,854,863$.
macro_def: \quad 186, 683, 684, 685, 694, 698, 992, 1043.
macro_name: $\quad \underline{720}, 721,725,726,734,736$.
macro_prefix: 688, 689.
macro_ref: 843, 845, 854.
macro_special: $\underline{186}, 685,688,689,700$.
macro_suffix: 688, 689, 700.
main_control: 1017, 1204, 1211.
major_axis: $\quad \underline{527}, 530,533, \underline{865}, 866$.
make_choices: 269, 274, 277, 278, 891.
make_ellipse: 527, 528, 866.
make_eq: 995, 1000, 1001.
make_exp_copy: $651,823,852, \underline{855}, 859,903,910$, 926, 927, 944, 967, 970, 973, 1000.
make_fraction: $107,109,116,125,127,145,152$, 281, 288, 289, 290, 291, 294, 295, 296, 300, 302, $375,376,436,439,444,454,498,516,522,530$, $533,540,548,549,612,818,944$.
make_known: $\underline{603}, 604,614,818,819$.
make_moves: 309, 311, 321, 468, 512, 514, 518, 550.
make_name_string: $\quad 780$.
make_op_def: 694, 992.
make_path: 484, 921, 962.
makepath primitive: 893.
make_path_op: 189, 893, 921.
make_pen: 477, 865.
makepen primitive: 893.
make_pen_op: 189, 893, 921.
make_safe: \quad 426, 427, 436, 439, 440, 446.
make_scaled: $\underline{114}, 116,600,612,819,837,948$, 949, 980, 1128, 1129, 1164, 1182.
make_spec: $\quad \underline{402}, 403,409,448,460,493,917,1064$.
make_string: $\underline{44}, 48,52,207,671,772,780,840$, 897, 912, 976, 977, 1163, 1164, 1200, 1205.
Marple, Jane: 1086.
materialize_pen: $864,865,921,983$.
max: 539, 543.
max_allowed: 402, 403, 404, 434, 437.
max_buf_stack: 29, 30, 657, 717, 1208.
max_c: $812, \underline{813}, 814,815,816,817$.
max_class: 198.
max_coef: 495, 496, 591, 932, 943, 949.
max_command_code: 186, 821, 823, 824, 868.
max_d: 348, 351, 352.
max_expression_command: 186, 868.
max_font_dimen: 11, 1096, 1115, 1141.
max_given_internal: 190, 191, 1199.
max_halfword: $11,12,14, \underline{153}, 154,156,166,167$, $168,173,174,204,214,324,348,351,358,1207$.
max_in_open: $12,631,632,654,1190,1191$.
max_in_stack: $\quad \underline{628}, 647,657,1208$.
max_internal: 11, 190, 204, 1036, 1199, 1208.
max_kerns: 11, 1096, 1106, 1112, 1141.
max_link: $812, \underline{813}, 814,815,818,819$.
max_m: 1144, 1146, 1161.
max_n: $\underline{348}, 351,352,1144, \underline{1146}, 1161$.
max_new_row: 1145, 1173.
max_offset: 472, 475, 477, 962, 1064.
max_param_stack: 633, 657, 736, 737, 1208.
max_patience: 555, 556.
max_pool_ptr: $\underline{38}, 41,47,1045,1193,1204,1208$.
max_primary_command: 186, 823, 836, 862, 864, 868, 989, 990.
max_print_line: $11,14,54,58,67,333,372,793$, 1046, 1048, 1165.
max_ptr: 813, 814, 815, 816.
max_quarterword: $153,154,156,399,404,481$.
max_rounding_ptr: 427, 428, 429, 1208.
max_secondary_command: 186, 862.
max_selector: $\underline{54}, 196,635,788$.
max_statement_command: 186, 989.
max_str_ptr: 38, 44, 47, 772, 1045, 1193, 1204, 1208.
max_str_ref: $\underline{42}, 43,48,52,207,793,1193,1200$.
max_strings: 11, 37, 44, 154, 772, 780, 1045, 1193, 1208.
max_suffix_token: 186, 844.
max_t: 555, 556.
max_tertiary_command: 186, 864.
max_tfm_dimen: 1128, 1129, 1130, 1182.
max_wiggle: 11, 426, 427, 429, 440, 1208.
$m c: ~ 477,478,479$.
Meggitt, John E.: 143.
mem: 11, 12, 158, 159, 161, 166, 168, 173, 175, $176,178,180,185,214,216,229,241,242,244$, $250,255,264,326,334,472,475,587,594,738$, 752, 827, 947, 961, 1194, 1195, 1213.
mem_end: $159, \underline{161}, 163,176,178,180,181,184$, $185,218,1194,1195,1208$.
mem_max: $11,12,14,153,154,159,163,166$, 167, 178, 179.
mem_min: $\underline{12}, 14,154,158,159,163,167,168$, $175,176,178,179,180,182,183,184,185$, 218, 1190, 1191, 1194, 1195, 1208.
mem_top: $11, \underline{12}, 14,154,159,175,176,1190$, 1191, 1195.
Memory usage...: 1045.
memory_word: $153, \underline{156}, 157,159,242,1188$.
merge_edges: 366, 929, 1061.
message primitive: 1079.
message_code: 1079, 1082.
message_command: 186, 1079, 1080, 1081.
METAFONT capacity exceeded ... : 89.
buffer size: $34,654,717$.
extensible: 1113.
fontdimen: 1115.
hash size: 207.
headerbyte: 1114.
independent variables: 585.
input stack size: 647.
kern: 1112.
ligtable size: 1107.
main memory size: $163,167$.
move table size: $356,468,508$.
number of internals: 1036.
number of strings: 44, 772 .
parameter stack size: $704,736,737$.
path size: 281.
pen polygon size: 481.
pool size: 41.
rounding table size: 429.
text input levels: 654.
The METAFONT book: 1, 199, 574, 824, 872, 873, 878, 990, 991, 1068, 1203.
METAFONT84: $\underline{1}$.
metric_file_name: 1087, 1134.
MF: 4 .
MF.POOL check sum...: 53.
MF.POOL doesn't match: 53 .
MF.POOL has no check sum: 52 .
MF.POOL line doesn't...: 52.
MF_area: 769, 793.
MF_base_default: 775, 776, 778.
MFbases: 11, 776.
MFinputs: 769.
mfput: 34, 788.
mid: 1094.
min_col: 580, 581, 582, 583.
min_command: 186, 706, 715, 718.
min_cover: 1118, 1120.
min_d: 348, 351, 352.
min_expression_command: 186, 868, 869.
min_halfword: $12, \underline{153}, 154,155,156,324,326$, $337,342,348,350,365,375,376,381,382$, 383, 384, 580.
min_m: 1144, 1146, 1161.
min_n: $\underline{348}, 351,352,1144, \underline{1146}, \underline{1161}$.
min_of: 189, 923.
min_primary_command: 186, 823, 837, 862, 864, 868, 989.
min_quarterword: $\underline{153}, 154,155,156,1093$.
min_secondary_command: 186, 862.
min_suffix_token: 186, 844.
min_tension: 883 .
min_tertiary_command: 186, 864.
minor_axis: $527,530,533, \underline{865}, 866$.
minus: 189, 859, 893, 898, 903, 922, 929, 930, 936, 939.
Missing ')': 727, 735, 1032.
Missing ')'... : 725.
Missing ',': 727, 878.

Missing '..': 881.
Missing ':': 747, 751, 756, 1106.
Missing ':=': 1021.
Missing ';': 713.
Missing ' $=$ ': 693, 755, 1035.
Missing '\#': 1113.
Missing '\}': 875.
Missing ']': 859, 861.
Missing 'of': 734, 839.
Missing 'until': 765.
Missing argument...: 726.
Missing parameter type: 703.
Missing symbolic token...: 691.
Missing...inserted: 94.
missing_err: $\underline{94}, 693,713,727,734,735,747,751$, $755,756,765,839,859,861,875,878,881$, 1021, 1032, 1035, 1106, 1113.
missing_extensible_punctuation: 1113.
$m l: 329$.
$m m: ~ 348,349, \underline{357}, 358,362,364, ~ 580,582$, 1165, 1169.
$m m 0: \quad \underline{511}, 513,517,519,523$.
$m m 1: \quad \underline{511}, 513,517,519,523$.
mock curvature: 275.
mode_command: 186, 1023, 1024, 1025.
Moler, Cleve Barry: 124.
month: 190, 192, 193, 194, 1163, 1200.
month primitive: $\underline{192}$.
months: 788, 790.
more_name: 767, 771, 781, 787.
Morrison, Donald Ross: 124.
move: $308,311,315,316,319,320,321,322,354$, $356,357,362,364,378,379,381,382,383,384$, 468, 507, 512, 514, 517, 518, 520, 523.
move_increment: $\underline{309}, 310,312,314$.
move_ptr: 308, 311, 315, 316, 319, 320, 468, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523.
move_size: 11, 308, 311, 321, 356, 357, 362, 378, 468, 507, 508, 511.
move_to_edges: $378,465,517,523$.
$m r$: 329 .
mtype: 4 .
Must increase the x: 1187.
my_var_flag: $823,841,852, \underline{868}$.
$m 0: ~ \underline{374}, 375,376, \underline{378}, 380,381,382,383,384$, $\underline{464}, 465,467,508,511,517,523$.
$m 1: ~ \underline{374}, 375,376, \underline{378}, 380,463, \underline{464}, 465,467$, 508, 511, 517, 523.
$n: \underline{47}, \underline{64}, \underline{65}, \underline{89}, \underline{107}, \underline{109}, \underline{112}, \underline{114}, \underline{242}, \underline{246}$, $\underline{280}, \underline{284}, \underline{311}, \underline{332}, \underline{348}, \underline{366}, \underline{369}, \underline{373}, \underline{374}$, $\underline{378}, \underline{473}, \underline{477}, \underline{484}, \underline{488}, \underline{491}, \underline{497}, \underline{511}, \underline{539}$,
$\underline{562}, \underline{568}, \underline{574}, \underline{580}, \underline{610}, \underline{641}, \underline{667}, \underline{697}, \underline{720}$, $\underline{722}, \underline{723}, \underline{755}, \underline{773}, \underline{774}, \underline{778}, \underline{863}, \underline{913}, \underline{916}$, 944, 985, 1046, 1165, 1212.
n_arg: 139, 140, 141, 147, 256, 281, 282, 292, 293, 301, 387, 541, 544, 866, 877, 907.
$n_{-} \cos : \quad 144,145,259,263,297,301,530,533$, 906, 958.
n_magic: 354, 361, 362, 365.
n_max: 326, 329, 331, 332, 334, 336, 340, 348, $352,364,365,366,965,1167$.
n_min: $326,329,330,334,336,340,348,352$, 364, 366, 577, 965, 1172.
n_pos: 326, 330, 331, 334, 336, 352, 364, 374, 377, 378, 965.
n_rover: 326, 330, 331, 334, 352, 364, 374, 377, 378.
n_sin: 144, 145, 259, 263, 297, 301, 530, 533, 906, 958.
n_sin_cos: 144, 145, 147, 259, 263, 297, 301, 530, 906, 958
n_window: 572, 576, 577.
name: $627, \underline{629}, 630,631,632,635,637,638,649$, $654,655,657,679,717,736,793,897$.
name_field: 79, 80, 627, 629.
name_length: $\quad \underline{25}, 51,774,778,780$.
name_of_file: $\underline{25}, 26,51,774,778,780,786$
name_type: $188, \underline{214}, 215,219,228,229,230$, $232,233,234,235,236,237,238,239,240$, 244, 245, 246, 247, 249, 254, 619, 651, 678, $702,738,744,745,799,806,830,856,857$, 911, 931, 982, 1047, 1209.
$n d: \quad 1088,1089,1096,1126,1135,1141$.
$n e: 1088,1089,1096,1097,1113,1135,1140,1141$.
negate: $16,64,103,107,110,114,118,139,146$, $380,409,411,412,414,415,416,418,423,424$ 425, 480, 882, 903, 904, 930, 959, 1007, 1068.
negate_dep_list: 903, 904, 930, 959.
negate_edges: 344, 345, 903, 929.
negate_x: 139, 390, 406, 409, 411, 418, 480, 489.
negate_y: 139, 390, 406, 414, 415, 418, 437, 438, 439, 480, 489.
negative: 107, 109, 110, 112, 114.
New busy locs: 184.
new_boundary: 451, 452, 458.
new_dep: $\quad \underline{606}, 615,829,856,858,947,969,972$.
new_if_limit: 748.
new_indep: 585, 586, 816, 855.
new_internal: 186, 211, 212, 1033.
newinternal primitive: 211.
new_knot: 870, 871, 885, 908.
new_num_tok: $\underline{215}, 236,860$.
new_randoms: 148, 149, 150.
new_ring_entry: 619, 855
new_root: 234, 242, 1011.
new_row_0: 1144, 1145, 1173.
new_row_1: 1144.
new_row_164: 1144, 1145.
new_string: $\quad \underline{54}, 57,58,840,912,1163,1164,1200$.
new_structure: 239, 243.
next: 200, 202, 205, 207.
next_a: 426, 440, 446.
next_char: 1093, 1107, 1112, 1137.
next_random: 149, 151, 152.
$n h: 1088,1089,1096,1126,1135,1141$.
$n i: 1088,1089,1096,1126,1135,1141$.
nice_pair: $\quad \underline{899}, 900,907,915,941,975, ~ 983,1072$.
nil: 16.
ninety_deg: 106, 141, 530.
$n k: \quad 1088,1089, \underline{1096}, 1097,1112,1135,1139,1141$.
$n l: \quad \underline{329}, 330,1088,1089,1093,1096,1097,1107$, 1110, 1111, 1112, 1135, 1137, 1139, 1141.
$n n: 562$.
No loop is in progress: 713.
No new edges added: 372.
no_crossing: 391, 392.
no_op: 1144, 1147.
no_print: 54, 57, 58, 70, 93.
no_tag: 1092, 1096, 1097, 1104.
node_size: 166, 168, 169, 170, 172, 176, 182, 1194, 1195, 1207.
node_to_round: 426, 427, 429, 436, 439, 444, 445, 446.
NONEXISTENT: 218.
nonlinear_eq: 621, 1003.
Nonnumeric...replaced by 0: 830.
nonstop_mode: 68, 81, 679, 682, 897, 1024, 1025.
nonstopmode primitive: $\underline{1024}$.
norm_rand: 152, 895.
normal: 659, 660, 661, 694, 697, 730, 738, 739, 742, 758, 991, 1016.
normal_deviate: 189, 893, 895.
normaldeviate primitive: $\underline{893}$.
normalize_selector: $73, \underline{87}, 88,89,90$.
north_edge: 435, 438.
Not a cycle: 1067.
Not a string: 716, 1082.
Not a suitable variable: 1060.
Not implemented...: 901, 923.
not primitive: 893 .
not_found: 15, 45, 394, 477, 479, 491, 494, 496, $539,541,556,560,561,760,1001,1004,1059$, 1064, 1067, 1071, 1073, 1074, 1075.
not_op: 189, 893, 905.
nothing_printed: 473, 474.
$n p: \quad 1088,1089,1096,1097,1115,1135,1140,1141$.
$n r: \quad 329,331$.
nuline: 197, 257, 332, 473.
null: $158,159,161,163,165,167,168,176,177$, 181, 182, 202, 214, 216, 217, 226, 227, 229, 232, $233,234,235,237,242,246,249,251,252,253$, $254,257,258,324,346,355,364,368,398,472$, $475,477,479,487,528,532,536,537,587,589$, $591,594,597,599,600,604,605,607,609,611$, $612,614,615,616,617,618,619,620,632,636$, $638,639,640,650,651,652,665,676,685,686$, $694,697,698,700,707,712,713,714,716,718$, $719,720,721,722,723,724,726,728,730,734$, $735,736,738,739,746,752,753,754,755,760$, $762,763,764,795,801,802,805,806,807,810$, $811,812,816,818,819,840,844,845,848,850$, $851,852,853,854,857,902,904,924,925,926$, 927, 928, 929, 930, 931, 933, 934, 935, 936, $942,943,944,945,948,949,968,970,972$, 997, 998, 1000, 1003, 1006, 1007, 1008, 1009, 1010, 1011, 1015, 1035, 1040, 1041, 1043, 1048, 1049, 1050, 1057, 1061, 1064, 1068, 1070, 1071, 1074, 1194, 1195, 1207, 1209, 1213.
null_coords: 175, 214, 475.
null_pen: 175, 435, 438, 442, 475, 477, 487, 865, 895, 917, 962, 1062.
nullpen primitive: $\underline{893}$.
null_pen_code: 189, 893, 895.
nullpicture primitive: $\underline{893}$.
null_picture_code: 189, 893, 895.
null_tally: 217.
nullary: 186, 713, 823, 893, 894, 895.
num: 116, 296, 836, 837.
numspecial primitive: 1176.
Number too large: 914.
numeric primitive: $\underline{1013 .}$
numeric_token: 186, 651, 675, 678, 823, 824, 836, 837, 844, 846, 860, 861, 1016, 1042.
numeric_type: 187, 189, 229, 242, 248, 585, 798, 802, 809, 855, 918, 1013.
$n w: 1088,1089,1096,1124,1135,1141$.
$n 0: \quad \underline{373}, \underline{374}, 375,376,377, \underline{378}, 380,382,383$, $384,464,465,467,468,508,513,515,517$, 519, 521, 523.
$n 1: \quad \underline{373}, \underline{374}, 375,376, \underline{378}, 380,463, \underline{464}, 465$, 467, 468, 508, 513, 517, 519, 523.
$o: \quad \underline{210}, \underline{431}, \underline{477}$.
obliterated: 851, 852, 1000, 1057.
oct primitive: 893 .
oct_op: 189, 893, 912, 913, 914.
octant: $139,141, \underline{379}, 380, \underline{387}, \underline{388}, \underline{394}, 434$, $437, \underline{451}, 463,465,468,473,479,480,481$,

484, 485, 488, 489, 506, 508, 509, 510, 512, $513,515,516,518,519,521,522$.
octant_after: 390.
octant_before: 390.
octant_code: $\underline{448}, 449,458,473,481,484$.
octant_dir: 394, 395, 396, 398, 401, 509.
octant_number: 448, 449, 452, 459, 479, 488, 508, 512.
octant_subdivide: 402, 419.
odd: $62,111,113,145,390,417,434,435,436$, $442,445,459,473,482,483,484,488,508$, 512, 530, 560, 906.
odd primitive: 893.
odd_op: 189, 893, 906.
of primitive: $\underline{211 .}$
of_macro: $\underline{226}, 227,705,733$.
of_token: 186, 211, 212, 705, 734, 839.
off_base: $\underline{1187,1189,1191, ~ 1195, ~} 1199$.
offset_prep: 491, 494, 500, 506.
OK: 1051.
OK_to_interrupt: 83, 91, 92, 93, 653, 825.
old_exp: 922, 925, 927, 944.
old_p: 922, 925, 926.
old_rover: 173.
old_setting: $195, \underline{196}, \underline{635}, 636, \underline{788}, 840,912$, 1022, 1163, 1164.
one_byte: 1161.
one_crossing: 391.
one_eighty_deg: 106, 139, 141, 292, 544.
oo: 477, 479.
op_byte: 1093, 1107, 1112, 1137.
op_defining: $6 \underline{659}, 664,665,694,700$.
open: $\quad \underline{256}, 258,262,263,271,272,273,280,282$,
$284,285,865,868,870,874,875,877,879$,
$885,887,888,889,890,891,896$.
open?: 258, 262.
open_a_window: 574, 1073.
open_base_file: 779, 1211.
open_log_file: 73, 87, 679, 788, 789, 791, 793, 895, 1134, 1209.
open_parens: $\quad \underline{631}, 657,681,793,1209$.
open_window: 186, 211, 212, 1069.
openwindow primitive: 211.
or primitive: 893.
or_op: 189, 893, 940.
ord: 20.
oriental characters: 1147.
othercases: 10.
others: 10.
Ouch...clobbered: 1204.
Out of order...: 617.
outer primitive: 1027.
outer_tag: $186,242,249,254,668,759,850$, 1011, 1029, 1041.
output: 4 .
Output written...: 1182.
output_file_name: $\quad \underline{791}, 792,1163,1182$.
over: 189, 837, 893, 948.
overflow: $34,41,44, \underline{89}, 163,167,207,281,356$, 429, 468, 481, 508, 585, 647, 654, 704, 705, $717,736,737,772,1036,1107,1112,1113$, 1114, 1115, 1205.
overflow in arithmetic: 9, 97, 558, 930.
o1: $452, \underline{453}, 458,459$.
o2: 452, 453, 458, 459.
$p: \quad \underline{107}, \underline{109}, \underline{112}, \underline{114}, \underline{163}, \underline{167}, \underline{172}, \underline{173}, \underline{177}, \underline{180}$, $\underline{185}, \underline{205}, \underline{215}, \underline{216}, \underline{217}, \underline{226}, \underline{227}, \underline{232}, \underline{233}, \underline{234}$, $\underline{235}, \underline{238}, \underline{239}, \underline{242}, \underline{246}, \underline{247}, \underline{248}, \underline{249}, \underline{252}, \underline{253}$, $\underline{254}, \underline{257}, \underline{264}, \underline{265}, \underline{266}, \underline{268}, \underline{269}, \underline{284}, \underline{299}, \underline{328}$, $\underline{329}, \underline{332}, \underline{334}, \underline{336}, \underline{337}, \underline{340}, \underline{342}, \underline{344}, \underline{346}, \underline{348}$, $\underline{354}, \underline{366}, \underline{369}, \underline{374}, \underline{378}, \underline{385}, \underline{394}, \underline{398}, \underline{402}, \underline{405}$, $\underline{406}, \underline{410}, \underline{419}, \underline{429}, \underline{433}, \underline{440}, \underline{451}, \underline{465}, \underline{473}, \underline{477}$, $\underline{484}, \underline{486}, \underline{487}, \underline{488}, \underline{491}, \underline{493}, \underline{497}, \underline{506}, \underline{510}, \underline{518}$, $\underline{527}, \underline{539}, \underline{556}, \underline{562}, \underline{577}, \underline{589}, \underline{591}, \underline{594}, \underline{597}, \underline{599}$, $\underline{600}, \underline{601}, \underline{603}, \underline{604}, \underline{606}, \underline{608}, \underline{609}, \underline{610}, \underline{619}, \underline{620}$, $\underline{621}, \underline{622}, \underline{641}, \underline{649}, \underline{650}, \underline{651}, \underline{652}, \underline{661}, \underline{685}, \underline{694}$, $\underline{697}, 707,720,722,730,737,746,748,755$, $\underline{760}, \underline{763}, \underline{799}, \underline{800}, \underline{801}, \underline{805}, \underline{807}, \underline{809}, \underline{823}$, $\underline{827}, \underline{848}, \underline{855}, \underline{856}, \underline{858}, \underline{860}, \underline{862}, \underline{863}, \underline{864}$, $\underline{865}, \underline{868}, \underline{872}, \underline{898}, \underline{899}, \underline{904}, \underline{910}, \underline{916}, \underline{919}$, $\underline{922}, \underline{923}, \underline{928}, \underline{930}, \underline{935}, \underline{943}, \underline{944}, \underline{946}, \underline{949}$, $\underline{953}, \underline{961}, \underline{962}, \underline{963}, \underline{966}, \underline{968}, \underline{971}, \underline{972}, \underline{974}$, $\underline{976}, \underline{977}, \underline{978}, \underline{982}, \underline{984}, \underline{985}, \underline{995}, \underline{996}, \underline{1001}$, $\underline{1006}, \underline{1015}, \underline{1046}, \underline{1050}, \underline{1057}, \underline{1059}, \underline{1072}, \underline{1117}$, $\underline{1118}, 1121,1165,1186,1187,1205$.
p_over_v: $\underline{600}, 819,932,949$.
p_plus_fq: 592, 594, 597, 601, 818, 819, 932, 968, 971, 1010.
p_plus_q: 597, 932, 1010.
p_times_v: 599, 943, 969.
p_with_x_becoming_q: 601, 614.
pack_buffered_name: \quad 778, 779.
pack_cur_name: $\quad \underline{784}, 786,793$.
pack_file_name: 774, 784, 793.
pack_job_name: \quad 784, 788, 791, 1134, 1200.
packed_ASCII_code: 37, 38.
page: 631.
page_stack: 631.
paint_row: $3,564,566, \underline{568}, 569,571,578,579$.
paint_switch: 1143, 1144.
paint_0: 1144, 1145, 1159.
paint1: 1144, 1145, 1159.
paint2: 1144.
paint3: 1144.
pair primitive: 1013.
pair_node_size: 230, 231.
pair_to_path: $\quad \underline{908}, 921,975,983,988,1003,1062$.
pair_type: $187,216,230,231,232,248,798,799$, 800, 802, 808, 809, 830, 837, 855, 868, 870, 872, 877, 898, 899, 900, 903, 909, 917, 918, 919, 921, 926, 927, 929, 936, 941, 942, 944, 946, 948, 952, 957, 975, 982, 983, 988, 995, 1001, 1002, 1003, 1013, 1062.
pair_value: 982, 984, 987, 988.
panicking: 178, 179, 825, 1213.
param: 1090, 1095, 1096, 1106, 1115, 1140.
param_ptr: $\quad \underline{633}, 649,650,657,736,737$.
param_size: 12, 214, 633, 677, 697, 704, 705, 736, 737, 1208.
param_stack: $632, \underline{633}, 639,640,650,676,677$, 720, 736, 737.
param_start: $\underline{632}, 639,640,649,650,676,677$.
param_type: $\underline{186}, 227,695,696,697,703$.
parameter: 632, 638, 677.
parent: 229, 236, 239, 240, 241, 245.
Pascal-H: $\underline{3}, 4,9,10,26,27,32,33$.
Pascal: 1, 10.
pass_text: 706, 742, 749, 751.
Path at line...: 257.
path primitive: 1013.
path_intersection: 562, 988.
path_join: 186, 211, 212, 874, 881, 886, 887.
path_length: 915, 916, 978.
path_size: 11, 279, 280, 281, 283, 284.
path_tail: 266, 267, 1065.
path_trans: 952, 962.
path_type: $\underline{187}, 216,248,621,798,802,804$, $808,809,855,868,870,885,891,908,915$, $917,918,919,920,921,952,975,983,988$, 1003, 1013, 1062.
Paths don't touch: 887.
pause_for_instructions: 91, 93.
pausing: 190, 192, 193, 682.
pausing primitive: $\underline{192}$.
pd: 357, 358, 360.
Pen cycle must be convex: 478.
Pen path must be a cycle: 865.
Pen too large: 478.
pen primitive: 1013.
pen_circle: 189, 893, 895.
pencircle primitive: $\underline{893}$.
pen_edge: 433, 435, 438, 440, 442, 443.
pen_head: 484.
pen_node_size: $175,472,477,487$.
penoffset primitive: $\underline{893}$.
pen_offset_of: 189, 893, 983.
pen_type: $\quad 187,216,248,621,798,802,804,808$, $809,855,865,895,918,919,921,952,962,983$, $1003,1013,1052,1053,1054,1055$.
percent_class: 198, 199, 217, 669.
period_class: 198, 199, 669.
perturbation: $1118, \underline{119}, 1120,1121,1122,1123$, 1124, 1126.
phi: 541, 542, 544.
picture primitive: 1013.
picture_type: $\underline{187}, 216,248,621,798,802,804$, $808,809,855,895,898,903,918,919,921,929$, 952, 1003, 1013, 1057, 1061, 1070.
pixel_color: 565, 566, 568, 580.
plain: 776, 779, 1203.
Please type...: 679, 786.
plus: 189, 859, 893, 898, 922, 930.
plus_or_minus: 186, 823, 836, 837, 893, 894.
pm: 357, 358, 360.
point primitive: 893.
point_of: 189, 893, 983, 987.
pointer: $158,159,161,163,166,167,172,173$, $177,178,180,185,200,205,215,216,225,226$, 227, 232, 233, 234, 235, 238, 239, 242, 246, 247, $248,249,250,252,253,254,257,264,265,266$, $267,268,269,280,284,299,326,327,328,329$, $332,333,334,336,337,340,342,344,346,348$, $354,366,369,373,374,378,385,394,398,402$, $403,405,406,410,419,427,429,433,440,451$, $465,473,476,477,484,486,487,488,491,493$, $497,506,510,511,518,527,539,556,562,577$, $589,591,592,594,597,599,600,601,603,604$, $606,607,608,609,610,619,620,621,622,633$, $649,650,651,652,661,685,694,697,707,718$, $720,722,723,730,737,738,746,748,752,755$, $760,763,799,800,801,805,807,809,813,823$, $827,843,848,851,855,856,858,860,862,863$, $864,865,868,871,872,898,904,910,916,919$, 922, 923, 928, 930, 935, 943, 944, 946, 949, 953, 961, 962, 963, 966, 968, 971, 972, 974, 976, 977, 978, 982, 984, 985, 995, 996, 1001, $1006,1011,1015,1031,1032,1035,1046,1050$, 1057, 1059, 1071, 1072, 1074, 1117, 1118, 1121, $1125,1165,1186,1187,1205$.
pool_file: 47, $\underline{50}, 51,52,53$.
pool_name: 11, 51.
pool_pointer: $\underline{37}, 38,45,46,59,60,77,210,707$, 768, 774, 913, 976, 1160.
pool_ptr: $37, \underline{38}, 40,41,43,44,47,52,58,771$, 780, 1045, 1163, 1192, 1193, 1204.
pool_size: $11,37,41,52,58,780,1045,1193,1208$. pop_input: 648, 650, 655.
post: $1142,1144, \underline{1145}, 1146,1148,1182$.
post_head: $842, \underline{843}, 844,845,851,852,854$.
post_post: $1144,1145,1146,1148,1182$.
postcontrol primitive: 893 .
postcontrol_of: 189, 893, 983, 987.
$p p: \quad \underline{242}, 243,244,245, \underline{265}, \underline{266}, \underline{334}, 335, \underline{340}$, $341, \underline{366}, 367,368, \underline{406}, 413,414,415,416$, $417,418, \underline{440}, 444,445,446, \underline{556}, 558, \underline{562}$, $\underline{589}, 590, \underline{594}, 595, \underline{597}, 598, \underline{755}, 765, \underline{809}$, $816,868,885,886,887,889,890,966,970$, 978, 980, 981, 1006, 1009, 1010.
pre: 1142, 1144, 1145, 1163.
pre_head: $842, \underline{843}, 844,850,851,852,853,854$.
precontrol primitive: 893.
precontrol_of: 189, 893, 983, 987.
prev_dep: $\quad \underline{587}, 603,606,617,799,811,816,827$, 931, 947, 1007.
prev_m: 1165, 1169, 1170, 1171.
prev_n: 1165, 1167, 1172, 1174.
prev_r: 610, 614.
prev_w: $\underline{348}, 349,350,1165,1169,1170,1171$.
primary primitive: $\underline{695}$.
primary_binary: $\quad \underline{186}, 189,823,839,893,894$.
primarydef primitive: $\underline{683}$.
primary_macro: $\underline{226}, 227,695,733$.
primitive: $192, \underline{210}, 211,212,625,683,688,695$, $709,740,893,1013,1018,1024,1027,1037$, $1052,1079,1101,1108,1176,1203,1204$.
print: $54, \underline{59}, 60,62,66,68,79,80,81,84,85,89$, $90,94,122,128,134,187,189,197,212,217$, 218, 219, 221, 222, 227, 235, 237, 257, 258, 259, 260, 261, 262, 263, 332, 372, 394, 397, 398, 401, $509,510,515,521,589,613,625,638,639,643$, $644,663,664,665,682,684,689,696,710,721$, $723,725,734,741,750,754,786,788,790,802$, 804, 805, 807, 817, 824, 832, 839, 851, 900, 902, 923, 924, 945, 997, 998, 999, 1002, 1008, 1019, $1025,1028,1032,1034,1038,1041,1043,1045$, 1048, 1050, 1053, 1057, 1080, 1098, 1102, 1105, 1109, 1123, 1139, 1140, 1163, 1164, 1180, 1182, 1192, 1194, 1196, 1200, 1208, 1209, 1212, 1213. print_arg: 721, 723, 728, 734.
print_capsule: 217, 219, 224, 1042.
print_char: $\quad \underline{58}, 59,60,63,64,65,77,85,89,90$, 103, 104, 157, 184, 185, 189, 197, 209, 212, 219, $220,221,222,223,224,227,237,254,259,263$, $332,333,372,373,394,398,401,509,589,590$, $602,603,613,626,637,643,681,689,725$, $762,790,793,802,803,806,817,824,900$, $902,914,924,945,990,998,1002,1008,1022$, 1041, 1042, 1045, 1046, 1050, 1057, 1134, 1163, $1164,1165,1182,1194,1200,1205,1213$.
print_cmd_mod: $212,227, \underline{625}, 626,751,824,839$,

990, 1041, 1043, 1209, 1213.
print_dd: 65, 790, 1163.
print_dependency: \quad 589, 613, 805, 817, 1050.
print_diagnostic: 197, 257, 332, 372, 394, 473
print_dp: 802, 803, 805
print_edges: 332, 804, 1165.
print_err: $67, \underline{68}, 88,89,90,93,94,99,122,128$, $134,140,270,340,342,398,404,478,602$, 623, 661, 663, 670, 672, 675, 691, 701, 703, $708,712,713,725,726,751,786,795,807$, 824, 832, 838, 851, 865, 887, 914, 963, 965, 990, 991, 1004, 1008, 1015, 1016, 1017, 1032, 1034, 1051, 1056, 1057, 1067, 1073, 1074, 1086, 1098, 1105, 1107, 1110.
print_exp: $224,639,723,762, \underline{801}, 807,902,924$, 945, 997, 998, 1040, 1046.
print_file_name: $\quad \underline{73}, 786$.
print_int: $\quad 64,79,89,103,157,181,182,183,184$, $185,197,209,222,237,332,333,372,397,398$, $509,515,521,617,637,661,723,790,832,914$, $1045,1105,1139,1140,1163,1164,1165,1182$, 1192, 1194, 1196, 1200, 1209, 1213.
print_known_or_unknown_type: $\underline{900}, 901,923$.
print_ln: $57,58,61,62,66,81,84,85,86,157$, $195,257,394,473,638,643,656,665,679$, $682,721,788,793,1023,1041,1043,1045$, 1165, 1192, 1194, 1196.
print_locs: 180
print_macro_name: $721,722,725,726,734$.
print_nl: $\underline{62}, 68,77,79,80,86,181,182,183,184$, $185,195,197,209,254,257,259,332,333,372$, $373,394,397,398,473,474,509,510,515,521$, $603,613,617,626,637,638,639,665,679,723$, $725,762,786,788,807,817,902,924,945$, 994, 997, 998, 1022, 1040, 1041, 1045, 1046, $1048,1050,1082,1123,1128,1134,1139,1140$, 1169, 1182, 1200, 1205, 1209, 1212.
print_op: 189, 894, 901, 902, 923, 924.
print_path: 257, 269, 402, 804.
print_pen: 473, 477, 484, 804.
print_scaled: 103, 104, 122, 128, 134, 157, 220, $254,259,260,263,589,590,602,603,802,803$, 817, 912, 945, 1008, 1022, 1042, 1123.
print_spec: 394, 402.
print_strange: 398, 399, 1068.
print_the_digs: 63, 64 .
print_two: $104,258,261,394,473,510$.
print_two_true: $\quad 394,397,474,509,515,521$.
print_type: 187, 189, 802, 804, 806, 900, 1002, 1014, 1057.
print_variable_name: $\underline{235}, 589,603,613,664,802$, 803, 806, 817, 1046, 1048, 1050, 1213.
print_weight: 332, 333.
print_word: 157, 1213.
procrustes: 404.
progression_node_size: 752, 763, 765.
prompt_file_name: 786, 789, 791, 793, 1134, 1200.
prompt_input: $\quad \underline{66}, 78,82,679,682,786,897$.
proofing: 190, 192, 193, 994, 1070, 1147, 1165, 1177.
proofing primitive: $\underline{192}$.
protection_command: 186, 1026, 1027, 1028.
proto_dependent: $187,216,248,588,589,594,597$, 599, 601, 603, 610, 612, 798, 799, 800, 802, 808, 809, 812, 813, 815, 817, 818, 819, 855, 857, 903, $932,943,949,968,969,971,972,1003,1010$.
pseudo: 54, 57, 58, 59, 60, 642.
psi: 279, 281, 290, 294, 297.
push_input: 647, 649, 654.
put: 25, 28, 1188.
put_get_error: 270, 340, 342, 404, 478, 623, 820 , $865,873,887,901,914,923,950,955,963$, $965,993,999,1000,1002,1004,1008,1015$, $1016,1051,1057,1067,1068,1073,1074,1082$, 1086, 1098, 1105, 1106, 1178.
put_get_flush_error: $716,754, \underline{820}, 830,852,872$, $876,878,883,892,937,960,1021,1055,1056$, 1060, 1061, 1062, 1071, 1103, 1112, 1115.
pyth_add: $\underline{124}, 145,281,454,530,533,866$, 915, 951.
pyth_sub: 126, 951.
pythag_add: 189, 893, 951.
pythag_sub: 189, 893, 951.
Pythagorean...: 128.
$q: \quad \underline{107}, \underline{109}, \underline{112}, \underline{114}, \underline{117}, \underline{121}, \underline{145}, \underline{167}, \underline{172}, \underline{173}$, $\underline{177}, \underline{180}, \underline{185}, \underline{216}, \underline{217}, \underline{227}, \underline{232}, \underline{233}, \underline{235}, \underline{239}$, $\underline{242}, \underline{246}, \underline{247}, \underline{249}, \underline{252}, \underline{253}, \underline{254}, \underline{257}, \underline{264}, \underline{265}$, $\underline{266}, \underline{268}, \underline{269}, \underline{284}, \underline{299}, \underline{311}, \underline{328}, \underline{329}, \underline{332}, \underline{333}$, $\underline{336}, \underline{337}, \underline{340}, \underline{342}, \underline{344}, \underline{346}, \underline{348}, \underline{354}, \underline{366}, \underline{369}$, $\underline{385}, \underline{394}, \underline{398}, \underline{402}, \underline{405}, \underline{406}, \underline{410}, \underline{419}, \underline{433}, \underline{440}$, $\underline{451}, \underline{465}, \underline{477}, \underline{491}, \underline{493}, \underline{506}, \underline{518}, \underline{527}, \underline{539}, \underline{556}$, $\underline{577}, \underline{589}, \underline{594}, \underline{597}, \underline{601}, \underline{603}, \underline{604}, \underline{606}, \underline{608}, \underline{609}$, $\underline{610}, \underline{619}, \underline{620}, \underline{621}, \underline{622}, \underline{641}, \underline{685}, \underline{694}, \underline{697}, \underline{720}$, $\underline{722}, \underline{723}, \underline{746}, \underline{755}, \underline{760}, \underline{763}, \underline{801}, \underline{805}, \underline{809}, \underline{823}$, $\underline{827}, \underline{851}, \underline{855}, \underline{858}, \underline{863}, \underline{865}, \underline{868}, \underline{871}, \underline{898}, \underline{919}$, $\underline{922}, \underline{928}, \underline{930}, \underline{935}, \underline{943}, \underline{946}, \underline{949}, \underline{953}, \underline{961}, \underline{962}$, $\underline{966}, \underline{968}, \underline{972}, \underline{978}, \underline{985}, \underline{996}, \underline{1001}, \underline{1006}, \underline{1015}$, $\underline{1046}, \underline{1059}, \underline{1117}, \underline{1121}, \underline{1165}, \underline{1186}, \underline{1187}$.
$q i: \quad 155,1107,1110,1111,1112,1113,1137,1192$.
qo: $155,1110,1111,1133,1193$.
$q q: 229, \underline{242}, 245, \underline{265}, \underline{266}, \underline{334}, \underline{366}, 367,368$, $\underline{406}, 413,414,415,416,417,418, \underline{556}, 558$, $\underline{594}, 595,596,597,598, \underline{868}, 885,886,887$, $890, \underline{966}, 970, \underline{978}, 980,981$.
$q q q: 229$.
qqqq: 153, 156, 157, 1188, 1189.
qqq1: 229.
qqq2: 229.
qq1: 229.
qq2: 229.
quad: 1095.
quad_code: 1095.
quadrant_subdivide: 402, 406, 426.
quarter_unit: 101.
quarterword: 153, 156, 189, 627, 649, 823, 895, 898, 899, 901, 910, 913, 919, 922, 923, 930, 953, 960, 962, 963, 966, 985.
quote: 688, 690.
quote primitive: 688.
q1: 229.
q2: 229.
$r: \quad \underline{117}, \underline{124}, \underline{126}, \underline{145}, \underline{167}, \underline{173}, \underline{177}, \underline{180}, \underline{217}, \underline{227}$, $\underline{233}, \underline{235}, \underline{239}, \underline{242}, \underline{246}, \underline{247}, \underline{268}, \underline{284}, \underline{311}, \underline{332}$, $334,336,337,340,344,346,348,354,366,373$, $\underline{374}, \underline{378}, \underline{402}, \underline{406}, \underline{410}, \underline{419}, \underline{451}, \underline{465}, \underline{476}, \underline{477}$, $\underline{491}, \underline{493}, 506,518,527,567,568,577, \underline{594}, 597$, $\underline{599}, \underline{600}, \underline{601}, \underline{604}, \underline{606}, \underline{610}, \underline{621}, \underline{622}, \underline{694}, \underline{697}$, $\underline{720}, \underline{809}, \underline{823}, \underline{855}, \underline{858}, \underline{863}, \underline{868}, \underline{922}, \underline{928}, \underline{930}$, $\underline{946}, \underline{953}, \underline{966}, \underline{968}, \underline{971}, \underline{1006}, \underline{1104}, \underline{1117}, \underline{1121}$.
r_delim: $\quad \underline{697}, 703,720,725,726,727,729, \underline{730}$, 731, 735, 823, 826, 830, 1031, 1032.
r_packets: 553, 558, 560.
Ramshaw, Lyle Harold: 2, 469, 1087.
random_seed: 186, 211, 212, 1020.
randomseed primitive: $\underline{211 .}$
randoms: 148, 149, 150, 151, 152.
$r d: 357,358,359$.
read: 52, 53, 1212, 1213.
read_ln: 52 .
readstring primitive: 893.
read_string_op: 189, 893, 895.
ready_already: 1203, 1204.
real: 3, 120.
recursion: 71, 73, 217, 224, 246, 706, 719, 748, 796, 995, 1041.
recycle_value: $224,246,247,650,763,808,809$, 810, 829, 873, 903, 910, 922, 925, 935, 944, 955, 968, 970, 972, 1000, 1001.
reduce_angle: 292, 293.
Redundant equation: 623.
Redundant or inconsistent equation: 1004.
ref_count: 226, 475, 477, 487, 694, 697, 854, 862, 864, 868.
reference counts: $42,226,472,475,632$.
relax: 186, 211, 212, 686, 706, 707.
rem_byte: 1093, 1107, 1112, 1137.
remainder: 1091, 1092, 1093, 1096.
remove_cubic: 405, 417, 447, 492.
rep: 1094.
repeat_loop: 186, 706, 707, 759, 1043.
reset: 25, 26, 32.
reset_OK: $\underline{26 .}$
restart: 15, 167, 168, 667, 668, 670, 672, 676, 677, $679,681,691,823,853,854,855,862$, 864, 868, 1001, 1003.
restore_cur_exp: 801.
result: 45, 1054, 1056.
resume_iteration: 706, 712, 755, 760, 763.
reswitch: 15, 748.
retrograde line...: 510.
return: 15, $\underline{16}$.
return_sign: 117, 118.
rev_turns: 452, 454, 455, 456, 1064.
reverse: 189, 893, 921.
reverse primitive: 893.
reversed: 977, 978.
rewrite: 25, 26, 32.
rewrite_OK: $\underline{26}$.
$r h: ~ 153, ~ 156, ~ 157, ~ 161, ~ 200 . ~$
rhs: 1059, 1062, 1064, 1065, 1066, 1067.
Riesenfeld, Richard Franklin: 303.
right_brace: 186, 211, 212, 875.
right_bracket: 186, 211, 212, 846, 859, 861, 1012.
right_bracket_class: 198, 199, 220, 221.
right_class: 528, 531, 532, 534, 535.
right_col: $5 \mathbf{5 6 7}, \underline{572}, 574,577,581,583,584$.
right_curl: 256, 263, 271, 282, 294, 890, 891.
right_delimiter: 186, 203, 726, 727, 731, 735, 1030, 1031, 1032, 1043.
right_edge: 580, 581, 582.
right_given: $\quad \underline{256}, 263,282,293,301,879,888,889$.
right_octant: 393, 451, 452, 458, 459.
right_paren_class: 198, 199, 219, 222.
right_tension: 256, 258, 260, 288, 289, 294, 295, 299, 300, 302, 881, 882, 886, 887.
right_transition: 393, 459, 509, 517, 523.
right_type: $255,256,258,263,265,266,269,271$, $272,273,282,285,290,299,302,393,394,405$, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, $418,421,423,424,425,426,434,435,436,437$, $438,439,441,442,443,445,447,450,451,452$, 454, 457, 466, 479, 481, 486, 491, 494, 497, 499, $512,515,518,521,528,539,562,563,870,871$, 874, 879, 880, 884, 885, 888, 889, 890, 891, 896, 921, 962, 978, 987, 1065, 1066.
right_u: 528, 531, 532, 534, 535, 537.
right_x: 255, 256, 261, 265, 266, 271, 282, 299, 302, 393, 397, 404, 405, 407, 409, 410, 411,
$412,415,416,418,419,421,423,424,425$, 434, 436, 441, 444, 447, 457, 468, 486, 492, 496, 512, 518, 528, 543, 558, 563, 866, 884, 890, 896, 962, 987, 1065, 1066.
right_y: $\underline{255}, 256,261,265,266,271,282,299$, $302,393,397,404,405,410,413,414,415,416$, $419,423,424,425,437,439,444,447,457,468$, $486,492,496,512,518,528,543,558,563,866$, 884, 890, 896, 962, 987, 1065, 1066.
ring_delete: 620, 809.
ring_merge: 622, 1003.
rising: $\underline{497 .}$
rlink: $166,167,168,169,171,172,173,174,176$, 182, 1194, 1195, 1207.
rm: 357, 358, 359.
root: $188,229,230,234,239,254,702$.
rotated primitive: 893.
rotated_by: 189, 893, 952, 957.
round_decimals: 102, 103, 674.
round_fraction: 119, 590, 600, 817, 819, 906, 958, 1010
round_unscaled: $119,374,375,376,575,576,906$, 912, 965, 977, 1056, 1070, 1071, 1073, 1103, $1106,1137,1163,1165,1181,1200$.
rover: $166,167,168,169,170,171,172,173,174$, 176, 182, 1194, 1195, 1207.
row_node_size: $\quad \underline{325}, 330,331,334,341,352,353$, $354,355,358,364,385$.
row_transition: $\quad 578, \underline{579}, 580,582,583,584$.
$r r: ~ 242,245, \underline{266}, \underline{299}, 300, \underline{334}, 335, \underline{340}, \underline{366}$, $368, ~ 922,939, \underline{978}, 980$.
$r t: \quad \underline{286}, 289,294,295, \underline{299}, 302$.
runaway: $163,663, \underline{665}$.
r0: $574,575,576, \underline{1073}$.
r1: $229, \underline{574}, 575, \underline{1073}$.
$s: \underline{43}, \underline{45}, \underline{46}, \underline{58}, \underline{59}, \underline{60}, \underline{62}, \underline{88}, \underline{89}, \underline{90}, \underline{94}, \underline{103}$, $\underline{167}, \underline{172}, \underline{197}, \underline{210}, \underline{232}, \underline{242}, \underline{257}, \underline{280}, \underline{284}$, $\underline{311}, \underline{332}, \underline{337}, \underline{340}, \underline{342}, \underline{344}, \underline{346}, \underline{348}, \underline{354}$, $\underline{394}, \underline{398}, \underline{402}, \underline{406}, \underline{419}, \underline{465}, \underline{473}, \underline{477}, \underline{488}$, $\underline{495}, \underline{497}, \underline{506}, \underline{518}, \underline{527}, \underline{594}, \underline{597}, \underline{599}, \underline{600}$, $\underline{601}, \underline{604}, \underline{610}, \underline{754}, \underline{755}, \underline{784}, \underline{786}, \underline{807}, \underline{809}$, $\underline{824}, \underline{930}, \underline{943}, \underline{949}, \underline{966}, \underline{977}, \underline{1160}$.
s_scale: 585, 589, 608, 610, 817.
safety_margin: 402.
save primitive: $\underline{211 .}$
save_boundary_item: $\quad \underline{250}, 832$.
save_command: 186, 211, 212, 1033.
save_cond_ptr: 748, 749.
save_exp: 651, 718 .
save_flag: 824.
save_internal: 253, 1034.
save_node_size: $\underline{250}, 252,253,254$.
save_ptr: 250, 251, 252, 253, 254.
save_type: 651.
save_variable: 252, 1033.
save_word: 242, 244.
SAVED: 235.
saved_equiv: 250, 252, 254.
saved_root: 188, 230, 235, 247, 249.
saving: 249.
sc: $153,156,157,229,255,472,752,961$.
scaled: 101, 102, 103, 104, 105, 112, 114, 116, 119, $121,132,135,150,151,152,153,156,187,190$, 194, 214, 215, 228, 229, 250, 259, 279, 280, 286, 296, 299, 304, 306, 311, 369, 374, 387, 388, 389, $390,402,403,406,410,419,426,427,429,430$, 431, 432, 433, 434, 440, 463, 477, 486, 488, 497, 510, 511, 527, 539, 542, 555, 574, 585, 587, 588, 594, 599, 600, 602, 607, 612, 798, 808, 820, 836, $865,868,875,916,917,935,944,946,949,954$, 961, 968, 971, 972, 974, 978, 982, 985, 1073, $1096,1098,1117,1118,1119,1120,1121,1128$, $1129,1130,1144,1146,1147,1182,1205$.
Scaled picture...big: 340, 342.
scaled primitive: 893.
scaled_by: 189, 893, 952, 957.
scaled_threshold: 594, 597.
scaling_down: 599, 600.
scan_declared_variable: $700,1011,1015$.
scan_def: 697, 992.
scan_direction: 875, 879, 880.
scan_expression: $706,729,733,734,764,765$, 796, 798, 821, 826, 830, 839, 846, 859, 861, 868, 876, 877, 878, 892, 993, 995, 996, 1021, $1040,1054,1059,1070,1071,1072,1073,1082$, $1103,1106,1112,1115,1177$.
scan_file_name: 781, 795.
scan_primary: $706,716,733,734,796,798,821$, $\underline{823}, 835,837,839,842,862,882,884,893$, 1059, 1071, 1074.
scan_secondary: 706, 733, 796, 798, 821, 862, 864.
scan_suffix: $706,729,735,764,840, \underline{860}$.
scan_tertiary: 706, 733, 796, 798, 821, 864, 868, 869.
scan_text_arg: 729, 730, 733.
scan_tokens: 186, 211, 212, 706, 707.
scantokens primitive: $\underline{211 .}$
scan_toks: 685, 694, 698, 758.
scan_with: 1054, 1062, 1074.
scanner_status: $\quad 659,660,661,663,664,665,694$, 697, 700, 730, 742, 758, 991, 1016.
screen_col: $565,566,567,568,572,580$.
screen_depth: 11, 565, 567, 568, 575.
screen_OK: 569, 570, 574, 577.
screen_pixel: 566, 567, 568.
screen_row: 565, 566, 567, 568, 572.
screen_started: 569, 570.
screen_width: $11,565,567,568,575$.
scroll_mode: 66, $\underline{68}, 79,81,88,786,1024$, 1025, 1084.
scrollmode primitive: 1024.
search_mem: $178,185,1213$.
second_octant: $139,141,380,387,388,396,435$, 443, 449, 461, 462.
secondary primitive: $\underline{695}$.
secondary_binary: 186, 893, 894.
secondarydef primitive: $\underline{683}$.
secondary_macro: $\underline{226}, 227,695,696,733$.
secondary_primary_macro: 186, 249, 683, 684, 862, 1035, 1043.
see the transcript file...: 1209.
seed: 150.
selector: $5 \underline{54}, 55,57,58,59,60,62,66,70,81$, $86,87,93,195,635,636,642,679,788$, 789, 804, 840, 912, 1022, 1023, 1163, 1164, 1200, 1205, 1209.
semicolon: 186, 211, 212, 713, 732, 832, 989, 990, 991, 1017, 1051, 1070.
sentinel: 175, 177, 324, 328, 330, 331, 332, 335, $339,343,344,345,346,347,348,349,355,356$, 358, 364, 367, 368, 369, 582, 1169.
serial_no: 585, 587, 1198, 1199.
set_controls: 297, 298, 299, 301.
set_min_max: $\underline{554}, 558,559$.
set_output_file_name: 791, 1163.
set_tag: $\underline{1104}, 1106,1111,1113$.
set_trick_count: 642, 643, 644, 646.
set_two: 387, 388.
set_two_end: 387.
set_up_direction_time: 983, 984.
set_up_known_trans: 960, 962, 963, 967.
set_up_offset: 983, 984.
set_up_trans: 953, 960, 970.
seventh_octant: $\underline{139}, 141,380,387,388,396,435$, 443, 449, 461, 462.
sf: $\quad \underline{116}, 297, \underline{298}, 299,300,301$.
shifted primitive: 893.
shifted_by: 189, 893, 952, 957.
ship_out: 1070, 1149, 1165, 1175.
shipout primitive: $\underline{211}$.
ship_out_command: 186, 211, 212, 1069.
show primitive: 1037.
show_cmd_mod: $\underline{626}, 713,895$.
show_code: 1037, 1038, 1040, 1051.
show_command: 186, 1037, 1038, 1039.
show_context: 54, 73, 77, 83, 634, 635, 644, 786, 789, 793.
show_cur_cmd_mod: 626, 707, 832, 992.
showdependencies primitive: 1037.
show_dependencies_code: 1037, 1051.
show_macro: $\underline{227}, 645,721,1041,1048$.
showstats primitive: 1037.
show_stats_code: 1037, 1038, 1051.
showtoken primitive: 1037.
show_token_code: 1037, 1038, 1051.
show_token_list: 217, 224, 227, 235, 639, 640, $645,646,665,722,723,762,840,851,998$, 1043, 1057, 1213.
showvariable primitive: 1037.
show_var_code: 1037, 1038, 1051.
showstopping: 190, 192, 193, 1051.
showstopping primitive: $\underline{192}$.
si: 37, 41, 85, 1193.
sind primitive: 893.
sin_d_op: 189, 893, 906.
sine: 280, 281, 299, 300.
single_dependency: 608, 829, 855, 858, 1007, 1009.
sixth_octant: 139, 141, 379, 380, 387, 388, 395, $396,443,448,449,461,462,488$.
skew: 387, 389, 421, 445, 447, 451, 457, 481.
skew_line_edges: 508, 510, 517, 523.
skimp: 1121, 1124, 1126.
skip_byte: $1093,1107,1110,1111,1112,1137$.
skip_error: 1110, 1111.
skip_table: 1096, 1097, 1110, 1111, 1139.
skip_to: 186, 211, 212, 1107.
skipto primitive: $\underline{211 .}$
skipping: 659, 661, 742.
skip0: 1144, 1145, 1173.
skip1: 1144, 1145, 1174.
skip2: 1144.
skip3: 1144.
slant: 1095.
slant_code: 1095.
slanted primitive: 893.
slanted_by: 189, 893, 952, 957.
slash: 186, 837, 893, 894.
slow_add: 100, 594, 597, 930, 931, 933.
slow_case_down: 378, 380.
slow_case_up: 378, 380 .
slow_print: $\quad 60,61,79,219,223,254,638,664$, $722,725,773,790,793,802,994,998,999$, $1032,1034,1041,1042,1043,1082,1086,1134$, 1182, 1200, 1205, 1213.
small computers: 95.
small_number: $\quad 101,102,121,135,139,145,187$, $210,217,230,232,238,248,311,387,388,390$,

394, 451, 453, 477, 589, 594, 597, 599, 600, 601, $610,621,651,685,738,746,778,796,801,805$, $809,843,875,900,930,935,943,949,966$, 1001, 1015, 1054, 1098, 1104, 1123, 1177, 1209. smooth_bot: $511,512,517,518,523$.
smooth_moves: 321, 468, 517, 523.
smooth_top: \quad 511, 512, 517, 518, 523.
smoothing: 190, 192, 193, 468, 517, 523.
smoothing primitive: 192.
so: $\underline{37}, 45,59,60,85,210,223,717,774,913$, 976, 977, 1103, 1160, 1192.
solve_choices: $278, \underline{284}$.
some chardps...: 1123.
some charhts...: 1123.
some charics...: 1123.
some charwds...: 1123.
Some number got too big: 270.
Sorry, I can't find...: 779.
sort_avail: 173, 1194.
sort_edges: 346, 348, 354, 578, 1169.
sort_in: 1117, 1124, 1126.
sorted: $324, \underline{325}, 328,330,331,332,335,339,343$, $344,345,346,347,348,349,355,356,358,364$, $367,368,369,385,580,582,1169$.
sorted_loc: $\quad 325,335,345,347,368$.
south_edge: 435, 438.
space: 1095.
space_class: 198, 199, 669.
space_code: 1095.
space_shrink: 1095.
space_shrink_code: 1095.
space_stretch: 1095.
space_stretch_code: 1095.
spec_atan: 137, 138, 143, 147.
spec_head: $5 \underline{606}$.
spec_log: 129, 131, 133, 136.
special primitive: $\underline{1176}$.
special_command: 186, 1175, 1176, 1180.
split_cubic: 410, 411, 412, 415, 416, 424, 425, 493, 980, 981, 986.
split_for_offset: 493, 499, 503, 504.
spotless: 71, 72, 195, 1204, 1209.
sqrt primitive: 893.
sqrt_op: 189, 893, 906.
Square root...replaced by 0: 122.
square_rt: 121, 122, 906.
ss: $\quad \underline{242}, 243,245, \underline{299}, 300, \underline{334}, 335, \underline{340}, \underline{978}, 980$.
st: $116,297,298,299,300,301$.
st_count: 200, 203, 207, 1196, 1197, 1208.
stack_argument: 737, 760.
stack_dx: 553, 559, 561.
stack_dy: 553, 559, 561.
stack_l: 309, 312, 314.
stack_m: 309, 312, 314.
stack_max: 553, 554, 556.
stack_min: 553, 554, 556.
stack_n: 309, 312, 314.
stack_r: 309, 312, 314.
stack_s: 309, 312, 314.
stack_size: $\underline{11}, 628,634,647,1208$.
stack_tol: 5 553, 559, 561.
stack_uv: 553, 559, 561.
stack_xy: 553, 559, 561.
stack_x1: 309, 312, 314.
stack_x2: $\underline{309}, 312,314$.
stack_x3: 309, 312, 314.
stack_y1: 309, 312, 314.
stack_y2: $\underline{309}, 312,314$.
stack_y3: 309, 312, 314.
stack_1: 553, 554, 559, 560.
stack_2: $553,554,559,560$.
stack_3: 553, 554, 559, 560.
start: $627, \underline{629}, 630,632,644,645,649,650,654$, $655,657,679,681,682,714,717,794,897$.
start_decimal_token: $667,669$.
start_def: 683, 684, 697, 698, 700.
start_field: 627, 629.
start_forever: 683, 684, 755.
start_here: 5, 1204.
start_input: $706,709,711,793,1211$.
start_numeric_token: 667, 669.
start_of_MF: $\underline{6}, 1204$.
start_screen: 570, 574.
start_sym: $1076,1077,1078,1198,1199,1204$.
stash_cur_exp: 651, 718, 728, 734, 760, 764, 799, 800, 801, 837, 839, 848, 859, 862, 863, 864, 868, 926, 946, 955, 970, 988, 995, 1000.
stash_in: 827, 830, 903.
stat: $\underline{7}, \underline{160}, \underline{163}, \underline{164}, \underline{165}, \underline{167}, \underline{172}, \underline{177}, \underline{207}$, $\underline{508}, \underline{510}, \underline{515}, \underline{521}, \underline{1045}, \underline{1134}, \underline{1205}$.
step primitive: 211.
step_size: $\quad 752,760,761,765$.
step_token: 186, 211, 212, 764.
Stern, Moritz Abraham: 526.
Stolfi, Jorge: 469.
stop: 186, 732, 991, 1017, 1018, 1019.
stop_flag: 1093, 1107, 1110.
stop_iteration: 706, 714, 760, 763, 1209.
store_base_file: 1186, 1209.
str primitive: 211.
str_eq_buf: 45, 205.
str_number: $\quad \underline{37}, 38,42,43,44,45,46,47,62,74$, $88,89,90,94,190,197,210,214,257,332,394$,
$395,398,473,754,767,774,780,782,784,785$, 786, 791, 807, 824, 976, 977, 1087, 1160, 1183.
str_op: 186, 211, 212, 823.
str_pool: $37, \underline{38}, 41,44,45,46,47,59,60,85,200$, 210, 223, 630, 707, 717, 774, 913, 976, 977, 1103, 1160, 1192, 1193, 1208.
str_ptr: $37, \underline{38}, 40,43,44,47,59,60,210,218$, $772,780,793,798,1045,1163,1192,1193$, 1199, 1200, 1204.
str_ref: $\underline{42}, 43,44,48,52,207,793,1193,1200$.
str_room: 41, 207, 671, 771, 780, 897, 912, 976, 977, 1200, 1205.
str_start: $37, \underline{38}, 39,40,43,44,45,46,47,59$, $60,85,200,210,223,717,772,774,913,976$, $977,1103,1160,1163,1192,1193$.
str_to_num: 912, 913.
str_vs_str: 46, 936, 1004.
Strange path...: 1068.
String contains illegal digits: 914.
string pool: 47, 1191.
string primitive: 1013.
string_class: 198, 199, 219, 669.
string_token: 186, 671, 678, 691, 743, 823.
string_type: $187,189,214,216,219,248,621,651$, $716,798,802,808,809,833,840,855,895$, 897, 912, 915, 918, 919, 936, 975, 993, 1003, 1004, 1013, 1082, 1103, 1176, 1177.
string_vacancies: 11, 52 .
structured: 187, 188, 228, 229, 239, 242, 243, 246, 247, 809, 850, 1046.
structured_root: 188, 229, 236, 239.
subpath primitive: 893.
subpath_of: 189, 893, 975.
subscr: $188,229,236,239,244,246,247,1047$.
subscr_head: $\underline{228}, 229,239,240,244,246,247$, 1047.
subscr_head_loc: $\quad \underline{228}, 240,241,244,246$.
subscr_node_size: $\underline{229}, 240,244,246,247$.
subscript: 229, 236, 240, 244.
subscript_loc: 229, 244.
subst_list: 685, 686.
substring primitive: $\underline{893}$.
substring_of: 189, 893, 975.
succumb: 88, 89, 90.
SUFFIX: 222.
suffix primitive: $\underline{695}$.
suffix_base: $\underline{214}, 222,676,677,683,690,695,696$, 697, 705, 726, 729, 755, 764.
suffix_count: 685, 690.
suffix_macro: $\quad \underline{226}, 227,705,733$.
suffixed_macro: $\underline{187,} 700,798,809,845,1048$.
sum: 378.
switch: 667, 669, 670, 672.
switch_x_and_y: $\underline{139}, 406,423,424,441,442$, 445, 480, 489.
sx: 601.
symmetric: $527,528,530$.
sys_day: 194, 196, 790, 1211.
sys_month: 194, 196, 790.
sys_time: 194, 196, 790, 1211.
sys_year: 194, 196, 790.
system dependencies: $2, \underline{3}, 4,9,10,11,12,19,21$, $22,25,26,27,31,32,33,34,36,37,49,56$, $59,61,67,76,79,91,107,109,153,155,156$, 194, 199, 564, 567, 568, 631, 637, 654, 766, $767,768,769,770,771,772,773,774,775$, $776,778,780,781,793,794,1148,1152,1154$, $1189,1203,1204,1205,1212,1214$.
s1: $\underline{77}, 83$.
s2: $\quad 77,83$.
s3: $\underline{77}, 83$.
$t: \quad \underline{46}, \underline{116}, \underline{139}, \underline{145}, \underline{167}, \underline{187}, \underline{197}, \underline{238}, \underline{242}, \underline{246}$, $\underline{280}, \underline{284}, \underline{311}, \underline{321}, \underline{340}, \underline{342}, \underline{344}, 398, \underline{406}$, $\underline{410}, \underline{419}, \underline{493}, \underline{495}, \underline{497}, \underline{542}, \underline{589}, \underline{594}, \underline{597}$, $\underline{601}, \underline{603}, \underline{604}, \underline{610}, \underline{621}, \underline{649}, \underline{801}, \underline{805}, \underline{809}$, $\underline{843}, \underline{855}, \underline{860}, \underline{868}, \underline{875}, \underline{899}, \underline{900}, \underline{930}, \underline{935}$, $\underline{943}, \underline{949}, \underline{968}, \underline{972}, \underline{974}, \underline{1001}, \underline{1006}, \underline{1011}, \underline{1015}$, $\underline{1029}, 1054,1057,1104,1160,1163$.
$t_{-} o f_{-} t h e _w a y: ~ \underline{410}, 411,415,424,499,503$, 504, 547, 548.
t_of_the_way_end: 410 .
t_open_in: 32, 36 .
t_open_out: 32, 1204.
tag: 1091, 1092.
tag_token: $\quad \underline{186}, 202,229,234,242,249,254,702$, $823,844,850,860,1011,1035,1043,1049$.
tail: $\quad \underline{720}, 724,728,734,842, \underline{843}, 844,845$.
tail_end: $\underline{685}$.
take_fraction: $109,112,116,125,127,151,152$, 281, 287, 288, 289, 290, 291, 294, 295, 296, 297, 299, 300, 302, 375, 376, 410, 436, 439, 444, 454, 498, 516, 522, 530, 533, 543, 594, 595, 596, 599, 943, 944.
take_part: 909, 910, 939.
take_scaled: 112, 594, 595, 596, 599, 942, 943, 961, 968, 971, 974.
tally: $\underline{54}, 55,57,58,217,227,235,636,639$, 640, 641, 642, 643.
tarnished: 926, 927, 928, 944.
tats: 7 .
temp_head: 175, 335, 346, 347, 349, 351, 484, $594,597,599,600,601,612,616,1117,1118$, 1121, 1124, 1126.
temp_val: 175, 910, 911.
tension: 186, 211, 212, 881.
tension primitive: 211.
term_and_log: $\underline{54}, 57,58,66,70,87,195,788$, 804, 1200, 1209.
term_in: $\underline{31}, 32,33,35,36,66,1212,1213$.
term_input: 66, 73.
term_offset: $\quad \underline{54}, 55,57,58,61,62,66,793,1165$.
term_only: $\underline{54}, 55,57,58,66,70,87,789,804$, 1205, 1209.
term_out: 31, 32, 33, 34, 35, 36, 51, 56.
terminal_input: 631, 637, 654, 656.
terminator: 685.
tertiary primitive: $\underline{695}$.
tertiary_binary: 186, 893, 894.
tertiarydef primitive: $\underline{683}$.
tertiary_macro: 226, 227, 695, 733.
tertiary_secondary_macro: 186, 249, 683, 684, 864, 1035, 1043.
test_known: 918, 919.
text: 200, 202, 203, 205, 206, 207, 210, 218, 254, $638,664,722,725,727,735,759,1032,1034$, 1036, 1041, 1043, 1196.
TEXT: 222.
Text line contains...: 670.
text primitive: 695.
text_base: $\quad \underline{214}, 222,677,695,697,723,729$.
text_char: 19, 20, 24, 26, 47.
text_macro: $\underline{226}, 227,697,705,723,733$.
TFM files: 1087.
tfm_changed: $1129, \underline{1130}, 1132,1136,1140$.
tfm_check: 1098, 1099.
tfm_command: $\underline{186}, 1100,1101,1102$.
tfm_depth: 1096, 1097, 1099, 1126, 1136.
tfm_file: 1087, 1133, 1134.
tfm_four: 1133, 1136, 1139, 1140.
tfm_height: $\quad \underline{1096}, 1097,1099,1126,1136$.
tfm_ital_corr: 1096, 1097, 1099, 1126, 1136.
tfm_out: 1133, 1135, 1136, 1139.
$t f m_{-} q q q q: \quad 1133,1139,1140$.
tfm_two: 1133, 1135, 1139.
tfm_warning: 1123, 1124, 1126.
tfm_width: 1096, 1097, 1099, 1124, 1131, 1132, 1136, 1182, 1205.
That makes 100 errors...: 77 .
That transformation...: 963.
The token...delimiter: 1032.
The token...quantity: 1034.
There's unbounded black...: 1169.
theta: $283,291,292,295,297, \underline{527}, 530,533$, 542, $544, ~ 865,866$.
thing_to_add: $\underline{186}, 1052,1053,1059$.
third_octant: 139, 141, 379, 380, 387, 388, 393, 396, 406, 443, 449, 461, 462.
This can't happen: 90.
/: 107, 114.
1: 517.
2: 523 .
copy: 855.
dep: 589.
endinput: 655.
exp: 802.
if: 746 .
m: 311.
recycle: 809.
struct: 239.
token: 216.
var: 236.
xy: 362 .
0: 378.
This variable already...: 701.
three: 101, 296.
three_bytes: $1128,1133,1157,1182$.
three_choices: 156.
three_l: 557, 558, 559, 560, 561.
three_quarter_unit: 101, 883.
three_sixty_deg: 106, 145, 292.
three_sixty_units: 906, 958.
threshold: $\underline{594}, 595,596, \underline{597}, 598, \underline{599}, \underline{600}$, 1120, 1121.
time: 190, 192, 193, 194, 1163.
time primitive: 192.
time_to_go: 555, 556 .
times: 189, 837, 859, 893, 941, 944.
tini: $\underline{8}$.
title: 1179.
to primitive: 211.
to_token: 186, 211, 212, 1073.
token: 214.
token: 188, 214, 215, 219, 651, 678.
token_list: $187,726,728,730,798,799,809,841$, 852, 860, 996, 1059, 1070, 1071, 1074.
token_node_size: $\underline{214}, 215,216,651,694,704$, 705, 755.
token_recycle: 216, 224.
token_state: $632,652,670,672,712,736,795$, 1209.
token_type: 632, 635, 636, 638, 645, 649, 650, 653, 714.
tol: $552,553,556,557,558,559,560,561$.
tol_step: $\quad \underline{552}, 557,559,561,562$.
Too far to shift: 965.
Too far to skip: 1110.
Too many arguments...: 725.
too_small: 1187, 1189.
top: 1094.
top_row: 567, 572, 574, 577.
toss_edges: $385,808,809,964$.
toss_knot_list: $\quad \underline{268}, 465,506, ~ 808, ~ 809, ~ 865, ~ 921, ~$ 978, 1064, 1067.
toss_pen: 475, 487.
total_chars: $1149,1150,1165,1182$.
total_weight: 369, 921.
totalweight primitive: $\underline{893}$.
total_weight_op: 189, 893, 921.
trace_a_corner: 372, 373.
trace_new_edge: $\quad \underline{373}, 375,376,381,382,383,384$.
trace_x: 371, 372, 373.
trace_y: 371, 372, 373.
trace_yy: $\underline{371}, 372,373$.
tracing: 402.
tracing_capsules: 190, 192, 193, 238.
tracingcapsules primitive: 192.
tracing_choices: 190, 192, 193, 269.
tracingchoices primitive: 192.
tracing_commands: $\underline{190}, 192,193,707,713,748$, $760,832,895,898,922,944,992,995,996$.
tracingcommands primitive: 192.
tracing_edges: $\underline{190}, 192,193,371,375,376,381$, $382,383,384,465,506,508,510,515,521$.
tracingedges primitive: 192.
tracing_equations: $\quad 190,192,193,603,610,816$.
tracingequations primitive: 192.
tracing_macros: 190, 192, 193, 720, 728, 734.
tracingmacros primitive: 192.
tracing_online: 190, 192, 193, 195, 804.
tracingonline primitive: $\underline{192}$.
tracing_output: $\underline{190}, 192,193,1165$.
tracingoutput primitive: 192.
tracing_pens: 190, 192, 193, 253, 477.
tracingpens primitive: 192.
tracing_restores: 190, 192, 193, 254.
tracingrestores primitive: 192.
tracing_specs: 190, 192, 193, 1064.
tracingspecs primitive: 192.
tracing_stats: $160, \underline{190}, 192,193,1134,1198,1205$.
tracingstats primitive: $\underline{192}$.
tracing_titles: $\underline{190}, 192,193,994$.
tracingtitles primitive: $\underline{192}$.
trans: 961, 962.
trans_spec: 565, 568, 579.
Transcript written...: 1205.
Transform components...: 960.
transform primitive: 1013.
transform_node_size: $\underline{230}, 231,233,956$.
transform_type: $187,216,230,231,232,233,248$, $798,799,800,802,808,809,855,909,918$, 919, 926, 927, 936, 944, 952, 953, 955, 967, 970, 973, 1003, 1013, 1015.
transformed primitive: 893.
transformed_by: 189, 893, 952, 953, 957.
transition line...: 515, 521.
trick_buf: 54, 58, 641, 643.
trick_count: $\underline{54}, 58,641,642,643$.
trivial_knot: 484, 485, 486.
true: $4,16,30,33,36,45,49,51,53,66,72,83$, $92,93,97,100,107,109,110,112,114,124$, $126,135,181,182,238,257,269,332,372,394$, 402, 407, 426, 446, 452, 454, 455, 473, 477, 497, $503,504,530,564,567,568,569,570,574,577$, $592,593,595,596,598,599,600,621,653,654$, $661,670,672,675,680,681,700,711,767,771$, 779, 788, 801, 886, 899, 913, 942, 946, 968, 969, 977, 978, 1003, 1009, 1010, 1054, 1056, 1064, $1072,1086,1099,1112,1137,1165,1187$.
true primitive: $\underline{893}$.
true_code: 189, 713, 748, 750, 798, 802, 892, 893, 895, 905, 906, 918, 919, 920, 940.
try_eq: 1003, 1005, 1006.
$t t: \quad \underline{167}, 169, \underline{539}, 541,547,548, \underline{594}, 595,596$, $842, \underline{843}, 844,845,850,1006,1009,1010$.
turning_check: 190, 192, 193, 1068.
turningcheck primitive: 192.
turning_number: 403, 450, 459, 917, 1068.
turningnumber primitive: $\underline{893}$.
turning_op: 189, 893, 917.
two: 101, 102, 256, 294, 295, 556, 895, 898, 922, 944, 995, 996.
two_choices: 156.
two_halves: 156, 161, 166, 185, 201.
two_to_the: 129, 131, 133, 136, 143, 147, 314, 317, 608, 616.
$t x: \quad \underline{374}, 375,376, \underline{511}, 516,522,866,867,953$, 954, 956, 960, 961, 962, 965, 967, 973.
txx: 866, 953, $\underline{954}, 956,960,961,963,964$, 967, 973.
txy: $866,953, \underline{954}, 956,960,961,963,967,973$.
$t y: \underline{511}, 516,522,866,867,953, \underline{954}, 956,960$, 961, 962, 965, 967, 973.
type: $\underline{4}, 188, \underline{214}, 215,216,219,228,229,232,233$, $234,239,242,243,244,245,246,247,248,585$, 587, 589, 595, 596, 598, 599, 600, 603, 604, 605, $614,615,619,621,651,678,700,738,744,745$, $746,799,800,801,803,809,812,819,827,829$, $830,842,850,855,856,857,858,868,873,899$, 903, 910, 919, 923, 926, 928, 929, 930, 931, 932, 935, 936, 939, 940, 941, 942, 943, 946, 947, 948,

949, 951, 952, 956, 957, 959, 966, 968, 969, 971, $972,975,982,983,988, ~ 995,1000,1001,1002$, $1006,1007,1009,1015,1046,1048,1050,1057$.
Type <return> to proceed...: 80.
type_name: 186, 823, 989, 992, 1013, 1014, 1015.
type_range: 918 .
type_range_end: 918.
type_test: 918.
type_test_end: 918.
tyx: $866,953, \underline{954}, 956,960,961,963,967,973$.
tyy: $866,953, \underline{954}, 956,960,961,963,964$, 967, 973.
$t 0: \underline{495}, \underline{497}, 498,503, \underline{599}, \underline{600}$.
t1: $\underline{495}, \underline{497}, 498,499,503, \underline{599}, \underline{600}$.
t2: $\underline{495}, \underline{497}, 498,499,503$.
$u: \quad \underline{152}, \underline{311}, \underline{344}, \underline{432}, \underline{527}, \underline{946}, \underline{968}, \underline{972}, \underline{974}$.
u_packet: 553, 556, 559, 560.
ul_packet: 553, 559 .
unary: 186, 823, 893, 894.
und_type: 248, 1000.
undefined: 187, 229, 234, 239, 242, 244, 245, 247, $248,585,809,842,844,845,850,1046$.
Undefined condition...: 892.
Undefined coordinates...: 872, 873, 878.
undefined_label: 1096, 1097, 1110, 1111, 1137, 1139, 1141.
undump: $\underline{1189}, 1193,1195,1197,1199$.
undump_end: 1189.
undump_end_end: 1189.
undump_four_ASCII: 1193.
undump_hh: 1189, 1197.
undump_int: $\quad \underline{1189}, 1191,1195,1197,1199$.
undump_qqqq: $\underline{1189}, 1193$.
undump_size: 1189, 1193.
undump_size_end: 1189.
undump_size_end_end: 1189.
undump_wd: 1189, 1195.
unequal_to: 189, 893, 936, 937.
unif_rand: 151, 906.
uniform_deviate: 189, 893, 906.
uniformdeviate primitive: $\underline{893}$.
unity: $101,103,112,114,115,116,119,132,194$, $233,256,258,271,282,288,294,295,296,300$, $302,311,374,375,376,402,430,431,433,462$, $463,508,510,515,516,521,522,530,539,548$, $555,556,562,590,674,675,707,713,748,760$, $816,817,819,876,881,883,886,887,890$, 891, 896, 906, 913, 915, 916, 917, 932, 943, 949, 960, 963, 964, 968, 969, 972, 974, 978, 980, 985, 1010, 1068, 1071, 1074, 1097, 1128, $1133,1157,1158,1166,1182,1211$.
Unknown relation...: 937.

Unknown value...ignored: 1021.
unknown primitive: 893.
unknown_boolean: 187, 229, 248, 618, 798, 799, 918, 936.
unknown_op: 189, 893, 918.
unknown_path: $187,248,618,798,918,995,1003$.
unknown_pen: 187, 248, 618, 798.
unknown_picture: 187, 248, 618, 798, 918.
unknown_string: $\quad \underline{187}, 248,618,798,918,936$.
unknown_tag: 187, 621, 1003, 1015.
unknown_types: 187, 216, 799, 800, 802, 808, 809, 855, 1003.
unsave: $\underline{254}, 832$.
unskew: $388,389,394,421,445,447,451,454$, 457, 485, 488, 510.
unsorted: 324, 325, 326, 328, 330, 331, 332, $335,338,343,344,346,348,354,355,364$, $367,368,369,375,376,381,382,383,384$, 385, 578, 1169.
unstash_cur_exp: $718, \underline{800}, 801,859,870,926,942$, 946, 948, 962, 963, 988, 995, 1000, 1003.
unsuffixed_macro: 187, 700, 798, 809, 842, 844, 845, 1046, 1048.
Unsuitable expression: 1178.
until primitive: $\underline{211 .}$
until_token: 186, 211, 212, 765.
update_screen: $\underline{564}, 569,571,574,577$.
update_terminal: $\underline{33}, 36,61,66,81,564,681$, $779,793,994,1165,1212$.
ur_packet: 553, 558, 559.
use_err_help: 74, 75, 84, 86, 1086.
uu: $\quad \underline{283}, 285,287,288,290,291,293,294,295,297$.
$u v: \quad 553,556,557,558,559,560,561$.
u1l: 553, 559.
u1r: 553, 558, 559.
u2l: 553, 559.
u2r: 553, 558, 559.
u3l: 553, 559.
u3r: 553, 558, 559.
$v: \quad \underline{215}, \underline{217}, \underline{410}, \underline{432}, \underline{497}, \underline{527}, \underline{589}, \underline{594}, \underline{597}, \underline{599}$, $\underline{600}, \underline{601}, \underline{607}, \underline{610}, \underline{621}, \underline{801}, \underline{808}, \underline{809}, \underline{820}$, $\underline{900}, \underline{922}, \underline{930}, \underline{935}, \underline{943}, \underline{944}, \underline{946}, \underline{949}, \underline{961}$, $\underline{971}, \underline{972}, \underline{974}, \underline{985}, \underline{1001}, \underline{1117}, \underline{1121 .}$
v_is_scaled: 599, 943.
v_packet: 553, 556, 559, 560.
vacuous: $187,216,219,248,621,764,798,799$, 800, 802, 809, 827, 844, 855, 919, 989, 992, 993, 996, 1003, 1054, 1059, 1070, 1071, 1074.
val_too_big: $\underline{602}, 603,615$.
valid_range: $\underline{326}, 329,965$.
value: $\quad \underline{214}, 215,216,219,220,228,229,230,232$, $233,239,242,244,246,250,253,254,585,587$,
$589,590,591,594,595,596,597,598,599,600$, $601,603,604,605,607,608,609,610,611,612$, $615,616,617,619,620,621,622,651,678,685$, $686,694,698,700,704,705,752,755,760,765$, $798,799,800,801,803,806,809,812,814,816$, $817,818,819,827,829,830,845,853,855,857$, $858,872,873,899,903,904,907,910,915,919$, 928, 929, 930, 931, 933, 935, 936, 938, 939, 940, 942, $943,944,946,948, ~ 949, ~ 951, ~ 955, ~ 956, ~ 957, ~$ 958, 959, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 982, 983, 984, $988,1000,1001,1005,1006,1007,1008,1009$, $1010,1015,1048,1057,1072,1116,1117,1118$, 1121, 1122, 1127, 1132, 1136, 1182.
Value is too large: 602.
value_loc: $\underline{214}, 587,605,812,827,947$.
value_node_size: $\underline{228}, 233,234,239,247,249,603$, $615,619,650,763,799,800,808,827,830,837$, $856,857,903,910,922,925,931,942,944$, 947, $955,970,982,1001,1006,1117$.
var_def: 683, 684, 697, 992.
vardef primitive: $\underline{683}$.
var_defining: 659, 664, 665, 700.
var_flag: $\underline{821}, 822,823,824,868,993,995,996$, 1059, 1070, 1071, 1074.
var_used: 160, 167, 172, 176, 1045, 1194, 1195.
Variable x is the wrong type: 1057.
Variable...obliterated: 851.
velocity: 116, 275, 299.
verbosity: $\underline{801}, 802,803,804, \underline{805}, 1040$.
VIRMF: 1203.
virtual memory: 168.
Vitter, Jeffrey Scott: 208.
vl_packet: 553, 559.
void: $\underline{324}, 326,328,330,331,332,335,338,343$, $344,346,348,354,367,368,369,385,578$, $639,650,719,723,752,755,760,762,763$, 799, 926, 927, 928, 944, 1169.
vррр: 190, 192, 193, 1146, 1182.
vppp primitive: 192.
vr_packet: 553, 558, 559.
$v v: ~ \underline{283}, 285,290,291,293,294,295,297, \underline{809}$, $817,935,972$.
v1l: $553,559$.
v1r: 553, 558, 559.
v2l: $553,559$.
v2r: 553, 558, 559.
v3l: 553, 559 .
v3r: 553, 558, 559.
$w: \underline{157}, \underline{333}, \underline{342}, \underline{348}, \underline{357}, \underline{373}, \underline{473}, \underline{476}, \underline{477}$, $\underline{484}, \underline{487}, \underline{488}, \underline{491}, \underline{497}, \underline{510}, \underline{511}, \underline{580}, \underline{599}, \underline{600}$, $\underline{610}, \underline{1059}, \underline{1074}, \underline{1165}, \underline{1186}, \underline{1187}$.
w_close: 27, 1201, 1211.
w_hi: 348, 349.
w_in: 348, 349, 1074, 1075.
w_lo: 348, 349.
w_make_name_string: $\quad \underline{780}, 1200$.
w_open_in: 26, 779 .
w_open_out: 26, 1200 .
w_out: 348, 349, 1074, 1075.
wake_up_terminal: $\underline{33}, 36,51,66,68,398,682$,
$779,786,807,1051,1187,1205,1212$.
warning_check: 190, 192, 193, 602.
warningcheck primitive: $\underline{192}$.
warning_info: $\underline{659}, 661,664,694,698,700,701$, 730, 742, 758.
warning_issued: $\underline{71}, 195,1209$.
was_free: 178, 180, 184.
was_hi_min: 178, 179, 180, 184.
was_lo_max: 178, 179, 180, 184.
was_mem_end: 178, 179, 180, 184.
watch_coefs: $\quad \underline{592}, 593,595,596,598,1010$.
we_found_it: 547, 548, 549.
WEB: 1, 4, 37, 39, 50, 1191.
Weight must be...: 1056.
west_edge: 435.
white: 565, 567, 568, 577, 579, 583, 584, 1143, 1144.
width_index: 1091.
window_number: 571, 572, 574, 577.
window_open: $572,573,574,1071$.
window_time: 572, 573, 574, 577.
Wirth, Niklaus: 10.
with_option: 186, 1052, 1053, 1062, 1074.
withpen primitive: 1052.
withweight primitive: 1052 .
wlog: 56, 58, 564, 568, 790, 1208.
$w l o g_{-} c r: ~ 56, ~ 57,58,567, ~ 1205 . ~$
wlog_ln: 56, 564, 567, 568, 1141, 1208.
word_file: $\quad 24,26,27, \underline{156}, 780,1188$.
write: $36,56,1133,1154$.
write_gf: 1154, 1155, 1156.
write_ln: 34, 36, 51, 56.
wterm: 56, 58, 61.
wterm_cr: 56, 57, 58.
wterm_ln: 56, 61, 779, 1187, 1204.
$w w: ~ \underline{283}, 285,290,291,293,294, \underline{348}, 349, \underline{357}$, $362, \underline{473}, 474, \underline{484}, 485, \underline{487}, \underline{488}, \underline{491}, \underline{497}$, $498,502,503,508,509, \underline{510}, \underline{511}, 513,519$, 580, 582, 583, 584, 1165, 1169.
www: 506, 508.
$x: \quad \underline{100}, \underline{104}, \underline{119}, \underline{121}, \underline{132}, \underline{135}, \underline{139}, \underline{145}, \underline{149}$, $\underline{151}, \underline{152}, \underline{234}, \underline{387}, \underline{388}, \underline{390}, \underline{391}, \underline{463}, \underline{486}$, $\underline{488}, \underline{539}, \underline{574}, \underline{591}, \underline{601}, \underline{602}, \underline{604}, \underline{610}, \underline{868}$,
$\underline{875}, \underline{898}, \underline{982}, \underline{1011}, \underline{1129}, \underline{1131}, \underline{1133}, \underline{1157}$, 1158, 1186, 1187, 1205.
x_coord: 255, 256, 258, 265, 266, 271, 281, 282,
299, 302, 393, 394, 397, 404, 405, 406, 407, 409, $410,411,412,413,415,416,418,419,421,423$, $424,425,434,436,441,442,444,445,447,451$, $457,467,468,472,473,474,475,476,477,479$, 481, 483, 484, 485, 486, 488, 492, 493, 496, 498, $502,508,509,510,512,513,515,518,519,521$, $528,534,535,536,537,543,558,563,866,867$, 871, 887, 896, 962, 980, 981, 986, 987, 1066.
x_corr: 461, 462, 463.
x_height: 1095.
x_height_code: 1095.
$x_{\text {_off }: ~}^{332}, \underline{333,1165}, 1166,1169,1172$.
x_offset: $190,192,193,1165$.
xoffset primitive: 192.
x_packet: 553, 556, 559, 560.
x_part: 189, 893, 909, 910, 939.
xpart primitive: $\underline{893}$.
x_part_loc: $\underline{230}, 830,873,899,903,907,915,929$, 942, 944, 946, 947, 948, 956, 957, 959, 967, 970, 973, 977, 978, 982, 984, 1072.
x_part_sector: 188, 230, 232, 235, 237, 238.
x_reflect_edges: 337, 964.
x_scale_edges: 342, 964.
x_scaled: 189, 893, 952, 957.
xscaled primitive: 893.
xchr: 20, 21, 22, 23, 37, 49, 58, 774.
xclause: 16.
xi_corr: $306,311,313,314,317$.
xl_packet: 553, 559 .
xord: 20, 23, 30, 52, 53, 778, 780.
$x p: \quad 511,515,516,521,522$.
$x q: \underline{410}$.
xr_packet: $553,558,559$.
$x w: 362, \underline{363}$.
$x x: ~ 391,392, \underline{511}, 515,516,521,522$.
xx_part: 189, 893, 909.
xxpart primitive: 893.
xx_part_loc: 230, 233, 956, 957, 958, 959, 967, 970, 973.
xx_part_sector: 188, 230, 237.
xxx1: 1144, 1145, 1160.
xxx2: 1144.
xxx3: $1144, \underline{1145}, 1160$.
xxx4: 1144.
$x x 0$: 311.
$x x 1$: 311.
$x x^{2}: 311$.
$x x 3$: 311 .
$x y: \quad 553,556, \underline{557}, 558,559,560,561$.
xy_corr: $\underline{461}, 462,468,512,513,515,516,518$, 519, 521, 522.
xy_part: 189, 893, 909.
xypart primitive: 893 .
xy_part_loc: $\quad \underline{230}, 956,957,958,959,967,970,973$.
xy_part_sector: 188, 230, 237.
xy_round: 402, 433 .
xy_swap_edges: $\underline{354}, 963$.
$x 0: \underline{374}, 375,376, \underline{391}, 392, \underline{495}, 496, \underline{497}, 498$, $499,501,503,504,505, \underline{510}$.
$x 0 a: ~ \underline{495}, 504$.
$x 1: \quad \underline{311}, 312,313,314,317,318, \underline{374}, \underline{391}, 392$, $\underline{495}, 496, \underline{497}, 498,499,501,503,504,505, \underline{510}$, $541,542,543,544,546,547,548,549$.
$x 1 a: ~ 495,503,504$.
x1l: 553, 559 .
$x 1 r: 553,558,559$.
x2: $\underline{311}, 312,313,314,317,318, \underline{391}, 392, \underline{495}$, $496, \underline{497}, 498,499,501,503,504,505, \underline{542}$, 543, 546, 547, 548, 549.
$x 2 a: ~ 311,317,318, \underline{495}, 503$.
x2l: 553, 559.
x2r: 553, 558, 559.
$x 3: ~ \underline{311}, 312,313,314,317,318,541,542,543$, $546,547,548,549$.
$x 3 a: 311,317,318$.
$x 3 l: \quad 553,559$.
$x 3 r$: 553, 558, 559.
$y: \quad \underline{100}, \underline{104}, \underline{121}, \underline{132}, \underline{135}, \underline{139}, \underline{145}, \underline{151}, \underline{387}, \underline{388}$, $\underline{390}, \underline{463}, \underline{486}, \underline{488}, \underline{539}, \underline{574}, \underline{868}, \underline{982}$.
y_coord: $\underline{255}, 256,258,265,266,271,281,282$, 299, 302, 393, 394, 397, 404, 405, 406, 407, 409, $410,413,414,415,416,419,421,423,424,425$, $435,437,439,444,445,447,451,457,467,468$, $472,473,474,475,476,477,479,481,483,484$, 485, 486, 488, 492, 493, 496, 498, 502, 508, $509,510,512,515,518,521,528,534,535$, $536,537,543,558,563,866,867,871,887$, 896, 962, 980, 981, 986, 987, 1066.
$y_{-c o r r: ~}^{461}, 462,463,468,512,515,516,518$, 521, 522.
$y_{-o f f: ~}^{332}, \underline{1165}, 1166,1167,1172$.
y_{-}offset: 190, 192, 193, 1165.
yoffset primitive: 192.
y_packet: 553, 556, 559, 560.
y_part: 189, 893, 909.
ypart primitive: $\underline{893}$.
y_part_loc: $\underline{230}, 830,873,899,903,907,915,929$, 942, 944, 946, 947, 948, 956, 957, 959, 967, 970, 973, 977, 978, 982, 984, 1072.
y_part_sector: 188, 230, 237.
y_reflect_edges: 336, 964.
y_scale_edges: 340, 964.
y_scaled: 189, 893, 952, 957.
yscaled primitive: 893.
year: 190, 192, 193, 194, 1163, 1200.
year primitive: 192.
yl_packet: 553, 559.
You have to increase POOLSIZE: 52.
You want to edit file x: 79.
$y p: \quad 511,515,516,521,522$.
$y q: \underline{410}$.
yr_packet: 553, 558, 559.
$y t: \quad 374$.
yx_part: 189, 893, 909.
yxpart primitive: 893 .
yx_part_loc: $\underline{230}, 956,958,959,967,970,973$.
yx_part_sector: 188, 230, 237.
$y y: \quad 511,515,516,521,522$.
yy_part: 189, 893, 909.
yypart primitive: 893.
yy_part_loc: 230, 233, 956, 957, 958, 959, 967, 970, 973.
yy_part_sector: 188, 230, 237.
yyy: $1144, \underline{1145,1147,1166,1177 .}$
yy0: 311 .
yy1: 311.
yy2: 311.
yy3: 311.
$y 0: \underline{374}, 375,376, \underline{495}, 496, \underline{497}, 498,499,501$, $503,504,505, \underline{510}$.
$y 0 a: ~ 495,504$.
$y 1: ~ \underline{311}, 312,313,314,317,318, \underline{374}, 375,376$, $\underline{495}, 496, \underline{497}, 498,499,501,503,504,505, \underline{510}$, 541, 542, 543, 544, 546, 547, 548.
$y 1 a: ~ 495,503,504$.
y1l: 553, 559 .
$y 1 r: ~ 553,558,559$.
y2: $\quad \underline{311}, 312,313,314,317,318, \underline{495}, 496, \underline{497}, 498$, $499,501,503,504,505,542,543,546,547,548$.
y2a: 311, 317, 318, 495, 503.
y2l: 553, 559.
y2r: 553, 558, 559.
$y 3: ~ \underline{311}, 312,313,314,317,318,541, \underline{542}, 543$, 546, 547, 548.
y3a: 311, 317, 318.
y3l: 553, 559.
y3r: 553, 558, 559.
$z: \quad 132,135,139,145$.
z_corr: 461, 462, 463.
z_scaled: 189, 893, 952, 957.
zscaled primitive: 893.
Zabala Salelles, Ignacio Andrés: 812.
zero_crossing: 391 .
zero_field: $\underline{326}, 328,329,332,336,337,340$, $342,352,364,365,366,370,374,377,378$, 577, 1167, 1172.
zero_val: 175, 1126, 1127.
zero_w: $\quad \underline{324}, 326,333,337,349,350,358,365,370$, $373,375,376,381,382,383,384,582,1169$.
\langle Abandon edges command because there＇s no variable 1060〉 Used in sections 1059，1070，1071，and 1074.
\langle Absorb delimited parameters，putting them into lists q and $r 703\rangle$ Used in section 697.
〈Absorb parameter tokens for type base 704〉 Used in section 703.
〈Absorb undelimited parameters，putting them into list r 705〉 Used in section 697.
\langle Add a known value to the constant term of dep＿list $(p) 931\rangle$ Used in section 930.
\langle Add dependency list $p p$ of type $t t$ to dependency list p of type $t 1010\rangle$ Used in section 1009.
〈Add edges for fifth or eighth octants，then goto done 382〉 Used in section 378.
〈Add edges for first or fourth octants，then goto done 381〉 Used in section 378.
〈Add edges for second or third octants，then goto done 383〉 Used in section 378.
〈Add edges for sixth or seventh octants，then goto done 384\rangle Used in section 378.
\langle Add operand p to the dependency list $v 932\rangle \quad$ Used in section 930.
〈Add or subtract the current expression from $p 929\rangle$ Used in section 922.
\langle Add the contribution of node q to the total weight，and set $q \leftarrow \operatorname{link}(q) 370\rangle \quad$ Used in sections 369 and 369 ．
\langle Add the known value (p) to the constant term of $v 933\rangle$ Used in section 932.
\langle Add the right operand to list p 1009〉 Used in section 1006.
〈Additional cases of binary operators 936，940，941，948，951，952，975，983，988〉 Used in section 922.
\langle Additional cases of unary operators $905,906,907,909,912,915,917,918,920,921\rangle$ Used in section 898.
〈Adjust θ_{n} to equal θ_{0} and goto found 291〉 Used in section 287.
〈Adjust the balance for a delimited argument；goto done if done 731〉 Used in section 730 ．
〈Adjust the balance for an undelimited argument；goto done if done 732\rangle Used in section 730 ．
〈Adjust the balance；goto done if it＇s zero 687〉 Used in section 685.
\langle Adjust the coordinates $(r 0, c 0)$ and $(r 1, c 1)$ so that they lie in the proper range 575\rangle Used in section 574 ．
〈Adjust the data of h to account for a difference of offsets 367\rangle Used in section 366.
〈Adjust the header to reflect the new edges 364 〉 Used in section 354.
〈Advance pointer p to the next vertical edge，after destroying the previous one 360\rangle Used in section 358 ．
〈Advance pointer r to the next vertical edge 359〉 Used in section 358.
\langle Advance to the next pair（cur－t，cur＿tt） 560\rangle Used in section 556.
〈Advance p to node q ，removing any＂dead＂cubics that might have been introduced by the splitting process 492\rangle Used in section 491.
\langle Allocate entire node p and goto found 171\rangle Used in section 169.
\langle Allocate from the top of node p and goto found 170\rangle Used in section 169.
〈Announce that the equation cannot be performed 1002〉 Used in section 1001.
〈Append the current expression to arg＿list 728〉 Used in sections 726 and 733.
〈Ascend one level，pushing a token onto list q and replacing p by its parent 236\rangle Used in section 235.
〈Assign the current expression to an internal variable 999〉 Used in section 996.
〈Assign the current expression to the variable lhs 1000〉 Used in section 996.
〈Attach the replacement text to the tail of node $p 698\rangle$ Used in section 697.
〈Augment some edges by others 1061〉 Used in section 1059.
〈Back up an outer symbolic token so that it can be reread 662\rangle Used in section 661.
〈Basic printing procedures $57,58,59,60,62,63,64,103,104,187,195,197,773\rangle$ Used in section 4.
\langle Calculate integers α, β, γ for the vertex coordinates 530\rangle Used in section 528.
$\left\langle\right.$ Calculate the given value of θ_{n} and goto found 292〉 Used in section 284.
〈 Calculate the ratio $\left.f f=C_{k} /\left(C_{k}+B_{k}-u_{k-1} A_{k}\right) 289\right\rangle \quad$ Used in section 287.
$\left\langle\right.$ Calculate the turning angles ψ_{k} and the distances $d_{k, k+1}$ ；set n to the length of the path 281\rangle Used in section 278.
$\left\langle\right.$ Calculate the values $a a=A_{k} / B_{k}, b b=D_{k} / C_{k}, d d=\left(3-\alpha_{k-1}\right) d_{k, k+1}$ ，ee $=\left(3-\beta_{k+1}\right) d_{k-1, k}$ ，and $\left.c c=\left(B_{k}-u_{k-1} A_{k}\right) / B_{k} 288\right\rangle \quad$ Used in section 287.
〈Calculate the values of v_{k} and $\left.w_{k} 290\right\rangle$ Used in section 287.
〈 Cases of do＿statement that invoke particular commands 1020，1023，1026，1030，1033，1039，1058，1069，1076，1081， 1100，1175 〉 Used in section 992.
〈 Cases of print＿cmd＿mod for symbolic printing of primitives 212，684，689，696，710，741，894，1014，1019，1025， 1028，1038，1043，1053，1080，1102，1109， 1180 〉 Used in section 625.

〈Change node q to a path for an elliptical pen 866〉 Used in section 865.
〈Change one－point paths into dead cycles 563〉 Used in section 562.
〈Change the interaction level and return 81〉 Used in section 79.
〈Change the tentative pen 1063〉 Used in section 1062.
〈Change to＇a bad variable＇701〉 Used in section 700.
〈Change variable x from independent to dependent or known 615〉 Used in section 610.
〈Character k cannot be printed 49〉 Used in section 48.
〈Check flags of unavailable nodes 183〉 Used in section 180.
〈Check for the presence of a colon 756 〉 Used in section 755.
〈Check if unknowns have been equated 938〉 Used in section 936.
〈Check single－word avail list 181〉 Used in section 180.
\langle Check that the proper right delimiter was present 727〉 Used in section 726.
〈Check the＂constant＂values for consistency 14，154，204，214，310，553，777〉 Used in section 1204.
〈Check the list of linear dependencies 617〉 Used in section 180.
〈Check the places where $B\left(y_{1}, y_{2}, y_{3} ; t\right)=0$ to see if $\left.B\left(x_{1}, x_{2}, x_{3} ; t\right) \geq 0547\right\rangle$ Used in section 546 ．
〈Check the pool check sum 53\rangle Used in section 52.
〈Check the tentative weight 1056〉 Used in section 1054.
〈Check the turning number 1068〉 Used in section 1064.
〈Check variable－size avail list 182〉 Used in section 180.
〈Choose a dependent variable to take the place of the disappearing independent variable，and change all remaining dependencies accordingly 815\rangle Used in section 812.
〈Choose control points for the path and put the result into cur＿exp 891〉 Used in section 869.
〈Close the base file 1201〉 Used in section 1186.
〈Compare the current expression with zero 937〉 Used in section 936.
〈Compile a ligature／kern command 1112\rangle Used in section 1107.
\langle Compiler directives 9〉 Used in section 4.
〈Complain about a bad pen path 478〉 Used in section 477.
〈Complain about a character tag conflict 1105\rangle Used in section 1104.
〈Complain about improper special operation 1178〉 Used in section 1177.
〈Complain about improper type 1055〉 Used in section 1054.
〈Complain about non－cycle and goto not＿found 1067〉 Used in section 1064.
〈Complement the x coordinates of the cubic between p and $q 409\rangle$ Used in section 407.
〈Complement the y coordinates of the cubic between $p p$ and $q q 414\rangle$ Used in sections 413 and 417 ．
\langle Complete the contour filling operation 1064〉 Used in section 1062.
〈Complete the ellipse by copying the negative of the half already computed 537〉 Used in section 527 ．
〈Complete the error message，and set cur＿sym to a token that might help recover from the error 664〉 Used in section 663 ．
〈Complete the half ellipse by reflecting the quarter already computed 536 〉 Used in section 527.
〈Complete the offset splitting process 503〉 Used in section 494.
$\left\langle\right.$ Compute $\left.f=\left\lfloor 2^{16}(1+p / q)+\frac{1}{2}\right\rfloor 115\right\rangle$ Used in section 114.
$\left\langle\right.$ Compute $\left.f=\left\lfloor 2^{28}(1+p / q)+\frac{1}{2}\right\rfloor 108\right\rangle$ Used in section 107.
$\left\langle\right.$ Compute $\left.p=\left\lfloor q f / 2^{16}+\frac{1}{2}\right\rfloor-q 113\right\rangle$ Used in section 112.
$\left\langle\right.$ Compute $\left.p=\left\lfloor q f / 2^{28}+\frac{1}{2}\right\rfloor-q 111\right\rangle \quad$ Used in section 109.
\langle Compute a check sum in $(b 1, b 2, b 3, b 4) 1132\rangle$ Used in section 1131.
〈Compute a compromise pen＿edge 443〉 Used in section 442.
〈Compute a good coordinate at a diagonal transition 442\rangle Used in section 441.
〈Compute before－and－after x values based on the current pen 435\rangle Used in section 434.
〈Compute before－and－after y values based on the current pen 438〉 Used in section 437.
〈Compute test coefficients $(t 0, t 1, t 2)$ for $s(t)$ versus s_{k} or $s_{k-1} 498$ 〉 Used in sections 497 and 503.
$\left\langle\right.$ Compute the distance d from class 0 to the edge of the ellipse in direction（ u, v ），times $\sqrt{u^{2}+v^{2}}$ ，rounded to the nearest integer 533\rangle Used in section 531.
〈Compute the hash code h 208〉 Used in section 205.

〈Compute the incoming and outgoing directions 457〉 Used in section 454.
〈Compute the ligature／kern program offset and implant the left boundary label 1137〉 Used in section 1135.
〈Compute the magic offset values 365\rangle Used in section 354.
〈Compute the octant code；skew and rotate the coordinates $(x, y) 489\rangle$ Used in section 488.
〈Compute the offsets between screen coordinates and actual coordinates 576 〉 Used in section 574.
\langle Constants in the outer block 11〉 Used in section 4.
\langle Construct a path from $p p$ to $q q$ of length $\lceil b\rceil 980\rangle$ Used in section 978.
\langle Construct a path from $p p$ to $q q$ of length zero 981\rangle Used in section 978.
〈Construct the offset list for the k th octant 481$\rangle \quad$ Used in section 477.
〈Contribute a term from p ，plus the corresponding term from q 598〉 Used in section 597.
\langle Contribute a term from p ，plus f times the corresponding term from q 595〉 Used in section 594.
〈Contribute a term from q ，multiplied by $f 596\rangle$ Used in section 594.
\langle Convert a suffix to a string 840\rangle Used in section 823.
〈Convert the left operand，p ，into a partial path ending at q ；but return if p doesn＇t have a suitable type 870）Used in section 869.
〈Convert the right operand，cur＿exp，into a partial path from $p p$ to $q q 885\rangle$ Used in section 869 ．
\langle Convert (x, y) to the octant determined by $q 146\rangle$ Used in section 145.
〈Copy both sorted and unsorted lists of p to $p p 335\rangle \quad$ Used in sections 334 and 341 ．
〈Copy the big node $p 857$ 〉 Used in section 855.
〈Copy the unskewed and unrotated coordinates of node ww 485〉 Used in section 484.
〈Correct the octant code in segments with decreasing $y 418\rangle$ Used in section 413.
\langle Create the base＿ident，open the base file，and inform the user that dumping has begun 1200\rangle Used in section 1186.
〈Cull superfluous edge－weight entries from sorted（ p ）349〉 Used in section 348.
〈Deal with redundant or inconsistent equation 1008〉 Used in section 1006.
〈Decide whether or not to go clockwise 454\rangle Used in section 452.
〈Declare action procedures for use by do＿statement 995，996，1015，1021，1029，1031，1034，1035，1036，1040，1041， 1044，1045，1046，1049，1050，1051，1054，1057，1059，1070，1071，1072，1073，1074，1082，1103，1104，1106，1177， 1186 〉 Used in section 989.
〈Declare basic dependency－list subroutines 594，600，602，603，604〉 Used in section 246.
〈Declare binary action procedures 923，928，930，943，946，949，953，960，961，962，963，966，976，977，978，982，984， 985）Used in section 922.
〈Declare generic font output procedures 1154，1155，1157，1158，1159，1160，1161，1163，1165〉 Used in section 989.
〈Declare miscellaneous procedures that were declared forward 224 〉 Used in section 1202.
〈Declare subroutines for printing expressions 257，332，388，473，589，801，807〉 Used in section 246.
\langle Declare subroutines needed by big＿trans 968，971，972，974〉 Used in section 966.
〈Declare subroutines needed by make＿exp＿copy 856，858〉 Used in section 855.
\langle Declare subroutines needed by make＿spec 405，406，419，426，429，431，432，433，440，451 〉 Used in section 402.
〈Declare subroutines needed by offset＿prep 493，497〉 Used in section 491.
\langle Declare subroutines needed by solve＿choices 296，299〉 Used in section 284.
\langle Declare the basic parsing subroutines $823,860,862,864,868,892\rangle$ Used in section 1202.
〈Declare the function called open＿base＿file 779\rangle Used in section 1187.
〈Declare the function called scan＿declared＿variable 1011〉 Used in section 697.
〈Declare the function called tfm＿check 1098〉 Used in section 1070.
\langle Declare the function called trivial＿knot 486〉 Used in section 484.
〈Declare the procedure called check＿delimiter 1032〉 Used in section 697.
〈Declare the procedure called dep＿finish 935〉 Used in section 930.
〈Declare the procedure called dual＿moves 518〉 Used in section 506.
〈Declare the procedure called flush＿below＿variable 247〉 Used in section 246.
〈Declare the procedure called flush＿cur＿exp 808，820〉 Used in section 246.
〈Declare the procedure called flush＿string 43〉 Used in section 73.
〈Declare the procedure called known＿pair 872 〉 Used in section 871.
\langle Declare the procedure called macro＿call 720〉 Used in section 706.
〈Declare the procedure called make＿eq 1001〉 Used in section 995.
〈Declare the procedure called make＿exp＿copy 855〉 Used in section 651.
〈Declare the procedure called print＿arg 723〉 Used in section 720.
〈Declare the procedure called print＿cmd＿mod 625〉 Used in section 227.
〈Declare the procedure called print＿dp 805〉 Used in section 801.
\langle Declare the procedure called print＿macro＿name 722〉 Used in section 720.
〈Declare the procedure called print＿weight 333〉 Used in section 332.
〈Declare the procedure called runaway 665〉 Used in section 162.
〈Declare the procedure called scan＿text＿arg 730〉 Used in section 720.
〈Declare the procedure called show＿token＿list 217〉 Used in section 162.
〈Declare the procedure called skew＿line＿edges 510〉 Used in section 506.
〈Declare the procedure called solve＿choices 284〉 Used in section 269.
〈Declare the procedure called split＿cubic 410〉 Used in section 406.
〈Declare the procedure called try＿eq 1006〉 Used in section 995.
〈Declare the recycling subroutines 268，385，487，620，809〉 Used in section 246.
〈Declare the stashing／unstashing routines 799，800〉 Used in section 801.
〈Declare unary action procedures 899，900，901，904，908，910，913，916，919〉 Used in section 898.
〈Decrease the string reference count，if the current token is a string 743〉 Used in sections 83，742，991，and 1016.
〈Decrease the velocities，if necessary，to stay inside the bounding triangle 300〉 Used in section 299.
〈Decrease k by 1，maintaining the invariant relations between x, y ，and $q 123\rangle$ Used in section 121.
〈Decry the invalid character and goto restart 670〉 Used in section 669 ．
\langle Decry the missing string delimiter and goto restart 672\rangle Used in section 671.
〈Define an extensible recipe 1113〉 Used in section 1106.
〈Delete all the row headers 353〉 Used in section 352.
〈Delete empty rows at the top and／or bottom；update the boundary values in the header 352\rangle Used in section 348.
〈Delete c－＂0＂tokens and goto continue 83〉 Used in section 79.
〈Descend one level for the attribute info $(t) 245$ 〉 Used in section 242.
〈Descend one level for the subscript value $(t) 244\rangle$ Used in section 242.
〈Descend past a collective subscript 1012〉 Used in section 1011.
〈Descend the structure 1047〉 Used in section 1046.
〈Descend to the previous level and goto not＿found 561〉 Used in section 560.
〈Determine if a character has been shipped out 1181〉 Used in section 906.
〈Determine the before－and－after values of both coordinates 445 〉 Used in sections 444 and 446.
〈Determine the dependency list s to substitute for the independent variable $p 816\rangle$ Used in section 815.
〈Determine the envelope＇s starting and ending lattice points $(m 0, n 0)$ and $(m 1, n 1) 508\rangle$ Used in section 506.
〈Determine the file extension，gf＿ext 1164〉 Used in section 1163.
〈Determine the number n of arguments already supplied，and set tail to the tail of arg＿list 724 〉 Used in section 720 ．
〈Determine the octant boundary q that precedes $f 400\rangle$ Used in section 398.
〈Determine the octant code for direction（ $d x, d y$ ）480〉 Used in section 479.
〈Determine the path join parameters；but goto finish＿path if there＇s only a direction specifier 874〉 Used in section 869 ．
〈Determine the starting and ending lattice points $(m 0, n 0)$ and $(m 1, n 1) 467\rangle$ Used in section 465.
〈Determine the tension and／or control points 881〉 Used in section 874.
〈Dispense with the cases $a<0$ and／or $b>l$ 979〉 Used in section 978.
〈Display a big node 803\rangle Used in section 802.
〈Display a collective subscript 221〉 Used in section 218.
〈Display a complex type 804〉 Used in section 802.
〈Display a numeric token 220\rangle Used in section 219.
〈Display a parameter token 222\rangle Used in section 218.

〈Display a variable macro 1048〉 Used in section 1046.
〈Display a variable that＇s been declared but not defined 806 〉 Used in section 802.
\langle Display the boolean value of cur＿exp 750 Used in section 748.
〈Display the current context 636 〉 Used in section 635.
\langle Display the new dependency 613\rangle Used in section 610.
\langle Display the pixels of edge row p in screen row $r 578\rangle$ Used in section 577.
\langle Display token p and set c to its class；but return if there are problems 218〉 Used in section 217.
〈Display two－word token 219〉 Used in section 218.
$\left\langle\right.$ Divide list p by $\left.2^{n} 616\right\rangle$ Used in section 615.
\langle Divide list p by $-v$ ，removing node $q 612\rangle$ Used in section 610 ．
〈Divide the variables by two，to avoid overflow problems 313〉 Used in section 311.
〈Do a statement that doesn＇t begin with an expression 992〉 Used in section 989.
〈Do a title 994〉 Used in section 993.
〈Do an equation，assignment，title，or＇〈 expression＞endgroup＇993〉 Used in section 989.
\langle Do any special actions needed when y is constant；return or goto continue if a dead cubic from p to q is removed 417）Used in section 413.
〈Do magic computation 646〉 Used in section 217.
〈Do multiple equations and goto done 1005〉 Used in section 1003.
〈Double the path 1065〉 Used in section 1064.
〈Dump a few more things and the closing check word 1198〉 Used in section 1186.
〈Dump constants for consistency check 1190〉 Used in section 1186.
〈Dump the dynamic memory 1194〉 Used in section 1186.
〈Dump the string pool 1192〉 Used in section 1186.
〈Dump the table of equivalents and the hash table 1196〉 Used in section 1186.
〈Either begin an unsuffixed macro call or prepare for a suffixed one 845\rangle Used in section 844.
\langle Empty the last bytes out of gf＿buf 1156\rangle Used in section 1182.
〈Ensure that type $(p)=$ proto＿dependent 969$\rangle \quad$ Used in section 968.
\langle Error handling procedures 73，76，77，88，89，90〉 Used in section 4.
〈Exclaim about a redundant equation 623〉 Used in sections 622，1004，and 1008.
〈Exit a loop if the proper time has come 713〉 Used in section 707.
\langle Exit prematurely from an iteration 714\rangle Used in section 713.
〈Exit to found if an eastward direction occurs at knot $p 544\rangle$ Used in section 541.
〈Exit to found if the curve whose derivatives are specified by $x 1, x 2, x 3, y 1, y 2, y 3$ travels eastward at some time $t t 546\rangle$ Used in section 541.
〈Exit to found if the derivative $B\left(x_{1}, x_{2}, x_{3} ; t\right)$ becomes $\left.\geq 0549\right\rangle$ Used in section 548 ．
\langle Expand the token after the next token 715\rangle Used in section 707.
\langle Feed the arguments and replacement text to the scanner 736\rangle Used in section 720.
\langle Fill in the control information between consecutive breakpoints p and $q 278\rangle$ Used in section 273.
\langle Fill in the control points between p and the next breakpoint，then advance p to that breakpoint 273\rangle Used in section 269.
\langle Find a node q in list p whose coefficient v is largest 611\rangle Used in section 610.
\langle Find the approximate type $t t$ and corresponding $q 850\rangle$ Used in section 844.
＜Find the first breakpoint，h ，on the path；insert an artificial breakpoint if the path is an unbroken cycle 272\rangle Used in section 269.
$\left\langle\right.$ Find the index k such that $\left.s_{k-1} \leq d y / d x<s_{k} 502\right\rangle \quad$ Used in section 494.
\langle Find the initial slope，$d y / d x 501\rangle$ Used in section 494.
〈Find the minimum $l k_{-}$offset and adjust all remainders 1138〉 Used in section 1137.
＜Find the starting point，$f 399\rangle$ Used in section 398.
〈Finish choosing angles and assigning control points 297〉 Used in section 284.
〈Finish getting the symbolic token in cur＿sym；goto restart if it is illegal 668〉 Used in section 667.
〈Finish linking the offset nodes，and duplicate the borderline offset nodes if necessary 483〉 Used in section 481.

〈Finish off an entirely blank character 1168〉 Used in section 1167.
\langle Finish the GF file 1182〉 Used in section 1206.
〈Finish the TFM and GF files 1206〉 Used in section 1205.
〈Finish the TFM file 1134〉 Used in section 1206.
〈Fix up the transition fields and adjust the turning number 459〉 Used in section 452.
〈Flush spurious symbols after the declared variable 1016〉 Used in section 1015.
〈Flush unparsable junk that was found after the statement 991〉 Used in section 989.
〈For each of the eight cases，change the relevant fields of cur＿exp and goto done；but do nothing if capsule p doesn＇t have the appropriate type 957＞Used in section 955.
〈For each type t ，make an equation and goto done unless cur＿type is incompatible with $t 1003\rangle$ Used in section 1001.
〈Get a stored numeric or string or capsule token and return 678\rangle Used in section 676.
\langle Get a string token and return 671\rangle Used in section 669.
〈Get given directions separated by commas 878〉 Used in section 877.
〈Get ready to close a cycle 886 〉 Used in section 869.
〈Get ready to fill a contour，and fill it 1062 〉 Used in section 1059.
〈Get the first line of input and prepare to start 1211〉 Used in section 1204.
〈Get the fraction part f of a numeric token 674 〉 Used in section 669 ．
〈 Get the integer part n of a numeric token；set $f \leftarrow 0$ and goto fin＿numeric＿token if there is no decimal point 673\rangle Used in section 669.
〈 Get the linear equations started；or return with the control points in place，if linear equations needn＇t be solved 285〉 Used in section 284.
〈Get user＇s advice and return 78〉 Used in section 77.
〈Give error messages if bad＿char or $n \geq 4096$ 914〉 Used in section 913.
〈Global variables $13,20,25,29,31,38,42,50,54,68,71,74,91,97,129,137,144,148,159,160,161,166,178,190,196$ ， 198，200，201，225，230，250，267，279，283，298，308，309，327，371，379，389，395，403，427，430，448，455，461，464，507， $552,555,557,566,569,572,579,585,592,624,628,631,633,634,659,680,699,738,752,767,768,775,782,785,791$ ， $796,813,821,954,1077,1084,1087,1096,1119,1125,1130,1149,1152,1162,1183,1188,1203\rangle$ Used in section 4.
〈Grow more variable－size memory and goto restart 168〉 Used in section 167.
〈Handle erroneous pyth＿sub and set $a \leftarrow 0$ 128〉 Used in section 126 ．
\langle Handle non－positive logarithm 134〉 Used in section 132.
〈Handle quoted symbols，\＃＠，＠，or＠\＃690〉 Used in section 685.
〈Handle square root of zero or negative argument 122\rangle Used in section 121.
〈Handle the special case of infinite slope 505〉 Used in section 494.
〈Handle the test for eastward directions when $y_{1} y_{3}=y_{2}^{2}$ ；either goto found or goto done 548〉 Used in section 546.
\langle Handle undefined arg 140〉 Used in section 139.
〈Handle unusual cases that masquerade as variables，and goto restart or goto done if appropriate； otherwise make a copy of the variable and goto done 852 \rangle Used in section 844.
〈 If consecutive knots are equal，join them explicitly 271〉 Used in section 269.
〈If node q is a transition point between octants，compute and save its before－and－after coordinates 441〉 Used in section 440 ．
〈 If node q is a transition point for x coordinates，compute and save its before－and－after coordinates 434\rangle Used in section 433.
〈 If node q is a transition point for y coordinates，compute and save its before－and－after coordinates 437 〉 Used in section 433.
〈If the current transform is entirely known，stash it in global variables；otherwise return 956〉 Used in section 953.
〈Increase and decrease move $[k-1]$ and move $[k]$ by $\left.\delta_{k} 322\right\rangle$ Used in section 321.
〈Increase k until x can be multiplied by a factor of 2^{-k} ，and adjust y accordingly 133\rangle Used in section 132 ．〈Increase z to the arg of $(x, y) 143\rangle$ Used in section 142.
〈Initialize for dual envelope moves 519〉 Used in section 518.

〈Initialize for intersections at level zero 558〉 Used in section 556.
〈Initialize for ordinary envelope moves 513 〉 Used in section 512.
〈Initialize for the display computations 581〉 Used in section 577.
〈Initialize table entries（done by INIMF only）176，193，203，229，324，475，587，702，759，911，1116，1127，1185〉 Used in section 1210.
〈Initialize the array of new edge list heads 356〉 Used in section 354.
＜Initialize the ellipse data structure by beginning with directions $(0,-1),(1,0),(0,1) 528\rangle$ Used in section 527.
〈Initialize the input routines 657，660 〉 Used in section 1211.
〈Initialize the output routines 55，61，783，792 〉 Used in section 1204.
\langle Initialize the print selector based on interaction 70\rangle Used in sections 1023 and 1211.
〈Initialize the random seed to cur＿exp 1022〉 Used in section 1021.
〈Initiate or terminate input from a file 711\rangle Used in section 707.
〈Input from external file；goto restart if no input found，or return if a non－symbolic token is found 669 〉 Used in section 667.
〈 Input from token list；goto restart if end of list or if a parameter needs to be expanded，or return if a non－symbolic token is found 676\rangle Used in section 667.
〈Insert a fractional node by splitting the cubic 986 〉 Used in section 985.
〈Insert a line segment dually to approach the correct offset 521 〉 Used in section 518.
〈Insert a line segment to approach the correct offset 515 〉 Used in section 512.
\langle Insert a new line for direction (u, v) between p and $q 535\rangle$ Used in section 531.
〈Insert a new symbolic token after p ，then make p point to it and goto found 207〉 Used in section 205.
〈Insert a suffix or text parameter and goto restart 677\rangle Used in section 676.
〈Insert additional boundary nodes，then goto done 458〉 Used in section 452.
〈Insert an edge－weight for edge m ，if the new pixel weight has changed 350\rangle Used in section 349 ．
〈Insert blank rows at the top and bottom，and set p to the new top row 355 〉 Used in section 354 ．
〈Insert downward edges for a line 376\rangle Used in section 374.
〈Insert exactly n＿min（cur＿edges）－nl empty rows at the bottom 330〉 Used in section 329.
〈Insert exactly $\left.n r-n _m a x\left(c u r _e d g e s\right) ~ e m p t y ~ r o w s ~ a t ~ t h e ~ t o p ~ 331\right\rangle ~ U s e d ~ i n ~ s e c t i o n ~ 329 . ~$
〈Insert horizontal edges of weight w between m and $m m 362\rangle$ Used in section 358.
〈Insert octant boundaries and compute the turning number 450〉 Used in section 402.
〈Insert one or more octant boundary nodes just before $q 452\rangle$ Used in section 450.
〈Insert the horizontal edges defined by adjacent rows p, q ，and destroy row $p 358$ 〉 Used in section 354.
〈Insert the new envelope moves dually in the pixel data 523\rangle Used in section 518.
〈Insert the new envelope moves in the pixel data 517〉 Used in section 512.
〈Insert upward edges for a line 375\rangle Used in section 374.
〈Install a complex multiplier，then goto done 959〉 Used in section 957.
〈Install sines and cosines，then goto done 958〉 Used in section 957.
〈Interpolate new vertices in the ellipse data structure until improvement is impossible 531〉 Used in section 527.
〈Interpret code c and return if done 79\rangle Used in section 78 ．
〈Introduce new material from the terminal and return 82\rangle Used in section 79.
〈Join the partial paths and reset p and q to the head and tail of the result 887\rangle Used in section 869.
\langle Labels in the outer block 6〉 Used in section 4.
〈Last－minute procedures 1205，1209，1210，1212〉 Used in section 1202.
〈Link a new attribute node r in place of node $p 241\rangle$ Used in section 239.
\langle Link a new subscript node r in place of node $p 240\rangle$ Used in section 239.
\langle Link node r to the previous node 482\rangle Used in section 481.
〈Local variables for formatting calculations 641〉 Used in section 635.
\langle Local variables for initialization 19，130〉 Used in section 4.
〈Log the subfile sizes of the TFM file 1141〉 Used in section 1134.
〈Make a special knot node for pencircle 896 〉 Used in section 895.

〈Make a trivial one－point path cycle 1066 〉 Used in section 1065.
〈Make moves for current subinterval；if bisection is necessary，push the second subinterval onto the stack， and goto continue in order to handle the first subinterval 314\rangle Used in section 311.
〈 Make one move of each kind 317〉 Used in section 314.
〈Make sure that all the diagonal roundings are safe 446 〉 Used in section 444.
\langle Make sure that both nodes p and $p p$ are of structured type 243〉 Used in section 242.
\langle Make sure that both x and y parts of p are known；copy them into cur＿x and cur＿y 873\rangle Used in section 872.
〈Make sure that the current expression is a valid tension setting 883〉 Used in sections 882 and 882.
〈Make the dynamic memory into one big available node 1207〉 Used in section 1206.
〈Make the envelope moves for the current octant and insert them in the pixel data 512\rangle Used in section 506.
〈Make the first 256 strings 48〉 Used in section 47.
〈Make the moves for the current octant 468〉 Used in section 465.
〈Make variable $q+s$ newly independent 586〉 Used in section 232.
〈Massage the TFM heights，depths，and italic corrections 1126〉 Used in section 1206.
〈Massage the TFM widths 1124〉 Used in section 1206.
〈Merge row $p p$ into row $p 368$ 〉 Used in section 366.
〈Merge the temp＿head list into sorted $(h) 347\rangle \quad$ Used in section 346.
〈Move right then up 319〉 Used in sections 317 and 317.
〈Move the dependent variable p into both parts of the pair node r 947〉 Used in section 946.
〈Move to next line of file，or goto restart if there is no next line 679〉 Used in section 669.
〈Move to row $n 0$ ，pointed to by $p 377\rangle$ Used in sections 375，376，381，382，383，and 384.
〈Move to the next remaining triple (p, q, r) ，removing and skipping past zero－length lines that might be present；goto done if all triples have been processed 532\rangle Used in section 531.
\langle Move to the right m steps 316\rangle Used in section 314.
〈Move up then right 320〉 Used in sections 317 and 317.
〈Move upward n steps 315〉 Used in section 314.
〈Multiply when at least one operand is known 942 〉 Used in section 941.
$\left\langle\right.$ Multiply y by $\left.\exp \left(-z / 2^{27}\right) 136\right\rangle$ Used in section 135.
〈Negate the current expression 903〉 Used in section 898.
〈Normalize the given direction for better accuracy；but return with zero result if it＇s zero 540\rangle Used in section 539.
〈Numbered cases for debug＿help 1213〉 Used in section 1212.
\langle Other local variables for disp＿edges 580\rangle Used in section 577.
〈 Other local variables for fill＿envelope 511〉 Used in sections 506 and 518.
〈Other local variables for find＿direction＿time 542〉 Used in section 539.
〈 Other local variables for make＿choices 280\rangle Used in section 269.
〈 Other local variables for make＿spec 453〉 Used in section 402.
〈Other local variables for offset＿prep 495〉 Used in section 491.
〈Other local variables for scan＿primary 831，836，843〉 Used in section 823.
〈Other local variables for solve＿choices 286〉 Used in section 284.
〈 Other local variables for $x y_{-}$swap＿edges 357，363〉 Used in section 354.
〈Output statistics about this job 1208〉 Used in section 1205.
〈Output the answer，v（which might have become known）934〉 Used in section 932.
〈 Output the character information bytes，then output the dimensions themselves 1136〉 Used in section 1134.
〈Output the character represented in cur＿edges 1167〉 Used in section 1165.
〈Output the extensible character recipes and the font metric parameters 1140\rangle Used in section 1134.
〈Output the ligature／kern program 1139〉 Used in section 1134.
〈Output the pixels of edge row p to font row $n 1169\rangle$ Used in section 1167.
〈 Output the subfile sizes and header bytes 1135\rangle Used in section 1134.
〈Pack the numeric and fraction parts of a numeric token and return 675 〉 Used in section 669.
\langle Plug an opening in right＿type（ $p p$ ），if possible 889\rangle Used in section 887.
〈Plug an opening in right＿type (q) ，if possible 888\rangle Used in section 887.

〈Pop the condition stack 745\rangle Used in sections 748,749 ，and 751.
〈Preface the output with a part specifier；return in the case of a capsule 237\rangle Used in section 235.
〈Prepare for and switch to the appropriate case，based on octant 380\rangle Used in section 378.
〈Prepare for derivative computations；goto not＿found if the current cubic is dead 496〉 Used in section 494.
\langle Prepare for step－until construction and goto done 765\rangle Used in section 764.
〈Pretend we＇re reading a new one－line file 717\rangle Used in section 716.
〈Print a line of diagnostic info to introduce this octant 509\rangle Used in section 508.
〈Print an abbreviated value of v with format depending on $t 802\rangle$ Used in section 801.
〈Print control points between p and q ，then goto done1 261〉 Used in section 258.
〈Print information for a curve that begins curl or given 263〉 Used in section 258.
〈Print information for a curve that begins open 262〉 Used in section 258.
〈Print information for adjacent knots p and $q 258\rangle$ Used in section 257.
〈Print location of current line 637〉 Used in section 636.
〈Print newly busy locations 184\rangle Used in section 180.
〈Print string cur＿exp as an error message 1086〉 Used in section 1082.
\langle Print string r as a symbolic token and set c to its class 223〉 Used in section 218.
\langle Print tension between p and $q 260\rangle \quad$ Used in section 258.
\langle Print the banner line，including the date and time 790\rangle Used in section 788.
\langle Print the coefficient，unless it＇s $\pm 1.0590\rangle$ Used in section 589.
〈Print the cubic between p and $q 397\rangle$ Used in section 394.
〈Print the current loop value 639〉 Used in section 638.
〈Print the help information and goto continue 84\rangle Used in section 79.
\langle Print the menu of available options 80\rangle Used in section 79.
\langle Print the name of a vardef＇d macro 640\rangle Used in section 638.
〈Print the string err＿help，possibly on several lines 85\rangle Used in sections 84 and 86.
〈Print the turns，if any，that start at q ，and advance $q 401\rangle$ Used in sections 398 and 398.
〈Print the unskewed and unrotated coordinates of node $w w 474\rangle$ Used in section 473.
〈Print two dots，followed by given or curl if present 259〉 Used in section 257.
〈Print two lines using the tricky pseudoprinted information 643\rangle Used in section 636.
〈Print type of token list 638〉 Used in section 636.
〈Process a skip＿to command and goto done 1110〉 Used in section 1107.
〈Protest division by zero 838〉 Used in section 837.
〈Pseudoprint the line 644〉 Used in section 636.
〈Pseudoprint the token list 645〉 Used in section 636.
〈Push the condition stack 744\rangle Used in section 748.
\langle Put a string into the input buffer 716\rangle Used in section 707.
〈Put each of METAFONT＇s primitives into the hash table 192，211，683，688，695，709，740，893，1013，1018，1024， 1027，1037，1052，1079，1101，1108，1176 〉 Used in section 1210.
\langle Put help message on the transcript file 86\rangle Used in section 77.
〈Put the current transform into cur＿exp 955〉 Used in section 953.
〈Put the desired file name in（cur＿name，cur＿ext，cur＿area）795〉 Used in section 793.
〈Put the left bracket and the expression back to be rescanned 847 〉 Used in sections 846 and 859.
〈Put the list sorted (p) back into sort 345\rangle Used in section 344.
\langle Put the post－join direction information into x and $t 880\rangle$ Used in section 874.
〈Put the pre－join direction information into node $q 879\rangle$ Used in section 874.
〈Read a string from the terminal 897〉 Used in section 895.
〈Read next line of file into buffer，or goto restart if the file has ended 681〉 Used in section 679.
\langle Read one string，but return false if the string memory space is getting too tight for comfort 52\rangle Used in section 51.
\langle Read the first line of the new file 794\rangle Used in section 793.
＜Read the other strings from the MF．POOL file and return true，or give an error message and return false 51\rangle Used in section 47.

〈Record a label in a lig／kern subprogram and goto continue 1111〉 Used in section 1107.
\langle Record a line segment from $(x x, y y)$ to $(x p, y p)$ dually in env＿move 522\rangle Used in section 521.
〈Record a line segment from $(x x, y y)$ to $(x p, y p)$ in env＿move 516\rangle Used in section 515.
\langle Record a new maximum coefficient of type $t 814$ 〉 Used in section 812.
〈Record a possible transition in column $m 583\rangle$ Used in section 582.
〈Recycle a big node 810\rangle Used in section 809.
〈Recycle a dependency list 811〉 Used in section 809.
〈Recycle an independent variable 812〉 Used in section 809.
〈Recycle any sidestepped independent capsules 925〉 Used in section 922.
〈Reduce comparison of big nodes to comparison of scalars 939〉 Used in section 936.
〈Reduce to simple case of straight line and return 302〉 Used in section 285.
〈Reduce to simple case of two givens and return 301〉 Used in section 285.
\langle Reduce to the case that $a, c \geq 0, b, d>0118\rangle \quad$ Used in section 117.
\langle Reduce to the case that $f \geq 0$ and $q \geq 0110\rangle \quad$ Used in sections 109 and 112.
\langle Reflect the edge－and－weight data in $\operatorname{sorted}(p) 339\rangle$ Used in section 337.
\langle Reflect the edge－and－weight data in $\operatorname{unsorted}(p) 338\rangle$ Used in section 337.
〈Remove a subproblem for make＿moves from the stack 312 〉 Used in section 311.
〈Remove dead cubics 447 〉 Used in section 402.
＜Remove the left operand from its container，negate it，and put it into dependency list p with constant term q 1007〉 Used in section 1006.
\langle Remove the line from p to q ，and adjust vertex q to introduce a new line 534\rangle Used in section 531 ．
\langle Remove open types at the breakpoints 282\rangle Used in section 278.
〈Repeat a loop 712\rangle Used in section 707.
\langle Replace an interval of values by its midpoint 1122\rangle Used in section 1121.
$\left\langle\right.$ Replace a by an approximation to $\left.\sqrt{a^{2}+b^{2}} 125\right\rangle$ Used in section 124.
$\left\langle\right.$ Replace a by an approximation to $\left.\sqrt{a^{2}-b^{2}} 127\right\rangle \quad$ Used in section 126.
\langle Replicate every row exactly s times 341\rangle Used in section 340.
\langle Report an unexpected problem during the choice－making 270〉 Used in section 269.
\langle Report overflow of the input buffer，and abort 34〉 Used in section 30.
〈Report redundant or inconsistent equation and goto done 1004〉 Used in section 1003.
〈Return an appropriate answer based on z and octant 141\rangle Used in section 139.
\langle Revise the values of α, β, γ ，if necessary，so that degenerate lines of length zero will not be obtained 529\rangle Used in section 528.
\langle Rotate the cubic between p and q ；then goto found if the rotated cubic travels due east at some time $t t$ ； but goto not＿found if an entire cyclic path has been traversed 541\rangle Used in section 539 ．
〈Run through the dependency list for variable t ，fixing all nodes，and ending with final link $q 605\rangle$ Used in section 604.
〈Save string cur＿exp as the err＿help 1083〉 Used in section 1082.
〈Scale the x coordinates of each row by $s 343\rangle$ Used in section 342.
〈Scale the edges，shift them，and return 964〉 Used in section 963.
〈Scale up del1，del2，and del3 for greater accuracy；also set del to the first nonzero element of （del1，del2，del3）408 \rangle Used in sections 407，413，and 420.
〈Scan a binary operation with＇of＇between its operands 839 〉 Used in section 823.
〈Scan a bracketed subscript and set cur＿cmd \leftarrow numeric＿token 861\rangle Used in section 860.
〈Scan a curl specification 876 〉 Used in section 875.
〈Scan a delimited primary 826〉 Used in section 823.
〈Scan a given direction 877\rangle Used in section 875.
\langle Scan a grouped primary 832\rangle Used in section 823.
〈Scan a mediation construction 859 〉 Used in section 823.
〈Scan a nullary operation 834 〉 Used in section 823.
〈Scan a path construction operation；but return if p has the wrong type 869\rangle Used in section 868.
〈Scan a primary that starts with a numeric token 837 〉 Used in section 823.

〈Scan a string constant 833〉 Used in section 823.
\langle Scan a suffix with optional delimiters 735\rangle Used in section 733.
〈Scan a unary operation 835\rangle Used in section 823.
〈Scan a variable primary；goto restart if it turns out to be a macro 844〉 Used in section 823.
\langle Scan an expression followed by＇of 〈primary〉＇ 734\rangle Used in section 733.
〈Scan an internal numeric quantity 841\rangle Used in section 823.
〈Scan file name in the buffer 787〉 Used in section 786.
〈Scan for a subscript；replace cur＿cmd by numeric＿token if found 846〉 Used in section 844.
\langle Scan the argument represented by info $(r) 729\rangle \quad$ Used in section 726.
\langle Scan the delimited argument represented by $\operatorname{info}(r) 726\rangle$ Used in section 725.
〈Scan the loop text and put it on the loop control stack 758〉 Used in section 755.
〈Scan the remaining arguments，if any；set r to the first token of the replacement text 725\rangle Used in section 720 ．
\langle Scan the second of a pair of numerics 830\rangle Used in section 826.
〈Scan the token or variable to be defined；set n ，scanner＿status，and warning＿info 700\rangle Used in section 697.
〈Scan the values to be used in the loop 764 〉 Used in section 755.
\langle Scan undelimited argument（s） 733\rangle Used in section 725.
〈Scold the user for having an extra endfor 708 〉 Used in section 707.
〈Search eqtb for equivalents equal to $p 209\rangle$ Used in section 185.
〈Send nonzero offsets to the output file 1166〉 Used in section 1165.
〈Send the current expression as a title to the output file 1179\rangle Used in section 994.
〈Set explicit control points 884 〉 Used in section 881.
〈Set explicit tensions 882\rangle Used in section 881.
〈Set initial values of key variables 21，22，23，69，72，75，92，98，131，138，179，191，199，202，231，251，396，428，449， $456,462,570,573,593,739,753,776,797,822,1078,1085,1097,1150,1153,1184\rangle$ Used in section 4.
〈Set local variables $x 1, x 2, x 3$ and $y 1, y 2, y 3$ to multiples of the control points of the rotated derivatives 543 〉 Used in section 541.
〈Set the current expression to the desired path coordinates 987〉 Used in section 985.
$\left\langle\right.$ Set up equation for a curl at θ_{n} and goto found 295〉 Used in section 284.
〈Set up equation to match mock curvatures at z_{k} ；then goto found with θ_{n} adjusted to equal θ_{0} ，if a cycle has ended 287）Used in section 284.
〈Set up suffixed macro call and goto restart 854〉 Used in section 852.
〈Set up the culling weights，or goto not＿found if the thresholds are bad 1075〉 Used in section 1074.
〈Set up the equation for a curl at $\left.\theta_{0} 294\right\rangle$ Used in section 285.
〈Set up the equation for a given value of $\left.\theta_{0} 293\right\rangle \quad$ Used in section 285.
〈Set up the parameters needed for paint＿row；but goto done if no painting is needed after all 582\rangle Used in section 578.
$\left\langle\right.$ Set up the variables（del1，del2，del3）to represent $\left.x^{\prime}-y^{\prime} 421\right\rangle$ Used in section 420.
〈Set up unsuffixed macro call and goto restart 853\rangle Used in section 845.
\langle Set variable q to the node at the end of the current octant 466\rangle Used in sections 465，506，and 506.
\langle Set variable z to the \arg of $(x, y) 142\rangle \quad$ Used in section 139.
〈Shift the coordinates of path q 867〉 Used in section 866.
〈Shift the edges by $(t x, t y)$ ，rounded 965\rangle Used in section 964.
〈Show a numeric or string or capsule token 1042〉 Used in section 1041.
〈Show the text of the macro being expanded，and the existing arguments 721\rangle Used in section 720 ．
〈Show the transformed dependency 817〉 Used in section 816.
〈Sidestep independent cases in capsule $p 926\rangle$ Used in section 922.
〈Sidestep independent cases in the current expression 927〉 Used in section 922.
\langle Simplify all existing dependencies by substituting for $x 614\rangle$ Used in section 610.
\langle Skip down prev＿$n-n$ rows 1174\rangle Used in section 1172.
〈Skip to elseif or else or fi，then goto done 749 〉 Used in section 748.
〈Skip to column m in the next row and goto done，or skip zero rows 1173〉 Used in section 1172.
\langle Sort p into the list starting at rover and advance p to $\operatorname{rlink}(p) 174\rangle$ Used in section 173.
〈Splice independent paths together 890 〉 Used in section 887.
〈Split off another rising cubic for fin＿offset＿prep 504〉 Used in section 503.
〈Split the cubic at t ，and split off another cubic if the derivative crosses back 499〉 Used in section 497.
〈Split the cubic between p and q ，if necessary，into cubics associated with single offsets，after which q should point to the end of the final such cubic 494〉 Used in section 491.
〈Squeal about division by zero 950〉 Used in section 948.
〈Stamp all nodes with an octant code，compute the maximum offset，and set $h h$ to the node that begins the first octant；goto not＿found if there＇s a problem 479〉 Used in section 477.
\langle Start a new row at $(m, n) 1172\rangle$ Used in section 1170.
\langle Start black at $(m, n) 1170\rangle$ Used in section 1169.
〈Stash an independent cur＿exp into a big node 829〉 Used in section 827.
〈Stop black at $(m, n) 1171\rangle$ Used in section 1169.
〈Store a list of font dimensions 1115〉 Used in section 1106.
〈Store a list of header bytes 1114〉 Used in section 1106.
〈Store a list of ligature／kern steps 1107〉 Used in section 1106.
〈Store the width information for character code c 1099〉 Used in section 1070.
〈Subdivide all cubics between p and q so that the results travel toward the first quadrant；but return or goto continue if the cubic from p to q was dead 413〉 Used in section 406 ．
〈Subdivide for a new level of intersection 559〉 Used in section 556.
〈Subdivide the cubic a second time with respect to $x^{\prime} 412$ 〉 Used in section 411.
〈Subdivide the cubic a second time with respect to $\left.x^{\prime}-y^{\prime} 425\right\rangle$ Used in section 424.
$\left\langle\right.$ Subdivide the cubic a second time with respect to $\left.y^{\prime} 416\right\rangle$ Used in section 415.
〈Subdivide the cubic between p and q so that the results travel toward the first octant 420\rangle Used in section 419.
〈Subdivide the cubic between p and q so that the results travel toward the right halfplane 407〉 Used in section 406.
〈Subdivide the cubic with respect to x^{\prime} ，possibly twice 411〉 Used in section 407.
〈Subdivide the cubic with respect to $x^{\prime}-y^{\prime}$ ，possibly twice 424〉 Used in section 420 ．
〈Subdivide the cubic with respect to y^{\prime} ，possibly twice 415〉 Used in section 413.
〈Substitute for cur＿sym，if it＇s on the subst＿list 686〉 Used in section 685.
〈Substitute new dependencies in place of p 818〉 Used in section 815.
〈Substitute new proto－dependencies in place of p 819〉 Used in section 815.
〈Subtract angle z from $(x, y) 147\rangle$ Used in section 145.
〈Supply diagnostic information，if requested 825 〉 Used in section 823.
\langle Swap the x and y coordinates of the cubic between p and $q 423\rangle$ Used in section 420.
〈Switch to the right subinterval 318〉 Used in section 317.
〈Tell the user what has run away and try to recover 663\rangle Used in section 661.
〈Terminate the current conditional and skip to fi 751\rangle Used in section 707.
〈The arithmetic progression has ended 761 〉 Used in section 760 ．
〈Trace the current assignment 998〉 Used in section 996.
〈Trace the current binary operation 924 〉 Used in section 922.
〈Trace the current equation 997〉 Used in section 995.
〈Trace the current unary operation 902 〉 Used in section 898.
〈Trace the fraction multiplication 945 〉 Used in section 944.
〈Trace the start of a loop 762 〉 Used in section 760 ．
〈Transfer moves dually from the move array to env＿move 520〉 Used in section 518.
〈Transfer moves from the move array to env＿move 514〉 Used in section 512.
〈Transform a known big node 970〉 Used in section 966.
〈Transform an unknown big node and return 967〉 Used in section 966.
〈Transform known by known 973〉 Used in section 970.
〈Transform the skewed coordinates 444\rangle Used in section 440.

〈Transform the x coordinates 436〉 Used in section 433.
\langle Transform the y coordinates 439\rangle Used in section 433.
〈Treat special case of length 1 and goto found 206〉 Used in section 205.
〈Truncate the values of all coordinates that exceed max＿allowed，and stamp segment numbers in each left＿type field 404\rangle Used in section 402.
\langle Try to allocate within node p and its physical successors，and goto found if allocation was possible 169〉
Used in section 167.
〈Try to get a different log file name 789\rangle Used in section 788.
\langle Types in the outer block 18，24，37，101，105，106，156，186，565，571，627，1151〉 Used in section 4.
〈Undump a few more things and the closing check word 1199〉 Used in section 1187.
〈Undump constants for consistency check 1191〉 Used in section 1187.
〈Undump the dynamic memory 1195〉 Used in section 1187.
〈Undump the string pool 1193〉 Used in section 1187.
〈Undump the table of equivalents and the hash table 1197〉 Used in section 1187.
〈Update the max／min amounts 351\rangle Used in section 349.
〈Use bisection to find the crossing point，if one exists 392 〉 Used in section 391.
〈Wind up the paint＿row parameter calculation by inserting the final transition；goto done if no painting is needed 584〉 Used in section 582.
〈Worry about bad statement 990〉 Used in section 989.

